
Transactional Mutex Locks

Luke Dalessandro,1 Dave Dice,2 Michael Scott,1 Nir Shavit,2,3 and
Michael Spear4

1 University of Rochester†
2 Sun Labs at Oracle

3 Tel-Aviv University‡
4 Lehigh University

{luked, scott}@cs.rochester.edu dave.dice@oracle.com

shanir@cs.tau.ac.il spear@cse.lehigh.edu

Abstract. Mutual exclusion (mutex) locks limit concurrency but offer
low single-thread latency. Software transactional memory (STM) typi-
cally has much higher latency, but scales well. We present transactional
mutex locks (TML), which attempt to achieve the best of both worlds for
read-dominated workloads. We also propose compiler optimizations that
reduce the latency of TML to within a small fraction of mutex overheads.
Our evaluation of TML, using microbenchmarks on the x86 and SPARC
architectures, is promising. Using optimized spinlocks and the TL2 STM
algorithm as baselines, we find that TML provides the low latency of
locks at low thread levels, and the scalability of STM for read-dominated
workloads. These results suggest that TML is a good reference implemen-
tation to use when evaluating STM algorithms, and that TML is a viable
alternative to mutex locks for a variety of workloads.

1 Introduction

In shared-memory parallel programs, synchronization is most commonly pro-
vided by mutual exclusion (mutex) locks, but these may lead to unnecessary
serialization. Three common alternatives allow parallelism among concurrent
read-only critical sections. (1) Reader/writer (R/W) locks typically require two
atomic operations (one to enter a critical section, another to depart), thereby
enabling multiple threads to hold the lock in “read mode” simultaneously. R/W
locks typically do not restrict what can be done within the critical section (e.g.,
code may perform I/O or modify thread-local data), but the programmer must
statically annotate any critical section that might modify shared data as a writer,
in which case it cannot execute concurrently with other critical sections. (2)
Read-copy-update (RCU) [1] ensures no blocking in a read-only critical section,

† At the University of Rochester, this work was supported in part by NSF grants
CNS-0411127, CNS-0615139, CCF-0702505, and CSR-0720796; by financial support
from Intel and Microsoft; and by equipment support from Sun.

‡ The work in Tel-Aviv University was supported in part by the European Union
under grant FP7-ICT-2007-1 (project VELOX), by grant 06/1344 from the Israeli
Science Foundation, and by a grant from Sun Microsystems.

mls
EuroPar '10

but constrains the allowable behavior (e.g., doubly-linked lists can be traversed
only in one direction). (3) Sequence locks (seqlocks) [2] forbid linked data struc-
ture traversal or function calls.

While software transactional memory (STM) [3] appears ideally suited to
replacing R/W locks, RCU, and sequence locks, there are two main obstacles.
First, STM implementations typically require significant amounts of global and
per-thread metadata. This space overhead may be prohibitive if STM is not
used often within an application. Second, STM tends to have unacceptably high
single-thread latency, usually higher than 2× that of lock-based code [4].

The nature of many critical sections in systems software suggests an approach
that spans the gap between locks and transactions: specifically, we may be able
to leverage TM research to create a better locking mechanism. In this paper
we propose Transactional Mutex Locks (TML). TML offers the generality of
mutex locks and the read-read scalability of sequence locks, while avoiding the
atomic operation overheads of R/W locks or the usage constraints of RCU and
sequence locks. These properties make TML an appealing lock replacement for
many critical sections. They also suggest that TML, rather than a mutex lock,
should be used as the baseline when evaluating new STM algorithms.1

2 The TML Algorithm

Lock-based critical sections require instrumentation only at the boundaries, to
acquire and release the lock. STM-based critical sections also require instru-
mentation on every load or store to any location that may be shared. This
instrumentation is costly: when entering a critical section, the thread must be
checkpointed (e.g., via a call to setjmp); each load must be logged to enable
detection of conflicts; each store must be logged, both to enable conflict detec-
tion and to enable undoing writes in the event of a conflict; and at the end of
the region the entire set of reads must be double-checked to identify conflicts.
If a conflict is detected, all writes must be un-done and the checkpoint must be
restored (e.g., via a call to longjmp), so that the critical section can be rolled
back and retried. Furthermore, many STM algorithms require the use of atomic
instructions, such as compare-and-swap (cas), on each write to shared data.

