
THE ARPANET TELNET PROTOCOL:

ITS PURPOSE, PRINCIPLES, IMPLEMENTATION, AND

IMPACT ON HOST OPERATING SYSTEM DESIGN

J. Davidson
Institute for Advanced Computation

Sunnyvale, California

W. Hathawa~
Computation Divlsion

NASA Ames Research Center
Moffett Field, California

J. Postel
USC - Information Sciences Institute

Marina del Rey, California

N. Mimno
R. Thomas
D. Walden

Bolt Beranek and Newman Inc.
Cambridge, Massachusetts

preface

The protocol discussed in this paper was developed
by many members of the ARPANET community starting in
1969 and continuing through the present. Many
individuals and institutions have been members of this
community at one time or another over the years. A
review of the documents, both working and published.
written on the subject of this protocol reveals that
the following individuals were among those who
contributed to the protocol design: A. Bhushan. R.
Braden, R. Bressler, J. Burchfiel, S. Carr, V. Cerf, B.
Cosell, D. Crocker, S. Crocker, W. Crowther, J.
Davidson, D. Dodds, W. Duvall. G. Grossman, R.
Gumpertz. W. Hathaway, W. Kantrowitz, R. Lon~, J.
McConnell, A. McKenzle, R. Merryman, J. Melvln. R.
Metcalfe, E. Meyer, N. Mimno. L. Nelson. T. O'Sullivan,
M. Padlipsky, K. Pogran, J. Postel, M. Reese, J.
Rulifson. R. Schantz, R. Thomas, R. Tomlinson, D.
Walden, R. Watson. D. Wells, J. Winett, and S. Wolfe.
No doubt others also contributed to the design and
dozens of other individuals contributed to the many
implementations of the protocol. We acknowledge all of
their contributions. Many of the above named
individuals were offered an opportunity to collaborate
on the writing of this paper. The authors are those
who responded. We apologlze for the oversight to any
individual who would have liked to help write this
paper but was not apprised of the opportunity.

I INTRODUCTION

The ARPANET [I] provides a capability for
geographically separated computers, called Hosts, to
communicate wlth each other. The Host computers
typically differ from one another in type, speed, word
length, operating system, etc. Each Host computer is
connected to the network through a small computer
called an Interface Message Processor or IMP [2]. The
complete network is formed by connecting these IMPs,
all of which are virtually identical, by means of
leased wideband circuits; thus the IMPs form a
subnetwork through which the Hosts communicate. Data
is sent through the cgmmunioations subnetwork in
messages up to about 8100 bits long. A Host passes to
its own IMP a message which includes the "network
address" of a destination Host. The message is then
passed from IMP to IMP through the network until it
finally arrives at the IMP to which the destination
Host is attached, and this IMP passes the message to
its Host. It should be noted that any simple terminals
accessing the network do so via a Hosh (eyen if the
Host is operated by the network authority). This Host
"local" to the terminal performs message-formatting
functions for the terminal; as we shall see it may
perform other functions as well.

Specifications exist for the physical and logical
message transfer between a Host and its IMP [3]. These
specifications are generally called the IMP/Host
"protocol". This protocol is not sufficient by itself,
however, to specify the methods of communication
between processes running in two possibly dissimilar
Hosts. Rather, the processes must have some agreement
as to the method of initiating communication, the
interpretation of transmitted data, and so forth.
Although it would be possible for such agreements to be
reached by each pair of Hosts (or processes) interested
in communication, a more general arrangement is
desirable in order to minimize the amount of
implementation necessary for network-wide
communication. Accordingly, the Host organizations
formed a group (called the Network Working Group or
NWG) to faeilltate an exchange of ideas and to
formulate additional specifications for Host to Host
communications.

The NWG adopted a "layered" approach to the
specification or communications protocols [4,5,6],
wherein the higher layers of protocol use the services
of lower layers; the advantages and disadvantages of
the layered approach are discussed in the references,
especially in [6]. As shown in Figure I, the lowest

Figure I -- Layered Relationship of the
ARPANET Protocols

layer is the IMP/Host protocol. The next layer (called
the Host/Host layer in the figure) specifies methods of
establishing communications paths between Hosts,
managing buffer space at each end of a communications
path, e~c.* Next, the Initial Connection Protocol or
ICP [5] specifies a standard way for a remote user (or
process) to attract the attention of a network Host,
preparatory to using the Host. The ICP provides the
analog of the user pressi~ the attention button at a
local terminal on a Host. In the next layer is the
Telecommunications Network or TELNET protocol which was
designed to support terminal access to remote Hosts.
TELNET is a specification for a network standard
terminal and the protocol for communicating between
this standard terminal and a Host. The next logical

p rotocol layer consists of function oriented protocols
5], two of which, File Transfer Protocol (FTP) and

Remote Job Entry protocol (RJE)~ are shown in the
figure. Finally, at any point in the layering process,
it is possible to superimpose ad hoc protocols.

The focus of the present paper is the TELNET
protocol. TELNET includes many novel aspects which
have not been presented in detail in the open

JTwo separate Host/Host protocols have gained wide
enough acceptance within the ARPANET community ~o oe
called standards. One, the NCP-based protocol [5], has
been in widespread use for several years and has been
implemented for almost every Host in the network; at
this date, almost all data is transmitted through the
network via the NCP protocol. The second, the TCP-
based protocol [7], is more general than the NCP-based
protocol, and is in use by a subset of the network
Hosts for certain types of communication. Note that
either the NCP- or TCP-based protocol provides a
suitable base for the remaining layers of protocol, as
might any number of other suitable Host/Host protocols.

~i While thls protocol was specified at an early date in
the network's development, the community has come to
understand that a separate protocol for this function
is not strictly necessary and, indeed, in the context
of the TCP-based Host/Host protocol, the ICP protocol
is not used.

4-10

literaturg, and the primary aim of this paper is to
provlce.~na~ ~revlousiy unavailable oescFlptiog, anu
discusslon, in the rollowlng pages we sketch 5he
evolution of the TELNET protocol (Section 2), present
its principles in detail (Section 3) and discuss its
implementation (Section 4). Throughout these sections
we attempt to point out, wherever possible, the impact
the TELNET protocol and its capabilities have had on
Host operating system design.

2. THE EVOLUTION OF TELNET

Early in the development of the ARPANET it became
clear that a major functlon of the network would be to
provide remote use of interactive systems. To allow a
user at a terminal (connected to his local Host) to
control and use a process in a remote Host, as if he
were a local user of that remote Host, a special
mechanism was required. The problems to be overcome
are legion: for example, the typical Host expects its
interactive terminals to be physically attached to the
individual ports of its hardware termlnal scanner
rather than logically attached via a multiplexed
connection to the network; a given Host expects to
communicate only with terminals with certain
characteristics (e.g., half-duplex, line-at-a-time,
physical echo, EBCDIC character set, 134.5 baud) while
a remote user's terminal might have completely
different characteristics (e.g., full-duplex.
character-at-a-time, no character echo, ASCII character
set, 300 baud). The TELNET protocol was an attempt to
provide the special mechanism necessary to permit such
communication.

As early as 1969 a few Hosts had been programmed
on an ad hoc basis to permit terminal access from
another~ [8]. In 1971 an NWG subcommittee was
formed to consider the general problem of supporting
interactive use of arbitrary Hosts by users at
arbitrary remote terminals. There was great
controversy in the committee discussions, focusing on
four issues: character set, connection establishment,
echoing, and interrupt capability. By late 1972 there
was enough consensus so that widespread implementation
of an early version of the TELNET protocol had been
accomplished.

