How to Write Seemingly Unhygienic and Referentially
Opaque Macros with Syntax-rules*

Oleg Kiselyov (oleg@okmij.org)T

Abstract. This paper details how folklore notions of hygiene and referential trans-
parency of R5RS macros are defeated by a systematic attack. We demonstrate
syntax-rules that seem to capture user identifiers and allow their own identifiers
to be captured by the closest lexical bindings. In other words, we have written
R5RS macros that accomplish what commonly believed to be impossible. We build
on the fundamental technique by Petrofsky of extracting variables from arguments
of a macro. The present paper generalizes Petrofsky’s idea to attack referential
transparency.

This paper also shows how to shadow the lambda form. The shadowed lambda
acts as if it was infected by a virus, which propagates through the lambda’s body
infecting other lambdas in turn. The virus re-defines the macro being camouflaged
after each binding. This redefinition is the key insight in achieving the overall ref-
erential opaqueness. Although we eventually subvert all binding forms, we preserve
the semantics of Scheme as given in R5RS.

The novel result of this paper is a demonstration that although R5RS macros are
deliberately restricted in expressiveness, they still wield surprising power. We have
exposed faults and the lack of precision in commonly held informal assertions about
syntax-rule macros, and pointed out the need for proper formalization. For a practi-
cal programmer this paper offers an encouragement: more and more powerful R5RS
macros turn out to be possible.

1. Introduction

One of the most attractive and unsurpassed features of Lisp and Scheme
is the ability to greatly extend the syntax of the core language and to
support domain-specific notations [16]. These syntactic extensions are
commonly called macros. A special part of a Lisp/Scheme system, a
macro-expander, systematically reduces the extended language to the
core one.

A naive macro system that merely finds syntactic extensions and
replaces them with their expansions can corrupt variable bindings and
break the block structure of the program. For instance, free identifiers in
user code may be inadvertently captured by macro-generated bindings,
which leads to insidious bugs. This danger is very well documented, for

* This is an extended version of a paper presented at the Third Workshop on
Scheme and Functional Programming, sponsored by ACM SIGPLAN. October 3,
2002, Pittsburgh, Pennsylvania, USA.

T Current Affiliation:

© 2013 Kluwer Academic Publishers. Printed in the Netherlands.

Dirty-Macros.tex; 2/04/2013; 18:11; p.1

2

example in [9], [1]. The Lisp community has developed techniques [1]
that help make macros safer, but they rely on efforts and care of an
individual macro programmer. The safety is not built into the system.
Furthermore, the techniques complicate the macro code and make it
more bug-prone.

The Scheme community has recognized the danger of the naive
macro expansion to the block structure of Scheme code. The community
endeavored to develop a macro system that is safe and that respects
the lexical scope by default. In limited circumstances, exceptions to
the block-structure-preserving policy of macros are useful and can
be allowed. These exceptions however should be statically visible. A
number of experimental macro systems with the above properties have
been built ([9], [10], [1], [3], [5], [15]). The least powerful and the most
restrictive set of common features of these macro systems has been
standardized in R5RS [8]. An earlier version of that system has been
mentioned in the previous Scheme report, R4RS, and expounded in
[4]. The R5RS macro system permits no exceptions to the safety policy
(so-called, hygiene, see below). Furthermore, R5RS macros are speci-
fied in a restricted pattern language, which gives the macros another
name: syntax-rules. The pattern language is different from the core
language and therefore removes the need for the full Scheme evaluator
at macro-expand time. Therefore, R5RS macros are severely limited
in their ability. The strict safety policy with no exceptions has lead
to claims ”Scheme’s hygienic macro system is a general mechanism
for defining syntactic transformations that reliably obey the rules of
lexical scope” [4]. However, there has been little work in formalizing this
assertion. Only [9] took upon the task of proving that the systematical
renaming of introduced identifiers indeed guarantees the hygiene con-
dition, in the macro system of [9]. The latter is not an implementation
of R5RS macros.

Surprising discoveries of R5RS macros’ latent power question com-
monly held beliefs about syntax-rule macros. For example, the paper
[4] claims ”The primary limitation of the hygienic macro system is
that it is thoroughly hygienic, and thus cannot express macros that
bind identifiers implicitly.... The loop-until-exit macro that is used as
an example of the low-level macro system in the Revised 4 Report
is also a non-hygienic macro.” In 2001, however, Al Petrofsky did
express the loop-until-exit macro in the R5RS system [12] (see also
[13] for more discussion). Al Petrofsky’s article introduced a general
technique, Petrofsky extraction, of writing macros that can extract a
specific binding from their arguments. Al Petrofsky has also shown how
to make such macros nest. The present paper generalizes Petrofsky’s
ideas to writing of seemingly referentially opaque R5RS macros.

Dirty-Macros.tex; 2/04/2013; 18:11; p.2

3

A syntactic extension by its nature introduces a new language,
which may differ in some aspects from the core language. Can we
write a syntax-rule-based extension that looks like R5RS Scheme but
allows seemingly referentially opaque and non-hygienic macros? Can
such an extended language still be called R5RS Scheme? At first sight,
the answer to both questions is negative. Although R5RS macros are
Turing complete [7], they were regarded as ”thoroughly hygienic” [4].
Furthermore, the fact that R5RS macros are written in a restricted
pattern language rather than in Scheme makes them clearly incapable
of certain computations (e.g., concatenating strings or symbols). It is
impossible to write an R5RS ‘conc’ such that ‘(conc x y)’ expands
into the identifier ‘xy’. It is not possible for an R5RS macro to tell
if two identifiers have the same spelling. Ostensibly these restrictions
were put in place to guarantee and enforce the rules of lexical scope for
macros and their expansions (this sentiment was discussed in [1]). In
this paper we demonstrate that the power of R5RS macros has been
underestimated: We can indeed implement a syntax-rule extension of
Scheme that permits seemingly referentially opaque and unhygienic
macros [13]. Furthermore, this extended language literally complies
with R5RS.

