THE ARPANET TELNET PROTOCOL:
ITS PURPOSE, PRINCIPLES, IMPLEMENTATION, AND
IMPACT ON HOST OPERATING SYSTEM DESIGN

J. Davidson
Institute for Advanced Computation
Sunnyvale, California

W. Hathaway
Computation Division

NASA

es Research Center

Moffett Field, California

J. Postel
USC - Information Sciences Institute
Marina del Rey, California

N.
R.

Mimno
Thomas
Walden

Bolt Beranek and Newman Inc.
Cambridge, Massachusetts

Preface

The protocol discussed in this pager was developed
by many members of the ARPANET community starting in
1969 and continuing through the present. Many
individuals and institutions have been members of this
com@un1t¥ at one time or another over the years., A
review of the documents, both working and published
written on the subject of this protocol reveals that
the followin% individuals were among those who
contributed to the protocol design: A. Bhushan, R.
Braden, R. Bressler, J. Burchfiel, S. Carr, V. 6erf, B.
Cosell, D. Crocker, S. Crocker, W. Crowther, J.
Davidson, D. Dodds, W. Duvall, G. Grossman, R.

Gumpertz, W. Hathaway, W. Kanﬁrowitz, R. Long, J.
McConneli, A. McKenzie, R. Merryman, J. Melvin, R.
Metcalfe, E. Meyer, N. Mimno, L. Nelson, T. O'éullivan,
M. Padlipsky, K. Pogran, J. ﬁostel, M. ﬁeese, J.
Rulifson, R. Schantz, R. Thomas, R. Tomlinson, D.
Walden, k. Watson, D. Wells, J. Winett, and S. Wolfe.
No doubt others also contributed to the desiﬁn and
dozens of other individuals contributed to the man{
implementations of the protocol. We acknowledge all of
their contributions. Many of the above named
individuals were offered an opportunity to collaborate
on the writing of this paper. The authors are those
who responded. We apologize for the oversi%ht to any
individual who would have liked to help write this
paper but was not apprised of the opportunity.

1. INTRODUCTION
The ARPANET [1] provides a capability for
geograghically separated computers, called Hosts, to
communicate with each other. The ﬁost computers
typically differ from one another in type, speed, word
length, operating system, etc. Each Host computer is
connected to the network through a small computer
called an Interface Message Processor or IMP [2]. The
complete network is formed by connecting these IMPs,
all of which are virtually identical, by means of
leased wideband circuits; thus the TMPs” form a
subnetwork through which the Hosts communicate,
is sent through the communications subnetwork in
messages ug to about 8100 bits long. A Host passes to
its own IMP a message which includes the "network
address" of a destination Host. The message is then
passed from IMP to IMP through the network until it
finally arrives at the IMP to which the destination
Host is attached, and this IMP gasses the message to
its Host. It should be noted that an¥ simple terminals
accessing the network do so via a Host (even if the
Host is operated by the network authority). This Host
"local" to the terminal performs message-formatting
functions for the terminal; as we shall see it may
perform other functions as well.

Data

Specifications exist for the physical and logical
message transfer between a Host and 1ts IMP [3]. These
specifications are generally called the IMP/Host
"protocol”. This protocol is not sufficient by itself,
however, to specify the methods of communication
between processes running in two gossibly dissimilar
Hosts. ather, the processes must have some agreement
as to the method of initiating communication, the
interpretation of transmitted data, and so forth.
Although it would be possible for such agreements to be
reached by each pair of Hosts (or processes) interested
in communication, a more general arrangement is
desirable in order to minimize the amount of
implementation necessary for network-wide
communication. Accordinﬁly, the Host organizations
formed a group (called the Network Working Group or
NWG) to facilitate an exchange of ideas and to
formulate additional specifications for Host to Host
communications,

The NWG adopted a "layered" approach to the
specification of communications protocols EM,5,6],
wherein the higher layers of protocol use the services

of lower layers; the advantages and disadvantages of
the layered approach are discussed in the references,
E6] As shown in Figure 1, the lowest

especially in

‘ Host/ Host

Figure 1 -- Layered Relationship of the
ARPANET Protocols

layer is the IMP/Host protocol. The next layer (called
the Host/Host layer in the figure) sgecifles methods of
establishing communications paths between Hosts,
managin% buffer space at each end of a communications
Eath etc.® Next, the Initial Connection Protocol or

cp f5] s€e01f1es a standard way for a remote user (or
process) to attract the attention of a network Host,
pregarator¥ to using the Host. The ICP provides the
analog of the user pressine the attention button at a
local terminal on a Host.*¥ In the next layer is the
Telecommunications Network or TELNET protocol which was
designed to support terminal access to remote Hosts.
TELNET is a specification for a network standard
terminal and the protocol for communicating between
this standard terminal and a Host. The next logical

rotocol layer consists of function oriented protocols
ES], two of which, File Transfer Protocol (FTP) and
Remote Job Entry protocol (RJE), are shown in the
figure. Finall¥, at an¥ point in the layering process,
it is possible to superimpose ad hoc protocols.

The focus of the present paper is the TELNET
grotocol. TELNET includes many novel aspects which
ave not been presented in detail in the open

¥Two separate Host/Host protocols have gained wide
enough acceptance within the ARPANET community to_be
called standards. One, the NCP-based protocol [5], has
been in widespread use for several years and has been
implemented for almost ever¥ Host in the network; at
this date, almost all data is transmitted through the
network via the NCP protocol. The second, the TCP-
based protocol [7], is more general than the NCP-based
protocol, and is in use by a subset of the network
Hosts for certain t¥8es of communication. Note that
either the NCP- or P-based protocol provides a
suitable base for the remaining layers of protocol, as
might any number of other suitable Host/Host protocols.

#%While this protocol was sgecified at an early date in
the network's development, the community has come to
understand that a separate protocol for this function
is not strictly necessary and, indeed, in_the context
gf thg TCPabased Host/Host protocol, the 1CP protocol

s not used.

4-12

literature, and the primary aim of this paper is to
provide that previously unavailable descrigtion and
discussion. n the following pages we sketch the
evolution of the TELNET protocol (Section 2), present
its principles in detail §Section 3) and discuss its
implementation (Section 4). Throughout these sections
we attempt to point out, wherever Eossible, the impact
the TELNET protocol and its capabilities have had on
Host operating system design.

2. IHE EVOLUTION OF TELNET

Earl{ in the development of the ARPANET it became
clear that a major function of the network would be to
provide remote use of interactive systems. To allow a
user at a terminal (connected to his local Host) to
control and use a procéss in a remote Host, as if he
were a local user of that remote Host, a special
mechanism was required. ~The problems to be overcome
are legion: for example, the typical Host expects its
interactive terminals to be physically attached to the
individual ports of its hardware terminal scanner
rather than logically attached via a multiplexed
connection to the network; a given Host expects to
communicate only with terminals with certain
characteristics (e.§., half-duplex, line-at-a-time,
physical echo‘ EBCDIC character set, 134.5 baud) while
a remote user's terminal might have completely
different characteristics (e.g., full-duplex
character-at-a-time, no character echo, 5¢I} character
set, 300 baud). The TELNET protocol was an attempt to
provide the special mechanism necessary to permit such
communication.

As early as 1969 a few Hosts had been programmed
on an ad hoc basis to permit terminal access from
another Host [8]. In 1971 an NWG subcommittee was
formed to consider the %eneral problem of supgorting
interactive use of arbitrary Hosts by users a
arbitrary remote terminals. There was great
controversy in the committee discussions, focusing on
four issues: character set, connection establishment,
echoing, and interrupt cagability. By late 1972 there
was enough consensus so that widespread implementation
of an early version of the TELNET protocol had been
accomplished.

