
GreenFS: Making Enterprise Computers Greener by
Protecting Them Better

Nikolai Joukov
IBM T.J.Watson Research Center

19 Skyline drive
Hawthorne, NY, USA 10532

Josef Sipek
Computer Science Department

Stony Brook University
Stony Brook, NY, USA 11794-4400

ABSTRACT
Hard disks contain data—frequently an irreplaceable asset of high
monetary and non-monetary value. At the same time, hard disks
are mechanical devices that consume power, are noisy, and fragile
when their platters are rotating.

In this paper we demonstrate that hard disks cause different kinds
of problems for different types of computer systems and demystify
several common misconceptions. We show that solutions devel-
oped to date are incapable of solving the power consumption, noise,
and data reliability problems without sacrificing hard disk life-time,
data reliability, or user convenience.

We considered data reliability, recovery, performance, user con-
venience, and hard disk-caused problems together at the enterprise
scale. We have designed GreenFS: a fan-out stackable file system
that offers all-time all-data run-time data protection, improves per-
formance under typical user workloads, and allows hard disks to be
kept off most of the time. As a result, GreenFS improves enterprise
data protection, minimizes disk drive-related power consumption
and noise and increases the chances of disk drive survivability in
case of unexpected external impacts.

Categories and Subject Descriptors
D.4.2 [Software]: Operating Systems—Storage Management

General Terms
Design

Keywords
Continuous Data Protection, backup, power efficiency

1. INTRODUCTION
Hard disks are mechanical devices. When their motors are spin-

ning, they consume power, generate noise, and are sensitive to
shocks and impacts.

Previous studies showed that hard drives consume from 5% to
31% of the desktop and notebook computer power [10, 28]. This

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSys’08, April 1–4, 2008, Glasgow, Scotland, UK.
Copyright 2008 ACM 978-1-60558-013-5/08/04 ...$5.00.

not only increases the overall IT power consumption and reduces
battery life of portable computers but also increases the amount of
heat generated by the system. Excessive heat can cause discomfort
and increase the power consumption of fans and air conditioners. In
a densely packed server room heat removal can easily double the
total electricity consumption [22]. In turn, electricity constitutes
about 50% of the total cost of ownership of today’s data centers.
Office computers consume about 1% of the electricity produced in
the United States with additional 1.2% consumed by the data cen-
ters [23]. Given the expected growth of the number of computers
these fractions are expected to increase in the future.

Table 1 shows approximate retail prices of hard disks and the
power they consume. One can see that during the expected hard
disk life-time of five years, a disk consumes roughly the same amount
worth of electricity as the initial hardware. The situation is espe-
cially critical in major cities where the electricity prices are the
highest and the power supply increases may not be possible at
all [25]. In these cases the only possibility to expand the businesses
is to lower the existing power consumption.

Even low intensity office noise reduces productivity, motivation,
ability to learn, and can even cause health risks [11]. Noise levels
of the average desktop hard drives rotating at 5,400–7,200 RPM
are typically between 30 and 50 dBA. High-performance hard disks
with higher rotational speeds generate more noise. For comparison,
CPU fans and case fans on commodity computers usually gener-
ate about 30 dBA of noise [7]. Disk head seek-related sounds dis-
tract the users even more due to their irregular nature. While one
may argue that it is possible to manufacture computers with better
sound-insulation we propose an approach that can reduce the level
of office noise with existing hardware.

Spinning hard disk drives are fragile and sensitive to shocks. The
speed of the disk heads moving over the disk platters is high and
can exceed 150 miles per hour for 15 KRPM drives. In case of
an abrupt impact or vibration, disk heads can touch and damage
the platter surfaces. Gyroscopic effects exacerbate the problem for
mobile devices. Even small disk platter damage can create a chain
reaction of collisions of the particles scratched from the platters, the
disk heads, and the disk platters. Therefore, even a single collision

Unit cost Power Power cost
($) (Watts) ($/year)

Desktop HDD 100 10 18
Server HDD 250 15x2 53

Table 1: Approximate costs of the hard disks and related power
costs. The server power cost includes the cost of cooling and
UPS losses (x2 multiplier). Electricity price
is assumed 20c/kWh (city commercial [9]).

of the disk drive head and the platters can result in the rapid loss of
the drive and loss of the data [16].

Non-rotating disks in the stand-by mode consume an order of
magnitude less power and generate less heat than busy disks and
at least three times less than idle rotating disks [28]. Non-spinning
disks are silent. They are also typically four to five times less sen-
sitive to shocks and thus are more reliable (e.g., [13]). Therefore,it
is desirable to minimize the time the disks are spinning.

Most solutions to the “rotating hard disk” problem that exist to-
day target either portable devices, servers, or RAID controllers.
“One media” solutions are trying to solve the problem with only
one storage device. Multiple studies targeted one hard disk systems
and designed policies to spin the disk up and down [10, 32]. Un-
fortunately, it is impossible to predict the future (including the disk
access patterns), and delaying writes increases the risk of losing
data. However, the biggest problem for 3.5” disks found in servers
and desktops is the limited number of spin-up cycles that they can
sustain. A typical hard disk can tolerate only about 50,000 cycles,
which translates to about one cycle per hour if we assume that a
disk’s life-time is five years. This is why spinning the disks down
is disabled or configured for very long intervals on most systems.

Completely disk-less clients [27] add inconvenience for the users
and administrators. Desktop solutions have high latency and be-
come unusable in case of network problems (that happen in real
life). Also, such systems have considerably different administra-
tion process, which is not confined by the machine itself. That is
why disk-less desktops and servers have limited adoption. With the
recent increase of the sizes of flash memory it is expected that flash
memory may replace the system disks. However, the sizes that are
available today and at least in the near future are still much smaller
and more expensive than users need.

Solutions that combine multiple possibly different disks were
shown to be more effective for server-type workloads [6, 8, 51].
Unfortunately, servers and desktops have only one system disk. A
combination of flash memory and hard disks partially solves the
problem [5] but still can result in shortened life-time and long ac-
cess latencies in case of the flash memory read misses. Previous at-
tempts to augment the disk and flash with the network connectivity
to store the data were shown to improve performance and prolong
battery life on mobile systems [31]. However, they can shorten the
disk life-times and increase power consumption on the server and,
as a result, overall on the enterprise scale.

Better sound isolation and reaction to computer case acceleration
are the common ways to address the problems of hard disk noise
and fragility [16].

We designed GreenFS—a file system that provides hierarchical
run-time data protection for all data and allows most enterprise hard
disks to be kept in the stand-by state (without platters rotating)
most of the time. Data is an expensive and frequently irreplace-
able asset and data reliability is of paramount importance for most
if not all enterprises. We observed that modern data backup mech-
anisms such as run-time replication or continuous data protection
(CDP) and overall enterprise storage power consumption must be
considered together. We also decided that our power saving mech-
anisms must not decrease data reliability in order to be used in
real enterprises. GreenFS substantially increases data reliability,
decreases overall power consumption, makes enterprises greener,
and increases user convenience by improving performance, and de-
creasing office noise levels.