The next section briefly describes the notions of hygiene and ref-
erential transparency of macro expansions. Section 3 recalls Petrofsky
extraction and its application to writing weakly non-hygienic macros.
Section 4 introduces the key idea that re-defining a macro after each
binding leads to the overall referential opaqueness. Carrying out such
re-definitions requires shadowing of all Scheme binding forms, in par-
ticular, the lambda itself. Section 5 accomplishes this shadowing with
the help of Petrofsky extraction. We demonstrate an R5RS macro that
looks exactly like a careless, referentially opaque Lisp-style macro. The
end result is a library syntax let-leaky-syntax that lets a program-
mer define a syntax-rule macro and designate a free identifier from that
macro for capture by local bindings. The final section discusses what
it all means: for macro writers, for macro users, and for programming
language researchers.

2. Hygiene and Referential Transparency of Macro
Expansions

This section introduces the terminology and the working examples that
are used throughout the paper. We will closely follow [9] in our ter-
minology. A syntactic extension, or a macro (invocation), is a phrase
in an extended language distinguished by its leading token, or key-

Dirty-Macros.tex; 2/04/2013; 18:11; p.3

4

word. During the macro-expansion process the extended language is
eventually reduced to the core Scheme, in one or several steps. One
step in this transformation of a syntactic extension is called a (macro-)
expansion step or a transcription step. A syntactic transform function
(a.k.a. a macro (transformer)) is a function defined by the macro writer
that expands the class of syntactic extensions introduced by the same
keyword. A transcription step, which is an application of a transformer
to a syntactic extension, yields a phrase in the core language or another
syntactic extension. The latter will be expanded in turn. The result of
an expansion step may contain identifiers that were not present in the
original syntactic extension; we will call them generated identifiers.

A macro system is called hygienic, in the general sense, if it avoids
inadvertent captures of free variables through systematic renaming [4].
The free variables in question can be either generated variables, or
variables present in macro invocations (i.e., user variables). A narrowly
defined hygiene is avoiding the capture of user variables by gener-
ated bindings. The precise definition, a hygiene condition for macro
expansions, is given in [9]: ” Generated identifiers that become binding
instances in the completely expanded program must only bind variables
that are generated at the same transcription step.” If a macro system
on the other hand specifically avoids capturing of generated identifiers,
the latter always refer to the bindings that existed when the macro
transformer was defined rather to the bindings that may exist at the
point of macro invocations. This property is often called referential
transparency.

The rest of the present section expounds sample R5RS macros
chosen to illustrate the hygiene condition for macro expansions and
referential transparency. We will be using the examples in the rest of
the paper.

The hygiene condition for macro expansions demands that bindings
introduced by macros should not capture free identifiers in macro ar-
guments. Let us define a sample macro mbi such that (mbi body) will
expand into (let ((i 10)) body). In the pattern language of R5RS
macros, the definition reads:

(define-syntax mbi
(syntax-rules ()
((mbi body) (let ((i 10)) body))))

A naive, non-hygienic expansion of (mbi (* 1 i)) would have pro-
duced (let ((i 10)) (x 1 i)). The generated binding of i would
have captured the free variable i occurring in the macro invocation.
A hygienic expansion prevents such capture through a systematic
renaming of identifiers. Therefore,

Dirty-Macros.tex; 2/04/2013; 18:11; p.4

(let ((1 1)) (mbi (x 1 i)))
actually expands to

(let ((i~2 1))
(let ((i~5 10)) (x 1 i~2))

and gives the result 1. The identifier 1~2 is different from i~5: we will
call them identifiers of different colors.

The referential transparency facet demands that generated free
identifiers should not be captured by local bindings that surround
the expansion. To be more precise, if a macro expansion generates
a free identifier, the identifier refers to the binding occurrence in
the environment of the macro’s definition. For example, given the
definitions

(define foo 1)
(define-syntax mfoo
(syntax-rules ()

((mfoo) fo00)))

The form (let ((foo 2)) (mfoo)) expands into
(let ((foo™1 2)) foo)

and yields 1 when evaluated. The local let binds foo of a different
color, and therefore, does not capture foo generated by the macro
mfoo.

3. Petrofsky Extraction

In 2001 Al Petrofsky posted an article [12] that demonstrated the cir-
cumvention of a weak form of hygiene. The present paper generalizes
Petrofsky’s idea to attack referential transparency. For completeness
and reference this section systematically derives the Petrofsky tech-
nique. We aim to write a macro mbi so that (mbi 10 body) expands
into (let ((i 10)) body) and the binding of i captures free occur-
rences of i in the body. We assume that there are no other bindings of
i in the scope of (mbi 10 body), or i was defined in the global scope
prior to the macro mbi and was not re-defined since. This assumption
is the distinction between the weak hygiene and the true one.

