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Paranoia

“They’re out to get us.”

Who’s out to get us?

“The government.

That other government.

Every government.

And these corporations

making money off everything.

It’s a conspiracy, man.”

Hmmm.

What exactly are they doing?
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“They’re monitoring everything

we do on the Internet.

And they’re changing packets

and faking web pages in transit

without our even noticing.

And they have huge armies of

computers analyzing everything.”

Um, okay.

Have you considered encryption?
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“They’re recording everything.

Even if they don’t understand it

today, they’ll keep looking at it

for years until they understand it.

They have huge armies of

mathematicians analyzing it.

And they’re working on

building quantum computers.

Encryption is dead, man.”

Hmmm.

Time to look at some facts.
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Are they really monitoring

everything?

European Parliament: “That a

global system for intercepting

communications exists : : : is no

longer in doubt”; “probably”

this system violates European

Convention on Human Rights.
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Huge armies of computers

analyzing everything?

New NSA data center in Utah:

$2 billion to construct;

65-megawatt power substation.

If technology is standard,

should be �287 bit ops/year.
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Huge armies of mathematicians

trying to cryptanalyze everything?

NSA job advertisement: “We

are the largest employer of

mathematicians in the country.”
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Working on building quantum

computers?

$2.2 million to Raytheon: one

of many publicly announced

quantum-computing grants

from government agencies.



None of this justifies paranoia!
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None of this justifies paranoia!

The U.S. government is a

transparent, trustworthy

government.

U.S. government admits building

the Utah data center, but says it

isn’t targeting Americans.
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U.S. government admitted

espionage operations in Europe,

but said it was fighting bribery.

1994 example from EP report:

Airbus bribed various Saudis

for a $6 billion contract; NSA

intercepted the faxes, exposed

the bribery; MD won the contract.

U.S. government admitted

wiretapping 1960s protesters

such as Martin Luther King, Jr.,

but said that of course it wouldn’t

do that sort of thing any more.
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But what about

other attackers that

aren’t as friendly and pure

as the U.S. government?

EFF: “successful man-in-the-

middle attacks against hundreds

of thousands of Internet users

inside and outside of Iran”.



Fancy attack tools are available

to anyone willing to pay for them.

“Surveillance simplified.

And it fits in your backpack.”



: : : including easy-to-use tools

to modify web pages in transit.

“ : : : man-in-the-middle attack

: : : designed to give the subject

a false sense of confidence

in its authenticity”.



2011.10 Wall Street Journal:

“A U.S. company that

makes Internet-blocking gear

acknowledges that Syria has been

using at least 13 of its devices

to censor Web activity there.”



2011.10 Wall Street Journal:

“A U.S. company that

makes Internet-blocking gear

acknowledges that Syria has been

using at least 13 of its devices

to censor Web activity there.”

2012.02: Trustwave (one of the

SSL CAs trusted by your browser)

admits selling a transparent

HTTPS interception box

to a private company.
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Cryptography for the paranoid

1994 Schneier “Applied

Cryptography”: “There are two

kinds of cryptography in this

world: cryptography that will

stop your kid sister from reading

your files, and cryptography that

will stop major governments

from reading your files.

This book is about the latter.”

2012: We now think that

major governments can break

almost everything in the book!
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Problem #1:

Cryptanalytic breakthroughs.

Some systems are vulnerable

to very fast attacks

that were publicly announced

after the book appeared.

Paranoid approach:

Pay attention to cryptanalysis.

Use systems already subjected

to extensive public cryptanalysis,

minimizing risk of big speedups.

(Much easier now than in 1994.)
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enough power to break many

RSA-1024 keys every year.
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Problem #2:

Attackers doing �280 bit ops.

e.g. Utah data center has

enough power to break many

RSA-1024 keys every year.

Botnets have similar power.

Far beyond public computations.

Paranoid approach: Look at

total computer power of

human race, extrapolate by years.

) Aim for at least 2128.
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Problem #3:

Attackers who have access to

big quantum computers.

Not just a future problem!

Attacker records everything;

eventually (10 years from now?)

builds quantum computer;

applies quantum computer

to the recorded traffic.

Paranoid approach:

Evaluate security assuming that

attacker has quantum computer.
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RSA: Dead.

DSA: Dead.

ECDSA: Dead.

ECC in general: Dead.

HECC in general: Dead.

Buchmann–Williams: Dead.

Class groups in general: Dead.

But we have other types of

cryptographic systems!

Hash-based cryptography.

Example: 1979 Merkle hash-tree

public-key signature system.



Code-based cryptography.

Example: 1978 McEliece

hidden-Goppa-code

public-key encryption system.

Lattice-based cryptography.

Example: 1998 “NTRU.”

Multivariate-quadratic-

equations cryptography.