The early version was based on the idea of an
asymmetric interactive connection between the so-called
"server Host" providing interactive computation and the
so-called "user Host" to which the remote terminal was
attached. The four issues mentioned above were dealt
with as follows. A standard network terminal known as
the Network Virtual Terminal (NVT), using a 7-bit ASCII
character set, was adopted for data transmission over
this logical connection; the ICP was selected as the
means for establishing the connection; some special
control commands were provided the user so that it
could instruct the server to echo or not echo
'individual characters; and an innovative "synch"
strategy was developed for alerting the Server TELNET
that a "special" character had been sent by the user.
This last facility, described in detail in section
3.1.3. allows the user to bypass a potentially clogged
user-to-server data path when attempting (for instance)
to stop an errant process.*

Despite widespread implementation of the early
TELNET protocol, its heavy and effective use, and
numerous attempts to declare it complete, discussion of
it continued. There were a number oz problems with the
early version:

I. Despite the attempt to permit a minimal
implementation well suited to the constraints
of small Hosts, there was no well-defined
minimal implementation. Even if some TELNET
feature was not desired for a given
implementation, it had to be provided in case
some other implementation commanded its use.

2. The control structure was inadequate. For
example r unless some exceedingly constraining
assumptlons were made, it was possible for
the two ends of a TELNET connection to loop
commanding each other to take opposite
actions.

*Implicit in the concept of the TELNET protocol was the
fact that each implementation of the protocol would
have to find a method of mapping the NVT and the TELNET
protocol functions to and from the particular system's
actual terminals, input/output facilities, and
operating system functions. Since the mapping of the
TELNET protocol and NVT to the local operating system
and terminals is not explicitly treated in the TELNET
protocol specification, we shall not treat it
explicitily in this paper. However, problems and
solutions relating to this mapping will be noted at a
number of points throughout thls paper.

3. The asymmetry of TELNET connections precluded
one end from initiating certain functions,
such as echoing behavior. This seriously
constrained the use of TELNET protocol for
character communication between processes not
serving terminals, a role for which it would
otherwise have been well suited and for which
it ~as already frequently used in the absence
of any better protocol.

4. The issue of interfacing character-at-a-time
Hosts to line-at-a-tlme Hosts was poorly
handled.

By early 1973 it had become apparent that minor
adjustments to the early TELNET protocol would not
solve these problems and that some fundamental changes
were needed. A new subcommittee met and, with the
previous experience to guide them, developed several
fundamental principles. These new principles, when
added to the earlier principles of the Network Virtual
Terminal and the remote interrupt (synch) mechanism,
resulted in a revised TELNET protocol which solved most
of the earlier problems that had precluded universal
acceptance of the protocol.

There was such enthusiasm for the new version that
a schedule for "rapid" (within the year) implementation
was laid out. However. the implementation of the new
TELNET protocol proceeded more slowly than expected.
Only in the past year have implementations been widely
available. In retrospect, there were several reasons
for the delay in the Implementation: I) at the time
the revised protocol implementation was scheduled,
implementation of the initial version had been
completed and Host system managers had not budgeted
resources for a second implementation; 2) about this
time ARPA's research interest in the network was
declining and the network was entering a period of
status quo operationl 3) despite initial belief that a
clean method of phaslng over from the initial protocol
to the revised protocol existed, none was found by most
implementors and consequently most chose to provide a
complete implementation of the revised protocol to
operate in parallel with the initial protocol; and, 4)
implementation for the most prevalent user Host. the
TIP [9], proved to be very difficult (because of the
TIP's limited memory) and time consuming, thus
implicitly relieving pressure on the server Hosts to
implement the revised protocol.

At the time this is being written, in early 1977.
the new TELNET protocol has been the accepted standard
for several years, and it is widely implemented and
used. We believe that the (new) TELNET protocol has
many advantages over alternative methods and represents
an advance in the art of computer communication. The
rest of this paper describes the current version of the
TELNET protocol in some detail in the hope that others
may benefit from our experience.

3. PRINCIPLES

The purpose of the TELNET Protocol is to provide a
general, bi-directional, character-oriented
communications facility. Its primary 5oal is to define
a standard method for interfacing termlnal devices to
terminal-oriented processes.* The protocol may also be
used for terminal-to-terminal and process-to-process
communication.

The TELNET Protocol is built upon three main
ideas: the concept of a "Network Virtual Terminal";
the principle of negotiated optionsl and a symmetric
view of terminals and processes (whlch allows the
protocol to easily and naturally support
terminal-to-terminal and process-to-process
communication). The remalnder of thls section
discusses the first two principles in detail. The
benefits of symmetry are illustrated in the section on
option negotiation.

3.1 The Network Virtual Terminal

A TELNET connection consists of a full duplex
connection (provided by the Host/Host protocol layer) .
over which passes data interspersed with TELNET control
information.

When a TELNET connection is first established,
each end is assumed to originate and terminate at a
"Network Virtual Terminal", or NVT. An NVT is an
imaginary device which provides a standard,
network-wide, intermediate representation of a
canonical terminal. This eliminates the need for
server and user Hosts to keep information about
characteristics of each other's terminals and terminal
handling conventions. All Hosts, both user and server,

*[10] has previously considered the related issue of
specifying the functional characteristics of a
typewriter-llke time-sharing terminal.

4-11

map their local device characteristics and conventions
so as to appear to be dealing with an NVT over the
network, and each can assume a similar mapping by the
other party. The NVT is intended to strike a balance
between being overly restricted (not providing Hosts a
rich enough vocabulary for mapping into their local
character sets) and being overly inclusive (penalizing
users with modest terminals).

The Network Virtual Terminal is a bl-directional
character device with a printer and a keyboard. The
printer responds to incoming data and the keyboard
produces outgoing data which is sent over the TELNET
connection and, if "echos" are desired, to the NVT's
printer as well. "Echos" will not be expected to
traverse the network. (See Sections 3.2 and 3.4.4 for
further disucssion of echoing.) The code set is 7-bit
ASCII in an eight-bit field, with some exceptions noted
below. Any code conversion and timing considerations
are local problems and do not affect the NVT.

3.1.1 Transmission of Data

To accommodate the needs of the largest possible
segment of the user community, the Network Working
Group chose to attribute some very fundamental
properties to the NVT. One of these properties
requires that even though a TELNET connection is
intrinsically full duplex, the NVT (in default mode) Is
considered to be a half duplex device,* and that both
user and server communicants must provide a "turn-the-
line-around" indication z via the TELNET GO-AHEAD (GA)
command, whenever it swltches from an output to an
input attitude. Hosts that wish may agree, via option
negotiation, to operate in character-at-a-time and
full-duplex mode.

This property of the NVT makes use of true half-
duplex devices possible in a TELNET conversation and
does not penalize full-duplex ones. For example, it
allows a User TELNET to properly control the mechanical
keyboard locking apparatus of an IBM 2741 terminal,
which it would otherwise be unable to do since it would
have no reliable indication of when the output from the
remote serving Host had completed (end-of-line is
normally insufficient).

Since the NVT is basically a half-duplex device,
it is acceptable for the TELNET which forwards
"keyboard input" to accumulate text for transmission
untll it is willing to relinquish the line. This is
consistent with the fundamental property that echoes do
not traverse the network. In additlon~ it has a
beneficial effect on buffer consideratlons in the
receiving Host. and it reduces the cost associated with
processing multiple network input interrupts. Since
many systems take some processlng action at an end-of-
line (even line printers or card punches tend to work
this way), transmission should be triggered at the end
of a line. In addition, a user or process may
sometimes find it necessary or desirable to provide
data which does not terminate at the end of a line.
Therefore implementors are advised to provide a method
of signalling when buffered data should be transmitted.