The early version was based on the idea of an
asymmetric interactive connection between the so-called
"server Host" providin% interactive computation and the
so-called "user Host" to which the remote terminal was
attached. The four issues mentioned above were dealt
with as follows. A standard network terminal known as
the Network Virtual Terminal (NVT), using a 7-bit ASCII
character set, was adopted for data transmission over
this logical connection; the ICP was selected as the
means for establishing the connection; some special
control commands were provided the user so that it
could instruct the server to echo or not echo
‘individual characters; and an innovative "synch"
strategy was developeé for alerting the Server TELNET
that a "special" character had been sent by the user.
This last facility, described in detail in section
3.1.3, allows the user to bypass a potentially clogged
user-to-server data path when attempting (for instance)
to stop an errant process.¥

Despite widespread implementation of the early
TELNET protocol, its heavy and effective use, and
numerous attempés to declare it complete, discussion of
it continued. There were a number of problems with the
early version:

1. Despite the attempt to permit a minimal
implementation well suited to the constraints
of small Hosts, there was no well-defined
minimal implementation. Even if some TELNET
feature was not desired for a given
implementation, it had to be provided in case
some other impiementation commanded its use.

2. The control structure was inadequate. For
example, unless some exceedingly constraining
assumptions were made, it was possible for
the two ends of a TELNET connection to loop
commanding each other to take opposite
actions.

'IminciE In the concept of the TELNET protocol was the
fact that each implementation of the protocol would
have to find a method of mapping the NVT and the TELNET
protocol functions to and from the garticular system's
actual terminals, input/output facilities, and
ogerating system functions. Since the mapging of the
TELNET protocol and NVT to the local opera ing sgstem
and terminals is not explicitly treated in the TELNET
protocol specification, we shall not treat it
explicitily in this pager. However, problems and
solutions relatin% to this magping will be noted at a
number of points throughout this paper.

3. The asymmetry of TELNET connections precluded
one end from initiating certain functions,
such as echoing behavior. This seriously
constrained the use of TELNET protocol for
character communication between processes not
serving terminals, a role for which it would
otherwise have been well suited and for which
it was already frequently used in the absence
of any better protocol.

4. The issue of interfacing character-at-a-time
gosgi go line-at-a-time Hosts was poorly
andled.

By ear1¥ 1973 it had become apgarent that minor
adjustments to the early TELNET protocol would not
solve these problems and that some fundamental changes
were needed. A new subcommittee met and, with the
grevious experience to guide them, developed several

undamental principles. These new Erinci les, when
added to the earlier grinciples of the Network Virtual
Terminal and the remote interrupt (sYnch) mechanism,
resulted in a revised TELNET protocol which solved most
of the earlier problems that had precluded universal
acceptance of the protocol.

There was such enthusiasm for the new version that
a schedule for "rapid" (within the year) implementation
was laid out. However, the implementation of the new
TELNET protocol proceeaed more slowly than expected.
Only in the past ¥ear have implementations been widely
avallable. n retrospect, there were several reasons
for the delay in the implementation: 1) at the time
the revised protocol implementation was scheduled,
implementation of the initial version had been
completed and Host system managers had not budgeted
resources for a second implementation; 2) about this
time ARPA'S research interest in the network was
declining and the network was enterin% a period of
status quo operation; 3) despite initial belief that a
clean method of pha31n% over from the initial protocol
to the revised protocol existed, none was found by most
implementors and consequentlg most chose to provide a
complete implementation of the revised protocol to
operate in parallel with the initial protocol; and, 4)
implementation for the most grevalent user Host, the
TIP [9] groved to be very difficult (because of the
TIP's limited memory) and time consuming, thus
implicitly relieving pressure on the server Hosts to
implement the revised protocol.

At the time this is being written, in early 1977
the new TELNET protocol has been the accepted s andard
for several {ears, and it is widely implemented and
used. We believe that the (new) TELNET protocol has
many advantages over alternative methods and represents
an advance in the art of computer communication. The
rest of this paper describes the current version of the
TELNET protocol in some detail in the hope that others
may benefit from our experience.

3. PRINCIPLES

The gurpose of the TELNET Protocol is to provide a
general, bi-directional, character-oriented
communications facility. Its grimary goal is to define
a standard method for interfacing terminal devices to
terminal-oriented processes.* The protocol may also be
used for terminal-to-terminal and process-to-process
communication.

The TELNET Protocol is built upon three main
ideas: the concept of a "Network Virtual Terminal”;:
the principle of negotiated options; and a symmetric
view of terminals and processes (which allows the

rotocol to easily and naturally support
erminal-to-terminal and process-to-process
communication). The remainder of this section
discusses the first two principles in detail. The
benefits of gymmetry are illustrated in the section on
option negotiation.

3.1 The Network Virtual Terminal

A TELNET connection consists of a full duplex
connection (provided by the Host/Host protocol layer)
over which passes data interspersed with TELNET control
information.

When a TELNET connection is first established,
each end is assumed to originate and terminate at a
"Network Virtual Terminal", or NVT. An NVT is an
imaginary device which provides a standard,
network-wide, intermediate representation of a
canonical terminal. This eliminates the need for
server and user Hosts to keep information about
characteristics of each other's terminals and terminal
handling conventions. All Hosts, both user and server,

¥T70] has previousl¥ considered the related issue of
specifying the functional characteristics of a
typewriter-like time-sharing terminal.

4-11

map their local device characteristics and conventions
8o as to appear to be dealing with an NVT over the
network, and each can assume a similar maﬁping by the
other part{. The NVT is intended to strike a balance
between being overly restricted (not groviding Hosts a
rich enough vocabulary for mapging into their local
character sets) and being overly inclusive (penalizing
users with modest terminals).

The Network Virtual Terminal is a bi-directional
character device with a printer and a keyboard. The
printer resgonds to incoming data and the keyboard
produces outgoing data which 1s sent over the TELNET
connection and, if "echos" are desired, to the NVT's

rinter as well. "Echos" will not be expected to

raverse the network. (See Sections 3.2 and 3.4.4 for
further disuession of echoing.) The code set is 7-bit
ASCII in an eight-blt field, with some exceptions noted
below. Any code conversion and timing considerations
are local problems and do not affect the NVT.

3.1.1 Transmission of Data

To accommodate the needs of the largest possible
segment of the user community, the Network Working
Group chose to attribute some very fundamental
properties to the NVT. One of these properties
requires that even though a TELNET connection is
intrinsically full duplex, the NVT (in default mode) is
considered to be a half duplex device,* and that both
user and server communicants must provide a "turn-the-
line-around" indication, via the TELNET GO-AHEAD (GA)
command, whenever it switches from an output to an
input aétitude. Hosts that wish may agree, via option
negotiation, to operate in character-at-a-time and
full-duplex mode.

This groperty of the NVT makes use of true half-
duplex devices possible in a TELNET conversation and
does not penalize full-duplex ones. For example, it
allows a User TELNET to properly control the mechanical
keyboard locking apparatus of an IBM 2741 terminal,
which it would otherwise be unable to do since it would
have no reliable indication of when the output from the
remote servin% Host had completed (end-of-line is
normally insufficient).

. Since the NVT is basically a half-duplex device,
it is acceptable for the TELNET which forwards
"keyboard input" to accumulate text for transmission
until it is willing to relinquish the line. This is
consistent with the fundamental property that echoes do
not traverse the network. In addition, it has a
beneficial effect on buffer considerations in the
receiving Host, and it reduces the cost associated with
processing muléiple network input interrupts. Since
many systems take some processing action at an end-of-
line (even line printers or card punches tend to work
this way), transmission should be triggered at the end
of a line. 1In addition, a user or process may
sometimes find it necessary or desirable to provide
data which does not terminate at the end of a line.
Therefore implementors are advised to provide a method
of signalling when buffered data should be transmitted.