Example:

1996 Patarin “HFEv�”

public-key signature system.

Secret-key cryptography.

Example: 1998 Daemen–Rijmen

“Rijndael” cipher, aka “AES.”





Bernstein: “Introduction to

post-quantum cryptography.”

Hallgren, Vollmer:

“Quantum computing.”

Buchmann, Dahmen, Szydlo:

“Hash-based digital signature

schemes.”

Overbeck, Sendrier:

“Code-based cryptography.”

Micciancio, Regev:

“Lattice-based cryptography.”

Ding, Yang: “Multivariate

public key cryptography.”



Focus of this talk:

code-based cryptography.

Extensive analysis of McEliece

cryptosystem since 1978.

Cryptanalytic progress has had

only small effect on key size

(and CPU time) for 2128 security.

Confidence-inspiring!



Focus of this talk:

code-based cryptography.

Extensive analysis of McEliece

cryptosystem since 1978.

Cryptanalytic progress has had

only small effect on key size

(and CPU time) for 2128 security.

Confidence-inspiring!

But maybe can do even better.

We’ll see some low-cost

modifications to McEliece

that seem to pose extra

annoyances for cryptanalysts.
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Outside scope of this talk:

Encrypt with RSA-16384

and codes and lattices

in case one idea is broken?

Or use same resources to

encrypt with much larger codes?

Also use physical techniques:

locked-briefcase cryptography,

quantum key distribution, etc.?

Very expensive, hard to secure,

but maybe not totally obsolete.

Security beyond cryptography?

PKI, buffer overflows, : : :



The McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver’s public key: “random”

500� 1024 matrix K over F2.

Specifies linear F1024
2 ! F500

2 .

Messages suitable for encryption:

1024-bit strings of weight 50;

i.e., fm 2 F1024
2 :

#fi : mi = 1g = 50g.

Encryption of m is Km 2 F500
2 .

Use hash of (m;Km)

as secret AES key

to encrypt much more data.



Attacker, by linear algebra,

can easily work backwards

from Km to some v 2 F1024
2

such that Kv = Km.

i.e. Attacker finds some

element v 2m + KerK.

Note that #KerK � 2524.

Attacker wants to decode v:

to find element of KerK

at distance only 50 from v.

Presumably unique, revealing m.

But decoding isn’t easy!



Information-set decoding

Choose random size-500 subset

S � f1; 2; 3; : : : ; 1024g.

For typical K: Good chance

that FS2 ,! F1024
2

K��! F500
2

is invertible.

Hope m 2 FS2 ; chance �2�53.

Apply inverse map to Km,

revealing m if m 2 FS2 .

If m =2 FS2 , try again.

�280 operations overall.

Bad estimate by McEliece: �264.



Long history, many improvements:

1962 Prange; 1981 Omura;

1988 Lee–Brickell; 1988 Leon;

1989 Krouk; 1989 Stern;

1989 Dumer;

1990 Coffey–Goodman;

1990 van Tilburg; 1991 Dumer;

1991 Coffey–Goodman–Farrell;

1993 Chabanne–Courteau;

1993 Chabaud;

1994 van Tilburg;

1994 Canteaut–Chabanne;

1998 Canteaut–Chabaud;

1998 Canteaut–Sendrier.

�270 cycles.



2008 Bernstein–Lange–Peters:

further improvements;

�260 cycles;

carried out successfully!

More recent literature:

2009 Bernstein–Lange–

Peters–van Tilborg;

2009 Bernstein;

2009 Finiasz–Sendrier;

2010 Bernstein–Lange–Peters;

2011 May–Meurer–Thomae;

2011 Becker–Coron–Joux;

2012 Becker–Joux–May–Meurer.



Modern McEliece

Easily rescue system by using

a larger public key: “random”

�(n=2)� n matrix K over F2.

e.g., 1800� 3600.

Larger weight: � n=(2 lgn).

e.g. m 2 F3600
2 of weight 150.

All known attacks scale badly:

roughly 2n=(2 lgn) operations.

For much more precise analysis

see 2009 Bernstein–Lange–

Peters–van Tilborg. Also 2009

Bernstein: 2n=(4 lgn) quantum.



How does the receiver

decode these errors, anyway?

Why weight n=(2 lgn)?

Outline of answer:

Receiver has a secret,

a fast decoding algorithm D.

Receiver generates K as a

random (or systematic) matrix

with KerK = foutputs of Dg.

Let’s look at the details.

Why do we get n=(2 lgn) errors?

Why is it hard for attacker to

work backwards from K to D?



Reed–Solomon codes

Fix a prime power q.

Write �1; �2; : : : ; �q

for the elements of Fq
in a standard order.

Fix an integer t with 0 � t < q.
�

(f(�1); f(�2); : : : ; f(�q)) :

f 2 Fq[x]; deg f < q � t
	

is the (q; t) Reed–Solomon code.