3.1.2 Standard Representation of Control Functions

In its purest formulation, the TELNET protocol
makes no assumptions about the process which interfaces
the NVT at either end of a connection. This is the
characteristic which allows uniform treatment of
terminal-to-process, terminal-to-terminal, and process-
to-process conversations. However, to account for the
fact that in many cases one controlling process will be
human, certain mechanisms were introduced into the
protocol which appear to have the most benefit for
human participants. These mechanisms, while perfectly
general in the abstract, serve mainly to standardize
the interface through which the (human) user perceives
his serving process or his serving Host.

Interestingly, the functions required by humans
for controlling a process through a character interface
are common to most serving systems, but the means for
invoking a given function may vary widely from server
to server (Rost to Host). The TELNET protocol thus
defines a standard representation for each of several
functions so that each may be selectively invoked at an
arbitrayy Host (if that function is implemented)
wit.h~t requiring the user to know the particular
Heat's convention for invoking the function. (While
the TELNET protocol acts to sbield a human user at his
User Host from some of the variations in operation of

*In this discussion we use the term "half duplex" to
mean a situation in which data is allowed to flow in
only one direction at a time between the parties at the
two ends of a TELNET connection, regardless of the type
of physical link used between a terminal and its local
Host. "Full duplex" is used to mean that characters
can flow in both directions simultaneously on the
connection.

different Server Hosts. the nature of the user
interface to the TELNETprotocol and NVT varies from
User Host to User Host.)

The User TELNET must provide a method for the user
of an NVT to cause the requests described below to be
generated.

INTERRUPT PROCESS provides a function which
interrupts the operation of a remote process (See
Section 3.1.3). This function is frequently used
when a user believes his process is looping, or
when he has inadvertantly activated an unwanted
process.

ABORT OUTPUT provides a function which allows a
process~ which is generating output to run to
eompletlon (or to reach the same stopping point it
would reach if run to completion) without sending
the output to the user's terminal. Further, this
function typically clears any output already
produced but not yet actually printed on the
user's terminal.

ARE YOU THERE provides a function which gives the
user some perceptible (e.g., printable) evidence
that the system is still up and running. This
function may be invoked b~ the user when the
system is unexpectedl~ "silent" for a long time,
because of a eomputatlon of unanticipated (by the
user) duration, an unusually heavy system load,
etc.

ERASE CHARACTER provides a function which deletes
the preceding undeleted character or "print
position" from the stream of data supplied by the
user. This function is typically used to edit
keyboard input when typing mistakes are made.

ERASE LINE provides a function which deletes all
the data in the current line of input. This
function is typically used to edit keyboard input.

local code for "uppercase D", the ERAS~ CHARACTER
character should be mapped into the local "Erase
Character" function (if such a function is locally
implemented).

3.1.3 The TELNET "Synch" Signal

Most time-sh~ring systems provide mechanisms which
allow terminal usersto regain control of "runaway"
processes; the INTERRUPT PROCESS and ABORT OUTPUT
functions described above are meant to invoke these
mechanisms. When a terminal is attached directly to
such a system, the system has access to all of the
terminal's generated signals, whether they are normal
characters or special "out-of-band" signals such as
those supplied by the Teletype "BREAK" key or the IBM
2741 "ATTN" key~ and can react to each immediately to
provide the indleated function. This is not
necessarily true when terminals are connected to the
system through the network, since the network's flow
control mechanisms may cause such a signal to be
buffered elsewhere, such as in the user's Host.

The TELNET "Synch" mechanism was developed to
handle this problem. A Synch signal consists of a
Host/Host protocol INTERRUPT signal [5] coupled with a
TELNET DATA MARK command. The Host/Host protocol
INTERRUPT command is not subject to the normal flow
control for TELNET connections. When one is received,
it invokes special handling of the TELNET data stream.
In this mode, the data stream is immediately scanned
for "interesting" signals and intervening data is
discarded. Interesting signals which are processed
in this mode include: tee TELNET INTERRUPT PROCESS,
ABORT OUTPUT, and ARE YOU THERE characters; local
analogs (if any) of these standard characters; all
other TELNET commands; and other site-defined signals
which can be acted on without delaying the scan of the
data stream. The TELNET DATA MARK command is the data
stream synchronizing mark. It indicates that any
special signals have already been received and that the
recipient can resume normal data stream processing.
When a DATA MARK arrives before its associated
~ NTERRUPT, the recipient should defer processing the
ata stream further until the matching INTERRUPT is

received. This insures that the two ends of the
connection remain synchronized. (For further •
discussion of this subtle mechanism see [4,5].)

3.1.4 The NVT Printer and KeYboard

The NVT printer has an unspecified carriage width
and page length and can produce representations of all
95 ASCII graphics. Of the 33 ASCII control codes and
the 128 uncovered codes, the following have specified
meaning to the NVT printer: NUL, which produces

4-12

no-operation; LF. which moves the printer to the next
print line; and CR, which moves the printer to the left
margin. In addition, a few codes have defined but not
required effects on the NVT printer: BEL, BS, HT. VT,
and FF. All remaining control codes cause the NVT
printer to take no action. The NVT does not have any
cursor, cursor positioning, graphics, or other
sophisticated terminal capabilities (although these can
be added to TELNET via the option negotiation facility
described below).

The sequence "CR LF", as defined, causes the NVT
to be positzoned at the left margin of the next print
line (as would, for example, the sequence "LF CR").
Many systems and terminals do not treat CR and LF
independently, and have to go to some effort to
simulate their effect. (For example, some terminals do
not have a CR independent of the LF; on some such
terminals it is possible to simulate a CR by
backspacing.) Therefore, the sequence "CR LF" is
treated as a single "new line" character and used
whenever their combined action is intended; the
sequence "CR NUL" is used where a carriage return alone
is actually desired; and the CR character is avoided in
other contexts.

The NVT keyboard has keys for generating all 128
ASCII codes and the TELNET special commands. (Some of
these may be generated by combinations or sequences of
keystrokes on the actual terminal.) Note that although
many have no effect on the NVT printer, the NVT
keyboard is capable of generating them.

3.2 Option Negotiation

The principle of negotiated options takes
cognizance of the fact that many sztes wish to provide
additional services over and above those available
within an NVT, and that many users have sophisticated
terminals and prefer elegant, rather than minimal,
service. Various options are provided within the
TELNET protocol to allow a user and server to agree
upon more elaborate (or perhaps just different)
conventions for their TELNET connection. Options may
be invoked to specify the character set, the echo mode,
the line width, the page length, etc.

The basic protocol for enabling an option is for
either party (or both) to request that the option take
effect. The other party may then either accept or
reject the request. If the request is accepted, the
option immediately takes effect. If it is rejected,
the associated aspect of the connection remains as
specified for an NVT. Since all parties must be
prepared to support the NVT, a party may always refuse
a request to enable, and must never refuse a request to
disable, an option.

A flurry of option requests is likely to occur
when a TELNET connection is first established, as each
party attempts to obtain the best possible service from
the other. Beyond that, options can be used to
dynamically modify the characteristics of the
connection to suit changing local conditions. For
example, the NVT, as previously explained~ uses a
transmission discipline well suited for line-at-a-time
applications but poorly suited for character-at-a-tlme
applications. A server electing to devote the
processing overhead required for character-at-a-time
operation may (when it is suitable for a local process)
negotiate into character-at-a-time mode. However.
rather than permanently burden itself with the extra
processing overhead~ it may switch (i.e., negotiate)
back to line-at-a-tzme when the "tighter" control is no
longer necessary.