The rest of this paper is organized as follows: we describe our
design in Section 2, implementation in Section 3, evaluation in Sec-
tion 4, related work in Section 5, and conclude in Section 6.

2. DESIGN
Data reliability and availability are usually the most important re-

quirements for storage systems. Traditional power optimization so-
lutions frequently contradict these requirements and decrease user
and administration convenience. For example, frequent spin-up and
spin-down operations significantly decrease the life-time and thus
reliability of the hard disk drives. As a result, these features are
usually disabled or configured for about hour long time-outs on
most servers and desktops. Notebook hard disks can survive about
an order of magnitude more spin-up operations but will still wear
out within a year if only the break-even balance of power is consid-
ered. Similarly, disk-less clients degrade performance and become
nonoperational in case of network infrastructure problems.

In addition to power consumption, hard disks pose a set of other
problems such as noise, fragility, and ease of being stolen or lost.
However, servers, desktops, and mobile systems have different disks
and different deployment scenarios, which makes some of the above
problems important or completely unimportant. For example, a
disk in a notebook consumes almost no power in the idle state and
its power consumption optimization not only makes no sense at
the enterprise scale but usually has negligible effect on the battery
life. Similarly, a desktop in the enterprise is almost always reli-
ably connected to the fast local network whereas a notebook can
get disconnected at any time.

When designing GreenFS our goal was to take care of different
real computer system-disk caused problems. We believe that the
only way to design a practical system like that is to improve data
reliability, convenience for the users and administrators, and at the
same time decrease the power consumption and noise. These de-
sign priorities are driven by the market: data and human labor are
much more expensive than electricity and hard disks.

Hard disks fail, fail inevitably and unexpectedly [1, 38]. People
make mistakes and overwrite or delete useful data. Hard disks or
whole computers get lost or stolen. Data backup systems try to
minimize the consequences of these harmful events. Traditional
backup systems create snapshots of a subset of files on a periodic
basis. This poses two problems:

1. Some important data may be left unprotected due to subset
of files selection mistakes (which is usually realized when it
is already too late) and

2. The most recent (and thus frequently most important) data
updates are not protected.

The first problem could be solved by backing up whole hard
disks. However, it is usually time consuming and considered pro-
hibitively expensive because of the expensive storage systems used
for backups. Also, increasing the amount of backup storage in-
creases the enterprise power consumption. The second problem is
partially solved by the run-time data replication. In addition, revert-
ing to some earlier version of the file is frequently desirable. For
example, if a user deletes a portion of the document by mistake.
Continuous Data Protection (CDP) [26] preserves backup copies
for every data update on-the-fly. This allows users to roll-back any
file to any previous state in time. Unfortunately, mobile users are
still left unprotected when not connected to a reliable network link.

Summarizing the above observations, GreenFS must:

• Provide run-time data protection (CDP or at least replication)
of each and whole hard disk in the enterprise;

• Do so even when a desktop loses connectivity due to tempo-
rary network problems or when mobile clients are away from
the network infrastructure;

• Avoid significantly increasing the cost of required backup
storage;

• Spin the local hard disks up for short periods of time and only
several times a day;

• Provide data access latency and bandwidth similar to the op-
eration with the local hard disks at least under typical user
workloads;

• Require minimal hardware and software modifications in ex-
isting infrastructure.

To solve the above challenges we employed three design solutions:
(1) buffered all-time protection; (2) reversed backup operation; and
(3) all-data protection. In addition, GreenFS is modular to fit any
existing enterprise IT infrastructure.

2.1 Buffered All-Time Protection
Figure 1 shows the architecture of GreenFS. We will describe

it starting from the clients (desktops, notebooks, servers) and then
describe the backup server architecture.

The GreenFS client is a file system that performs run-time backup.
It is designed in a hierarchical way: flash memory serves as a buffer
that keeps data updates (potentially with their versions) when the
remote server is unavailable. The combination of the flash layer
and the remote server contain all the data necessary to recover any
file or any file version at any time. Once network connectivity is
reestablished collected data is submitted to the remote server.

2.2 Reversed Backup Operation
GreenFS reverses the use of backup and local hard disk storage

under the normal conditions: all read and write requests are nor-
mally sent to the backup target and not to the disk. As described
above, GreenFS client file system uses a flash layer between itself
and a remote server. The flash is used for both: keeping data up-
dates and most recent version of the frequently accessed files to
improve performance. Therefore, the read access latency is usually
defined by the fast flash layer and not the network. In case of CDP
all versions except the latest one get discarded from the flash layer

Flash Flash

GreenFS−clientGreenFS−client

GreenFS−server

...

Redundancy Elimination

Versioning Versioning

Figure 1: GreenFS hierarchical all-data all-time Continuous
Data Protection with redundancy elimination.

after they are stored on the server to free up space for caching. If
a client is connected to the server we can use the whole flash layer
for caching and replace least frequently accessed data with more
frequently accessed data for improved performance.

GreenFS reverses the roles of the backup server and the local
hard disk: the local hard disk becomes a backup of the data stored
remotely. It is used when the local network infrastructure is having
problems (which happens even in enterprise environments), is not
sufficient for high-bandwidth workloads (which rarely happens on
user workstations and even server system disks), and when mobile
clients operate in the disconnected mode or with poor network con-
nectivity. The reverse mode of operation allows GreenFS to keep
the system and other local workstation hard disks off most of the
time. In a sense, the local hard disk becomes a recovery mecha-
nism in case of server connectivity problems or when remote stor-
age bandwidth or latency would cause noticeable inconvenience for
the users.

The data updates are synchronized with the local disk several
times a day based on several conditions:

1. GreenFS synchronizes the data on system shut down. This
guarantees that even if the network connectivity to the backup
server is not available upon next boot up operation the system
will still have all the data locally to operate autonomously.

2. GreenFS marks page cache pages that were modified and not
committed to the local disks (even if they were committed
to the remote storage system). When the system runs out
of memory and needs to discard such pages GreenFS can be
configured to: 1) spin up the disk and commit them to the lo-
cal disk and 2) drop the pages. The first configuration is nec-
essary for mobile computers that may become disconnected
from the server at any time. They are usually equipped with
2.5” hard disks and can sustain relatively frequent spin up
operations. Also, this mode may be necessary in the office
environments with unstable network connectivity. The sec-
ond mode is suitable for permanent servers and workstations.
Even if they are rebooted or their software crashes their local
hard disks can be resynchronized during the following boot
time.

3. We spin up the local hard disk if the bandwidth or latency
to the remote storage system cause noticeable inconvenience
for the users. Thus, we do not spin up the disk just because
we detect that we can save power by using the local storage
(which is a rare case as described in Section 2.5) but we spin
the disk up if there is a long period of high bandwidth data
read activity. We do the same for writes if the system page
cache gets filled with outstanding write requests. Again, this
is necessary to avoid user inconvenience due to excessive
cache purging and improve data reliability.

4. In any case, GreenFS periodically synchronizes the copies at
configurable frequency. For example, at least once a day or
at particular times of low system activity.