Developing even weakly non-hygienic macros is challenging. We
cannot just write

Dirty-Macros.tex; 2/04/2013; 18:11; p.5

(define-syntax mbi
(syntax-rules ()
((_ val body) (let ((i val)) body))))

because (mbi 10 (* 1 i)) will expand into
(let ((i75 10)) (x 1 1))

where i in (¥ 1 i) refers to the top-level binding of i or remains
undefined. However, we can explicitly pass a macro the identifier to
capture:

(define-syntax mbi-i
(syntax-rules ()
((_ i val body) (let ((i val)) body))))

In that case,

(mbi-i i 10 (* 1 1))
expands into

(let ((i 10)) (x 1 i))

and the capture occurs. Hence to circumvent the hygiene in the weak
sense, we only need to find a way to convert an invocation of mbi into
an invocation of mbi-i. The macro mbi-i requires the explicit specifi-
cation of the identifier to capture — which we can get by extracting the
identifier i, together with its color, from the argument of mbi. That is
the essence and the elegance of the Petrofsky’s idea. Once we have the
rightly colored occurrence of i, we can use it in the binding form and
effect the capture.

The extraction of colored identifiers from a form is done by a macro
extract?, Fig. 13. This macro is the workhorse of the hygiene circum-
vention strategy. The macro is written in a continuation-passing style:
it takes two continuations and expands into one of them. The success
continuation will receive the extracted identifier; the failure continua-
tion will be given the identifier that we sought but could not find in
the form. As we can see below, both continuations may be the same.
If this is the case, we will use a convenient shorthand macro extract.
We also need a macro that extracts several identifiers, extractx (Fig.
23).

Now we can define:

(define-syntax mbi-dirty-vi1
(syntax-rules ()

Dirty-Macros.tex; 2/04/2013; 18:11; p.6

; extract? SYMB BODY CONT-T CONT-F

; BODY is a form that may contain an occurrence of an identifier that

; refers to the same binding occurrence as SYMB, perhaps with a different
; color. CONT-T and CONT-F are forms of the shape (K-HEAD K-IDL . K-ARGS)
; where K-IDL and K-ARGS are lists.

; If the macro extract? finds the identifier in question, it expands into
; CONT-T, to be more precise, into

; (K-HEAD (extr-id . K-IDL) . K-ARGS)

; where extr-id is the extracted colored identifier. If the identifier

; SYMB does not occur in BODY at all, the extract? macro expands

; into CONT-F, to be more precise, into

; (K-HEAD (SYMB . K-IDL) . K-ARGS)

(define-syntax extract?
(syntax-rules ()
((_ symb body _cont-t _cont-f)
(letrec-syntax
((tr
(syntax-rules (symb)
; Found our ’symb’ -- exit to the continuation cont-t
((_ x symb tail (cont-head symb-1 . cont-args) cont-false)
(cont-head (x . symb-1) . cont-args))
((_d (x . y) tail . rest) ; if body is a composite form,
(tr x x (y . tail) . rest)) ; look inside
((_ d1 a2 OO cont-t (cont-head symb-1 . cont-args))
; ’symb’ had not occurred -- exit to cont-f

(cont-head (symb . symb-1) . cont-args))
((_d1d2 (x . y) . rest)
(tr x x y . rest)))))

(tr body body () _cont-t _cont-£f)))))

; extract SYMB BODY CONT
; This macro is similar to extract?, but does not report the
; failure of the extraction.

(define-syntax extract
(syntax-rules ()
((_ symb body cont)
(extract? symb body cont cont))))

Figure 1. Macros extract? and extract that extract a colored identifier from a
form. The latter macro does not report the extraction failure.

Dirty-Macros.tex; 2/04/2013; 18:11; p.7

; extract* SYMB-L BODY CONT
where SYMB-L is the list of identifiers to extract, and BODY and CONT
has the same meaning as in extract, see above.

The macro extract* expands into

(K-HEAD (extr-id-1 . K-IDL) . K-ARGS)
where extr-id-1 is the list of extracted colored identifiers.
The extraction itself is performed by the macro extract.

(define-syntax extractx
(syntax-rules ()
((_ (symb) body cont) ; only one id: use extract to do the job
(extract symb body cont))
((_ _symbs _body _cont)
(letrec-syntax
((ex—aux ; extract id-by-id
(syntax-rules ()

((_ found-symbs () body cont)

(reverse () found-symbs cont))

((_ found-symbs (symb . symb-others) body cont)

(extract symb body
(ex-aux found-symbs symb-others body cont)))

))
(reverse ; reverse the list of extracted ids
(syntax-rules () ; to match the order of SYMB-L

((_ res () (cont-head () . cont-args))
(cont-head res . cont-args))
((_ res (x . tail) cont)
(reverse (x . res) tail cont)))))
(ex-aux () _symbs _body _cont)))))

Figure 2. Macro extract*: Extract several colored identifiers from a form

((_ _val _body)
(let-syntax
((cont
(syntax-rules ()
((_ (symb) val body)
(let ((symb val)) body)))))
(extract i _body (cont () _val _body))))))

so that
(mbi-dirty-vi 10 (x 1 i))

Dirty-Macros.tex; 2/04/2013; 18:11; p.8

expands into
(et ((i711 10)) (x 1 i711))

and evaluates to 10, as expected.
The macro mbi-dirty-v1 seems to do the job, but it has a flaw. It
does not nest:

(mbi-dirty-vi 10
(mbi-dirty-vi 20 (* 1 i)))

expands into

(let ((i~16 10))
(let ((i~17725728 20)) (* 1 i~16)))

and evaluates to 10 rather than to 20 as we might have hoped. The outer
invocation of mbi-dirty-v1 creates a binding for i — which violates the
weak hygiene assumption. Petrofsky [12] has shown how to overcome
this problem as well: we need to re-define mbi-dirty-v1 in the scope
of the new binding to i. Hence we need a macro that re-defines itself in
its own expansion. We however face a problem: If the outer invocation
of mbi-dirty-v1 re-defines itself, this redefinition has to capture the
inner invocation of mbi-dirty-v1. We already know how to do that, by
extracting the colored identifier mbi-dirty-v1 from the outer macro’s
body. We need thus to extract two identifiers: i and mbi-dirty-vi.
We arrive at the following code:

; A macro that re-defines itself in its expansion:

; (mbi-dirty-v2 val body)

; expands into

; (let ((i val)) body)

; and also re-defines itself in the scope of body.