TML is essentially an STM implemented via a single global seqlock. While it
requires both boundary and per-access instrumentation, it keeps overhead low by
trading concurrency for low latency: by allowing concurrency only among read-
only critical sections, the entire cost can be reduced to a handful of instructions
at boundaries, a few instructions on each load or store of shared data, no per-
access logging, and at most one cas per critical section.

2.1 Boundary and Per-Access Instrumentation

Listing 1 presents the instrumentation required for TML. We use glb to refer
to a single word of global metadata, and loc to refer to the single, local word of
1 We do precisely this in our PPoPP’10 paper [5], which while published earlier was

completed after the work presented here.

Listing 1 TML instrumentation.
TMBegin: TMEnd:

1 checkpoint() 1 if (--nest) return

2 if (nest++) return 2 if (loc & 1) glb++

3 while ((loc = glb) & 1) { }

TMWrite(addr, val):

TMRead(addr): 1 if (!(loc & 1))

1 tmp = *addr 2 if (!cas(&glb, loc, loc + 1))

2 if (glb != loc) 3 restore_chkpt()

3 restore_chkpt() 4 loc++

4 return tmp 5 *addr = val

metadata required by a thread in a critical section. We also maintain a per-thread
local variable, nest, to support dynamic nesting of critical sections. TMBegin and
TMEnd mark the beginning and ending of a critical section, respectively. Loads
from shared memory are made via (inlined) calls to TMRead, and stores to shared
memory are made via TMWrite. The checkpoint() and restore_chkpt() func-
tions can be mapped directly to setjmp() and longjmp(), respectively.

At a high level, the algorithm provides a multi-reader, single-writer protocol.
Which critical sections perform writes need not be determined statically; instead,
threads can dynamically transition to writer mode. Whenever a thread suspects
an atomicity violation (something that can happen only before it has become a
writer), it unwinds its stack and restarts using the restore_chkpt() function.
Three properties ensure atomicity for race-free programs:
– When glb is even, there are no writing critical sections. This property is

provided by line 3 of TMBegin, which prevents critical sections from starting
when glb is odd; TMWrite lines 1–4, which ensure that a thread only modifies
glb once via a call to TMWrite, and only by transitioning it from the even
value observed at TMBegin to the next successive odd value; and TMEnd line
2, which ensures that a writer updates glb to the next successive even value
when it has finished performing reads and writes.

– Concurrent writing critical sections are forbidden. A critical section Ci either
never modifies glb, or else modifies it exactly twice, by incrementing it to
an odd value at TMWrite line 2, and then incrementing it to an even value
at TMEnd line 2. Since an intervening call to TMWrite from critical section
Cj cannot proceed between when Ci sets glb odd and when Ci completes,
concurrent writing critical sections are prevented.

– Within any critical section, all values returned by TMRead are consistent with
an execution in which the critical section runs in isolation. We have already
shown that critical sections cannot start when a writing critical section is
in flight. Since writing critical sections execute in isolation, and can only
become writers if there have been no intervening writing critical sections,
it remains only to show that a call to TMRead by read-only critical section
Ci will not succeed if there has been an intervening write in critical section

Cj . On every call to TMRead by Ci, the test on line 2 ensures that glb
has not changed since Ci began. Since modifications to glb always precede
modifications to shared data, this test detects intervening writes.