5. A user may want to manually turn on the disk for a limited
amount of time for some specific reason.

GreenFS keeps information about the rate of spin up operations
and balances the user convenience accordingly. Thus, GreenFS will
not spin up the local hard disk even in case of high bandwidth uti-
lization if the disk was spun up too many times within the last sev-
eral days.

It is commonly believed that flash memory can extend the lo-
cal memory cache size and therefore improve performance on the
client [36, 42]. In case of GreenFS, a flash layer can also signifi-
cantly reduce the load on the server. The information contained on
the server belongs to a particular client and is not supposed to be
changed by any other clients. This allows GreenFS to avoid costly
data revalidation and assume that the information contained in the
client flash layer is authoritative. Reduced load on the server keeps
its price low and only the minimal number of disks spinning.

2.3 All-Data Protection
GreenFS uses run-time data protection for all data on all local

disks because: (1) people make mistakes when deciding which files
to backup and (2) reversed backup mode of operation (described in
Section 2.2) assumes that all the local data can be found on the
remote server.

This creates two potential problems: (1) reliable storage used
for backups is expensive and dramatic increase of its size is pro-
hibitively expensive; (2) backup storage consumes power and gen-
erates heat, which we are trying to avoid. We propose two solutions
to these problems: (1) redundant data elimination and (2) hierarchi-
cal backup.

2.3.1 Redundant Data Elimination
In large enterprises there is a significant similarity of the data

stored on the local disks. First, there is a small set of installed
operating systems with many files that do not differ from instal-
lation to installation. In fact, with automated patching procedures
most computers are running exactly the same versions of the op-
erating systems and other software. People working on related
projects have similar documents and emails that were distributed
and stored locally. It was shown experimentally that data redun-
dancy elimination in the enterprises can reduce data sizes by about
three times [14, 24].

A related enterprise desktop user characteristic is relatively small
data sets. Unlike at home, users store less multimedia content on
their computers at work. Combination of small data sets and ef-
ficient and low-cost compression (duplicate elimination) allows us
to store all data of many users on a much smaller number of server
hard disks.

User workloads in the enterprises typically exhibit high degree of
spatial and temporal locality as well as characterized by low band-
width consumption and low I/O rates. This makes it possible to
efficiently use multi-disk technologies to reduce the server storage
cost and power consumption [6, 8, 48, 51]. For example, a gear-
shifting RAID [44] can useD (two or more) 1TB disks to provide
redundancy and store data of about50 × (D − 1) users assuming
that the average user data set size is 60GB and it contains 2/3 of re-
dundant data. At the times of higher server load such systems can
increase the number of involved disks and performance but also
increase their power consumption.

2.3.2 Hierarchical Backup
The cost of the storage systems skyrockets with the increase in

their reliability. If even after the data sets are compressed the re-
sulting size is deemed to be too big and expensive to store we can
use hierarchical data backup. The first backup level is used to store
all the data from all computers and is big and may be not very re-
liable (e.g., an entry-level RAID system). The second backup level
is a reliable, potentially expensive, and small storage system used
to store the most important user data. Normally, people use only
the second layer. The second backup system may be slow. For ex-
ample, an outsourced service with low access bandwidth and high

latency or a tape. In this configuration the primary backup system
is used not just as a cache (e.g., as in [8]) to the secondary stor-
age system but also keeps and protects a superset of the secondary
storage data.

2.4 Reliability
GreenFS stores data on three different types of storage with dif-

ferent reliability characteristics and thus provides different data re-
liability in different modes of operation.

2.4.1 Connected Operation
First, lets take a look at the connected mode of operation when

GreenFS stores data updates remotely, uses flash for caching, and
sometimes synchronizes the data with the local disk. In this mode
data pages and inodes are never released from the memory cache
before an acknowledgment of successful commit to the server is
received. Even after that point the data is still kept in memory until
the page is reclaimed by the system.

As we described earlier, to evict a page GreenFS can be config-
ured to either save the page to the local disk or drop it. In both
cases the data is reliably stored on the remote storage with redun-
dancy (e.g., on a RAID). This means that even if the system crashes
before the data is saved to the local disk it is still saved with re-
dundancy and thus higher reliability remotely. After the system is
restarted it fetches the data from the server and increases the data
reliability even further by replicating it locally.

2.4.2 Disconnected Operation
Second, let us take a look at the disconnected mode of GreenFS

operation when GreenFS is not connected to the server for example
due to a network unavailability. This mode of operation is sup-
posed to be rare for server and desktop systems (e.g., a disaster,
a server maintenance, or a network outage). Therefore, desktops
and servers spin up their disks and use flash as a cache to im-
prove performance of small reads (this operation is similar to hy-
brid drives [43]). Keeping the disks spinning allows us to minimize
the number of spin up operations and provide high bandwidth and
latency for the users.

On mobile systems disconnected from the server GreenFS oper-
ates similarly to desktops and servers except that it tries to prevent
the disk from spinning most of the time. GreenFS saves updates to
the flash memory and synchronizes updates with the disk from time
to time. In this mode GreenFS also spins up the disk in case of flash
cache read misses. 2.5 inch hard disks found in notebooks have rel-
atively small spin up times and consume insignificant amounts of
power (just a few percent of the system power as we will see later).
However, they are likely to experience hits and shocks potentially
leading to the data corruption. Therefore, GreenFS is not trying to
aggressively optimize the disk energy in this mode but rather min-
imizes the time the disk is spinning without increasing the number
of spin up operations beyond safe limits. This is accomplished by
keeping the disk rotating for some time after it is spun up even if it
is not energy efficient.

Similar to the disconnected operation, GreenFS can keep the
pages in memory even after they are committed to the flash layer
and write them to the local disk later. This may be necessary in
cases when flash cannot be considered reliable or can be unexpect-
edly disconnected. Flash reliability is discussed next.

2.4.3 Flash Layer Reliability
Flash memory is known to have a limited number of write cy-

cles. Single Level Cell (SLC) flash memory is faster and can sustain
about 100,000 overwrites. Multi Level Cell (MLC) flash memory

is slower and can sustain about 10,000 overwrites. However, MLC
flash memory is cheaper and is usually bigger. USB flash drives and
most other flash devices today have built-in support of the wear-
leveling. This means that even if a file system overwrites the same
location of the flash memory the writes reach different physical lo-
cations. As a result, it should take about a month of constant writing
at full available bandwidth to wear out a 4GB MLC flash drive and
about a year for the same SLC drive [40]. Fortunately, system disks
are not subject to constant write workloads lasting months. In fact,
Under typical user workloads SLC flash is expected to last decades.
Nevertheless, in the rare cases of write-intensive workloads MLC-
type flash memory use with GreenFS should be avoided.