(1960 Reed–Solomon,

described differently)



This is a “[q; q � t; t + 1]q” code:

it is a (q � t)-dimensional

Fq-subspace of Fqq;

it has minimum distance t + 1.

1960 Peterson:

qO(1) arithmetic ops

to correct bt=2c errors.

1968 Berlekamp: O(q2).

Modern view: Reduce

a 2-dimensional lattice basis.

1976 Justesen,

independently 1977 Sarwate:

q(lg q)2+o(1). Modern view:

fast lattice-basis reduction.



Receiver builds secret decoder

by starting from RS decoder,

choosing defenses to add.

Several interesting defenses:

� Scaling.

� Permutation.

� Puncturing.

� Fq-subcodes.

� Subfield.

� Wildness.

� List decoding.

� Increased genus.



Scaling

Scaling a code C � Fnq
by (�1; : : : ; �n) 2 (F�q)n

produces
�

(�1c1; : : : ; �ncn) :

(c1; : : : ; cn) 2 C
	

.

Same length, dimension, distance.

To decode scaled code:

divide, decode C, multiply.

Scaled RS code:
�

(�1f(�1); : : : ; �qf(�q)) :

f 2 Fq[x]; deg f < q � t
	

.



Permutation

Permuting a code C � Fnq
by a permutation � of f1; : : : ; ng
produces

�
(c�(1); : : : ; c�(n)) :

(c1; : : : ; cn) 2 C
	

.

Same length, dimension, distance.

To decode permuted code:

unpermute, decode C, permute.

Permuted scaled RS code:
�

(�1f(�1); : : : ; �qf(�q)) :

f 2 Fq[x]; deg f < q � t
	

where �1; �2; : : : ; �q are

the elements of Fq in any order.



Puncturing

Puncturing a code C � Fnq
at position 1 produces
�

(c2; : : : ; cn) :

(c1; c2; : : : ; cn) 2 C
	

.

Similarly can puncture at

any subset of f1; : : : ; ng.

Generalized RS code = punctured

permuted scaled RS code:�
(�1f(�1); : : : ; �nf(�n)) :

f 2 Fq[x]; deg f < n� t
	

where �1; �2; : : : ; �n are

distinct elements of Fq.



This is an [n;n� t; t + 1]q code

(assuming 0 � t < n � q).

Most RS decoders easily

generalize to GRS decoders.
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This is an [n;n� t; t + 1]q code

(assuming 0 � t < n � q).

Most RS decoders easily

generalize to GRS decoders.

“Look at all these secrets!

Attacker can’t search through

all the possibilities.”

But it turns out that the structure

isn’t hidden well enough.

1992 Sidelnikov–Shestakov broke

scaling+permutation+puncturing

in polynomial time.



How the attack works:

K allows attacker to

generate random codewords.

Attacker is also free to

add more linear constraints.

Attacker generates a random

shortened codeword: a codeword

with 0 in last n�t�1 coordinates.

This codeword has the form

(�1f(�1); : : : ; �nf(�n)) where

�t+2; : : : ; �n are roots of f .



i.e. (�1f(�1); : : : ; �nf(�n))

where f = c(x��t+2) � � � (x��n).

If c = 0, try again.

Swap t + 1 with n: obtain

(�1g(�1); : : : ; �ng(�n)) where

g = d(x� �t+1) � � � (x� �n�1).

Divide �if(�i) by �ig(�i) to

obtain (c=d)(�i��n)=(�i��t+1)

for each i � t.

Guess (or presume) �1; �t+1; �n;

deduce c=d; �2; : : : ; �t;

similary deduce other �i;

deduce (�1 : �2 : : : : : �n).



Fq-subcodes

Take a code C � Fnq .

Add several random linear

constraints to build a

random Fq-linear subcode of C.

Same decoder, same length,

slightly reduced dimension.

Eliminates polynomials such as

(x� �t+2) � � � (x� �n).

2005 Berger–Loidreau proposed

scaling+permutation+subcodes.



Scaling+permutation+puncturing

+subcodes broken by 2006/2009

Wieschebrink for many/almost all

parameter settings.

Basic idea: multiply

(�1f(�1); : : : ; �nf(�n));

(�1g(�1); : : : ; �ng(�n))

to obtain

(�2
1h(�1); : : : ; �2

nh(�n))

with h = fg.

Apply 1992 Sidelnikov–Shestakov

to h; also to f; g if h is too big.



Subfield

Assume q = 2m for simplicity.

The F2-subfield subcode

of C � Fnq is Fn2 \ C.

Same decoder, same length.

Simple dimension bound:

n� dimF2
(Fn2 \ C)

�m(n� dimFq C).