2.2 Implementation Issues

Ordering: Four constraints are required for ordering: read-before-read/write or-
dering is required after TMBegin line 3, read/write-before-write ordering is re-
quired in TMEnd line 2, write-before-read/write ordering is required after TMWrite
line 2, and read-before-read ordering is required before TMRead line 2. Of these,
only the cost of ordering in TMRead can be incurred more than once per criti-
cal section. On TSO and x86 architectures, where the cas imposes ordering, no
hardware fence instructions are required, but compiler fences are necessary.

Overflow: Our use of a single counter admits the possibility of overflow. On
64-bit systems, overflow is not a practical concern, as it would take decades to
occur. For 32-bit counters, we recommend a mechanism such as that proposed
by Harris et al. [6]. Briefly, in TMEnd a thread must ensure that before line 2 is
allowed to set glb to 0, it blocks until all active TML critical sections complete.
A variety of techniques exist to make all threads visible for such an operation.

Allocation: If critical section Ci delays immediately before executing line 1 of
TMRead with address X, and a concurrent critical section frees X, then it is
possible for Ci to fault if the OS reclaims X. There many techniques to address
this concern in STM, and all are applicable to TML.
– A garbage collecting or transaction-aware allocator [7] may be used.
– The allocator may be prohibited from returning memory to the OS.
– On some architectures, line 1 of TMRead may use a non-faulting load [8].
– Read-only critical sections can call restore_chkpt when a fault occurs [9].

2.3 Programmability

I/O and Irrevocable Operations: A TML critical section that performs operations
that cannot be rolled back (such as I/O and some syscalls) must never, itself, roll
back. We provide a lightweight call suitable for such instances (it is essentially
TMWrite lines 1–4). This call must be made once before performing I/O or other
irrevocable operations from within a critical section [10, 11]. For simplicity, we
treat memory management operations as irrevocable.2

Interoperability with Legacy Code: In lock-based code, programmers frequently
transition data between thread-local and shared states (e.g., when an element is
removed from a shared lock-based collection, it becomes thread-local and can be
modified without additional locks). Surprisingly, most STM implementations do
not support such accesses [12–14]. In the terminology of Menon et al. [12], TML
2 Since nearly all workloads that perform memory management (MM) also write to

shared data, making MM irrevocable does not affect scalability, but eliminates the
overhead of supporting rollback of allocation and reclamation.

provides asymmetric lock atomicity (ALA), meaning that race-free code can
transition data between shared and private states, via the use of TML-protected
regions. ALA, in turn, facilitates porting from locks to transactions without a
complete, global understanding of object lifecycles.

The argument for ALA is straightforward: transitioning data from shared
to private (“privatization”) is safe, as TML uses polling on every TMRead to
prevent doomed critical sections from accessing privatized data, and writing
critical sections are completely serialized.3 Transitions from private to shared
(“publication”) satisfy Menon’s ALA conditions since the sampling of glb serves
as prescient acquisition of a read lock covering a critical section’s entire set of
reads. These properties are provided by TMBegin line 3 and strong memory
ordering between TMWrite lines 2 and 5.

Limitations: TML can be thought of as both a replacement for locks and an
STM implementation. However, there are a few restrictions upon TML’s use in
these settings. First, when TML is used instead of a R/W lock, the possibil-
ity of rollback precludes the use of irrevocable operations (such as I/O) within
read-only critical sections. Instead, I/O must be treated as a form of writing.
Second, when used as an STM, TML does not allow programmer-induced roll-
back for condition synchronization [15], except in the case of conditional critical
regions [16], where all condition synchronization occurs before the first write.
Third, our presentation assumes lexical scoping of critical sections (e.g., that
the stack frame in which checkpoint() is executed remains active throughout
the critical section). If this condition does not hold, then the critical section must
be made irrevocable (e.g., via TMWrite lines 1–4) before the frame is deactivated.