Note that even if the flash layer gets worn out the original (cor-
rect) data is still sent to the remote server or/and saved to the local
disk. The data is not stored remotely or on a local disk only if the
system crashes or gets ungracefully shut down before the data is
stored on the local disk and only during the disconnected opera-
tion. Also, data could be corrupted by a worn out flash cache if
it fails to detect data corruption during a partial page read. In this
case this corrupted data may be submitted to the remote server and
the local disk during a later partial write. Fortunately, flash memory
devices usually have check sum or other mechanisms to verify the
data integrity. Similarly, a data integrity verification stackable file
system can do the same with higher guarantees if mounted between
GreenFS and a flash disk [21]. Even if the corrupted data propa-
gates to the server an earlier unaffected version could be recovered
by the means of CDP.

We believe that it is safe for GreenFS to use even the cheap
MLC-type flash as the data read and write caching layer. Even
under the worst case workloads, if data corruption occurs, it is un-
likely to propagate and its effects can be efficiently minimized by
the use of CDP. For unusual constant write-intensive workloads the
use of SLC-type flash may be required.

2.5 Power Efficiency
GreenFS saves energy under various types of workloads: idle,

small reads/writes, and for most large reads/writes:

2.5.1 Idle
Desktop and most server system disks are idle most of the time.

During these periods of no data transfer activity GreenFS saves the
power normally consumed by the disk motors for idle platter rota-
tion as well as disk electronics. Flash memory used by GreenFS
consumes negligible amounts of power. The network interfaces
usually consume less power, are usually powered up most of the
time in any case, and can be quickly powered up and down with
minimal power cost. Enterprises are typically running the backup
servers in any case so they consume power even with no GreenFS.
Therefore, GreenFS saves all the power otherwise consumed by the
idle disks.

However, even if we include the backup power consumption
into the overall picture (or assume that the backup server power
consumption increases two times) GreenFS still saves most of the
storage-related power. For example, a small backup server con-
sumes 100–200 Watts, which, when divided by the number of clients
(≥ 50), adds only 1–4 Watts per client. This is substantially less
than the savings for desktops and servers but can be slightly higher
than the savings for the notebooks. Fortunately, we are talking
about fractions of a Watt per notebook in the worst case, which
is negligible. Also, this extra power consumption is spent on the
server and not affecting the notebook’s battery. In fact, the battery
lifetime gets slightly improved [3].

2.5.2 Small Reads and Writes
Hard disks consume significantly more power when they repo-

sition their head (seeking) [15]. GreenFS fetches most data from
the flash layer with minimal power consumption. Even in the rare
case of the flash cache miss it is more efficient to read the data from
the remote server’s cache than the local disk. This is because even
wireless network interfaces consume less energy than disk drives
for small transfer sizes: disks consume energy to spin up, seek
with the head, and have small aggregate bandwidth when seeking
for data. Small writes are sent to the remote backup server, which
is more efficient than spinning up the local disk. At a later time,
GreenFS saves the accumulated updates to the local disk, which is
more efficient due to fewer seek operations and only one instead of
many spin up operations.

2.5.3 Large Reads and Writes
Hard disks may become more power efficient compared to net-

works when transferring large amounts of data. This is because
their bandwidth is sometimes higher, which results in smaller trans-
mission times. The total amount of energy necessary to transfer a
file consists of the sum of power necessary to setup the transfer
we callUup (e.g., switch the network interface from PSM to CAM
mode or spin the disk up) and transfer the data. The energy nec-
essary to transfer the data is approximately equal to the amount of
power (P) spent during the transfer multiplied by the transfer time.
Equation 1 shows the total energy dependency on the transfer band-
width (B) and file size (S). This linear estimation is consistent with
our experiments and [3].

U = Uup + P ×
S

B
(1)

Table 2 shows typical values ofUup, P , andB for server, desk-
top, and notebook systems that we observed in the real enterprise
environment (their specifications will be provided in Section 4).

One can see that reads as large as hundreds of megabytes can
be more efficient when done from the server over the network com-
pared to the desktop and server hard disks. This is because spinning
up the local disk is expensive. Large writes over GreenFS are gen-
erally more expensive than without it because we need to write the
data to the server and to the local disk in any case and the cost of
spinning up the disks becomes small compared to the write process.

However, we assume (and later validate) that large write op-
erations are rare. GreenFS is not trying to optimize power for
large read and write workloads. Instead we spin up the disk when
GreenFS detects a constant reading or writing process to minimize
the user inconvenience. The exact amount of activity time that trig-
gers a spin-up gets adjusted based on the past history of the fre-
quency of spin-up operations to keep their total number low. De-
tection of the bandwidth-sensitive user activity can further improve
GreenFS’s decision making about spinning up the local disk [3].

Device Uup (J) P (W) B (MB/s)
Server HDD 75 15 71
Desktop HDD 41 11 56
Notebook HDD 5 2.5 44
gigabit ethernet 0.12 1.5 86
100Mbps ethernet 0.12 1.2 11
802.11g 0.14 1.4 2

Table 2: Typical values of start up energy (Uup), power (P),
and bandwidth (B) while transferring the data.

2.6 Noise reduction
GreenFS keeps the hard disks off most of the time, which elimi-

nates the noise related to hard disk motors (spinning and seeking).
In addition, hard disks produce high level of noise during spin up
operations. This is especially noticeable and distracting due to sig-
nificant change from low noise to high noise levels.

To address this problem GreenFS attempts to spin the disk up at
times when the user is unlikely to be around or during the times the
disk is expected to produce noise. Section 2.2 describes the cases
when GreenFS turns the disk on.

1. On shut down users normally expect their computers to pro-
duce noise and therefore do not get distracted by the sound
of the disk spinning up.

2. On servers and desktops GreenFS is frequently configured to
purge the data from the cache when committed to the backup
server under the memory pressure. Therefore, the disk is
not spun up in that case. On mobile computers and comput-
ers configured to synchronize with the disk before dropping
the memory pages GreenFS have to spin up the local disk.
However, high memory pressure is usually associated with a
heavy I/O activity and is usually caused and thus expected by
the user.

3. Similar to the above, high levels of I/O activity are usually
associated with some rare user-initiated operations and are
therefore expected by the users.

4. GreenFS attempts to perform periodic synchronization at the
times of no user activity when the user is likely to be away.

5. A user is not expected to get disturbed by the disk sound after
requesting the disk to spin up.

2.7 Shock Susceptibility
Hard disks are about four to five times more fragile when their

platters are spinning and especially fragile when the disk head is
positioned over the rotating disk surface. Traditional disk shock
protection systems move the disk head away from the disk sur-
face with the data or spin the disk down when they detect that a
computer system is subject to an acceleration (suspected fall) [16].
There are two problems associated with this approach: First, the
system is not protected against external hits. For example, some-
body may unexpectedly open a door and hit a non-moving note-
book in somebody else’s hands. Second, it takes 0.3–0.5 seconds to
unload a disk head, which is more or equal to the typical notebook
free-fall time [16]. This makes it necessary to predict free-falls be-
fore they happen and keep the hard disk inaccessible for at least a
second each time a fall is suspected.

GreenFS keeps the disks off even when accessing the data on-
the-go given that the network connectivity is available. When the
network connectivity is unavailable, existing shock protection sys-
tems protect the disk as usually. Therefore, GreenFS provides much
better protection when the network connectivity is available and al-
lows for the same level of protection as without GreenFS otherwise.