In the following, we use the example of echoing to
motivate and illustrate the principles of option
negotiation.

A basic observation to be made regarding echoing
is that Hosts which supply interactive services tend to
be optimized either for terminals that do their own
echozng or for terminals which do not, but not for both
terminal types. Therefore, a set of echoing
conventions which would prohibit a server from
initiating a change in echo mode would be excessively
confining. Servers would be burdened with users who
are in the "wrong" mode, in which they might not
otherwise have to be, and users would be burdened with
remembering proper echoing modes.

TELNET echo mode negotiation is based on three
assumptions. First, both the server and the user
should be able to suggest the echo mode. Secondly, all
terminals must be able to provide their own echoes,
either internally or by means of the local Host.
Thirdly, all servers must be able to operate in a mode
that assumes that remote terminals provide their own
echoes. The last two assumptions result from the
desire for a universal, minzmal basis upon which to
build.

An implementation based on these rules has, in
effect, the following commands (the actual commands are
presented at the end of this section):

- ECHO, when sent by the server to the user, means
"I'll echo to you";

- ECHO, when sent by the user to the server, means
"You echo to me";

- NO ECHO, when sent by the server to the user,
means "I won't echo to you";

- NO ECHO. when sent by the user to the server,
means "Don't you echo to me".

Whenever a TELNET connection is opened between a
user and a server, both user and server must assume
that the user is echoing locally. If the user would
prefer the server to generate echoes, it can send the
server an ECHO command. Or, if the server would prefer
to do its own echoing, it can send the user an ECHO
command. The recipient of an ECHO command is not
required to change the way it handles echoing, but it
may have to respond to the command. If the requested
mode of operation is acceptable, the recipient begzns
operating in that mode; if "beginning" means changing
from a previous mode, the recipient must also respond
with the ECHO command to indicate that (and when) the
changeover took place. If the requested mode of
operation is not acceptable, the recipient must respond
wlth the command's inverse to indicate its refusal
(this must be NO ECHO. since neither party is allowed
to refuse a change into NO ECHO).

Several properites of this scheme are worthy of
note:

- NO ECHO is retained as the nominal mode; a
connection will operate in ECHO mode only when
both parties agree.

- The procedure cannot loop; regardless of which
party (or both) initiates a change, or in what
time order, there are at most three commands sent
between the parties.

- Servers are free to specify their preferred mode
of operation; thus users, human or machine, need
not learn the proper mode for each server.

As described so far, the interpretations of the
ECHO command ("I'll echo to you" and "You echo to me")
imply that both the server and user know which is
which. This is a problem for connections where there
is no clearly identifiable user or server, such as
connections for linking terminals together. Bearing
this in mind, one comes to understand that there are
five reasonable modes of operation for echoing on a
connection, as shown in Figure 2, and that four
commands are sufficient to deal with completely

Process I
9

Process 2

Neither End Echo~s

Process]~
One End Echoes
for Itself

Process 2

Process 1 D Process 2

One End E c h o e s
for the Other

Process1 ~ C

Both Ends Echo for
Themselves

Process] _ ~ <

One End E c h o e s ~'
for Both Ends

Process 2

Process 2

Figure 2 -- Five Echoing Modes

symmetric echoing. We have already mentioned the four
commands: the two possible meanings of each of ECHO
and NO ECHO. Explicitly, the commands would be ILL
ECHO TO YOU, YOU ECHO TO ME, DON'T ECHO TO ME, and I
WON T ECHO TO YOU. Echoin~ is now the negotiation of
two options for which the znitial, default modes are
DON T ECHO TO ME and I WON T ECHO TO YOU.

Actually, four basic commands
! (DO/DON T/WILL/WON T) are provided to support

negotiation of any option, echoing included. WILL XXX

4-13

~ s sent, ~Z esther party, to indicate that party's
eszre torrer) to begzn perrormlng option XXX, DO XXX

and DON'T XXX being its positive and negative
acknowledgments. Similarly, DO XXX is sent to indicate
a desire (request) that the other party (i.e., the
recipient of the DO) begin performing OPTION XXX, WILL
XXX and WON'T XXX being the positive and negative
acknowledgments. Since the default NVT is what remains
when no options are enabled, the DON'T and WON'T
responses are guaranteed to leave the connection in a
state which bo~h ends can handle. Thus. a Host TELNET
implementation may be totally unaware of options it
chooses not to support; it may simply refuse any option
request that cannot be understood.

3.3 Command Encoding

Every TELNET command is a sequence of at least two
bytes: an "Interpret as Command" (IAC) character
followed by the code for a command. The commands
dealing with option negotiation are three byte
sequences, the third byte being the code for the
option. This format was chosen so that as more
comprehensive use of the "data space" is made -- by
negotiations from the basic NVT -- collisions of data
bytes with reserved command values will be minimized,
all such collisions requiring the inconvenience, and
inefficiency, of preceding the data bytes with an
escape character to indicate that the bytes are data
rather than commands. With this encoding scheme, only
the IAC need be doubled when it is sent as data, and
the other 255 codes may be passed transparently. The
TELNET command set includes the following commands:
IAC (indication that the next byte is a command),
"WILL" option, "WON'T" option, "DO" option, "DON'T"
option, zndicatlon that the following bytes concern the
subnegotiation (discussed below) of the given option~
termination of the bytes concerning subnegotiation of
an option, the Go Ahead (GA) signal, the ERASE LINE,
ERASE CHARACTER, ARE YOU THERE. ABORT OUTPUT, and
INTERRUPT PROCESS functions, BREAK, DATA MARK, and NOP.

3.4 The Options

Because it is envisioned that options which prove
to be generally desirable will eventually be supported
by many Hosts. a system has been provided for
coordinating the assignment of option codes and for
carefully documenting and publishing options. The
system also provides for temporary and experimental use
of options and for the use among just a few Hosts of
options which are not widely desired. Figure 3 lists
currently "registered" TELNET options.

No. Name

-0-- Binary Transmission
I - Echo
2 - Reconnection

- Suppress Go Ahead
Approximate Message Size

~ - S t a t u s
Timing Mark

~ - Remote Controlled Transmission and Echoing (RCTE)
Output Line Width

9 Output Page Size
10 Output Carriage-Return Disposition
11 Output Horizontal Tabstops
12 - Output Horizontal Tab Disposition
13 Output Formfeed Disposition
14 Output Vertical Tabstops
15 Output Vertical Tab Disposition
16 - Output Linefeed Disposition
17 Extended ASCII

255 - Extended Options List

Figure 3 -- Registered Options

The currently defined options fall into three
general classes: options to control or take into
account characteristics of particular physical
terminals; options which affect the operation of . .
TELNETI and options which affect the operation of nos~
operatzng system modules or user processes. Naturally,
there is some overlap between these categories of
options, as will be seen below.

3.4.1 Controlling the ~hysical Terminal

Options 8 to 17 in Figure 3 are aimed primarily at
controlling or accommodating the characteristics of
various physical terminals which are in use in the
network.

The Output Line Width option is representative of
these options. There appear to be four cases in which
it is useful for the party at one end of a TELNET
connection to communicate with the other party about
output line width:

I. the data sender wishes the receiver to use
its (the receiver's) knowledge of the printer
width to properly handle the line width;

2. the data receiver wishes the sender to use
its (the sender's) knowledge of the data
being sent to properly handle the line width;

3. thedata sender wishes to use its knowledge
of the data being sent to instruct the
receiver in the proper handling of the line
width; and

4. the data reciever wishes to use its knowledge
of the printer to instruct the sender in the
proper handling of the line width.