3.1.2 Standard Representation of Control Functions

In its purest formulation, the TELNET protocol
makes no assumptions about the process which interfaces
the NVT at either end of a connection. This is the
characteristic which allows uniform treatment of
terminal-to-process, terminal-to-terminal, and process-
to-process conversations. However, to account for the
fact that in many cases one controiling process will be
human, certain mechanisms were introduced into the

rotocol which appear to have the most benefit for
uman Earticipan s, These mechanisms, while perfectly
%enera in the abstract, serve mainly to standardize
he interface through which the (human) user perceives
his serving process or his serving Host.

Interestingly, the functions required by humans
for controlling a process through a character interface
are common to most serving systems, but the means for
invoking a ﬁiven function may vary widely from server
to server (Host to Host). The TELNET protocol thus
defines a standard representation for each of several
functions so that each may be selectively invoked at an
arbitrary Host (if that function is implemented)
without requiring the user to know the particular
Hest's convention for invokinﬁ the function. (While,
the TELNET protocol acts to shield a human user at his
User Host from some of the variations in operation of

¥In this discussion we use the term "half duplex" to
mean a situation in which data is allowed to flow in
only one direction at a time between the parties at the
two ends of a TELNET connection, regardless of the tyge
of ghysieal link used between a terminal and its loca
Host. "Full duplex™ is used to mean that characters
can flow in both directions simultaneously on the
connection.

different Server Hosts, the nature of the user
interface to the TELNET protocol and NVT varies from
User Host to User Host.)

The User TELNET must provide a method for the user
of an NVT to cause the requests described below to be
generated.

INTERRUPT PROCESS provides a function which
interrupts the operation of a remote process (See
Section 3.1.3). This function is frequently used
when a user believes his process is looping, or
when he has inadvertantly activated an unwanted
process.

ABORT OUTPUT provides a function which allows a
process, which is generating output to run to
com{letlon (or to reach the same stoggin% point it
would reach if run to completion) without sending
the output to the user's terminal. Further, this
function typically clears any output already
produced but not yet actually printed on the
user's terminal.

ARE YOU THERE provides a function which gives the
user some perceptible (e.g., printable) evidence
that the system is still up and running. This
function may be invoked by the user when the
system is unexpectedly "silent" for a long time,
because of a computation of unanticipated (by the
uger) duration, an unusually heavy system load,
ete.

ERASE CHARACTER provides a function which deletes
the greceding undeleted character or "print
position" from the stream of data supplied by the
user. This function is typically used to edit
keyboard input when typing mistakes are made.

ERASE LINE provides a function which deletes all
the data in the current "line" of input. This
function is typically used to edit keyboard input.

The spirit of these "extra" keys is that they
should represent a natural extension of the mapping
between "NVI"™ and "local", For example, just as the
NVT data byte 104 (octal) should be mapped into the
local code for "ugpercase D", the ERASE CHARACTER
character should be mapped into the local "Erase
Character" function (if such a function is locally
implemented).

3.1.3 The TELNET "Synch" Signal

Most time-sheri systems provide mechanisms which
allow terminal users fo regain control of "runaway"
processes; the INTERRUPT PROCESS and ABORT OUTPUT
functions described above are meant to invoke these
mechanisms. When a terminal is attached directlg to
such a system, the system has access to all of the
terminal's generated signals, whether they are normal
characters or special "out-of-band" signals such as
those sugﬁlied y the Teletype "BREAK" key or the IBM
2741 "ATIN" key, and can react to each immediately to
provide the indicated function. This is not
necessarily true when terminals are connected to the
system through the network, since the network's flow
control mechanisms may cause such a signal to be
buffered elsewhere, such as in the user's Host.

The TELNET "Synch" mechanism was developed to
handle this problem. A Synch signal consists of a
Host/Host Krotocol INTERRUPT siﬁnal [5] coupled with a
TELNET DATA MARK command. The Host/Host protocol
INTERRUPT command is not subject to the normal flow
control for TELNET connections. When one is received,
it invokes special handling of the TELNET data stream.
In this mode, the data stream is immediately scanned
for "interesting" signals and intervening data is
discarded. "Interes inﬁ" sifnals which are processed
in this mode include: the TELNET INTERRUPT PROCESS,
ABORT OUTPUT, and ARE YOU THERE characters; local
analogs (if any) of these standard characters; all
other TELNET commands; and other site-defined signals
which can be acted on without delaying the scan of the
data stream. The TELNET DATA MARK command is the data
stream_ synchronizing mark. It indicates that ang
special signals have already been received and that the
recipient can resume normal data stream processing.
When a DATA MARK arrives before its associated
INTERRUPT, the recipient should defer processing the
data stream further until the matching INTERRUPT is
received. This insures that the two ends of the
connection remain synchronized. (For further
discussion of this subtle mechanism see [4,5].)

3.1.4 The NVT Printer and Kevboard

The NVT printer has an unspecified carriage width
and ga§e length and can groduce representations of all
95 ASCII graphics. Of the 33 ASCII control codes and
the 128 uncovered codes, the following have specified
meaning to the NVT printer: NUL, which produces

4~12

no-operation; LF, which moves the printer to the next
print line; and Cﬁ, which moves the printer to the left

margin. In addition, a few codes have defined but not
reguired effects on the NVT printer: BEL, BS, HT .
and FF. All remaining control codes cause the NVt

printer to take no action. The NVT does not have any
cursor, cursor positioning, graphics, or other
sophisﬁicated terminal capabilities (although these can
be added to TELNET via the option negotiation facility
described below).

The sequence "CR LF", as defined, causes the NVT
to be positioned at the left margin of the next Print
line (as would, for examgle, the sequence "LF CRY).
Many systems and terminals do not treat CR and LF
independently, and have to go to some effort to
simulate their effect. (For example, some terminals do
not have a CR independent of the LF; on some such
terminals it is possible to simulate a CR b
backspacing.) Therefore, the sequence "CR LF" is
treated as a single "new line" character and used
whenever their combined action is intended; the
sequence "CR NUL" is used where a carriage return alone
is actually desired; and the CR character is avoided in
other contexts.

The NVT keyboard has keys for generating all 128
ASCII codes and the TELNET special commands. (Some of
these may be generated by combinations or sequences of
keystrokes on the actual terminal,) Note that although
mang have no effect on the NVT printer, the NVT
keyboard is capable of generating them.

3.2 Option Negotiation

The principle of negotiated options takes X
cognizance of the fact that many sites wish to provide
additional services over and above those available
within an NVT, and that man¥ users have sophisticated
terminals and prefer elegant, rather than minimal,
service. Various "options" are provided within the
TELNET protocol to allow a user and server to agree
upon more elaborate (or Eerhaps Just different)
conventions for their TELNET connection. Options may
be invoked to specify the character set, the echo mode,
the line width, the page length, etec.

The basic protocol for enabling an option is for
either party (or both) to request that the option take
effect. The other party may then either accept or
reject the request. If the request is accepted, the
og ion immediately takes effect. If it is rejected,
the associated aspect of the connection remains as
specified for an NVT. Since all parties must be
prepared to support the NVT, a party may always refuse
a request to enable, and must never refuse a request to
disable, an option.

A flurr¥ of option requests is likely to occur
when a TELNET connection is first established, as each
garty attempts to obtain the best possible service from
he other. Beyond that, options can be used to
dynamically modify the characteristics of the
connection to suit changing local conditions. For
example, the NVT, as previously explained, uses a
transmission discipline well suited for line-at-a-time
applications but poorly suited for character-at-a-time
applications. A server electing to devote the
processing overhead required for character-at-a-time
operation may (when it is suitable for a local process)
ne%otlate into character-at-a-time mode. However
rather than permanently burden itself with the extra
grocessi overhead, it may switch (i.e.ﬁ negotiate)

ack to line-at-a-time when the "tighter® control is no
longer necessary.