2.8 Modular Design and Legacy Systems
Various enterprises have different software installation, update

and security enforcement policies as well as various hardware run-
ning various operating systems. It is not uncommon in the enter-
prises to have legacy systems that run decades old hardware and
software. Therefore, for a practical enterprise-level system it is im-
portant to support a variety of hardware and software systems as
well as legacy systems that cannot be modified. Because of this

we decided to use stackable file systems as building blocks to add
desired functionality and standard network file system interfaces to
communicate between clients and servers.

Stackable file systems are layers that intercept VFS-level requests,
possibly modify the associated data or metadata and forward them
further [50]. They can be mounted over file systems, directories,
or files. Figure 2 shows a simple pass-through stackable file sys-
tem called WrapFS that passes all requests unmodified. Stackable
file systems can be stacked on top of each other to add multiple
new features such as encryption [12, 47], anti-virus scanning (e.g.,
AVFS) [29], or versioning [30] at the same time. Stackable file sys-
tems allow addition of only the desired code to standard WrapFS-
like templates on a number of operating systems including Linux,
Windows, FreeBSD, and Solaris [50]. Another important advan-
tage of stackable file systems is the ability to reuse well-maintained
code of other file systems. For example, a stackable file system can
be mounted over NFS or CIFS file systems and thus reuse their net-
work protocols and already deployed servers (which is important
in real deployment scenarios).

A different class of stackable file systems called fan-out stack-
able file systems forward requests to a number of file systems (in
fact directories) mounted below [18, 34]. GreenFS is a stackable
fan-out file system. It is mounted over three lower directories:

Local Disk local disk mount point,

Flash directory on a flash media, and

LAN a directory exported by a remote backup server (e.g., over
NFS or CIFS).

An example GreenFS configuration is shown in Figure 3. In
this example, GreenFS is mounted over a local disk mounted using
Ext3; an encrypted flash memory device mounted using Ext3cow;
and a remote NFS server mounted below VersionFS for continuous
data protection. Here, GreenFS uses a standard NFS server that
already existed in the organization. If it is possible to modify the
backup server it should be configured to perform redundant data
elimination/compression and store data with versions. This can be
done by using existing versioning file systems on the server (e.g.,
VersionFS or Ext3cow [33]). Many storage systems support com-
pression. If such support is not available one may use a stackable
compression file system [49] or disk-based file systems that sup-
port compression. Similar reasoning is applicable to the local flash
disk. For example, for performance reasons it can be mounted with
no versioning over Ext2 (this will provide no CDP in the discon-

Ext3

WrapFS
ext3_rename()

User Process

Virtual File System (VFS)

rename()

vfs_rename()

K
er

ne
l

U
se

r

wrapfs_rename()

Figure 2: WrapFS is a pass-through stackable file system that
forwards requests to the lower file system.

VersionFS

Ext3cow NFS

GreenFS

AVFS

Ext3

CryptFS

Local Disk LANFlash

User Process

Virtual File System (VFS)

rename()

vfs_rename()

avfs_rename()

greenfs_rename()

U
se

r
K

er
ne

l

Figure 3: A possible GreenFS configuration.

nected mode of operation) or can be mounted over a versioning file
system such as Ext3cow.

As we can see, modular design allows creating various config-
urations including legacy systems (clients or backup servers) and
balance data protection, security, and convenience according to the
specific needs.

2.9 Privacy and Security
GreenFS stores the data on a flash media and transmits it to and

from a remote server, which requires special measures to provide
privacy and security of the data.

2.9.1 Flash Layer
It is believed that future motherboards will have flash memory

built-in [42]. This will make it as hard to steal or access the data
on the flash as on the hard disk. In addition, removable flash de-
vices (and future built-in flash memory) can be efficiently protected
by encryption. As described above, GreenFS can be mounted over
an encryption stackable file system mounted over the flash mem-
ory [12]. Similarly, some modern flash USB drives support built-in
encryption of the data. Therefore, even if a removable flash drive
with the cached data and data versions gets lost or stolen the data
will be hard or impossible to recover.

In fact, the ability to remove the flash drive is important to protect
the data stored on mobile systems if these systems are lost or stolen.
A removable flash drive should be detached from the portable com-
puter and kept separately (e.g., in a pocket). Even if the portable
computer is lost or stolen the data contained on the flash and the re-
mote backup server combined together will allow users to recover
all their data including the most recent updates. In fact, the hier-
archical CDP mode will allow users to recover any past version of
any file.

2.9.2 Remote Backup Server
Enterprises commonly use encrypted virtual private networks to

connect their clients to the server. GreenFS can simply reuse these
protected channels. If such channels are not available GreenFS
can be mounted over the network file systems that support encryp-
tion [41].

In case the client system is compromised an attacker can attempt
to delete or modify the data [45]. This threat can be resolved by
disallowing users to delete data versions on the backup server. In
fact, modern regulations frequently require the same [37].

3. IMPLEMENTATION
As a stackable file system, GreenFS can be implemented for

most OSs [50]. We implemented GreenFS as a loadable Linux
kernel module for Linux 2.6.23. We based our implementation on
UnionFS because it already supports the unioning functionality that
we reuse in several modes of operation [34]. UnionFS consists of
8,987 lines of C code. We added/modified 1,458 lines of the kernel
code. In addition, we wrote about 500 lines of the user mode code.

Kernel-mode operation is more efficient and secure but is harder
to implement, maintain, and debug. Therefore, our objective was
to make the kernel module changes simple but sufficient. GreenFS
operates in the kernel during the normal operation over three or a
subset of the lower file systems. GreenFS reads and writes data to
and from the appropriate lower file systems. When it needs to re-
lease the memory pages or inodes it either writes them to the local
disk or simply discards them (this is configurable at mount time).
As we will describe below, GreenFS also maintains a number of
status files on the lower file systems for the data recovery, perfor-
mance, and synchronization purposes

The recursive file system synchronization happens entirely in the
user mode. Thus, if during the mount process GreenFS detects that
the mount directory has a status file indicating unclean unmount it
asks to run anfsck process. A situation like this may be caused by
a system crash, which could mean that some data was committed to
the server or saved on the flash but not saved on the disk. GreenFS’s
fsck usesrsync to synchronize the file systems.

NFS by default waits for the remote host to respond even if
the network connectivity becomes unavailable. This would cause
GreenFS to wait on a related operation instead of switching to the
disconnected mode of operation. To solve this problem NFS be-
low GreenFS must be mounted with the-o soft option. This
instructs it to timeout if the server is not responding for some time.
GreenFS probes the remote server to detect when it becomes avail-
able again. Once, it happens GreenFS initiates a remounting pro-
cess which involves the user-mode file system synchronization.

In addition to caching files on the flash GreenFS also caches neg-
ative directory entries meaning that the file does not exist. This al-
lows GreenFS to avoid looking up non-existing files on the remote
server. GreenFS also maintains status files to indicate that only a
portion of some big file is cached on the local flash. Both of these
functionalities are inherited from UnionFS and required only min-
imal modifications.