One example of line width handling is for the receiver
to "fold" lines sent by the sender so that all
characters in a line fzt on the printer page. Another
example might be to not fold lines even zf they
overflow the printer page should that be what the user
desires (e.g., it is better to see only the left half
of a chart or picture than to have the left and right
halves intermixed. The option definition specifies
commands that allow the command sender (which may be
either the data sender or receiver) to I) suggest that
the command sender alone handle output line wzdth
considerations, 2) suggest that the other party handle
line width consideratzons but with a suggested line
width value (up to a fairly large number) for the other
party to use, 3) suggest that the other party alone
handle line width considerations but with a suggested
line width of infinity, and 4) suggest that the other
party alone handle line width conszderations with no
suggestions about how it be done. The commands are
defined such that if neither data sender nor receiver
wants to handle output line width considerations, the
data receiver (which is presumed to have local
knowledge of the printer) does whatever 6ets done.
Should both want to handle output line wzdth
considerations~ the handling is done by the data
sender, which zs presumed to have speczal knowledge
about the data, but taking into account any suggestions
the receiver makes. Notice again the value of the
principle of symmetry.

3.4.2 Controlling TELNET

Options 0, 2, 3. 5, and 255 in Figure 3 are
largely concerned with controlling use of TELNET
connections. The Binary Transmission option provides a
method for sending transparent binary data over a
TELNET connection without resort to a higher level data
transmission protocol. The Reconnection option
provides a method of moving one or both ends of a
TELNET connection from one Host to another: there are a
¥ariety of cases when this is useful (see [11] and pp.
81-90 of [5] for examples). While the NVT nominally
follows a line-buffered mode protocol complete with Go
Ahead (GA) signal, there is no reason why a full duplex
connection between a full duplex terminal and a Host
optimized to handle such terminals should be burdened
wzth this protocol. The Suppress Go Ahead option
provides a method of switching to the full-duplex mode
of operation when possible. The Status option allows
the party at one end of a TELNET connection to obtain
the status of options as seen by the party at the other
end of the connection. The Extended Options List
option provides an expansion capability beyond the
256th option code.

3.4.3 Controlling the Operatin~ Svstem and Processes

Options I, 4. and 6 from Figure 3 deal largely
with controlling the operating system and processes.
The Echo option has already been discussed.

The Approximate Message Size option provides a
mechanism whereby the partzes involved can attempt to
agree on the size of messages to be transmitted over
the connection. For instance, the knowledge that a
transmitter will never send messages greater than a
maximum size could be used by a receiver to more
efficiently utilize its input buffer space.

The Timing Mark option provides a wa~ for a user
or process at one end of a TELNET connectzon to be sure
that previously transmitted data has been completely
processed, printed, discarded, or otherwise handled.
This is useful for timing or synchronizing events (see
pp. 101-104 of [5]).

3.4.4 RCTE

Option 7, the Remote Controlled Transmission and
Echoing (RCTE) option, is one of the more elaborate
TELNET options and combines the functions of all three
option classes. This section discusses the motivation
for RCTE and sketches its operation.

The ARPANET, like other communication networks,
introduces a delay when transporting data from one
point to another. In the ARPANET, this delay may be
caused by a combination of factors including user and
server system loads, network configuration,

4-14

retransmission, and satellite delays. Although most
communzcating programs do not know or care about
delays t most users do. The round-trzp ue±ay rot
characters echoed by a serving system, for example, can
be agonizingly apparent to atypist.

Consider as an example a system with a highly
interactive command language interpreter which supports
command recognition and completion. A user of such a
system might type the following character sequence to
copy one file (ABC) to another (XYZ):

CO[esc] ABC[esc]XYZ

The command language interpreter together wltb the
erminal handling software would respond with the

terminal printout :

CO~y (FROM FILE) ABC (TO FILE) XYZ

(where the system printout is underlined) regardless of
the speed at which the user types. The printout is a
mixture of echoes to the user's type-in and responses
by the command language interpreter. Propagation
delays could render such highly interactive dialogues
useless to remote users if echoes had to be relayed
through the network from the server Host to the user's
terminal.

It was felt necessary to develop a distributed
terminal control protocol which could hide propagation
delay for terminal interactions and could provide more
efficient operation than sending character echoes
across the network. The basic strategy developed is to
distribute the responsibility for echozng between the
user and server sites. The Server TELNET (in
conjunction with the serving Host's terminal management
software) decides generally what to echo and when to
echo it, while the User TELNET generates the actual
echoes. Because no server-to-user echoes are ever
transmitted through the net, all echoing is performed
at the instant the user expects to see it by the User
TELNET. Thus propagation delay for echoes is no longer
an issue. Any delay observed is due to the time
required by the server to generate responses and by the
network to transmit them to the user.

To develop this scheme, we began with a model for
the echoing mechanism which might be employed by a non-
distributed operating system to control full duplex
terminals. This model assumes the existence of two
distinct code modules which are together responsible
for character stream management within the operating
system. These are the "terminal component" which
exchanges data and control information with the device
(and executes as part of the interrupt logic), and the
process component which exchanges data and control

information with the serving process (and executes as a
privileged extension of the user code).

These two components effect the proper integration
of echoes with process outputs in the following way.
The terminal component is designed to distinguish a few
out of all the possible subsets of characters (for
example, alphabetic, or numeric, or punctuation
characters, etc.). The serving process is designed to
use the members of one or more of these subsets as
delimiters which mark the end of a user input. These
delimiting characters are called "break" characters.

The process (via its privileged extension) tells
the terminal component the subsets which collectively
define its break character set, and instructs it to
start echoing. The terminal component then places each
incoming character into an input buffer (from which it
will go to the process) and into an output buffer (from
which it will go to the terminal as an echo). When the
terminal component encounters a break character in the
input, it suspends echoing while the serving process
analyzes the input and responds. When the process has
completed its response, it again issues a read. If the
input buffer is empty, the terminal component is asked
to resume its echozng function. If it zs not empty, a
(deferred) echo should be sent to the output buffer for
each character read by the process, until the buffer is
empty.

An important design decision is whether the
terminal component or the process component should be
responsible for generation of deferred echoes. In many
existing systems the process component performs this
function by providing an echo for each character it
moves from the input buffer to the process workspace
(after the initial break, and up until the input buffer
empties). Immediate echoing is then resumed by the
terminal component as before.

This solution is natural in a non-distributed
environment since it is not immediately apparent, for
example, how the (interrupt-driven) terminal component
should be invoked to do this task. However, it
introduces considerable complexity when the terminal
and process components are separated from each other as

in the ARPANET environment. The problems with this
approach are discussed in detail in [12] and [13], and
arise mostly because considerable synchronization is
required for the distributed components to switch from
deferred to immediate echo status. The fact that
unechoed characters may be in the inbound (user-to-
server) pipe, while the command to resume immediate
echoing is in the outbound pipe, makes the
synchronization untidy.

It is possible to design a system in which the
terminal component is responsible for generation of
deferred echoes. The way we choose to model this
approach is to have the terminal component maintain two
distinct input buffers, one for process input and one
for unechoed characters. As shown in Figure 4,

to Host •

from Host

Input Buffer-11 I Terminal I
(Process Input)l= - I Keyboard

I Input Buffer-2 I
(Unechoed i =

Characters) I

Local
Echo

~i Output suffer II -I -I Terminal I Printer

Figure 4 -- Operation of a Remote Controlled
Echoing System

characters are placed into both buffers simultaneously
(as they arrive from the terminal) and are removed to
their respective destinations (the process workspace
and the output buffer) in response to a read operation.
The process component is virtually unchanged from what
it was before, except that it need no longer worry
about deferred echoes and instead must signal the
terminal component when it attempts a read.

