
selog(3) selog(3)

NAME
selog − selective logging

LIBRARY
Selective logging core library (libselog, −lselog)
Replacement err/warn implementation (libselog_err, −lselog_err)
Replacement syslog implementation (libselog_syslog, −lselog_syslog)

SYNOPSIS
#include <stdarg.h>
#include <stdbool.h>
#include <stddef.h>

#include <selog.h>

typedef struct selog_selector selog_selector[1];
typedef struct selog_buffer selog_buffer[1];

/* initialization */
selog_selector sel = SELINIT(name, level);
int selog_open(const char *config, const char *const spelling[]);

/* simple output */
void selog(selog_selector sel, const char * fmt, ...);
void selogerr(selog_selector sel, const char * fmt, ...);

/* complex messages */
bool selog_on(selog_selector sel);
void selog_bufinit(selog_buffer buf , selog_selector sel);
void selog_prep(selog_buffer buf , selog_selector sel);
void selog_add(selog_buffer buf , const char * fmt, ...);
void selog_addv(selog_buffer buf , const char * fmt, va_list ap);
void selog_addopt(selog_selector, selog_buffer, const char * fmt, ...);
void selog_write(selog_buffer buf);

/* selector inspection */
const char *selog_name(selog_selector sel);
const char *selog_level(selog_selector sel);
unsigned int SELOG_LEVEL(selog_selector sel);
unsigned int SELOG_EXITVAL(selog_selector sel);
unsigned int selog_parse_level(const char *str, size_t len);

/* debug macros */
void selassert(selog_selector sel, bool pred , const char * fmt, ...);
void seltrace(selog_selector sel, const char * fmt, ...);

DESCRIPTION
Selog is a library of routines that unifies error reporting, activity logging, and debug tracing. It allows
programmers to give their users flexible control over which messages are written and where they are
written to.

This manual describes the programmer’s interface to selog, and the auxiliary libraries that can be used
to replace the standard err(3) and syslog(3) interfacses with implementations based on selog. For an
overview of selog, details of how users can configure it, and how the output channels behave, see
selog(7).

SELECTORS
Message output using selog is controlled by message selectors, and optional parts of messages are con-
trolled by option selectors. A message selector classifies the messages it controls according to a “cate-
gory” and a “level” which are both defined by the programmer. Multiple selectors can have the same
category or level. Option selectors are distinguished from message selectors by their level setting.

As well as their category and level, selectors also contain a word of enable flags that is filled in at run-
time based on the user’s configuration. For message selectors this determines which channels mes-
sages should be written to, if any. For option selectors it determines whether the option is on or off.
Once a selector’s enable word has been initialized, the run-time test to skip disabled messages is very

1

selog(3) selog(3)

efficient, so it is reasonable to leave debugging messages compiled in to production code.

Finally, selectors also have a linked list pointer which is used to chain all the configured selectors
together. When selog is reconfigured this chain is used to reset all the selectors.

Categories
A selector’s category is a string that names the kind of messages controlled by the selector, or that
names the optional message part it controls. The selog configuration uses category names to determine
which selectors are enabled, so they should be meaningful to users.

For example, a server might have a “connection” selector for messages related to open and closed con-
nections, and an “interface” option to determine if the server’s IP address is logged as well as the
client’s on multi-homed machines.

A good name for message selectors is often based on the part of the program that emits the messages.
This is especially true for debugging messages.

Levels
A selector’s lev el defines whether it is an option selector or a message selector, and for message selec-
tors defines whether it is for error reporting, activity logging, or debugging. The possible values are as
follows, in order from lowest to highest.

SELOG_TRACE
For programer-oriented debug messages, i.e. for people working on the program’s source
code. The seltrace() function is intended for use with SELOG_TRACE selectors.

SELOG_DEBUG
For user-oriented debug messages, i.e. for people dealing with configuration problems.

SELOG_OPTION_OFF or SELOG_OPTION
For option selectors that are off by default.

SELOG_VERBOSE
For activity log messages that are not emitted by default. Otherwise equivalent to
SELOG_INFO.