; myself-symb, i-symb are colored identifiers extracted
; from the ’body’

(define-syntax mbi-dirty-v2
(syntax-rules ()
((_ _val _body)
(letrec-syntax
((doit ; continuation from extractx*
(syntax-rules ()
((_ (myself-symb i-symb) val body)
(let ((i-symb val)) ; first bind ’i’
(letrec-syntax ; re—define oneself

Dirty-Macros.tex; 2/04/2013; 18:11; p.9

10

((myself-symb
(syntax-rules ()
((_ val__ body__)

(extract*
(myself-symb i-symb)
body__
(doit () val__ body__))))))
body))))))

(extract* (mbi-dirty-v2 i) _body
(doit () _val _body))))))

Therefore

(mbi-dirty-v2 10
(mbi-dirty-v2 20 (* 1 i)))

now expands to
(let ((i726 10)) (let ((i752 20)) (* 1 i752)))

and evaluates to 20.
The macro mbi-dirty-v2 is still only weakly unhygienic. If we
evaluate

(let ((1 1))
(mbi-dirty-v2 10 (* 1 i)))

we obtain
(let ((4 1)) (let ((i73722729 10)) (*x 1 1i)))

which yields 1 rather than 10.

The Petrofsky extraction technique is novel and original. However,
Christian Queinnec [14] has pointed out a curious analogy from the
old days of Lisp. In those times, there was a problem of representing
closures in Lisp. To make a closure, a programmer had to build a record
with an S-expression for the body of the closure and with bindings for
free variables in that body. Briot et al. [2] noted that the building
of such a record can be automated: the list of free variables can be
extracted from the body of the closure mechanically.

4. Towards the Referential Opaqueness: a mylet Form

In this section, we attack referential transparency by writing a macro
that seemingly allows free identifiers in its expansion to be captured
by the closest lexical binding. To be more precise, we want to write a
macro mfoo that expands in an identifier foo in such a way so that the
form

Dirty-Macros.tex; 2/04/2013; 18:11; p.10

11
(let ((foo 2)) (let ((foo 3)) (list foo (mfoo0))))

would evaluate to the list (3 3). The key insight is a shift of focus from
the macro mfoo to the binding form let. The macro mfoo is trivial:

(define-syntax mfoo
(syntax-rules ()
((mfoo) fo0)))

We will concentrate on re-defining the binding form to permit a refer-
entially opaque capture. To make such redefinition easier, we introduce
in this section a custom binding form mylet. The next section shall
show how to make the regular let act as mylet.

The goal of this section is therefore developing a binding form mylet
so that

(mylet ((foo 2)) (mylet ((foo 3)) (list foo (mfoo0))))

would evaluate to the list (3 3). To make this possible, the expression
should expand as follows:

(let ((foo 2))
(define-syntax-mfoo-to-expand-into-foo)
(re-define-mylet-to-account-for-

redefined- foo-and-mfoo)

(let ((foo 3))
(define-syntax-mfoo-to-expand-into-foo)
(re-define-mylet-to-account-for-

redefined-foo-and-mfoo)
(list foo (mfoo))
))

Different bindings of a variable are typeset in different fonts. The
expansion of the form mylet therefore binds foo and then re-defines
the macro mfoo within the scope of the new binding. This mfoo will
generate the identifier foo that refers to that local binding. The redef-
inition of mfoo after a binding is the key insight. It makes it possible
for the expansion of the targeted macro to contain identifiers whose
bindings are not inserted by the same macro. The process of defining
and redefining macros during the expansion of mylet looks similar
to the process described in the previous Section. Therefore, we take
the macro mbi-dirty-v2 as a prototype for the design of mylet. A
generator (which helps us define and re-define the macro mfoo) and
the macro mylet are given on Fig. 34.

With these definitions,

Dirty-Macros.tex; 2/04/2013; 18:11; p.11

12

; Macro: make-mfoo NAME SYMB BODY
; In the scope of BODY, define a macro NAME that expands into an
; identifier SYMB

(define-syntax make-mfoo
(syntax-rules ()
((_ name symb body)
(let-syntax
((name
(syntax-rules ()
((L) symb))))
body))))

; (mylet ((var init)) body)

; expands into

; (let ((var init)) body’)

; where body’ is body wrapped in the re-definitions of mylet and
; of the macro mfoo.