In the following, we use the example of echoing to
motivate and illustrate the principles of option
negotiation.

X A basic observation to be made regarding echoing
is that Hosts which supply interactive services tend to
be optimized either for terminals that do their own
echoing or for terminals which do not, but not for both
terminal types. Therefore, a set of echoing
conventions which would prohibit a server from
initiating a change in echo mode would be excessively
confining. Servers would be burdened with users who
are in the "wrong" mode, in which they might not
otherwise have to be, and users would be burdened with
remembering proper echoing modes.

TELNET echo mode negotiation is based on three
assumptions. First, both the server and the user
should be able to sufgest the echo mode. Secondly, all
terminals must be able to provide their own echoes,
either internally or by means of the local Host.
Thirdly, all servers must be able to operate in a mode
that assumes that remote terminals provide their own
echoes. The last two assumptions result from the
ge;%ge for a universal, minimal basis upon which to

uild.

An implementation based on these rules has, in
effect, the following commands (the actual commands are
presenéed at the end of this section):

- ECHO, when sent by the server to the user, means
w1111 echo to you";

- ECHO, when sent by the user to the server, means
"You echo to me";

- NO ECHO, when sent bz the server to the user,
means "I won't echo to you";

- NO ECHQ, when sent by the user to the server,
means "Don't you echo to me".

Whenever a TELNET connection is opened between a
user and a server, both user and server must assume
that the user is echoing locally. If the user would
prefer the server to generate‘echoes, it can send the
server an ECHO command. Or, if the server would grefer
to do its own echoing, it can send the user an ECHO
command. The recipient of an ECHO command is not
required to change the way it handles echoing, but it
may have to respond to the command. If the requested
mode of operation is accegtable the recipient begins
operating in that mode; i “beginning" means changin,
from a previous mode, the recipient must also respon
with the ECHO command to indicate that (and when) the
changeover took place. If the requested mode of
operation is not acceptable, the recipient must respond
with the command's inverse to indicate its refusal
(this must be NO ECHO, since neither party is allowed
to refuse a change into NO ECHO).

¢ Several properites of this scheme are worthy of
note:

- NO ECHO is retained as the nominal mode; a
connection will operate in ECHO mode oniy when
both parties agree.

- The procedure cannot loop; regardless of which
party (or both) initiates a change, or in what
time order, there are at most three commands sent
between the parties.

- Servers are free to specify their preferred mode
of operation; thus users, human or machine, need
not learn the proper mode for each server.

As described so far, the interpretations of the
ECHO command ("I'll echo to you" and "You echo to me")
imglg that both the server and user know which is
which. This is a groblem for connections where there
is no clearly identifiable user_ or server, such as
connections for linking terminals together. Bearing
this in mind, one comes to understand that there are
five reasonable modes of operation for echoing on a
connection, as shown in Figure 2, and that four
commands are sufficient to deal with completely

——— e

Process 1 Process 2

————
Neither End Echoes

Processt Process 2
D e E———

One End Echoes
for Itself

Process Process 2
Both Ends Echo for
Themselves

Process1 N Process 2

ane End Echoes
-~ for Both Ends
Process 1 D Process 2
——————————-

One End Echoes
for the Other

Figure 2 -- Five Echoing Modes

symmetric echoing. We have already mentioned the four
commands: the two possible meanings of each of ECHO
and NO ECHQO. Explicitly, the commands would be I'LL
ECHO TO YOU, YOU ECHO TO ME, DON'T ECHO TO ME, and I
WON'T ECHO T0 YOU. Echoi is now the negotiation of
two options for which the initial, defaul
DON'T ECHO TO ME and I WON'T ECHO TO YOU.

modes are

Actuall{ four basic commands
(DO/DON'T/WI ﬂ/WON'T) are provided to support

negotiation of any option, echoing included. WILL XXX

4-13

is sent b¥ either party, to indicate that gart 's
desire (of er) to begin performing option XXX, BO XXX
and DON'T XXX being ts positive and negative
acknowledgments. imilarly, DO XXX is sent to indicate
a desire (request) that the other party (i.e., the
recipient of the DO) begin performing OPTION XXX, WILL
XXX and WON'T XXX being the positive and negative
acknowledgments. Since the default NVT is what remains
when no options are enabled, the DON'T and WON'T
responses are guaranteed to leave the connection in a
state which both ends can handle. Thus, a Host TELNET
implementation may be totally unaware of options it
chooses not to supgort; it ma{ simply refuse any option
request that cannot be understood.

3.3 Command Encoding
Every TELNET command is a sequence of at least two

bytes: an "Interpret as Command™ (IAC) character
followed b{ the code for a command. The commands
dealing with option negotiation are three byte

sequences, the third byte being the code for the
option. this format was chosen so that as more
comprehensive use of the "data space" is made -- by
negotiations from the basic NVT -~ collisions of data
b{ es with reserved command values will be minimized,
all such collisions reguirlnﬁ the inconvenience, and
inefficiency, of preceding the data bytes with an
escape character to indicate that the bytes are data
rather than commands. With this encoding scheme, only
the IAC need be doubled when it is sent as data, and
the other 255 codes ma{ be passed transparently. The
TELNET command set includes the following commands:

JAC (indication that the next bxte is a command)

"WILL" option, "WON'T" ogtion, DO" option, #pONTTn
option, indication that the followin% bytes concern the
subnegotiation (discussed below) of the given option
termination of the bytes concerning subnegotiation o

an option, the Go Ahead (GA) signa the ERASE LINE,
ERASE CHARACTER, ARE YOU THERE, ABORT OUTPUT, and
INTERRUPT PROCESS functions, BﬁEAK, DATA MARK, and NOP.

3.4 The Options

Because it is envisioned that options which prove
to be generally desirable will eventually be supported
by many Hosts, a system has been grovided for
coordinating the assignment of og ion codes and for
carefull{ documenting and publishing options. The
system also provides for temporary and experimental use
of options and for the use among just a few Hosts of
options which are not widely desired. Figure 3 lists
currently "registered" TELNET options.

No. Name
0 - Binary Transmission
1 - Echo
2 - Reconnection
3 - Suppress Go Ahead
- Agproximate Message Size
g - Status
- Timing Mark
g - Remote Controlled Transmission and Echoing (RCTE)
- Qutput Line Width
9 - Qutput Page Size . .
10 - OQutput Carriage-~Return Disposition
11 - Qutput Horizontal Tabstops
12 - Qutput Horizontal Tab Disposition
13 - Output Formfeed Disposition
14 - Qutput Vertical Tabstops
15 - Qutput Vertical Tab Disposition
16 - Qutput Linefeed Disposition
17 - Extended ASCII
255 - Extended Options List

Figure 3 -- Registered Options

The currently defined options fall into three
general classes: options to control or take into
account characteristics of garticular physical
terminals; options which affect the operation of
TELNET; and ogtions which affect the operation of Host
ogeratlng system modules or user processes. Naturally,
there is some overlap between these categories of
options, as will be seen below.

3.4.1 Controlling the Physical Terminal

Options 8 to 17 in Figure 3 are aimed primarily at
controlling or accommodating the characteristies of
vagiouﬁ physical terminals which are in use in the
network.

The Qutput Line Width option is representative of
these options. There apgear to be four cases in which
it is useful for the party at one end of a TELNET
connection to communicate with the other party about
output line width:

1. the data sender wishes the receiver to use
its (the receiver's) knowledge of the grinter
width to properly handle the line width;

2. the data receiver wishes the sender to use
its (the sender's) knowledge of the data
beinﬁ sent to properly handle the line width;

3. the data sender wishes to use its knowledge
of the data being sent to instruct the
receiver in the proper handling of the line
width; and

4. the data reciever wishes to use its knowledge
of the printer to instruct the sender in the
proper handling of the line width.