SELOG_OPTION_ON or SELOG_DEFAULT
For option selectors that are on by default.

SELOG_INFO
The normal level for activity log messages.

SELOG_NOTICE
For more important activity log messages. Not normally used, unless the user might want dif-
ferent messages in the same category to be written to different output channels. Consider
using different categories instead.

SELOG_WARNING or SELOG_WARN
For errors that should be fixed but which do not harm functionality.

SELOG_ERROR
For errors that cause degraded functionality.

SELOG_CRITICAL or SELOG_CRIT
For serious errors. The difference between SELOG_ERROR and SELOG_CRITICAL is simi-
lar to the difference between SELOG_INFO and SELOG_NOTICE.

SELOG_ALERT
For syslog compatibility; not normally used. Intended to bring something to the immediate
notice of the system administrator.

SELOG_EMERGENCY or SELOG_EMERG
For syslog compatibility; not normally used. Intended for use when the system is catastrophi-
cally broken, so should be reserved for fundamental code like the kernel.

SELOG_FAT AL(status)
Similar to SELOG_CRIT except that after the message is written the status code is passed to
exit(3). Selog does not implement its own exit hook: you should use atexit(3).

2

selog(3) selog(3)

SELOG_EXIT
Equivalent to SELOG_FATAL(0).

SELOG_ABORT
For failed internal consistency checks. Selog calls abort(3) after writing the message. The
selassert() function is intended for use with SELOG_ABORT selectors.

Selog’s lev els are a superset of syslog(3)’s sev erities. The extensions mostly add more flexibility for
non-error conditions. Syslog is rather over-endowed with error levels. Whether an error is severe
enough to merit a “alert” or “emergency” level depends more on the purpose of the system and the pol-
icy preferred by the system administrator than on static properties of a program. Selog allows the
sysadmin to choose how to handle messages based on the program and category, instead of the facility
and severity as with syslog. Selog’s greater flexibility allows sysadmins to express their filtering policy
with fewer levels than syslog.

Defining selectors
Selectors are typically defined as static variables with file scope. (It is possible to define selectors
dynamically, though you should be careful to re-use selectors and avoid creating and initializing new
selectors if performance matters.) The SELINIT() macro is provided to initialize selectors correctly.
The first parameter is the category and the second is the level. For example,

selog_selector log_conn = SELINIT(“connection”, SELOG_INFO);
selog_selector opt_iface = SELINIT(“interface”, SELOG_OPTION);

The macro initializer hides the detail that selog_selector is an array of one struct. This trick allows you
to pass it by reference to functions without an explicit & address-of operator, similar to the standard
jmp_buf type. In C++, selog_selector is a normal structure type, and C++ features are used to imple-
ment implicit pass-by-reference.

Software that creates selectors dynamically (such as selog’s Lua interface) can turn a string into a
numerical level using selog_parse_level(). The first argument is a pointer to the string and the second
is its length. The string does not have to be nul-terminated. The function returns SELOG_NOLEVEL
if the string is not a valid level.

Accessor functions
The following can be used to inspect a selector at run time.

selog_name(sel)
Function that returns the selector’s category.

selog_level(sel)
Function that returns the selector’s lev el as a string, suitable for use in log message preambles.
See selog_bufinit() and selog_prep() below.

SELOG_LEVEL(sel)
Macro that returns the selector’s numeric level.

SELOG_EXITVAL(sel)
Macro that returns the exit status of a SELOG_FATAL() selector.

selog_on(sel)
Returns true if the selector is enabled. Has the side-effect of initializing the selector’s flag
word if necessary. Implemented as both a macro and a function; the macro may evaluate sel
more than once. In C++ you can treat sel as a boolean value which has the same effect as call-
ing selog_on().

SIMPLE MESSAGE OUTPUT
This section describes the functions that allow you to write messages that are simple enough to format
in one step, similar to the printf(3) and syslog(3) functions. These functions are defined with macro
wrappers that perform the selog_on() test in-line for speed, therefore they may evaluate the selector
more than once.

selog(sel, fmt, ...)
The usual message output function. Checks that the selector is enabled using selog_on(sel)
and if so writes the formatted message to the relevant channel(s). The format string is inter-
preted the same way as by printf(3).