2.4 Performance Considerations

Inlining and Instrumentation: Given its simplicity, we expect all per-access in-
strumentation to be inlined. Depending on the ability of the compiler to cache
loc and the address of glb in registers, in up to six extra x86 assembly instruc-
tions remain per load, and up to 11 extra x86 assembly instructions per store. We
also assume either a manually invoked API, such that instrumentation is min-
imal, or else compiler support to avoid instrumentation to stack, thread-local,
and “captured” memory [17].

Cache Behavior: We expect TML to incur fewer cache coherence invalidations
than mutex or R/W locks, since read-only critical sections do not write metadata.
Until it calls TMWrite, a TML critical section only accesses a single global, glb,
and only to read; thus the only cache effects of one thread on another are (1) a
TMRead can cause the line holding glb to downgrade to shared in a concurrent
thread that called TMWrite and (2) a failed TMWrite can cause an eviction in a
concurrent thread that successfully called TMWrite. These costs are equivalent to

3 The sufficiency of these two conditions for privatization safety was established by
Marathe et al. [14].

those experienced when a thread attempts to acquire a held test-and-test-and-
set mutex lock. Furthermore, they are less costly than the evictions caused by
R/W locks, where when any thread acquires or releases the lock, all concurrent
threads holding the lock in their cache experience an eviction.

Progress: TML is livelock-free: in-flight critical section A can roll back only if
another in-flight critical section W increments glb. However, once W increments
glb, it will not roll back (it is guaranteed to win all conflicts, and we prohibit
programmer-induced rollback). Thus A’s rollback indicates that W is making
progress. If starvation is an issue, the high order bits of the nest field can be
used as a consecutive rollback counter. As in RingSTM [18], an additional branch
in TMBegin can compare this counter to some threshold, and if the count is too
high, make the critical section irrevocable at begin time.

3 Compiler Support

When there are many reads and writes, the instrumentation in Listing 1 admits
much redundancy. We briefly discuss optimizations that target this overhead.

Post-Write Instrumentation (PWI): When a critical section W issues its first
write to shared memory, via TMWrite, it increments the glb field and makes it
odd. It also increments its local loc field, ensuring that it matches glb. At this
point, W cannot roll back, and no other critical section can modify glb until
W increments it again, making it even. These other critical sections are also
guaranteed to roll back, and to block until W completes. Thus once W performs
its first write, instrumentation is not required on any subsequent read or write.

Unfortunately, standard static analysis does not suffice to eliminate this in-
strumentation, since glb is a volatile variable: the compiler cannot tell that glb
is odd and immutable until W commits. We could assist the compiler by main-
taining a separate per-thread flag, which is set on line 4 of TMWrite and unset
in line 2 of TMEnd. TMWrite could then use this flag for its condition on line 1,
and TMRead could test this flag between lines 1 and 2, and return immediately
when the flag is set. Standard compiler analysis would then be able to elide most
instrumentation that occurs after the first write of shared data.

A more precise mechanism for this optimization uses static analysis: any
call to TMRead that occurs on a path that has already called TMWrite can skip
lines 2–3. Similarly, any call to TMWrite that occurs on a path that has already
called TMWrite can skip lines 1–4. Thus after the first write the remainder of a
writing critical section will execute as fast as one protected by a single mutex
lock. Propagation of this analysis must terminate at a call to TMEnd. It must
also terminate at a join point between multiple control flows if a call to TMWrite
does not occur on every flow. To maximize the impact of this optimization,
the compiler may clone basic blocks (and entire functions) that are called from
writing and nonwriting contexts.4

4 In the context of STM, similar redundancy analysis has been suggested by Adl-
Tabatabai et al. [19] and Harris et al. [6].

Relaxing Consistency Checks (RCC): Spear et al. [20] reduce processor memory
fence instructions within transactional instrumentation by deferring postvalida-
tion (such as lines 2–3 of TMRead) when the result of a read is not used until
after additional reads are performed. For TML, this optimization results in a
reduction in the total number of instructions, even on machines that do not re-
quire memory fence instructions to ensure ordering. In effect, multiple tests of
glb can be condensed into a single call without compromising correctness.