(define-syntax mylet
(syntax-rules ()
((_ ((_var _init)) _body)
(letrec-syntax
((doit ; The continuation from extracts*
(syntax-rules () ; mylet-symb, etc. are extracted from body
((_ (mylet-symb mfoo-symb foo-symb) ((var init)) body)
(let ((var init)) ; bind the ’var’ first
(make-mfoo mfoo-symb foo-symb ; now re-generate the macro mfoo
(letrec-syntax
((mylet-symb ; and re-define myself
(syntax-rules ()
((_ ((var_ init_)) body_)
(extract* (mylet-symb mfoo-symb foo-symb) (var_ body_)
(doit () ((var_ init_)) body_))))))
body)))
))))
(extract* (mylet mfoo foo) (_var _body)
(doit () ((_var _init)) _body))))))

Figure 3. Macros make-mfoo and mylet

Dirty-Macros.tex; 2/04/2013; 18:11; p.12

13
(mylet ((foo 2)) (mylet ((foo 3)) (list foo (mfoo0))))
expands to

((lambda (foo~47)
((lambda (fo00792) (list f00792 f00792)) 3)) 2)

and evaluates to (3 3). The result demonstrates that (mfoo) indeed
expanded to foo that was captured by the local binding. The macro
mfoo seems to have inserted an opaque reference to the binding of foo.
Because mylet constantly re-generates itself, it nests. The following
test demonstrates the nesting and the capturing by the expansion of
(mfoo) of the closest lexical binding:

(mylet ((foo 3))
(mylet ((thunk (lambda () (mfoo0))))
(mylet ((foo 4)) (1list foo (mfoo) (thunk)))))

This expression evaluates to (4 4 3). The expansion of (mfoo) within
the closure thunk refers to the variable foo that was lexically visible
at that time.

5. Achieving the Referential Opaqueness: Redefining All
Binding Forms

The previous section showed that we can indeed write a seemingly
referentially opaque R5RS macro, if we resort to custom binding forms.
R5RS does not prohibit us however from re-defining the standard bind-
ing forms let, let*, letrec, and lambda to suit our nefarious needs.
We need to shadow just one form: the fundamental binding form lambda
itself.

This shadowing is done by a macro defile, which defiles its body
(Appendix B). It is worth noting a few fragments from the macro’s long
code. The first one

(letrec-syntax

(lambda-native ; capture the native lambda
(syntax-rules ()
((_ . args) (lambda . args))))

does what it looks like: it captures the native lambda, which is needed
to effect bindings. Another fragment is:

Dirty-Macros.tex; 2/04/2013; 18:11; p.13

14

(letrec-syntax

(let-symb ; RBRS definition of let
(syntax-rules ()
((_ . args)
(glet (let-symb let*-symb letrec-symb
lambda-symb) . args))))

A top-level macro glet (Appendix A) is a let with an extra first
argument. This argument is the ”environment”, the list of custom-
bound let and lambda identifiers for use in the macro expansion.
The definition of glet is taken from R5RS verbatim, with the pattern
modified to account for the extra first argument.

(define-syntax glet
(syntax-rules ()
((_ (let let* letrec lambda) ; the extra arg
((name val) ...) bodyl body2 ...)
((lambda (name ...) bodyl body2 ...) val ...))
((_ (let let* letrec lambda)
tag ((name val) ...) bodyl body2 ...)
((letrec
((tag (lambda (name ...) bodyl body2 ...)))
tag) val ...))))

The macro glet therefore relates the let form and lambda precisely
as RBRS does; glet however substitutes our custom-bound lambda.
Finally, the shadowed lambda is defined as follows:

(letrec

(lambda-symb ; re—defined, infected lambda
(syntax-rules ()
((_ _vars _body)
(letrec-syntax
((doit (syntax-rules ()

((_ (mylet-symb mylet*-symb
myletrec-symb mylambda-symb
mymfoo-symb myfoo-symb)
vars body)

(lambda-native vars
(make-mfoo mymfoo-symb myfoo-symb
(do-defile ; proliferate
(mylet-symb mylet*-symb

Dirty-Macros.tex; 2/04/2013; 18:11; p.14

15

myletrec-symb mylambda-symb
mymfoo-symb myfoo-symb)
body)))))))
(extract* (let-symb let*-symb letrec-symb
lambda-symb mfoo-symb foo-symb)
(_vars _body)
(doit () _vars _body))))))

We are relying on the previously captured lambda-native to create
bindings. After that we immediately redefine all our macros in the
updated environment. The corrupted lambda acts as if it were infected
by a virus: every mentioning of lambda ”transcribes” the virus and
causes it to spread to other binders within the body. To avoid clutter,
the above fragment omitted the detection of a possible shadowing of the
identifier mfoo by a local binding. The full code in Appendix B checks
the list of identifiers to be bound by a lambda form for the occurrence
of mfoo. We stop our re-definition process in the scope of a shadowed
instance of mfoo.

The following are a few excerpts from defile macro regression tests.
An expression

(defile
(let ((foo 2)) (list (mfoo) fo0o0)))

expands into
((lambda (fo0~186) (list foo~186 foo~186)) 2)

and predictably evaluates to (2 2). The expansion of (mfoo) has in-
deed captured a locally-bound identifier. All the infected lambdas are
gone: the expansion result is the regular Scheme code. Furthermore,

(defile
(let ((foo 2))
(let ((foo 3) (bar (list (mfoo) foo)))
(1ist foo (mfoo) bar))))

evaluates to (3 3 (2 2)) and

(defile
(let ((foo 2))

(1list

((letrec
((bar (lambda () (list foo (mfoo0))))
(foo 3))

bar))
foo (mfoo))))

Dirty-Macros.tex; 2/04/2013; 18:11; p.15

16

to ((83 3) 2 2). The defiled let and letrec indeed act precisely as
the standard ones. Finally,

(defile
(let* ((foo 2)
(i 3)
(foo 4)

; will capture the binding of foo to 4
(ft (lambda () (mfoo)))
(foo 5)
; will capture the arg of ftil
(ft1 (lambda (foo) (mfoo)))
(foo 6))
(list foo (mfoo) (ft) (ft1 7) ’(mfoo))))

evaluates to the expected (6 6 4 7 (mfoo)). In all these examples,
the expansion of (mfoo) captures the closest (local) lexical binding of
the variable foo. We ran all the examples on Bigloo 2.4b interpreter
and compiler and on Scheme48.