We focused our implementation on the server, desktop, and note-
book systems. In the future it can be easily extended to support
media players with hard disks and wireless connectivity. It was re-
ported that on such systems hard disks consume significant share
of the total energy [31]. Unfortunately, at the time of this writing
we were unable to identify any such players supporting Linux. We
also did not implement the redundancy elimination or compression
server part because this was addressed elsewhere [24, 14].

4. EVALUATION
We have evaluated GreenFS using the following four computers

to conduct our benchmarks:

BLADE An IBM LS20 blade in an IBM BladeCenter H Chassis
with a 2.2 GHz dual core AMD Opteron 275 (2 MB cache)
and 1 GB RAM. It had two Seagate Savvio Ultra320 SCSI
10 KRPM disks. This computer was used as an NFS server.
It was located in the data center and connected to the enter-
prise 1 Gbps network.

SERVER A stock IBM xSeries 225 server with two 2.8 GHz dual
core Intel Xeon (512 KB cache) CPUs and 2 GB of RAM
equipped with LSI Logic Dual Ultra320 SCSI card and a
40 GB 10 KRPM Fujitsu SCSI disk. It was located in the
same data center as theBLADE.

DESKTOP A stock IBM ThinkCentre 8187 desktop with a 3 GHz
Pentium 4 (512 KB cache) and 512 MB of RAM. It had a
single 100 GB IDE disk and was located in the same building
as the servers.

NOTEBOOK A stock IBM ThinkPad T42 notebook with a 2.0 GHz
CPU and 2 GB of RAM.

All machines ran Debian Linux with a vanilla 2.6.23-rc1 Linux
kernel. Test machines were connected via a 1 Gbps network link
via 3 routers in the real enterprise environment. We used an inex-
pensive MLC 1GB USB 2.0 flash drive.

We used the Auto-pilot benchmarking suite [46] to run all of the
benchmarks. The lower-level file systems were remounted before
every benchmark run to purge the page cache. We ran each test
at least ten times and used the Student-t distribution to compute
95% confidence intervals for the mean elapsed, system, user, and
wait times. Wait time is the elapsed time less CPU time used and
consists mostly of I/O, but process scheduling can also affect it. In
each case the half-widths of the confidence intervals were less than
5% of the mean.

4.1 Performance
We ran two benchmarks to evaluate GreenFS’s performance on

theDESKTOPconnected withBLADE over NFS.

4.1.1 OpenSSH Compile
First, we compiled OpenSSH v.4.0p1 assuming that it represents

one of the typical types of the user workloads. It is well known that
compile benchmarks are usually CPU-bound [50]. However, they
generate relatively large number of writes, which require special
handling by GreenFS. We compiled OpenSSH over Ext2 and Ext3
file systems mounted over the local hard disk and flash; UnionFS
mounted over one, two, and three lower directories created on the
local disk, and GreenFS mounted over the local disk, flash drive,
and an NFS file system.

Figure 4 shows the running times of the above experiments. We
can see that compilation over Ext2 mounted over flash is only a
fraction of 1% slower than compilation over the local disk. This is
because the running time is dominated by the CPU. However, Ext3
mounted over flash is 6% slower because of the slow flash writes
to the journal. UnionFS (the base of GreenFS) adds less than 1%
overheads of CPU time per added branch. As a result, UnionFS
mounted over three lower directories is only 2.3% slower than the
lower Ext file systems running alone. Despite of the high band-
width between the desktop and the NFS server, network introduces
significant latency. As a result, compilation over NFS takes 2.8

 0

 50

 100

 150

 200

 250

GreenFS

NFS
Unionfs-3br

Unionfs-2br

Unionfs-1br

Ext3-flash

Ext2-flash

Ext3
Ext2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

83.2 83.0 83.5 88.5 84.7 84.7 85.4

230.1

90.7

Wait
User

System

Figure 4: OPENSSH benchmark results.

times longer than over the local disk. No wonder, disk-less clients
are not very popular. GreenFS uses local flash for caching and is
only 9% slower than the local file systems mounted over the local
disk and is only 2.4% slower than Ext3 mounted over flash.

4.1.2 Emacs Invocation
Invocation of programs takes time and requires users to wait. Our

second performance benchmark was the time to invoke Emacs 22.1
in the standard configuration. We installed Emacs and its dependent
libraries on a file system that was in use for two years before the ex-
periments and thus aged. During the loading process Emacs reads
several libraries, fetches and executes scripts, and writes some sta-
tus information.

Figure 5 shows invocation times for the local hard disk, flash,
NFS, and GreenFS. We can see that local hard disk corresponds
to the longest time. This is because starting a program commonly
requires accessing data at various locations, which requires seeking
with the disk head. Flash memory has lower bandwidth but requires
no seeking. As a result, the invocation process was 45% faster. We
purged local caches before the runs but did not purge the cache
on the NFS server. This is because we normally expect the server
cache to be large and contain frequently used data. Recall that if the
same binary is stored on multiple systems redundancy elimination

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

GreenFS

NFS
Flash

HDD

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

1.1

0.6

0.8

0.6

Wait
User

System

Figure 5: EMACS benchmark results.

will keep only one shared copy at the server. Our network link
had a much higher bandwidth than flash but higher latency. Emacs
invocation over NFS was 27% faster than from the local disk but
33% slower than from flash. GreenFS fetches the data from flash
and sends a few writes caused by Emacs over NFS. As a result its
running time is indistinguishable from the flash time.

4.2 Backup Server Load
We used OSprof to collect statistics of the user activity at the file

system level [19]. This allowed us to accurately capture memory
mapped operations that are frequently missed by the system call
tracers. Table 3 shows some statistics about a representative trace
of the normal kernel developer activity that we captured (JEFF). As
we can see, the workload is heavily read-biased and its data foot-
print can fit in a modest flash memory device. For comparison we
also included the same information about a trace used in a related
project for mobile systems (PURCELL [31]).

Trace JEFF PURCELL

Number of ops 1,987,982 87,739
Duration (Hours) 26.48 27.66
Update ops 5.6% 6%
Working set (MB) 649 252

Table 3: File system traces details.

GreenFS’s caching in memory and flash on the client side and
no data revalidation-related activity significantly reduces the server
load. We observed that the average rate of requests sent to the
server was 1.3 requests per second. During day-long period of trac-
ing the server experienced only 3 spikes of 10,000–15,000 requests
per 30 seconds; 17 spikes of 1,000–10,000 requests per 30 sec-
onds; and 505 spikes of 1,000–100 requests per 30 seconds sent
from our client. The largest request was less than 1 MB. This type
of load can be easily handled by an entry level storage system like
our BLADE with no noticeable performance degradation for at least
50 GreenFS clients [39].

While collecting statistics about user workloads on several en-
terprise systems we noticed that under both Windows and Linux
OSs background write operations happen pretty frequently. In fact,
the longest disk idle interval we observed was slightly longer than
a minute. These writes are caused by various processes usually
related to the enterprise system management such as security mon-
itoring. We attempted to disable these processes but quickly gave
up because of their number, variations on different systems, and
importance. This leaves no room for power optimizations using
time-out based disk power management even if they can predict
the future access patterns.