Lightweight Checkpointing and Rollback (LCR): When there is neither nesting
nor function calls, the checkpoint at TMBegin can be skipped. Since all instrumen-
tation is inlined, and rollback occurs only in read-only critical sections that can-
not have any externally visible side effects, unwinding the stack can be achieved
with an unconditional branch, rather than a longjmp. Extending this optimiza-
tion to critical sections that make function calls is possible, but requires an extra
test on every function return.

4 Evaluation

We evaluate TML using parameterized microbenchmarks taken from the RSTM
suite [21]. Experiments labeled “Niagara2” were collected on a 1.165 GHz, 64-
way Sun UltraSPARCTM T2 with 32 GB of RAM, running SolarisTM 10. The
Niagara2 has eight cores, each of which is eight-way multithreaded. On the Nia-
gara2, code was compiled using gcc 4.3.2 with –O3 optimizations. Experiments
labeled “Nehalem” were collected on an 8-way Sun Ultra27 with 6GB RAM
and a 2.93GHz Intel Xeon W3540 processor with four cores, each of which is
two-way multithreaded. Nehalem code was compiled using gcc 4.4.1, with –O3
optimizations. On both machines, the lowest level of the cache hierarchy is shared
among all threads. However, the Niagara2 cores are substantially simpler than
the Nehalem cores, resulting in different instrumentation overheads. On each
architecture, we evaluate five algorithms:
– Mutex – All critical sections are protected by a single coarse-grained mutex

lock, implemented as a test-and-test and set with exponential backoff.
– R/W Lock – Critical sections are protected by a writer-prioritizing R/W

lock, implemented as a 1-bit writer count and a 31-bit reader count. Regions
statically identified as read-only acquire the lock for reading. Regions that
may perform writes conservatively acquire the lock for writing.

– STM – Critical sections are implemented via transactions using a TL2-like
STM implementation [8] with 1M ownership records, a hash table for write
set lookups, and setjmp/longjmp for rollback. This implementation is not
privatization safe.

– TML – Our TML implementation, using setjmp/longjmp for rollback.
– TML+opt – TML extended with the PWI, RCC, and LCR optimizations

discussed in Section 3. These optimizations were implemented by hand.
In our microbenchmarks, threads repeatedly access a single, shared, pre-

populated data structure. All data points are the average of five 5-second trials.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

T
hr

ou
gh

pu
t (

10
00

 T
x/

se
c)

Threads

Mutex
R/W Lock

STM
TML

TML+opt

(a) Niagara2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
hr

ou
gh

pu
t (

10
00

 T
x/

se
c)

Threads

(b) Nehalem

Fig. 1. Linked list benchmark. All threads perform 90% lookups, 5% inserts, and 5%
deletes from a singly linked list storing 8-bit keys.

4.1 List Traversal

Figure 1 presents a workload where threads perform 90% lookups, 5% inserts,
and 5% removes from a linked list storing 8-bit values. TML scales well, since
writes are rare. STM also scales well, but with much higher latency. In STM,
each individual read and write must be logged, and the per-read instrumentation
is more complex. The resulting overheads, such as increased pressure on the L1
cache, prevent the workload from scaling well beyond the number of cores – 4
and 8 threads, respectively, on the Nehalem and Niagara2. In contrast, since
TML has constant per-thread metadata requirements, there is much less L1
contention, and scalability beyond the number of cores is quite good.