One example.of line width handling is for the receiver
to "fold" lines sent by the sender so that all
characters in a line fit on the printer page.
example might be to not fold lines even if the
overflow the printer ga%e should that be what the user
desires (e.g., it is befter to see only the left half
of a chart or picture than to have the left and right
halves intermixed. The option definition specifies
commands that allow the command sender (which may be
either the data sender or receiver) to 1) suggest that
the command sender alone handle output line width
considerations, 2) suggest that the other party handle
line width considerations but with a suggested line
width value (up to a fairlg large number) for the other
party to use, 3) suggest that the other party alone
handle line width considerations but with a suggested
line width of infinity, and ¥) suggest that the other
party alone handle line width considerations with no
suggestions about how it be done. The commands are
defined such that if neither data sender nor receiver
wants to handle output line width considerations, the
data receiver (which is presumed to have local
knowledge of the grinter does whatever gets done.
Should both want to handle output line width
considerations, the handling is done by the data

sender, which 1s presumed to have special knowledge
about the data, but taking into account any suggestions
the receiver makes. Notice again the value of the
principle of symmetry.

3.4.2 Controlling TELNET

Options 0, 2, ; 5, and 255 in Figure 3 are
largely concerned w th controlling use of TELNET
connections. The Binary Transmission option provides a
method for sending transgarent binary data over a
TELNET connection without resort to a higher level data
transmission Erotocol. The Reconnection option
provides a method of moving one or both ends of a
TELNET connection from one Host to another; there are a
variety of cases when this is useful (see [11] and pp.
81-90 of [5] for examples). While the NVT nominally
follows a line-buffered mode protocol complete with Go
Ahead (GA) si%nal, there is no reason why a full duplex
connection befween a full duplex terminal and a Hos
optimized to handle such terminals should be burdened
with this protocol. The Suppress Go Ahead option
provides a method of switch n% to the full-duplex_mode
of operation when possible. he Status option allows
the party at one end of a TELNET connection to obtain
the status of options as seen by the party at the other
end of the connection. The Extended Options List
option provides an expansion capability beyond the
256th option code.

3.4.3 Controlling the Operating System and Processes

Options 1, 4, and 6 from Figure 3 deal largely
with controlling the operating system and processes.
The Echo option has already been discussed.

Another

The Approximate Message Size option provides a
mechanism whereby the parties involved can attempt to
aﬁree on the size of messages to be transmitted over
the connection. For instance, the knowledge that a
transmitter will never send messages greater than a
maximum size could be used b{ a receiver to more
efficiently utilize its input buffer space.

The Timing Mark option Erovides a way for a user
or process at one end of a TELNET connectlon to be sure
that previously transmitted data has been completely
grqcessed, rinted, discarded, or otherwise handled.

his is useful for timing or synchronizing events (see
pp. 101-104 of [5]1).

3.4.4 RCTE

Option 7, the Remote Controlled Transmission and
Echoing (RCTE5 option, is one of the more elaborate
TELNET options and combines the functions of all three
option classes. This section discusses the motivation
for RCTE and sketches its operation.

The ARPANET, like other communication networks,
introduces a delay when transportin% data from one
point to another. In the ARPANET, this delay may be
caused by a combination of factors including user and
server system loads, network configuration,

4-14

retransmission, and satellite delays. Although most
communicating programs do not know or care about
delays, most users do. The round-trip delay for
characters echoed by a servin% sistem, for example, can
be agonizingly apparent to a typist.

Consider as an example a sistem with a highly
interactive command language interpreter which supﬁorts
command recognition and completion. A user of such a
system might t{xe the following character sequence to
copy one Tile (ABC) to another (XYZ):

CO[esc]ABC[esc]XYZ

The command language interpreter together with the
terminal handlin% software would respond with the
terminal printout:

COPY (FROM FILE) ABC_(TQ FILE) XYZ

(where the system printout is underlined) regardless of
the speed at which the user types. The prinftout is a
mixture of echoes to the user's type-in and responses
by the command language intergreter. Propagation
delays could render such highly interactive dialogues
useless to remote users if echoes had to be relayed
ghrogghlthe network from the server Host to the user's
erminal.

It was felt necessary to develop a distributed
terminal control Erotocol which could hide propagation
delay for terminal interactions and could provide more
efficient operation than sending character echoes
across the network. The basic strategy developed is to
distribute the res onsibilitg for echoing between the
user and server sites. The Server TELNET (in
congunction with the serving Host's terminal management
software) decides generalll what to echo and when to
echo it, while the User TELNET generates the actual
echoes. Because no server-to-user echoes are ever
transmitted through the net, all echoinﬁ is performed
at the instant the user expects to see it b{ the User
TELNET. Thus propagation delaX for echoes is no longer
an issue. Ang delay observed 1s due to the time
required by the server to generate responses and by the
network to transmit them to the user.

To develop this scheme, we began with a model for
the echoing mechanism which might be employed by a non-
distribute ogerating system to control full duplex
terminals. This model assumes the existence of two
distinet code modules which are to%ether responsible
for character stream management within the operating
system. These are the "terminal component! which
exchanges data and control information with the device
(and executes as part of the interrupt logic), and the
"process component" which exchanges data and control
information with the serving process (and executes as a
privileged extension of the user code).

These two components effect the proper integration
of echoes with process outputs in the following way.
The terminal component is designed to distinguish a few
out of all the possible subsets of characters (for
example, alphabetic, or numeric, or punctuation
characters, etc.). The serving process is designed to
use the members of one or more of these subsets as
delimiters which mark the end of a user input. These
delimiting characters are called "break" characters.

The process (via its privileged extension) tells
the terminal component the subsets which collectively
define its break character set, and instructs_it to
start echoing. The terminal component then places each
incoming character into an input buffer (from which it
will go to the process) and into an output buffer (from
which it will go to the terminal as an echo). When the
terminal component encounters a break character in the
input, it susgends echoing while the serving process
analyzes the input and responds. When the process has
completed its response, it again issues a read. If the
input buffer is empty, the terminal component is asked
to resume its ech01n§ function, If it is not emgty, a
(deferred) echo should be sent to the output buffer for
eacg character read by the process, until the buffer is
empty.

An important desi%n decision is whether the
terminal component or the process component should be
responsible for generation of deferred echoes. In many
existing systems the process component performs this
function by groviding an echo for each character it
moves from the input buffer to the process workspace
(after the initial break, and up until the input buffer
empties). Immediate echoing is then resumed by the
terminal component as before.

This solution is natural in a non-distributed
environment since it is not immediately apparent, for
examgle, how the (interrugt-driven) terminal component
should be invoked to do this task. However, it
introduces considerable complexity when the terminal
and process components are separated from each other as

in the ARPANET environment.. The problems with this
apgroach are discussed in detail in [12] and [13], and
arise mostly because considerable synchronization is
required for the distributed components to switch from
deferred to immediate echo status. The fact that
unechoed characters may be in the inbound (user-to-
server) gipe, while the command to resume immediate
echoing is in the outbound pipe, makes the
synchronization untidy.

It is possible to design a system in which the
terminal component is responsible for generation of
deferred echoes. The way we choose to model this
agproaeh is to have the terminal component maintain two
distinet input buffers, one for process input and one
for unechoed characters. As shown in Figure i,

Input Buffer-1 Terminal
to Host = {Process Input)[™ Keyboard
Input Buffer-2
{Unechoed
Characters)
Local
Echo
| Terminal
from Host —={ Output Buffer Printer

Figure 4 -- Operation of a Remote Controlled
Echoing System

characters are placed into both buffers simultaneously
(as they arrive from the terminal) and are removed to
their respective destinations (the grocess workspace
and the output buffer) in response to a read operation.
The process component is virtually unchanged from what
it was before, except that it need no longer worry
about deferred echoes and instead must signal the
terminal component when it attempts a read.