F2-alternant code = F2-subfield

subcode of GRS code:
�

(�1f(�1); : : : ; �nf(�n)) 2 Fn2 :

f 2 Fq[x]; deg f < n� t
	
:



[n;�n�mt;�t + 1]2 code.

(1974 Helgert, independently

1975 Chien–Choy, independently

1975 Delsarte)

Drastic restriction on f .

Clear quantitative barrier to

Sidelnikov–Shestakov etc.:

n=m� t equations f(�i) = 0

) n�mt equations over F2,

typically forcing f = 0.



Wildness

For g 2 Fq[x], all g(�i) 6= 0:

The classical binary Goppa code

Γ2(�1; : : : ; �n; g)

is the F2-alternant code

with �i = g(�i)=h
0(�i)

and t = deg g.

Here h = (x� �1) � � � (x� �n).

(1970 Goppa, 1971 Goppa)

Note that scaling and subfield

are prerequisites for wildness.



If g is a square

and
p
g is squarefree

then Γ2(g) = Γ2(
p
g).

(1975 Sugiyama–Kasahara–

Hirasawa–Namekawa)

[n;�n�m(t=2);�t + 1]2 code

where t = deg g.

(alternate proof that Γ2(
p
g) has

these parameters: 1970 Goppa)

Compared to generic �i,

much better tradeoff between

dimension and error correction.



Generalize: improved dimension

bounds for any powers in g.

(1975 Sugiyama–Kasahara–

Hirasawa–Namekawa)

“BCH codes” g = xt

maximize these dimension bounds.

(introduction of BCH codes

and these bounds: 1959

Hocquenghem, independently

1960 Bose–Ray-Chaudhuri)



Speculative disadvantage of

wildness: somewhat special

choice of �i; maybe attacker

can somehow exploit this.

Hmmm. Is this really paranoid?



Speculative disadvantage of

wildness: somewhat special

choice of �i; maybe attacker

can somehow exploit this.

Hmmm. Is this really paranoid?

Gigantic advantage of wildness:

for same code length

and same code dimension,

use twice as many errors,

drastically slowing down ISD.



1978 McEliece used scaling+

permutation+subfield+wildness.

Didn’t puncture: n = q = 2m.

Chose rate � 1=2:

m(t=2) � n=2, i.e., n �mt.

(Now well known: this rate is

suboptimal; rate 0:8 is better.)

Corrected t=2 errors;

i.e., n=(2 lgn) errors.

2010 Bernstein–Lange–Peters:

generalize beyond F2; obtain

better security for (e.g.) F11.



“Support splitting” algorithm

(2000 Sendrier) finds permutation

if everything else is known.

Can attack McEliece by

applying support splitting

to each possibility for g.

This is much slower than ISD:

too many possibilities for g.

But immediately breaks scaling+

permutation+subfield+wildness

with, e.g., BCH codes g = xt.



New challenge: break

scaling+permutation+puncturing

+subcode+subfield+wildness

for BCH codes.

Slightly better parameters

than original McEliece system.

Puncturing seems to stop

support splitting.

Subcodes also seem to stop

support splitting.

Subfields stop other attacks.



Clearly more paranoid:

scaling+permutation+puncturing

+subcode+subfield+wildness

with random Goppa codes.

Support splitting

now has three obstacles:

guessing the puncturing;

guessing the subcode;

guessing g.

No disadvantages compared to

original McEliece system.



List decoding

1997 Sudan: in poly time

decode many RS codes

beyond bt=2c errors.

1998 Guruswami–Sudan:

up to big-field Johnson bound.

2000 Koetter–Vardy:

up to F2 Johnson bound,

when errors are in F2.

Can go beyond this bound:

see, e.g., 2011 Bernstein.



Speed of list decoding

is an active research area.

Clearly practical to correct

at least a few extra errors.

This makes ISD much slower.

No change in code.

No disadvantages other than

decoding time.

List decoding can produce

multiple codewords, but

“CCA2 conversion” automatically

selects the right codeword.



Increased genus (AG codes)

1980 Goppa generalized RS codes

to AG codes: similar parameters

but pushing length beyond q.

Extensive subsequent work

on AG decoding algorithms.
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Increased genus (AG codes)

1980 Goppa generalized RS codes

to AG codes: similar parameters

but pushing length beyond q.

Extensive subsequent work

on AG decoding algorithms.

1996 Janwa–Moreno proposed

replacing RS codes in McEliece

with AG codes of higher genus.

Several followup attacks;

very bad reputation.



This reputation is undeserved.

The successful attacks are

on AG without subfields.

We use RS with subfields;

also use AG with subfields!

Moving to higher genus

is clearly a helpful step:

adds to difficulty of ISD

and of many other attacks.

Best option seems to be scaling

+permutation+puncturing+subcode

+subfield+wildness+list decoding

+increased genus.