Furthermore, even with a shared cache the R/W Lock implementation does
not perform as well as TML. There are three contributing factors: First, atomic
operations on both critical section entrance and exit increase single-thread la-
tency. Second, TML causes fewer cache evictions than R/W locks. Third, the
conservative decision to acquire the lock in writer mode for critical sections
that may perform writes limits scalability. Furthermore, TML allows a reader
to complete while a writer is active if the reader can start and finish in the
time between when the writer begins and when it performs its first write. In
the List benchmark, writers perform on average 64 reads before their first write,
providing ample time for a reader to complete successfully.5

On the Niagara2, simple in-order cores cannot mask even the lightweight
instrumentation of TML. Thus even though TML is more than three times as fast
as STM at one thread, it is slower than Mutex until two threads and slower than
R/W Lock until four threads. Furthermore, we observe that the RCC and LCR

5 This same property results in the PWI optimization having no noticeable impact on
the List workload, since writer critical sections are rare and perform all reads before
the first write.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

T
hr

ou
gh

pu
t (

10
00

 T
x/

se
c)

Threads

Mutex
R/W Lock

STM
TML

TML+opt

(a) Niagara2

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
hr

ou
gh

pu
t (

10
00

 T
x/

se
c)

Threads

(b) Nehalem

Fig. 2. Red-black tree benchmark. All threads perform a 90/5/5 mix of
lookup/insert/remove operations on a red-black tree storing 16-bit keys.

optimizations have a profound impact on the Niagara2. Single-thread latency
improves by more than 10%, resulting in a crossover with R/W Lock at 2 threads.
In addition, decreasing the latency of critical sections leads to greater scalability.

On the Nehalem, cas is heavily optimized, resulting in impressive single-
thread performance for both Mutex and R/W Lock. In contrast, the requirement
for per-access instrumentation leads to TML performing much worse than the
Mutex baseline. As a result, TML does not outperform single-threaded Mutex
until three threads, at which point it also begins to outperform R/W Lock. As
on the Niagara2, RCC and LCR optimizations lead to much lower single-thread
latency (roughly the same as Mutex), but they do not yield a change in the
slope of the curve. We also note that for the List, Nehalem is not able to exploit
multithreading to scale beyond the number of cores. Last, on Nehalem, TML
proves quite resilient to preemption, even without the use of Solaris schedctl.6

This behavior matches our intuition that a preempted TML read-only critical
section should not impede the progress of concurrent readers or writers.

4.2 Red-Black Tree Updates

The List workload does not exhibit much parallelism in the face of writers,
since any write is likely to invalidate most concurrent readers (or writers, in
the case of STM). To assess the merits of TML relative to STM, we consider
a (pre-populated) red-black tree in Figure 2. In this workload, we again have a
90/5/5 mix of lookups, inserts, and removes, but we now use 16-bit keys. This
results in much shorter critical sections, but also many fewer true conflicts, since
operations on different branches of the tree should not conflict.

Since it has fine-grained conflict detection, and since conflicts are rare, STM
scales to the full capacity of the Niagara2. TML achieves a higher peak, but
6 Schedctl allows a thread to briefly defer preemption, e.g., when holding locks.

then false conflicts cause performance to degrade starting around 32 threads.
Separate experiments at all thread levels from 1–64 confirm that this tapering
off is smooth, and not related to an increase in multithreading. As with the list,
we observe that the conservative assumptions of writing critical sections cause
R/W Lock to scale poorly, despite its lower single-thread latency.

On the Nehalem, STM starts from a lower single-thread throughput, but
scales faster than TML. Both TML and STM scale beyond the core count,
effectively using hardware multithreading to increase throughput. Furthermore,
since there is significant work after the first write in a writing critical section,
the ability of STM to allow concurrent readers proves crucial. At four threads,
STM rollbacks are three orders of magnitude fewer than in TML, while commits
are only 20% fewer. This implies that most TML rollbacks are unnecessary, but
that the low latency of TML is able to compensate.

Surprisingly, we also see that our compiler optimizations have a negative im-
pact on scalability for this workload on Nehalem. We can attribute this result
to the LCR optimization. In effect, longjmp approximates having randomized
backoff on rollback, which enables some conflicts to resolve themselves. In sepa-
rate experiments, we found PWI and RCC to have a slight positive impact on
the workload when LCR is not applied. We conclude that the wide issue width
of the Nehalem decreases the merit of these optimizations.