We must point out that the defiled examples behave as if (mfoo),
unless quoted, were just the identifier foo. In other words, as if mfoo
were defined as a non-hygienic, referentially opaque macro

(define-macro (mfoo) foo)

To be able to capture a generated identifier by a local binding, we
need to know the name of that identifier and the name of a macro that
generates it. We also need to effectively wrap the defile macro around
victim’s code. We can do that explicitly as in the examples above. We
can also accomplish the wrapping implicitly, e.g., by re-defining the top-
level 1et or other suitable form so as to insert the invocation of defile
at the right spot. It goes without saying that we assume no bindings to
the identifiers foo, mfoo, let, letrec, let*, and lambda between the
point the macro defile is defined and the point it is invoked.

It is possible to remove the dependence of the macro defile on ad
hoc identifiers such as foo and mfoo. We can pass the targeted macro
and the identifier to be captured by the closest lexical binding as argu-
ments to defile. We arrive at a form let-leaky-syntax (Appendix
C), which is illustrated by the following two examples. An expression

(let-leaky-syntax
bar
((mbar
(syntax-rules () ((_ val) (+ bar val)))))
(let ((bar 1)) (let ((bar 2)) (mbar 2))))

Dirty-Macros.tex; 2/04/2013; 18:11; p.16

17

evaluates to 4, whereas

(let-leaky-syntax
quux
((mquux
(syntax-rules ()
((_ val) (+ quux quux val)))))
(let* ((bar 1)
(quux 0)
(quux 2)
(lquux (lambda (x) (mquux x)))
(quux 3)
(lcquux (lambda (quux) (mquux quux))))
(list (+ quux quux) (mquux 0) (lquux 2)
(lcquux 5))))

evaluates to the list (6 6 6 15). The form let-leaky-syntax is sim-
ilar to let-syntax. The former takes an additional first argument,
a free identifier from a template of the syntax-rules. This designated
identifier will be captured by the closest lexical binding within the body
of let-leaky-syntax. The examples show that the variable is captured
indeed. In particular, the macro mquux in the last example expands to
an expression that adds the value of an identifier quux twice to the
value of mquux’s argument. Because the identifier quux was designated
for capture by the closest local binding, a procedure (lambda (quux)
(mquux quux)) effectively triples its argument.

We have thus demonstrated the syntax form let-leaky-syntax
that defines a macro with a specific variable excepted from the hy-
gienic rules. The form let-leaky-syntax is a library syntax, developed
exclusively with R5RS (hygienic) macros.

6. Discussion

In this section we will discuss the implications of the defile macro. First
however we have to assure the reader that defile is legal: it does not
rely on unspecified behavior and fully complies with R5RS. Indeed,
the macro defile is written entirely in the pattern language of R5RS.
Re-binding of syntax keywords lambda, let, let*, and letrec is not
prohibited by R5RS. On the contrary, R5RS specifically states that
there are no reserved keywords, and syntactic bindings may shadow
variable bindings and other syntactic bindings. Furthermore, the re-
defined let, let*, and letrec forms relate to the lambda form precisely

Dirty-Macros.tex; 2/04/2013; 18:11; p.17

18

as the R5RS forms do. The re-defined 1ambda form is also in compliance
with the corresponding R5RS specification ([8], Section 4.1.4).

One can argue that our re-defined lambda leads to a violation of the
constraint that R5RS places on the macro system: ”If a macro trans-
former inserts a free reference to an identifier, the reference refers to the
binding that was visible where the transformer was specified, regardless
of any local bindings that may surround the use of the macro.” This
paragraph however applies exactly as it is to the defiled macros. In the
code,

(define foo 1)
(defile
(let ((foo 2)) (1list (mfoo) foo0)))

the identifier foo inserted by the expansion of the macro mfoo indeed
refers to the binding of foo that was visible when the macro mfoo was
defined. The twist is that the definition of the macro mfoo happened
right after the local binding of foo. Despite mfoo being an R5RS,
referentially transparent macro, the overall result is equivalent to the
expansion of a referentially opaque macro.

The macro defile indeed has to surround the victim’s code. One can
therefore object if we merely create our own ’little language’ that resem-
bles Scheme but does not guarantee referential transparency of macro
expansions. However, such a little language was presumed impossible
with syntax rules [3][4]! Any macro by definition extends the language.
The extended language is still expected to obey certain constraints.
The impetus for hygienic macros was specifically to create a macro
system with guaranteed hygienic constraints. Although syntax-rules
are Turing complete, certain computations, for example, determining if
two identifiers are spelled the same, are outside of their scope. It was a
common belief therefore that syntax-rules are thoroughly hygienic [4].