This alternate design approach adapts readily to
the network environment. The terminal component can be
imglemented at the user site precisely as it was in the
integrated system. The only difference is that now, in
order to place its characters into the process buffer
it must send them through an inbound "pipe." Since it
retains a copy of all keyed characters in its own
buffer, it can provide both immediate and deferred
echging whenever it receives indication of a process
read.

One reason we have assumed that an o eratinﬁ
system might choose to perform these echolng tasks on a
process's behalf is to avoid awakening the process at
each and every character arrival. Of course, even when
there is no echoing to be done it is still desirable to
defer process activation until there_is something
significant for the process to do. 1In line with this,
our model provides another facilit¥ by which a user
process may desi%nate when enough input has accumulated
so that a significant amount of computing can be
performed. t does this by specify1n§ a "wakeup"
character set in the same way it specifies the break
character set. A wakeup request is delivered to the
scheduler whenever a wakeup character is recognized.

In the network environment, the concept of wakeup
characters can be used to help achieve better user-to-
server channel utilization. If the process at the
server site is not going to be awakened until receipt
of a wakeup character, a User TELNET need not transmit
any input until keying of a wakeup character. Thus it
makes sense from a channel utilization viewpoint to

ass the wakeup character set description along with
he break character set description to the User TELNET.
Wakeup characters have been dubbed "transmission"
characters for the purpose they serve in the ARPANET.

This transmission and echoing strategy is that
invoked b{ the TELNET RCTE option. The option
specification defines the necessary commands for
sending wake-up sets, etc.
terminal components.
105-117.

between the process_and
For further detail see [5], pages

4-15

4. IMPLEMENTATIONS

This section discusses some of the approaches
taken in the implementation of User and Server TELNET
and enumerates some of the implementation problems.
4.1 roaches to Integration into the eratin,
stems

With very few exceptions the Hosts interfaced to
the ARPANET were existing sistems designed with no
thought of interconnection to other autonomous Hosts,
and certainly not to one under different administrative
control. As noted greviously, each Host was designed
to work with a specific class or set of terminals with
a fairly narrow ran%e of progerties, for example,
hardcopy line-at-a-time terminals, character-at-a-time
terminals, or (in a few cases) display terminals. 1In
each of these systems there is a portion or module of
the operating system that allows applications programs
or processes to_interact with terminals. This module,
which ma{ be called the terminal control module or TCM,
implements certain system calls that apglication
programs can use to read (or write) a character or line
from (to) a terminal. In the more flexible systems
there may be system calls to set echo modes, to invoke
character set translations, and so on. The TCM
contains code to interact with the terminal as a
device, and to control character buffering if
necessary. Generally, apglications programs use the
gystgm iall interface to the TCM to interact with

erminals.

Consider a program implemented to interact with
local terminals that was written before the network
existed. For that program to be used via TELNET, the
server TELNET must gresent an interface to the program
identical to the interface presented by the TCM. ince
the TCM is usually operatin% system code, the Server
TELNET must be at least partly operating system code.

The impact of this observation is that the most
effective implementation approach is to integrate the
TCM and Server TELNET into an expanded module that
interacts both with terminal devices and with the
Host/Host protocol module in the ogerating system. The
expanded module (TCM plus Server TELNET) can be thought
of as providing application program interfaces for both
real and pseudo terminals (NVTs).

This reorganization of the TCM has in some cases
been difficult since the NVT presented to the TCM may
be quite different from the real terminals that the TCM
was originally designed to control. In addition, it
should be noted that the TCM for timesharing syséems
often plays a role in the startup and termination of
user sessions. Typically, when a user strikes a
gartlcular character on an otherwise idle terminal,

hat character is interpreted as a signal to start a
new session. This special session starting code must
also be invoked when a TELNET connection is
established.

4.1.1 TIENEX Approach

TENEX is a time-shared operating s¥stem for the
DEC PDP-10 processor [14]}. At present there are 18
TENEX systems connected to the ARPANET as Hosts.
ARPANET TENEX Hosts provide both Server TELNET, which
supports terminal access to TENEX for remote Users, and
User TELNET, which supports terminal access to remote
Hosts for local users.

TENEX Server TELNET is implemented by a
combination of system level software (code embedded in
the operating system) and user level software
(unprivileged code which executes under the control of

the operating system). When a remote user attempts to
gain terminal access to TENEX, a user level process is
activated. This process acts to complete the initial

connection protocol (ICP) exchange initiated by the
user in order to establish a pair of standard ARPANET
Host/Host protocol connections between TENEX and the
remote user's Host. Next, the process instructs TENEX
(via an operatin% system call) to treat the new
connection pair from then on as a TELNET connection.
The system level pro§ram resgonds by creating a new
"pseudo terminal®. rom that point, TENEX acts to
insure that the pseudo terminal appears to be an NVT to
the remote Host and to be a local terminal to local
processes. Finally, the user level program passes the
Kseudo terminal off to the standard TENEX software that
andles terminals in a pre-login state. Until the
connection with the remote Host is broken, the gseudo
terminal and its remote user are treated no differently
gy local processes than a local terminal and user would
e.

TENEX User TELNET is an ungrivileged user level
program which users invoke in the same way they invoke
other TENEX "subsystems", such as text editors and

language processors. The User TELNET program operates
in two modes: in command mode it is responsive to user

commands such as those to establish and break
connections, to initiate option negotiations, ete.; in
transparent mode it acts to pass characters between the
user's terminal and a remote Host. The program allows
a user to have several active connections to remote
Hosts and to switch his attention (and terminal) back
and forth among them. The program itself performs all
of the necessary TELNET protocol actions including
initiating ICP exchanges observinﬁ NVT conventions for
data transfer, and negotiating TELNET options. In
particular, from its point of view the connections it
uses for communicating with remote Server TELNET
modules are two general Eurpose ARPANET Host/Host
grotocol connections. Although the operating system
mposes no constraints on how these connections are
used, the program, of course, uses them in the manner
required by the TéLNET protocol.

4.1.2 TSS/360 Approach

TSS/360 is a virtual memory time-sharing system
for the IBM S stem/%6o Model 67 and IBM System/370
computers [15¥. Note, however, that although there are
several 360 and 370 sgstems on the ARPANET, fundamental
differences between T3S and other IBM operating sgstems
ma%e this implementation discussion relevant to TSS
only.

The TSS NCP implementation attempts to obey the
layering of ARPANET protocols exactly. There are
distinct user language interfaces (macros or procedure
calls) available for Host-Host, TELNET, and File
Transfer protocol levels, with strict 1a ering (e.g.,
TELNET uses standard Host-Host macros, File Transfer
uses standard TELNET macros). This, plus the fact that
the TSS terminal control module (cailed GATE) appears
exactly the same for both conversational and
nonconversational (batch) iobs, greatly simplified both
User and Server TELNET implementation.

In TSS the first contact from a user's terminal

§e.g., dialing in or hitting the attention key
mmedlately creates a server task, which will then
accept and validate a LOGON command. This approach was
rejected in designing Server TELNET, however, in order
to provide additional facilities present on many
ARPANET Hosts (e.%., pre-LOGON system status). Thus a
newly opened TELNET connection is first handled by one
of several available "logger" tasks, which allow
several pre-LOGON functions. When a LOGON command is
recognized, a server task is created (the same as for
normal TSSj and the TELNET connection is released b

the logger task, and passed to the server task at the
point af which it would normally "attach" the user's
ghysical terminal. Whenever grograms running in a
erver TELNET task attempt I/0 to the "terminal" (i.e.,
use GATE), approgriate TELNET macros are used
internally by GATE rather than normal system calls; the
programs themselves need not know whether they have a
real terminal or an NVT (or for that matter, a batch
input/output file). This approach facilitates
implementing any server function (e.g., file transfer)
which is built on TELNET, as it does not even require
recompilation tc move from debugging with a real
terminal to operational use with an NVT.