4.3 Power Efficiency
We measured overall system power consumption because we be-

lieve that optimizations can potentially increase the power con-
sumption of CPUs, network interfaces, and other system compo-
nents. To measure the power consumption ofSERVER, DESKTOP,
andNOTEBOOKsystems we used a Diego Systems Series 200 power
monitor. We inserted it directly between the test systems and the
wall power outlet. We measured the power consumption of the
BLADE system using the power monitoring infrastructure built into
the BladeCenter.

Table 4 shows the idle power consumption of our test systems.
In the idle state our systems (exceptBLADE) were running X and a
window manager in the default configurations.NOTEBOOK’ con-
figuration is theNOTEBOOKsystem with the power saving features

System Original GreenFS Savings
Power (W) Power (W) (%)

BLADE 90 N/A N/A
SERVER 113 101 12
DESKTOP 54.1 46.8 14
NOTEBOOK 20.1 19.6 2.5
NOTEBOOK’ 13.9 13.4 3.6

Table 4: Power consumption of the idle test systems.

turned on: the screen is set to the minimal brightness and the CPU
clock speed is scaled down. Idle state corresponds to the typical
power consumption observed on desktops and notebooks most of
the time. Even most servers today have utilization of only about
15% and their power consumption is not much different from the
idle state [4, 22].

The maximum power consumption of theBLADE system is 130 W.
Assuming that it serves 50 GreenFS clients concurrently it adds at
most 2.6 W per client. During theJEFF workload GreenFS spins
up the disk only once—at night. Measuring the related power con-
sumption and the power consumed for the data transfers we esti-
mated that the average reduction of the total energy consumption
per GreenFS client under theJEFFworkload is 7%. This translates
into saving 60% of storage-related power.

We found it interesting that today’s notebook hard disks consume
so little energy that its optimization becomes a nonsense. Neverthe-
less, this seems to be one of the well kept secrets today and we can
still see that this problem attracts significant attention. We believe
that disk drive survivability and data reliability are the most impor-
tant optimization goals for the notebook drives. And that is what
our all-data hierarchical CDP and keeping the disk off efforts are
aimed to achieve.

4.4 Shock Protection
To provide an example showing how GreenFS protects hard disks

against shocks in the real environments we performed the follow-
ing experiment. Authors’ offices are located in the same building
on floors two and four. Table 5 shows hard disk protection related
metrics observed while going between the offices using the stairs
and the elevator.

As we can see, the network was available all the time while going
using the stairs and was unavailable during just a few seconds in the
elevator. The active protection system (APS) was turning the disk
off for several seconds upon detecting the beginning of a possible
notebook fall. This way, APS was protecting the notebook’s hard
disk against possible falls. Unfortunately, it is impossible to predict
an accidental external hit in advance by measuring the notebook
acceleration. For example, somebody else may hit our notebook by
suddenly opening one of the four doors on our stairs. GreenFS kept
the disk off all the time and thus maximally protected it from the
accidental hits.

elevator stairs
trip time (sec) 85 58
network available (%) 94 100
disk is shock protected APS (%) 29 63
disk is shock protected GreenFS (%) 100 100
disk stop operations APS 4 6
disk stop operations GreenFS 0 0

Table 5: Comparison of GreenFS and Active Protection System
as mechanisms to protect the disk against shocks.

5. RELATED WORK

5.1 Hard disk power saving solutions
Numerous existing solutions for single-drive configurations ad-

vocate prefetching the data and delaying writes to create intervals
of disk inactivity when the disk can be put into the stand-by mode [10,
32]. However, delaying the writes increases the chances of the data
loss. Data prefetching cannot be accurate in practice and can, in
fact, increase the power consumption [51]. Worse yet, frequent
disk spin-up operations can drastically decrease the disk life-time
and increase the chances of the data loss [17]. In particular, solu-
tions that power down the disk propose frequent disk spin-up opera-
tions based on the break-even balance between power consumption
to spin the disk up and idle disk power savings. For example, for
16 second break-even intervals a notebook drive is expected to last
less than a year under the worst case but possible workload [32].

Disk drives consume significantly more power when they are ac-
cessing the data or seeking. File system layouts that minimize the
seek distances can reduce the seek-caused power consumption [15].
However, user workloads keep hard disks idle most of the time,
which minimizes the aggregate effect since most of the time there
are no seeks to optimize.

5.1.1 Solutions with multiple storage devices
Multi-disk solutions were shown to be more successful in con-

serving the energy and stopping the disks [8]. Multi-disk solutions
based on the multi-speed disks were shown to be especially suc-
cessful [6, 48, 51]. Unfortunately, these solutions are not readily
applicable to desktops, notebooks, and handheld devices with only
one disk drive.

Hybrid-drives with built-in flash memory caches have recently
emerged on the market and some OSs already support them. The
flash-based caches allow safely delaying the writes to the disk plat-
ters. On systems with little system memory hybrid-drives can also
reduce the number of reads from the disk platters and thus in-
crease the intervals of the disk inactivity and performance [5, 43].
Unfortunately, in case of flash memory misses hybrid-drives can
significantly increase the latency of the disk requests. Similar to
the single-disk solutions, hybrid drives experience excessive (albeit
smaller) number of spin-up operations shortening the disk life-time.
In addition, flash memory can sustain a limited number of writes.
Because flash is an integral part of the drive the life-time of flash
memory defines the life-time of the whole hybrid-disk. In addition,
hybrid-drives are expensive, have limited availability, and their use
requires replacement of the existing disk drives.

Disk-less servers and clients keep all the data at the remote stor-
age systems and have no hard disks [27]. However, network latency
makes this solution inconvenient for users. Also, network connec-
tivity is not always available in practice and it adds frustration for
the users when they cannot use even their own workstation. Anec-
dotal evidence suggests that many clients refrain from using disk-
less servers because of the inconvenience with their administration.

Mobile systems frequently rely on the wireless network use for
backups. Modern personal area networks when combined with tra-
ditional WiFi networks can further decrease the associated power
consumption [2].

BlueFS is a file system to improve performance and battery life-
time for small mobile computers [31]. However, it is not well suit-
able for other computer systems. Thus, its use can result in the
accelerated disk wear (especially if tried on desktop or server hard
disks), and increases overall power consumption if deployed in the
enterprise environments.

5.2 Hard disk data protection
Periodic back up of data and run-time replication are standard

ways to minimize the amount of data lost due to a hard disk failure.
Unfortunately, run-time replication overwrites previously saved ver-
sions of the data, which are frequently required later. To solve this
problem modern back up systems save versions of the data, which
is called continuous data protection [26].

Modern notebooks support acceleration sensors attempting to
detect the moment the notebook is falling down and stop the disk
drive [16]. Unfortunately, such measures cannot react to abruptac-
cidental hits of a notebook or a handheld device when the notebook
is at rest before the impact.