This alternate design approach adapts readily to
the network environment. The terminal component can be
implemented at the user site precisely as zt was in the
integrated system. The only difference is that now, in
order to place its characters into the process Duffer,
it must send them through an inbound "pipe." Since it
retains a copy of all keyed characters in its own
buffer, it can provide both immediate and deferred
echoing whenever it receives indication of a process
read.

One reason we have assumed that an operating
system might choose to perform these echoing tasks on a
process's behalf is to avoid awakening the process at
each and every character arrival. Of course, even when
there zs no echoing to be done it is still desirable to
defer process activation until there is something
signifzcant for the process to do. In line with this,
our model provides another facility by which a user
process may designate when enough input has accumulated
so that a significant amount of computing can be
performed. It does this by specifyzng a "wakeup"
character set in the same way it specifies the break
character set. A wakeup request is delivered to the
scheduler whenever a wakeup character is recognized.

In the network environment, the concept of wakeup
characters can be used to help achieve better user-to-
server channel utilization. If the process at the
server site is not going to be awakened until receipt
of a wakeup character, a User TELNET need not transmit
any input until keying of a wakeup character. Thus it
makes sense from a channel utilization viewpoint to
pass the wakeup character set description along with
the break character set description to the User TELNET.

,! ,, Wakeup characters have been dubbed transmission
characters for the purpose they serve in the ARPANET.

This transmission and echoing strategy is that
invoked by the TELNET RCTE option. The option
specification defines the necessary commands for
sending wake-up sets, etc., between the process and
terminal components. For further detail see [5], pages
I05-117.

4-15

4. IMPLEMENTATIONS

This section discusses some of the approaches
taken in the implementation of User and Server TELNET
and enumerates some of the implementation problems.

4. I Aenroaches to Integration into the Operating
Systems

With very few exceptions the Hosts interfaced to
the ARPANET were existing systems designed with no
thought of interconnection to other autonomous Hosts I
and certainly not to one under different administratlve
control. As noted previously, each Host was designed
to work with a specific class or set of terminals with
a fairly narrow range of properties, for example,
hardcopy line-at-a-time terminals, character-at-a-time
terminals, or (in a few cases) display terminals. In
each of these systems there is a portion or module of
the operating system that allows applications programs
or processes to interact with termlnals. This module,
which may be called the terminal control module or TCM,
implements certain system calls that application
programs can use to read (or write) a character or line
from (to) a terminal. In the more flexible systems
there may be system calls to set echo modes, to invoke
character set translations, and so on. The TCM
contains code to interact with the terminal as a
device, and to control character buffering if
necessary. Generally, applications programs use the
system call interface to the TCM to interact with
terminals.

Consider a program implemented to interact with
local terminals that was written before the network
existed. For that program to be used via TELNET, the
server TELNET must present an interface to the program
identical to the interface presented by the TCM. Since
the TCM is usually operating system code, the Server
TELNET must be at least partly operating system code.

The impact of this observation is that the most
effective implementation approach is to integrate the
TCM and Server TELNET into an expanded module that
interacts both with terminal devlces and with the
Host/Host protocol module in the operating system. The
expanded module (TCM plus Server TELNET) can be thought
of as providing application program interfaces for both
real and pseudo terminals (NVTs).

This reorganization of the TCM has in some cases
been difficult since the NVT presented to the TCM may
be quite different from the real terminals that the TCM
was originally designed to control. In addition, it
should be noted that the TCM for timesharing systems
often plays a role in the startup and terminatlon of
user sesslons. Typically, when a user strikes a
particular character on an otherwise idle terminal,
that character is interpreted as a signal to start a
new session. This speclal session starting code must
also be invoked when a TELNET connection is
established.

4.1.1 TENEX ADDroach

TENEX is a time-shared operating system for the
DEC PDP-IO processor [14]. At present there are 18
TENEX systems connected to the ARPANET as Hosts.
ARPANET TENEX Hosts provide both Server TELNET, which
supports terminal access to TENEX for remote Users, and
User TELNET, which supports terminal access to remote
Hosts for local users.

TENEX Server TELNET is implemented by a
combination of system level software (code embedded in
the operating system) and user level software
(unprivileged code which executes under the control of
the operating system). When a remote user attempts to
gain terminal access to TENEX, a user level process is
activated. This process acts to complete the initial
connection protocol (ICP) exchange initiated by the
user in order to establish a pair of standard ARPANET
Host/Host protocol connections between TENEX and the
remote user's Host. Next, the process instructs TENEX
(via an operating system call) ~o treat the new
connection pair from then on as a TELNET connection.
The system level program responds by creating a new
"pseudo terminal". From that point, TENEX acts to
insure that the pseudo terminal appears to be an NVT to
the remote Host and to be a local terminal to local
processes. Finally, the user level program passes the
pseudo terminal off to the standard TENEX software that
handles terminals in a pre-login state. Until the
connection with the remote Host is broken, the pseudo
terminal and its remote user are treated no differently
by local processes than a local terminal and user would
be.

TENEX User TELNET is an unprivileged user level
program which users invoke in the same way they invoke
other TENEX subsystems , such as text editors and
language processors. The User TELNET program operates
in two modes: in command mode it is responsive to user

commands such as those to establish and break
connections, to initiate option negotiations, etc.; in
transparent mode it acts to pass characters between the
user's terminal and a remote Host. The program allows
a user to have several active connections to remote
Hosts and to switch his attention (and terminal) back
and forth among them. The program itself performs all
of the necessary TELNET protocol actions including
initiating ICP exchanges, observing NVT conventions for
data transfer, and negotiating TELNET options. In
particular, from its point of view the connections it
uses for communicating with remote Server TELNET
modules are two general purpose ARPANET Host/Host
protocol connectlons. Although the operating system
imposes no constraints on how these connections are
used~ the program, of course, uses them in the manner
requlred by the TELNET protocol.

4.1.2 TSS/360 Approach

TSS/360 is a virtual memory time-sharing system
for the IBM System/360 Model 67 and IBM System/370
computers [15]. Note, however, that although there are
several 360 and 370 systems on the ARPANET, fundamental
differences between TSS and other IBM operating systems
make this implementation discussion relevant to TSS
only.

The TSS NCP implementation attempts to obey the
layering of ARPANET protocols exactly. There are
distinct user language interfaces (macros or procedure
calls) available for Host-Host, TELNET, and File
Transfer protocol levels, with strict layering (e.g.,
TELNET uses standard Host-Host macros, File Transfer
uses standard TELNET macros). This. plus the fact that
the TSS terminal control module (called GATE) appears
exactly the same for both conversational and
nonconversational (batch) jobs, greatly simplified both
User and Server TELNET implementation.

In TSS the first contact from a user's terminal
~ e.g. t dialing in or hitting the attention key)
mmedlately creates a server task, which will then

accept and validate a LOGON command. This approach was
rejected in designing Server TELNET, however, in order
to provide additlonaI facilities present on many
ARPANET Hosts (e.g., pre-LOGON system status). Thus a
newly opened TELNET connection is first handled by one
of several available "logger" tasks, which allow
several pre-LOGON functions. When a LOGON command is
recognized, a server task is created (the same as for
normal TSS) and the TELNET connection is released by
the logger task t and passed to the server task at the
point at which it would normally "attach" the user's
physical terminal. Whenever programs running in a
Server TELNET task attempt I/O to the "terminal" (i.e.,
use GATE), appropriate TELNET macros are used
internally by GATE rather than normal system calls; the
programs themselves need not know whether they have a
real terminal or an NVT (or for that matter, a batch
input/output file). This approach facilitates
implementlng any server function (e.g., file transfer)
whlch is built on TELNET, as it does not even require
recompilation to move from debugging with a real
terminal to operational use with an NVT.