To be more precise, the argument that syntax-rules cannot in prin-
ciple implement macros such as let-leaky-syntax was informally
advanced in [3]. That paper described a macro-expansion algorithm
that is used in several R5RS Scheme systems, including Bigloo. Inciden-
tally, the algorithm accounts for the possibility that the binding forms
lambda and let-syntax may be redefined by the user. The paper [3]
informally argues that the algorithm satisfies two hygiene conditions:
(1) "It is impossible to write a high-level macro that inserts a binding
that can capture references other than those inserted by the macro,”
and (2) ”It is impossible to write a high-level macro that inserts a
reference that can be captured by bindings other than those inserted
by the macro.” Unfortunately, the paper does not state the conditions
with sufficient precision, which precludes a formal proof. The notion

Dirty-Macros.tex; 2/04/2013; 18:11; p.18

19

of ’inserting a binding’ is particularly vague. The common folklore
interpretation of the conditions is that only generated bindings can
capture only the identifiers that are generated at the same transcription
step. However several examples in Section 4 demonstrated the capture
of generated identifiers across transcription steps.

It is interesting to ask if it is possible to create a macro system
that is provable hygienic, which provably does not permit tricks such
as the one in this paper. The paper [9] showed that if we do not allow
macros to expand into the definitions of other macros, we can design a
macro system that is provably hygienic. A MacroML paper [6] claimed
that being generative seems to be a necessary condition for a macro
extension to maintain strong invariants (static typing, in the context
of MacroML). A generative macro can build forms from its arguments
but cannot deconstruct or inspect its arguments.

We conclude that the subject of macro hygiene is not at all decided,
and more research is needed to precisely state what hygiene formally
means and which precisely assurances it provides.

For a practical programmer, we offer the 1let-leaky-syntax library
form. The form lets the programmer write a new class of powerful
syntactic extensions with the standard R5HRS syntax-rules, without
resorting to lower-level macro facilities. In general, the practical macro
programmer will hopefully view the conclusions of this paper as an
encouragement. We should realize the informal and narrow nature of
many assertions about R5RS macros. We should not read into R5RS
more than it actually says. Thus we can write more and more expressive
macros than we were previously led to believe.

Acknowledgements

I am greatly indebted to Al Petrofsky for numerous discussions, which
helped improve both the content and the presentation of the paper.
Special thanks are due to Alan Bawden for extensive comments and
the invaluable advice. I would like to thank Olin Shivers and the
anonymous reviewers for many helpful comments and suggestions. This
work has been supported in part by the National Research Council
Research Associateship Program, Naval Postgraduate School, and the
Army Research Office under contracts 38690-MA and 40473-MA-SP.

Dirty-Macros.tex; 2/04/2013; 18:11; p.19

20

10.

11.

12.

13.

14.

15.

16.

References

Bawden, A., Rees, J. Syntactic closures. In Proc. 1988 ACM Symposium on
Lisp and Functional Programming, (1998) 86-95.

Briot, J.-P., Cointe, P., Saint-James, E. Réécriture et récursion dans une fer-
meture, Etude dans un Lisp & liaison guperﬁcielle et application aux objets.
Pierre Cointe and Jean Bézivin (Eds.) 3™ journées LOO/AFCET, TRCAM,
Paris (France), 48 (1986) 90-100.

Clinger, W., Rees, J. Macros that work. In Proc. 1991 ACM Conference on
Principles of Programming Languages, (1991) 155-162.

Clinger, W. Macros in Scheme. Lisp Pointers, IV(4), (December 1991) 25-28.
Dybvig, R.K., Hieb, R., Bruggeman, C. Syntactic abstraction in Scheme. Lisp
and Symbolic Computation 5(4) (1993) 295-326.

Ganz, S., Sabry A., Taha, W. Macros as Multi-Stage Computations: Type-
Safe, Generative, Binding Macros in MacroML. Proc. Intl. Conf. Functional
Programming (ICFP’01), pp. 74-85. Florence, Italy, September 3-5 (2001).
Hilsdale, E., Friedman, D.P. Writing macros in continuation-passing style.
Scheme and Functional Programming 2000. (September 2000).

Kelsey, R., Clinger, W., Rees, J. (eds.). Revised5 Report on the Algorithmic
Language Scheme, J. Higher-Order and Symbolic Computation, Vol. 11, No.
1, September, (1998).

Kohlbecker, E.E., Friedman, D.P., Felleisen, M., Duba, B. Hygienic macro ex-
pansion. In Proc. 1986 ACM Conference on Lisp and Functional Programming,
(1986) 151-161.

Kohlbecker, E.E., Wand, M. Macro-by-example: Deriving syntactic transfor-
mations from their specifications. In Proc. 14th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages (1987) 77-84.

Petrofsky, A., Kiselyov, O. Re: Widespread bug (arguably) in letrec when an
initializer returns twice. Messages posted on a newsgroup comp.lang.scheme
on May 21, 2001 10:30:34 and 14:56:49 PST.

Petrofsky, A. How to write seemingly unhygienic macros using syntax-rules.
A message posted on a newsgroup comp.lang.scheme on November 19, 2001
01:23:33 PST.

Petrofsky, A. Re: Holey macros! (was Re: choice for embedding Scheme imple-
mentation?). A message posted on a newsgroup comp.lang.scheme on May 22
2002 10:21:31 -0700.

Queinnec, C. A remark at the Scheme 2002 workshop (2002).

Rees, J.A. Implementing lexically scoped macros. Lisp Pointers. 'The Scheme
of Things’ (column), (1993).

Shivers, O. A universal scripting framework, or Lambda: the ultimate ’little
language’. In ”Concurrency and Parallelism, Programming, Networking, and
Security,” Lecture Notes in Computer Science 1179, pp 254-265, Editors Joxan
Jaffar and Roland H. C. Yap, (1996) Springer.