TSS User TELNET is simply a user level program
which interfaces with the user's real terminal on one
side (using GATE reads and writes) and with the distant
server task on the other (using TELNET reads and
writes). This program allows Initiation, termination,
and control of mulfiple simultaneous connections, as
well as the abilit 0 generate the various TELNET
control functions {e.g., INTERRUPT PROCESS). Character
set mappings, etc., are handled by the TELNET macros
themselves. The program also attempts to do the
translation between the very limited sugport offered by
TSS to real terminals (essentially limited to
line-at-a-time half duplex protocol) and the more
general NVT.

4.1.3 MULTICS Approach

Multics is a general purpose, time-shared

operating system for the Honeyweli 6000 series
rocessor [16]. There are several Multics Hosts on the
RPANET. Multics supports both User and Server TELNET.

Server TELNET is integrated into the system
through the Multics "answering service", a module whose
function is to answer data sef calls and other attempts
to access Multies. It executes as a Multics User
process (in a normal user ring) with sgecial
capabilities. When it answers a "call the answering
service attempts to authenticate the caller as an
authorized Multics user. If the authentication
succeeds, the answering service creates a new process
(job) for the user and passes the data set line off to
the new process for use as its primary 1/0 or control
stream. From that point, access to terminal I/0
functions for the new user process is through a TTY
I0SIM (I/0 system Interface Module) which also executes
in the user's ring. This TTY IOSIM interacts with the

4-16

terminal device through a TTY DIM (Device Interface
Module) which executes in a Erivileged system ring.
When the "call" comes from the network, the answering
service completes the ICP and then proceeds to
authenticate the user. If authentication is
successful, an NVT is passed off to the user's newly
created process for use as its primary I/0 stream. The
TELNET protocol for the NVT is performed by a Server
TELNET IOSIM which executes in the user grocess ring.
In additionf this Server TELNET IOSIM acts much like
the "normal®™ TTY IOSIM to Yrovide the user process
access to standard terminal (NVT) I/0 functions. The
Server TELNET IOSIM interacts with the network through
the IMP DIM which (like the TTY DIM) executes in a
privileged system ring.

The Multies User TELNET is provided by a User
TELNET proEram which executes in a normal user ring.
The User TELNET program interacts with the NCP to
establish and break connections with server Hosts and
with a User TELNET IOSIM which is responsible for
gerforming TELNET grotocol functions. Like the other

OSIMsidiseussed, he Server TELNET IOSIM executes in a
user ring.

4.1.4 TIP Approach

The TIP's only function is that of a terminal
concentrator to other ARPANET Hosts. The TIP software
consists of a straightforward stand-alone
imﬁlementation of the IMP/Host, Host/Host, ICP, and
TELNET protocols along with the necessary terminal I/0
software. No operatin% system is used. A TIP design
decision elosel{ ties together the notions of
connection and terminal port with the result that a
terminal can only be associated with one connection at
a time. Users can and do make use of capabilities
beyond the rudimentar¥ ones provided by the TIP, by
connecting through a TIP User TELNET to the Server
TELNET of a Host (such as TENEX), and then callinf the
remote Host's User TELNET and connectin% through it to
other Server TELNET processes in the nefwork. While
one must be careful, e.g., so that no more than one
TELNET provides character echoin%, the user can in this
way borrow features (such as mul 1£le outstanding
connections) not supported by his local TELNET.

4.2 Problems and Considerations

In this section we verz briefly enumerate a number
of Broblems encountered in the implementation of the
TELNET protocol. We present these because we believe
them to contain valuable lessons in how to structure a
TELNET-like protocol which can be easily integrated
into Host operating systems, and some hints on how to
structure operating systems which can accommodate
TELNET-like functions.

4.,2.1 Intefritz of Multi-character Commands and
roblems o ynchronization

As previously noted, TELNET command sequences are
sequences of two or more bytes. Because these
sequences must pass over the TELNET connection in
messages and buffers of arbitrary sizes, there is no
guarantee that a received TELNET command sequence will

e completely contained in any one message or buffer.
Furthermore, in a given implementation, the sequences
of command characters may share a message or buffer
with data bytes. Thus, care must be taken to maintain
the integrity of multi-byte commands.

Negotiation of an option can require several
exchanges of commands between two Hosts. Also, several
options may be negotiated simultaneously. Finallg, it
is usually undesirable to defer data traffic for the
duration of these option negotiations. Thus, care must
be taken to save the states of multiple, on-going
option negotiations. Data structures must be provided
to facilitate interpretation and handlin% of incoming
parts of negotiations in order to match them with the
previous parts of correspondin% negotiations. Finally,
care must be taken: to properly synchronize on-ﬁoing
data processing with negotiations, the aims of which
might be to affect data processing; to synchronize the
effects of segarate negotiations which affect common
TELNET parameters (or are even in conflict over them);
and, to synchronize the two parties sending
simultaneous (perhaps conflicting) commands about the
same options or even reversing course in mid-
negotiation.

4.2.2 Time-outs

The protocol should (but does not) saecify
reasonable time-outs and actions to be taken to reset
the connection to a known state should a time-out
occur. For example, with the protocol as currently
specified, when a TELNET module initiates an option
negotiation, it must wait for a reply. Since the
module must store the fact that a request has been
made, and since in general it must do this for many
requests for many connections, if the other party is

tardy in responding, storage may become exhausted.
Further, a later and different ne%otiation might be
confused by this left-over requesi. Clearly, timing
routines must be provided that check periodically for
such left-over requests. Since the TELNET
specification does not adequately address the issue of
time-outs, each implementor is left to choose a
reasonable course for himself.

4.,2.3 Maintaining Accurate Status

All TELNET processes must maintain the current
state of the options they implement for each terminal
or connection. 1In addition, to avoid requiring users
to set parameters at everﬁ terminal session, the nature
of options suggests that User TELNETS maintain
information for what each terminal type desires or can
accept. However, ﬁiven the variety of terminals,
users, and Server Host systems serviced by the User
TELNETS, the choice of preferred settings can be a
problem. For instance, the TIP policy is to maintain
preferred settings judged to be well matched to the
needs of the naive user and to allow explicit setting
changes if desired. The TIP maintains the desired
state of each option even though the terminal may not
be in that state. Thus, automatic return to the
preferred state is possible at the end of the terminal
session. A further choice arises with regard to
"automatic negotiation". The TIP will, of course, send
an option request at a user's explicit command.
However, when a connection opens and options are
required to establish the preferred setting, the TIP
acts as an advocate for the user and automaéically
inijtiates option negotiation.