3

selog(3) selog(3)

selogerr(sel, fmt, ...)
Equivalent to selog() with “: ” and strerror(errno) appended to the message.

seltrace(sel, fmt, ...);
The same as selog(), except with an extended preamble of the form

“file:line func() category level: ”
This macro is intended for use with SELOG_TRACE selectors. It does not have a function
equivalent.

selassert(sel, pred , fmt, ...);
If the predicate is false, selassert() writes the message to the relevant channel(s) and calls
abort(3). The message preamble includes trace information and the stringified predicate
expression. This macro is intended for use with SELOG_ABORT selectors. It does not have a
function equivalent.

COMPLEX MESSAGES
This section describes functions that are used to compose messages in stages. For example, it is often
awkward to format a message in one step if it contains optional parts. These facilities are also useful if
formatting a message requires extra work that should be skipped if its selector is disabled. The pattern
to follow is:

• Check that the message’s selector is enabled using selog_on().

• Initialize a selog_buffer variable using selog_prep() or selog_bufinit().

• Call selog_add() or one of its related functions to append each part of the message to the
buffer.

• When the message is complete, call selog_write() which writes it to the appropriate chan-
nel(s).

For example, selogerr(sel, fmt, ...) is equivalent to
if (selog_on(sel)) {

selog_buffer buf;
selog_prep(buf , sel);
selog_add(buf, fmt, ...);
selog_add(buf, “: %s”, strerror(errno));
selog_write(buf);

}

Like the selog_selector type, the selog_buffer type is an array of one struct. This trick allows you to
pass it by reference to functions without an explicit & address-of operator. In C++, selog_buffer is a
normal structure type, and C++ features are used to implement implicit pass-by-reference.

selog_prep(buf , sel);
The normal buffer initialization function. It is equivalent to:

selog_bufinit(buf , sel);
selog_add(buf , “%s ”, selog_name(sel));
selog_add(buf , “%s: ”, selog_level(sel));

selog_bufinit(buf , sel);
Initialize the buffer without adding any message text. This function does not have a built-in
selog_on() guard; the selector argument is stored in the buffer for use by selog_write().

If you use selog_bufinit(), you should add your own message preamble in the style of
selog_prep(). This might be in order to add extra metadata such as the name of the function
that emitted the message, or less metadata if the selector’s category and level are redundant.
The information should be ordered from less specific to more specific, for example, see sel-
trace() above, and the “MESSAGE FORMAT” section of selog(7). The preamble should not
include information that is added by channels, such as the timestamp, host name, program
name, etc.

selog_add(buf , fmt, ...);
Append the formatted string to the buffer.

4

selog(3) selog(3)

selog_addv(buf , fmt, ap);
Append the formatted string to the buffer, getting the arguments from a va_list like
vsnprintf(3).

selog_addopt(sel, buf , fmt, ...);
Add an optional part of a message to the buffer, if the selector is enabled.

selog_write(buf);
Write the message to the relevant channel(s), determined by the selector that was passed to
selog_prep().

INITIALIZATION
Selog should be initialized soon after the program starts by calling selog_open(config, spelling);

The configuration string should be obtained from the user by a command-line option or a configuration
file setting. If the user does not provide a configuration then the program may wish to provide a default
to override the built-in default described in selog(7). If the program calls another selog function before
selog_open(), then selog will initialize itself with its built-in default. In any case, if the
SELOG_CONFIG environment variable is set, it overrides any other configuration string. Selog
keeps a pointer to the configuration for later use by selog_on() to initialize selectors. (This implies that
the program must not free or overwrite the memory pointed to by config.)

The selog_open() function scans the configuration string and opens the channels it specifies. It also
checks that all the categories mentioned in the string are listed in the spelling array. You should ensure
that the array contains selog’s built-in categories as well as all the categories defined by your program.
You can disable this check by passing a NULL spelling pointer.