TSS User TELNET is simply a user level program
which interfaces with the user's real terminal on one
side (using GATE reads and writes) and with the distant
server task on the other (using TELNET reads and
writes). This program allows initiation, termination,
and control of multiple simultaneous connections, as
well as the ability to generate the various TELNET
control functions (e.g., INTERRUPT PROCESS). Character
set mappings, etc., are handled by the TELNET macros
themselves. The program also attempts to do the
translation between th? very limited support offered by
TSS to real terminals (essentially limited to
line-at-a-time half duplex protocol) and the more
general NVT.

4.1.3 MUSTICS ADnroach

Multics is a general purpose, time-shared
operating @ystem for the Honeywell 6000 series
processor [16]. There are several Multics Hosts on the
ARPANET. Multies supports both User and Server TELNET.

Server TELNET is" integrated" into ,,the system
through the Multics "answering service , a module whose
functlon is to answer data set calls and other attempts
to access Multics. It executes as a Multics User
process (in a normal user ring) with special
capabilities. When it answersla "call"~the answering
service attempts to authenticate the Caller as an
authorized Multics user. If the authentication
succeeds, the answering service creates a new process
(job) for the user and passes the data set line off to
the new process for use as its primary I/O or control
stream. From that point, access to terminal I/O
functions for the new user processLis through a TTY
IOSIM (I/O system Interface Module) which also executes
in the user's ring. This TTY IOSIM interacts with the

4-16

terminal device through a TTY DIM (Device Interface
Module) which executes in a privileged system ring.
Whenthe "call" comes from the network, the answering
servlce completes the ICP and then proceeds to
authenticate the user. If authentication is
successful, an NVT is passed off to the user's newly
created process for use as its primary I/O stream. The
TELNET protocol for the NVT is performed by a Server
TELNET IOSIM which executes in the user process ring.
In addition, this Server TELNET IOSIM acts much like
the "normal" TTY IOSIM to provide the user process
access to standard terminal (NVT) I/O functlons. The
Server TELNET IOSIM interacts with the network through
the IMP DIM which (like the TTY DIM) executes in a
privileged system ring.

The Multics User TELNET is provided by a User
TELNET program which executes in a normal user ring.
The User TELNET program interacts with the NCP to
establish and break connections with server Hosts and
with a User TELNET IOSIM which is responsible for
performing TELNET protocol functions. Like the other
IOSIMs discussed, the Server TELNET IOSIM executes in a
user ring.

4.1.4 TIP Approach

The TIP's only function is that of a terminal
concentrator to other ARPANET Hosts. The TIP software
consists of a straightforward stand-alone
implementation of tee IMP/Host, Host/Host, ICP r and
TELNET protocols along with the necessary termlnal I/O
software. No operating system is used. A TIP design
decision closely ties together the notions of
connection and terminal port with the result that a
terminal can only be associated with one connection at
a time. Users can and do make use of capabilities
beyond the rudimentary ones provided by the TIP, by
connecting through a TIP User TELNET to the Server
TELNET of a Host (such as TENEX), and then calling the
remote Host's User TELNET and connecting through it to
other Server TELNET processes in the network. While
one must be careful, e.g., so that no more than one
TELNET provides character echoing I the user can in this
way borrow features (such as multlple outstanding
connections) not supported by his local TELNET.

4.2 Problems and Considerations

In this section we very briefly enumerate a number
of problems encountered in the implementation of the
TELNET protocol. We present these because we believe
them to contain valuable lessons in how to structure a
TELNET-Iike protocol which can be easily integrated
into Host operating systems, and some hints on how to
structure operating systems which can accommodate
TELNET-Iike functions.

4.2.1 Integrity of Multi-character Commands and
Problems of Synchronization

As previously noted, TELNET command sequences are
sequences of two or more bytes. Because these
sequences must pass over the TELNET connection in
messages and buffers of arbitrary sizes, there is no
~uarantee that a received TELNET command sequence will
De completely contained in any one message or buffer.
Furthermore, in a given implementation, the sequences
of command characters may share a message or buffer
with data bytes. Thus, care must be taken to maintain
the integrity of multi-byte commands.

Negotiation of an option can require several
exchanges of commands between two Hosts. Also, several
options may be negotiated simultaneously. Finally, it
is usually undesirable to defer data traffic for the
duration of these option negotiations. Thus, care must
be taken to save the states of multiple, on-going
option negotiations. Data structures must be provided
to facilitate interpretation and handling of incoming
parts of negotiations in order to match them with the
previous parts of corresponding negotiations. Finally,
care must be taken: to properly synchronize on-golng
data processing with negotiations, the aims of which
might be to affect data processing; to synchronize the
effects of separate negotiations which affect common
TELNET parameters (or are even in conflict over them);
and, to synchronize the two parties sending
simultaneous (perhaps conflicting) commands about the
same options or even reversing course in mid-
negotiation.

4.2.2 Time-outs

The protocol should (but does not) specify
reasonable time-outs and actions to be taken to reset
the connection to a known state should a time-out
occur. For example, with the protocol as currently
specified, when a TELNET module initiates an option
negotiation, it must wait for a reply. Since the
module must store the fact that a request has been
made, and since in general it must do this for many
requests for many connections, if the other party is

tardy in responding, storage may become exhausted.
Further, a later and different negotiation might be
confused by this left-over request. Clearly, timing
routines must be provided that check periodically for
such left-over requests. Since the TELNET
specification does not adequately address the issue of
tlme-outs, each implementor is left to choose a
reasonable course for himself.

4.2.3 Maintaining Accurate Status

All TELNET processes must maintain the current
state of the options they implement for each terminal
or connection. In addition, to avoid requiring users
to set parameters at every terminal session, the nature
of options suggests that User TELNETs maintain
information for what each terminal type desires or can
accept. However, given the variety of terminals,
users, and Server Host systems serviced by the User
TELNETs, the choice of preferred settings can be a
problem. For instance, the TIP policy is to maintain
preferred settings judged to be well matched to the
needs of the naive user and to allow explicit setting
changes if desired. The TIP maintains the desired
state of each option even though the terminal may not
be in that state. Thus. automatic return to the
preferred state is possible at the end of the terminal
session. A further choice arises with re~ard to
"automatic negotiation". The TIP will, or course, send
an option request at a user's explicit command.
However, when a connection opens and options are
required to establish the preferred setting, the TIP
acts as an advocate for the user and automatically
initiates option negotiation.