4.3 Write-Dominated Workloads

The scalability of TML relative to STM is tempered by the fact that TML
is optimized for read-dominated workloads. As a higher percentage of critical
sections perform writes, TML loses its edge over STM. In this setting, TML will
often scale better than R/W locks, since a read-only critical section can overlap
with the beginning of a writing critical section that does not perform writes
immediately. However, TML should have lower throughput than an ideal STM,
where nonconflicting critical sections can proceed in parallel.

We assess this situation in Figure 3. In the experiment, we fix the thread
count at 4 on the Nehalem, and at 16 on the Niagara2, and then vary the
frequency of read-only critical sections. For many workloads, a 90% read-only
ratio is common, and in such a setting, TML provides higher throughput than
STM. However, as the read-only ratio decreases, the workload still admits a
substantial amount of parallelism. STM can exploit this parallelism, while TML,
R/W locks, and mutex locks cannot.

5 Conclusions

In this paper, we presented Transactional Mutex Locks (TML), which provide
the strength and generality of mutex locks without sacrificing scalability when
critical sections are read-only and can be executed in parallel. TML avoids
much of the instrumentation overhead of traditional STM. In comparison to
reader/writer locks, it avoids the need for static knowledge of which critical

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 10 20 30 40 50 60 70 80 90

T
hr

ou
gh

pu
t (

10
00

 T
x/

se
c)

% Read-Only Transactions

Mutex
R/W Lock

STM
TML

TML+opt

(a) Niagara2, 16 threads.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 10 20 30 40 50 60 70 80 90

T
hr

ou
gh

pu
t (

10
00

 T
x/

se
c)

% Read-Only Transactions

Mutex
R/W Lock

STM
TML

TML+opt

(b) Nehalem, 4 threads.

Fig. 3. Red-black tree benchmark with 16-bit keys. The percentage of read-only critical
sections varies, while the number of threads is fixed.

sections are read-only. In comparison to RCU and sequence locks, it avoids re-
strictions on the programming model. Our results are very promising, showing
that TML can perform competitively with mutex locks at low thread counts,
and that TML performs substantially better when the thread count is high and
most critical sections are read-only.

By leveraging many lessons from STM research (algorithms, semantics, com-
piler support) TML can improve software today, while offering a clear upgrade
path to STM as hardware and software improvements continue. We also hope
that TML will provide an appropriate baseline for evaluating new STM algo-
rithms, since it offers substantial read-only scalability and low latency without
the overhead of a full and complex STM implementation.

Acknowledgments: We thank the anonymous reviewers for many insightful
comments that improved the quality of this paper.

References

1. McKenney, P.E.: Exploiting Deferred Destruction: An Analysis of Read-Copy-
Update Techniques in Operating System Kernels. PhD thesis, OGI School of
Science and Engineering at Oregon Health and Sciences University (2004)

2. Lameter, C.: Effective Synchronization on Linux/NUMA Systems. In: Proc. of the
May 2005 Gelato Federation Meeting, San Jose, CA (2005)

3. Shavit, N., Touitou, D.: Software Transactional Memory. In: Proc. of the 14th
ACM Symp. on Principles of Distributed Computing, Ottawa, ON, Canada (1995)

4. Cascaval, C., Blundell, C., Michael, M., Cain, H.W., Wu, P., Chiras, S., Chatterjee,
S.: Software Transactional Memory: Why Is It Only a Research Toy? Queue 6(5)
(2008) 46–58

5. Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: Streamlining STM by Abolishing
Ownership Records. In: Proc. of the 15th ACM SIGPLAN Symp. on Principles
and Practice of Parallel Programming, Bangalore, India (2010)