4.2.4 Logical Processing Control vs. Physical Terminal
Control
One of the least tidy areas of TELNET
specification and imglementatlon is the three-way
conflict among (a) the few keys available on physical
terminals to indicate various control functions, (b)
the several functions which must be specified, and (c)
the existing operating system and terminal manufacturer
assumptions about the functional meanin% of various key
strokes. For example, it is desirable for both the
server Host operatln% system and the user at his
keyboard to be able to cause the terminal print head to
do a carriage return alone (e.g., to leave the print
head in a position to overprint a line), to do a line
feed alone, or to do both. Further, it is desirable
for both the server Host operating sistem and the user
to be able to signal the passing of logical control to
the other (e.g., for the user to indicate that it is
now time for the server Host to process a line of
data). The fact that many Host operating systems have
implicit means to indicate transfer of logical control,
such as the arrival of a "new line" character,
complicates the situation, Further, some terminals
have only a single convenient key with which to
indicate the various functions, and on some terminals a
stroke of a key (such as carriage-return) Ehysicallg
causes print head motion. To cause minimal change to
Host oEerating systems, minimal user inconvenience, and
minimal requirement for physical terminal modificaflon,
the TELNET protocol adopted a convention whereby the
characters CR, LF, and NUL are used in various
combinations %o control physical and logical functions.
This agproach has been accegtable for the most part but
there have been certain problems with it, because of
ambiguity of the meaning of various character sequences
in various situations. Designers of TELNET-like
protocols should be careful to provide sufficient
unambi%uous control sequences, and means of 1n1tlatin%
them, to support necessary functions in the context o
all the terminals and Hos operating systems that use
the protocol. Terminal manufacturers and operating
system designers could lighten the burden on protocol
designers by realizing that a wide variety of terminals
and ogeratin systems will be used together and
gherg.ore not tightly bind physical actions to logical
unctions.

5. CONCLUSION

The ARPANET TELNET Erotocol development has
demonstrated the feasibility of constructing a protocol
which dynamically adapts to sufport termina
communication between previously incompatible Hosts and
remote terminals. The protocol has also proved useful
for process-to-process and terminal-to-terminal
communication. The iterative design and implementation
experience leading to widespread implementation of the
TELNET protocol revealed several fundamental principles
of protocol design which we believe have broad X
application beyond the ARPANET. Further, through this
experience, several approaches to operat1n§ S¥S em
design which facilitate TELNET-like communication have
become apparent.

One aspect of the TELNET protocol, the Network
Virtual Terminal concept, has been widely utilized in
other later networks, such as Cyclades [17], Telenet

4--17

E18], the European Informatics Network [19], Datapac
20], and EPSS [21]). (In at least one case e
European Informatics Network, the concept of the
Network Virtual Terminal has been expanded to sgecify
much more ambitious virtual terminal functions than are
specified b¥ the ARPANET NVT.) Furthermore, on behalf
of France, Telenet, and themselves, the United Kingdom
Post Office has sul’)mitted to C.C.I.T.T. a draft
provisional recommendation for what is essentially a
network virtual terminal. The other aspects of the
TELNET grotocol, such as sophisticated option
negotiation and standard character sets, have been
addressed to some extent by most other network
desiﬁners- however, to date, we believe that the
ARPANET TELNET groéocol is the most complete,
sophisticated, implemented, and widely used such
protocol in existence.

REFERENCES AND BIBLIOGRAPHY

1. Roberts, L. and B. Wessler, "Computer Network
Development to Achieve Resource Sharing", AFIPS
anference Proceedings, Vol. 36, 1970, pp. 543-

2. Heart, F.E., R.E. Kahn, S.M. Ornstein, W.R.
Crowther, and D.C. Waléen, "The Interface Message
Processor for the ARPA Computer Network," AFIPS
gg?ference Proceedings, Vol. 36, 1970, pp. 551-

3. BBN Report No. 1822, "Specifications for the
Interconnection of a Host and an IMP", revision of
January 1976; available from the National
Technical Information Service under accession
number ADA019160.

4. Crocker, S., J. Heafner, R, Metcalfe, and J.
Postel, "Function-oriented Protocols for the ARPA
Computer Network", AFIPS Conference Proceedings,
Vol. 40, 1972, pp. 271-279.

5. ARPANET Protocol Handbook, April 1976 edition,
Bp, 51-174; 1s document is a compilation by E.
einler and J. Postel (Network Information Center,
Stanford Research Institute) of many documents
written originally by many members of the Network
Working Groug or NWG; also available from the
National Technical Information Service, Accession
Number ADAQ27964.

6. Walden, D., "Host-to-Host Protocols", Network
Systems and Software, Infotech State of the Art
Report 24, Infotech tnFformation Limited,
Maidenhead, England, 1975, pp. 287-316.

7. Cerf, V. and R. Kahn. "A Protocol for Packet
Network Interconnection!, IEEE Transactions on
gg$mgﬁ§cations, Vol. COM-22, No. 5, May 1974, pp.

8. Carr, S., V. Cerf, and S. Crocker, "Host-Host
Protocol in the AﬁPA Computer Network", AFIPS
Conference Proceedings, Vol. 36, 1970, pp. 589-

597.
9. Ornstein, S.M., F.E. Heart, W.R. Crowther, S.B.
Russell, 'H.K. Rising, and A. Michel, M"Th

e
Terminal IMP for thé ARPA Computer ﬁetwork," AFIPS
gonference Proceedings, Vol. 40, 1972, pp. 243-

10. %olottgé T'ﬁiﬁ ;Euncggongl S ecificit%ons f‘orti
ypewriter- e ime- aring lerminals Qomgu ng
Surveys, Vol. 2, No, 1, March 1970, pp. 5-31.

11. Thomas R., "Reconnection Protocol™, RFC 426 (see
the note on RFCs below).

12. Tymes, L.R., "TYMNET - A Terminal Oriented
Communication Network", AFIPS Conference
Proceedings, Vol. 38, i971, pp. 211-216.

13. Heckel,,P.C. and B.W. Lampson, "The BCC Terminal
System", Presented at The Seventh Hawaii
International Conference on System Sciences,
January 8, 1974,

14. Bobrow, D.ﬁ J. Burchfiel, D. Murghy and R.
Strollo, TENEX, A Paged Time-sharing System for
the PDP-10", Communications of the ACM, Vol. 15,
No. 3, pp. 135-143.

15. "IBM System/360 Time Sharing System:
Summary®, Form GY28-2009.

16. Vgssotsky, V.A., F.J. Corbato, and R.M. Graham.,
"Structure of the MULTICS Supervisor", AFIPS
g?gference Proceedings, Vol. 27, 1965, pp. 203-

17. Zimmermann, H., "Proposal for a Virtual Terminal
grotoeol", Reseau Cyclades, IRIA, Rocquencourt,
rance.

System Logic

18. "Interactive Terminal Interface Specification",
Telenet Communications Corporation, 1666 K Street,
N.W., Washington, D.C. 20006, September 1975.

19. Schicker, P., and A. Duenki "Virtual Terminal
Definition and Protocol™, ACM SIGCOMM Computer
chEer 1976,

Communication Review, yol. 6, No. 4,
pp. 1-18.

20. ngver, D.A., and A.M. Rybczynski, "Datapac
Subscriber Interfaces", Proceedings of The Third
International Conference on Comsu er
Communication, 1976, pp. 143-149.

21. Howard, V.J. et al., "An Interactive Terminal
Protocol", EPSS Liaison Group, Study Group 2,
HLP/CP(75)2, AERE Harwell, U.K.

The evolution of the TELNET protocol is thoroughly
documented in a series of working papers known as
Requests for Comment or RFCs. These RFCs are not
publiclz available although throughout the ARPANET
community there are many complete sets, to one of
which, no doubt, the serious researcher can gain
access. The numbers of the relevant RFCs are listed
immediately below.

RFCs on New TELNET Design and Specification: 357,
426, 435, 461, 495, 513, 529, 559-560, 562-
263,281, 587, 595-536, 651-659, 671, 698,

RFCs gn New TELNET Implementation: 559, 593, 669,

78, 688, 701-703, 718.

RFCs on Old TELNET Design and Specification: 15,
93, 109-110, 137, 139, 158, 295, 318, 328,

RFCs ggﬁOld TELNET Implementation: 206, 216, 452,

RFCs on Satellite Considerations: 346, 355.

4-18