Selog can be reconfigured by calling selog_open() again. The old channels are closed and all selectors
are reset before the new configuration is installed. Therefore reconfiguration is not seamless. Note
also that any SELOG_CONFIG environment variable setting still takes precedence.

The return value of selog_open() is 0 on success. If it encounters an error it sets errno and returns -1,
and it also reports the error using the log_config selector. Because selog is not fully initialized at this
point, the messages it controls can only be written to the standard error stream. However selog’s filter-
ing features do work.

STANDARD LIBRARY REPLACEMENTS
Selog comes with two auxiliary libraries that can be used to add selog’s channel configuration features
to programs that were not written to use selog. They can be used by re-linking the program with the
relevant library, or less permanently by running the program with LD_PRELOAD set to the library’s
file name. In either case selog’s replacement implementation of the functions “interposes” on the stan-
dard C library’s implementation. Programs manipulated in this way do not call selog_open() so you
must specify non-default configuration using the SELOG_CONFIG environment variable.

These libraries may also be useful for programs that mostly use selog, but which also depend on other
code that calls the legacy APIs.

selog_err
This is a replacement implementation of the 4.4BSD err(3) functions. It defines two selectors, {err,
FATAL} used by the err() functions, and {warn, ERROR} used by the warn() functions. (Somewhat
confusingly, the selog levels that have similar names to the functions have different meanings from the
levels that correspond to the functions’ actions.) If the program calls err_set_file() then the library just
emits a diagnostic using the selector {err_set_file, DEBUG}. The library does not call selog_open() so
relies on selog’s default configuration.

selog_syslog
This is a replacement implementation of the traditional syslog(3) functions. It defines eight selectors
corresponding to the syslog severity levels, {syslog, DEBUG} up to {syslog, EMERG}. The selector
is determined by the first pri argument to syslog(). The library does not do anything with facilities
encoded in the pri argument of syslog() or with calls to setlogmask() and if either occurs the library
emits a diagnostic using its {syslog, DEBUG} selector. The library implements the ident and facility
arguments to openlog() and the LOG_PID, LOG_PERROR, and LOG_CONS options (though these
can be overridden by the SELOG_CONFIG environment variable). It behaves as if LOG_NDELAY
is always set.

5

selog(3) selog(3)

DIAGNOSTICS
This section lists the built-in selectors used by selog itself. Selectors are written {category, LEVEL}
which is an abbreviated form of the usual selector initializer SELINIT(“category”, SELOG_LEVEL);

When documenting a program that uses selog, you should list the slectors it defines in a similar man-
ner, and direct users to selog(7) for documentation of the configuration syntax.

{log_config, ERROR}
This is used by selog_open() to report syntax errors. Because it is used before selog is fully
initialized, the messages it controls can only be written to the standard error stream. However
selog’s filtering features do work.

{error, FAT AL}
{warning, ERROR}
{err_set_file, DEBUG}

These are used by the selog_err library (see above).

{syslog, DEBUG}
{syslog, INFO}
{syslog, NOTICE}
{syslog, WARNING}
{syslog, ERROR}
{syslog, CRITICAL}
{syslog, ALERT}
{syslog, EMERGENCY}

These are used by the selog_syslog library (see above).

ENVIRONMENT
SELOG_CONFIG

Overrides the configuration string provided to selog_open().

EXIT STATUS
When the program uses a selector that is initialized using the SELOG_FAT AL(status) macro, selog
exits the program with the given status code.

COMPATIBILITY
The selog library requires some C99 features, in particular variadic macros. The <selog.h> header
should work equally well in C99 and C++ programs.

SEE ALSO
abort(3), atexit(3), err(3), exit(3), printf(3), selog(7), syslog(3), vsnprintf(3).

AUTHOR
Written by Tony Finch <dot@dotat.at> <fanf2@cam.ac.uk>
at the University of Cambridge Computing Service.
Source available from <http://dotat.at/prog/selog>

6