Appendix A

The following glet, glet* and gletrec forms are identical to their
R5RS counterparts modulo custom-bound let, let*, letrec and

Dirty-Macros.tex; 2/04/2013; 18:11; p.20

21

lambda identifiers, which we explicitly pass to the glet macros in the
first argument. We took the code for glet and glet* verbatim from
R5RS and merely renamed the keywords and added the first argument
to the patterns. We use a shorter implementation of letrec [11].

(define-syntax glet
(syntax-rules ()
((_ (let let* letrec lambda)
((name val) ...) bodyl body2 ...)
((lambda (name ...) bodyl body2 ...) val ...))
((_ (let let* letrec lambda)
tag ((name val) ...) bodyl body2 ...)
((letrec ((tag (lambda (name ...) bodyl body2 ...)))
tag) val ...))))

(define-syntax glet*
(syntax-rules ()

((_ mynames () bodyl body2 ...)

(let () bodyl body2 ...))

((_ (let letx letrec lambda)
((namel vall) (name2 val2) ...) bodyl body2 ...)

(let ((namel vall))

(let* ((name2 val2) ...) bodyl body2 ...)))))

(define-syntax gletrec
(syntax-rules ()
((_ (mlet let* letrec lambda)
((var init) ...) . body)
(mlet ((var ’undefined) ...)
; the native let will do fine here
(let ((temp (list init ...)))
(begin
(begin (set! var (car temp)) (set! temp (cdr temp)))
(let O . body)))))))

Appendix B

; This macro defiles its body.
; It shadows all the let-forms and the lambda, and defines a

’

Dirty-Macros.tex; 2/04/2013; 18:11; p.21

22

; non-hygienic macro ’mfoo’. Whenever any binding is introduced, the

; let-forms, the lambdas and ’mfoo’ are re-defined. The shadowed

; lambda acts as if it were infected by a virus, which keeps spreading

; within lambda’s body to infect nested lambda forms.

; The current implementation does not corrupt bindings created

; by internal ’define’, ’let-syntax’, and ’letrec-syntax’ forms.

; There are no technical obstacles to corrupting those bindings as well.

(define-syntax defile
(syntax-rules ()
((_ dbody)
(letrec-syntax
((do-defile
(syntax-rules () ; all the shadowed symbols
((_ (let-symb let*-symb letrec-symb lambda-symb
mfoo-symb foo-symb)
body-to-defile)
(letrec-syntax

((let-symb ; RBRS definition of let
(syntax-rules ()
((_ . args)
(glet (let-symb let*-symb letrec-symb lambda-symb)
args))))
(let*-symb ; Redefinition of letx
(syntax-rules ()
((_ . args)
(glet* (let-symb let*-symb letrec-symb lambda-symb)
. args))))
(letrec-symb ; Redefinition of letrec
(syntax-rules ()
((_ . args)
(gletrec (let-symb let*-symb letrec-symb lambda-symb)
. args))))
(lambda-symb ; re—-defined, infected lambda

(syntax-rules ()
((_ _vars _body)
(letrec-syntax
((doit
(syntax-rules ()

Dirty-Macros.tex; 2/04/2013; 18:11; p.22

23

((_ (mylet-symb mylet*-symb myletrec-symb
mylambda-symb mymfoo-symb
myfoo-symb) vars body)

(lambda-native vars
(make-mfoo mymfoo-symb myfoo-symb
(do-defile ; proliferate in the body
(mylet-symb mylet*-symb myletrec-symb
mylambda-symb
mymfoo-symb myfoo-symb)
body))))))
(proliferate
(syntax-rules ()
((_ dummy __vars __body)
(extract* (let-symb let*-symb
letrec-symb lambda-symb
mfoo-symb foo-symb)
(__vars __body)
(doit () __vars __body)))))
(stop-infection
(syntax-rules ()

((_ dummy __vars __body)

(lambda-native __vars __body))))

)

(extract? mfoo-symb _vars
; continuation if _vars shadow mfoo-symb
(stop-infection () _vars _body)
; continuation if _vars do not shadow mfoo
(proliferate () _vars _body))

))))

(lambda-native ; capture the native lambda
(syntax-rules ()
((_ . args) (lambda . args))))
)

body-to-defile)))))
(extract* (let let* letrec lambda mfoo foo) dbody

(do-defile () dbody))
))))

Dirty-Macros.tex; 2/04/2013; 18:11; p.23

24

Appendix C

Given below is the implementation of a library syntax
let-leaky-syntax. It is based on a slightly modified version of
the macro defile. The latter uses parameters leaky-macro-name,
leaky-macro-name-gen, and captured-symbol instead of hard-coded
identifiers mfoo, make-mfoo, and foo.

(define-syntax defile-what
(syntax-rules ()
((_ leaky-macro-name leaky-macro-name-gen captured-symbol dbody)
(letrec-syntax
((do-defile

. similar to the defile macro, Appendix B ...
)
(extract*
(let letx* letrec lambda
leaky-macro-name captured-symbol) dbody (do-defile () dbody))))))

(define-syntax let-leaky-syntax
(syntax-rules ()
((_ var-to-capture ((dm-name dm-body)) body)
(let-syntax
((dm-generator
(syntax-rules ()
((_ dmg-name var-to-capture dmg-outer-body)
(let-syntax
((dmg-name dm-body))
dmg-outer-body)))))
(defile-what
dm-name dm-generator var-to-capture body)

2)))

Dirty-Macros.tex; 2/04/2013; 18:11; p.24