4.2.4 Logical Processing Control vs. Physical Terminal
Control

One of the least tidy areas of TELNET
specification and implementation is the three-way
conflict among (a) the few keys available on physical
terminals to indicate various control functions, (b)
the several functions which must be specified, and (c)
the existing operating system and terminal manufacturer
assumptions about the functional meaning of various key
strokes. For example, it is desirable for both the
server Host operatlng system and the user at his
keyboard to be ableto cause the terminal print head to
do a carriage return alone (e.g., to leave the print
head in a position to overprint a line), to do a line
feed alone, or to do both. Further, it is desirable
for both the server Host operating system and the user
to be able to signal the passing of logical control to
the other (e.g., for the user to indicate that it is
now time for the server Host to process a line of
data). The fact that many Host operating systems have
implicit means to indicate transfer of logical control,
such as the arrival of a "new line" character,
complicates the situation. Further, some terminals
have only a single convenient key with which to
indicate the various functions, and on some terminals a
stroke of a key (such as carriage-return) physically
causes print head motion. To cause minimal change to
Host operating systems, minimal user inconvenience, and
minimal requirement for physical terminal modification,
the TELNET protocol adopted a convention whereby the
characters CR. LF, and NUL are used in various
combinations to control physical and logical functions.
This approach has been acceptable for the most part but
there have been certain problems with it, because of
ambiguity of the meaning of various character sequences
in various situations. Designers of TELNET-like
protocols should be careful to provide sufficient
unambiguous control sequences, and means of initiating
them, to support necessary functions in the context of
all the termlnals and Host operating systems that use
the protocol. Terminal manufacturers and operating
system designers could lighten the burden on protocol
designers by realizing that a wide variety of terminals
and operating systems will be used together and
therefore not tlghtly bind physical actions to logical
functions.

5. CONCLUSION

The ARPANET TELNET protocol development has
demonstrated the feasibility of constructing a protocol
which dynamically adapts to support terminal
communication between previously incompatible Hosts and
remote terminals. The protocol has also proved useful
for process-to-process and terminal-to-terminal
communication. The iterative design and implementation
experience leading to widespread implementation of the
TELNET protocol revealed several fundamental principles
of protocol design which we believe have broad
application beyond the ARPANET. Further. through this
experience, several approaches to operating system
design which facilitate TELNET-like communication have
become apparent.

One aspect of the TELNET protocol, the Network
Virtual Terminal concept, has been widely utilized in
other later networks, such as Cyclades [17], Telenet

4--17

18], the European Informatics Network [19], Datapac
20], and EPSS [21]. (In at least one case, the

European Informatics Network, the concept of the
Network Virtual Terminal has been expanded to specify
much more ambitious virtual terminal functions than are
specified by the ARPANET NVT.) Furthermore, on behalf
of France, Telenet. and themselves, the United Kingdom
Post Office has submitted to C.C.I.T.T. a draft
provisional recommendation for what is essentially a
network virtual terminal. The other aspects of the
TELNET protocol, such as sophisticated option
negotiation and standard character sets, have been
addressed to some extent by most other network
designers: however, to date, we believe that the
ARPANET TELNET protocol is the most complete,
sophisticated, implemented, and widely used such
protocol in existence.

REFERENCES AND BIBLIOGRApHy

I. Roberts, L. and B. Wessler, "Computer Network
Development to Achieve Resource Sharing", AFIPS
Conference Proceedings, Vol. 36, 1970, pp. 543-
549.

2. Heart, F.E., R.E. Kahn, S.M. Ornstein, W.R.
Crowther, and D.C. Walden, "The Interface Message
Processor for the ARPA Computer Network," AFIPS
Conference Proceedings, Vol. 36, 1970, pp. 551-
567.

3. BBN Report No. 1822, "Specifications for the
Interconnection of a Host and an IMP", revision of
January 1976; available from the National
Technical Information Service under accession
number ADA019160.

4. Crocker, S., J. Heafner, R. Metcalfe, and J.
Postel, "Function-oriented Protocols for the ARPA
Computer Network", AFIPS Conference Proceedings,
Vol. 40, 1972, pp. 271-279.

5. ARPANET Protocol Handbook, April 1976 edition,.
~p. 51-174; this document is a compilation by E.
~einler and J. Pos~el (Network Information Center,
Stanford Research Institute) of many documents
wrz~en originally oy many members of the Network
Working Group or NWG; also available from the
National Technical Information Service, Accession
Number ADA027964.

6. Walden, D., "Host-to-Host Protocols", Network
Systems and Software. Infotech State of--~A-6t
Report 24, Infotech Information Limited,
Maidenhead, England, 1975, pp. 287-316.

7. Cerf, V. and R. Kahn. "A Protocol for Packet
Network Interconnection~', IEEE Transactions on
Communications, Vol. COM-22, No. 5, May 1974, pp.
637-648.

8. Carr, S., V. Cerf. and S. Crocker, "Host-Host
Protocol in the ARPA Computer Network", AFIPS
Conference Proceedings, Vol. 36, 1970, pp. 589-
597.

9. Ornstein, S.M., F.E. Heart, W.R. Crowther, S.B.
Russell, H.K. Rising, and A. Michel. "The
Terminal IMP for the ARPA Computer Network," AFIPS
Conference Proceedings, Vol. 40, 1972, pp. 243-
254.

10. Dolotta, T.A., "Functional Specifications for
Typewriter-Like Time-Sharing Terminals", Computing
Surveys, Vol. 2, No. I, March 1970, pp. 5-31.

11. Thomas R., "Reoonnection Protocol", RFC 426 (see
the note on RFCs below).

12. Tymes, L.R., "TYMNET - A Terminal Oriented
Communication Network", AFIPS Conference
Proceedings, Vol. 38, 1971, pp. 211-216.

13. Heckel, P.C. and B.W. Lampson, "The BCC Terminal
System". Presented at The Seventh Hawaii
International Conference on System Sciences,
January 8, 1974.

14. Bobrow, D., J. Burchfiel, D. Murphy, and R.
Strollo, "TENEX, A Paged Time-sharing System for
the PDP-IO", Communications of the ACM, Vol. 15,
No. 3, PP. 135-143.

15. "IBM System/360 Time Sharing System: System Logic
Summary", Form GY28-2009.

16. Vyssotsky, V.A., F.J. Corbato, and R.M. Graham.,
"Structure of the MULTICS Supervisor", AFIPS
Conference Proceedings, Vol. 27, 1965, pp. 203-
212.

17. Zimmermann, H., "Proposal for a Virtual Terminal
Protocol", Reseau Cyclades, IRIA, Rocquencourt,
France.

18. "Interactive Terminal Interface Specification",
Telenet Communications Corporation, 1666 K Street,
N.W., Washington, D.C. 20006, September 1975.

19. Schicker, P., and A. Duenki. "Virtual Terminal
Definition and Protocol". ACM SIGCOMM~r
Communication Review, Vol. 6, No. 4, Oc--~976,
pp. 1-18.

20. Twyver~ D.A., and A.M. Rybczynski, "Datapac
Subscrzber Interfaces", Proceedings of The Third
International Conference on Computer
Communication, 1976, pp. 143-149.

21. Howard, V.J. et al.~ "An Interactive Terminal
Protoc@l", EPSS Liazson Group. Study Group 2,
HLP/CP(75)2, AERE Harwell, U.K.

The evolution of the TELNET protocol is thoroughly
documented in a series of working papers known as
Requests for Comment or RFCs. These RFCs are not
publicly available although throughout the ARPANET
community there are many complete sets, to one of
which, no doubt, the serious researcher can gain
access. The numbers of the relevant RFCs are listed
immediately below.

RFCs on New TELNET Design and Specification: 357,
426, 435, 461, 495, 513, 529, 559-560, 562-
563, 581, 587, 595-596, 651-659, 671, 698,
718-719.

RFCs on New TELNET Implementation: 559, 593, 669,
678, 688, 701-703, 718.

RFCs on Old TELNET Design and Specification: 15,
97, 109-110, 137, 139, 158, 295, 318, 328,
340, 391.

RFCs on Old TELNET Implementation: 206, 216, 452,
466.

RFCs on Satellite Considerations: 346, 355.

4-18