6. Harris, T., Plesko, M., Shinar, A., Tarditi, D.: Optimizing Memory Transactions.
In: Proc. of the 2006 ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, Ottawa, ON, Canada (2006)

7. Hudson, R.L., Saha, B., Adl-Tabatabai, A.R., Hertzberg, B.: A Scalable Transac-
tional Memory Allocator. In: Proc. of the 2006 International Symp. on Memory
Management, Ottawa, ON, Canada (2006)

8. Dice, D., Shalev, O., Shavit, N.: Transactional Locking II. In: Proc. of the 20th
International Symp. on Distributed Computing, Stockholm, Sweden (2006)

9. Felber, P., Fetzer, C., Riegel, T.: Dynamic Performance Tuning of Word-Based
Software Transactional Memory. In: Proc. of the 13th ACM SIGPLAN 2008 Symp.
on Principles and Practice of Parallel Programming, Salt Lake City, UT (2008)

10. Spear, M.F., Silverman, M., Dalessandro, L., Michael, M.M., Scott, M.L.: Imple-
menting and Exploiting Inevitability in Software Transactional Memory. In: Proc.
of the 37th International Conference on Parallel Processing, Portland, OR (2008)

11. Welc, A., Saha, B., Adl-Tabatabai, A.R.: Irrevocable Transactions and their Ap-
plications. In: Proc. of the 20th ACM Symp. on Parallelism in Algorithms and
Architectures, Munich, Germany (2008)

12. Menon, V., Balensiefer, S., Shpeisman, T., Adl-Tabatabai, A.R., Hudson, R., Saha,
B., Welc, A.: Practical Weak-Atomicity Semantics for Java STM. In: Proc. of
the 20th ACM Symp. on Parallelism in Algorithms and Architectures, Munich,
Germany (2008)

13. Spear, M.F., Dalessandro, L., Marathe, V.J., Scott, M.L.: Ordering-Based Se-
mantics for Software Transactional Memory. In: Proc. of the 12th International
Conference On Principles Of DIstributed Systems, Luxor, Egypt (2008)

14. Marathe, V.J., Spear, M.F., Scott, M.L.: Scalable Techniques for Transparent
Privatization in Software Transactional Memory. In: Proc. of the 37th International
Conference on Parallel Processing, Portland, OR (2008)

15. Harris, T., Marlow, S., Peyton Jones, S., Herlihy, M.: Composable Memory Trans-
actions. In: Proc. of the 10th ACM SIGPLAN Symp. on Principles and Practice
of Parallel Programming, Chicago, IL (2005)

16. Brinch Hansen, P.: Operating System Principles. Prentice-Hall (1973)
17. Dragojevic, A., Ni, Y., Adl-Tabatabai, A.R.: Optimizing Transactions for Captured

Memory. In: Proc. of the 21st ACM Symp. on Parallelism in Algorithms and
Architectures, Calgary, AB, Canada (2009)

18. Spear, M.F., Michael, M.M., von Praun, C.: RingSTM: Scalable Transactions with
a Single Atomic Instruction. In: Proc. of the 20th ACM Symp. on Parallelism in
Algorithms and Architectures, Munich, Germany (2008)

19. Adl-Tabatabai, A.R., Lewis, B.T., Menon, V., Murphy, B.R., Saha, B., Shpeisman,
T.: Compiler and Runtime Support for Efficient Software Transactional Memory.
In: Proc. of the 2006 ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, Ottawa, ON, Canada (2006)

20. Spear, M.F., Michael, M.M., Scott, M.L., Wu, P.: Reducing Memory Ordering
Overheads in Software Transactional Memory. In: Proc. of the 2009 International
Symp. on Code Generation and Optimization, Seattle, WA (2009)

21. Rochester Synchronization Group, Department of Computer Science, University
of Rochester: Rochester STM (2006–2009) http://www.cs.rochester.edu/research/
synchronization/rstm/.