5.3 Stackable file systems
Stackable file systems were originally introduced in the early

’90s [35]. They augment the functionality of existing file sys-
tems by transparently mounting a layer above them. Stackable
file systems can be stacked on top of each other to add multi-
ple new features such as encryption [12, 47], anti-virus scanning
(e.g., AVFS) [29], data consistency verification [21], secure dele-
tion [20], or versioning [30] at the same time. Stackable file sys-
tems are commonly used on Linux, Windows, FreeBSD, and So-
laris [50]. A different class of stackable file systems called fan-out
stackable file systems forward requests to a number of file systems
mounted below (e.g., RAIF [18] and UnionFS [34]). GreenFS is a
stackable fan-out file system.

6. CONCLUSIONS
We believe that the right solution to the hard disk related prob-

lems in the enterprises is to consider storage components together.
We designed GreenFS—a client file system and a method to con-
struct data backup systems and keep most disks off. It offers all-
time all-data run-time data protection, and at the same time in-
creases convenience for the users.

Power consumption of modern computer systems is a sum of
consumptions of several not well related components. CPU, mem-
ory, video controllers, power supplies, displays, and storage all con-
sume their not dramatically different slices of power. Usually, every
such sub-component consumes 5–30% of the total power. There-
fore, we believe that optimizing all these components is the right
way to reduce the total power consumption of modern computer
systems. Despite of the fact that we backup and protect all data
we decrease the overall IT power consumption. We demonstrated
that under typical user workloads we can save 60% of the overall
storage-related power.

GreenFS is a solution to a variety of different disk drive-related
problems on different types of systems in a unified way. The main
benefits for different classes of systems are summarized in Table 6:

Servers Desktops Notebooks
hierarchical CDP Y
all-data CDP Y Y Y
Small seek time Y Y Y
Power Y Y
Noise Y Y
Shocks Y

Table 6: Classes of systems that benefit the most from all-time
all-data CDP, flash caching, and keeping the disk off (power
savings, noise reduction, shocks survivability)

Servers.
System hard disks in servers typically consume 10% or less of

the total power. However, most data centers are running close to
their maximum capacity today and cooling process increases the
associated expenses twice. Therefore, even a relatively small de-
crease in the power consumption can allow otherwise impossible
expansion of the data center and delay migration to a new one.

Desktops.
Hard disks in desktop computers consume about 15% of the to-

tal power and substantially increase the office noise levels. Keep-
ing the disk off can save IT money and increase human productiv-
ity otherwise reduced by noise. Desktop users significantly benefit
from GreenFS’s all-data continuous data protection that provides
protection for all their data.

Notebooks.
Unlike commonly believed, hard disks in modern notebooks con-

sume insignificant 4% or less of the total power even when all the
other power-hungry components as CPU and screen are configured
to consume as little as possible. However, notebook hard disks are
frequently subject to external impacts or theft. The ability to keep
hard disks off allows to minimize the probability of data loss due to
hard disk impacts without the need to interrupt normal user activ-
ity even on-the-go. Hierarchical continuous data protection is most
beneficial for notebook users because it protects the data even when
no network connectivity is available. Separately kept flash media
is also an efficient way to recover the data after a notebook is lost
or stolen.

Acknowledgments
Murthy V. Devarakonda provided guidance and supported us. We
would like to thank Alain Azagury, Fred Douglis, Hai Huang, Hui
Lei, Marcel C. Rosu, and Erez Zadok for fruitful discussions. We
would also like to thank Charles P. Wright for his help with the
Auto-pilot setup and Bulent Abali and James V. Norris for their
help with the BladeCenter power measurements. Anonymous re-
viewers provided interesting and valuable comments.

7. REFERENCES
[1] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A

five-year study of file-system metadata. InProceedings of the
Fifth USENIX Conference on File and Storage Technologies
(FAST ’07), pages 31–45, San Jose, CA, February 2007.
USENIX Association.

[2] M. Anand and J. Flinn. PAN-on-demand: Building
self-organizing PANs for better power management.
Technical Report CSE-TR-524-06, Computer Science and
Engineering Division, University of Michigan, August 2006.

[3] M. Anand, E. B. Nightingale, and J. Flinn. Ghosts in the
machine: Interfaces for better power management. In
Proceedings of MobiSys 2004, pages 23–35, Boston, MA,
June 2004. ACM.

[4] L. A. Barroso and U. Holzle. The case for
energy-proportional computing.Computer, 40(12):33–37,
December 2007.

[5] T. Bisson, S. A. Brandt, and D. Long. A hybrid disk-aware
spin-down algorithm with I/O subsystem support. In
Proceedings of the International Performance Conference on
Computers and Communication (IPCCC ’07), New Orleans,
April 2007.

[6] E. V. Carrera, E. Pinheiro, and R. Bianchini. Conserving disk
energy in network servers. InProceedings of the
International Conference on Supercomputers (ICS ’03), San
Francisco, CA, June 2003. ACM.

[7] Noise Pollution Clearinghouse. Noise control in
PCs—reduction of noise in PCs, May 2004.http://www.

nonoise.org/resource/pcnoise/poweroid/poweroid.htm.
[8] D. Colarelli and D. Grunwald. Massive arrays of idle disks

for storage archives. InProceedings of the Supercomputing
Conference 2002 (SC2002), pages 1–11, Baltimore, MD,
November 2002.

[9] Tokyo Electric Power Company. Service guide.
[10] F. Douglis, P. Krishnan, and B. Marsh. Thwarting the

power-hungry disk. InProceedings of the Winter USENIX
Technical Conference, pages 293–306. USENIX
Association, January 1994.

[11] G. W. Evans and D. Johnson. Stress and open-office noise.
Journal of Applied Psychology, 85(5):779–783, 2000.

[12] M. A. Halcrow. eCryptfs: An Enterprise-class Encrypted
Filesystem for Linux. InProceedings of the 2005 Linux
Symposium, pages 201–218, Ottawa, Canada, July 2005.
Linux Symposium.

[13] Hitachi CinemaStar Hard Disk Drive Specifications Hitachi
Global Storage Technologies.

[14] B. Hong, D. Plantenberg, D. D. E. Long, and
M. Sivan-Zimet. Duplicate data elimination in a san file
system. InProceedings of the 12th NASA Goddard, 21st
IEEE Conference on Mass Storage Systems and Technologies
(MSST 2004), pages 301–314, College Park, MD, April
2004. IEEE.

[15] H. Huang, W. Hung, and K. Shin. FS2: Dynamic Data
Replication in Free Disk Space for Improving Disk
Performance and Energy Consumption. InProceedings of
the 20th ACM Symposium on Operating Systems Principles
(SOSP ’05), pages 263–276, Brighton, UK, October 2005.
ACM Press.

[16] IBM. Active Protection System whitepaper, October 2003.
[17] D. D.E. Long J. Rybczynski and A. Amer. Expecting the

unexpected: Adaptation for predictive energy conservation.
In Proceedings of the First ACM Workshop on Storage
Security and Survivability (StorageSS 2005), pages 130–134,
FairFax, VA, November 2005. ACM.

[18] N. Joukov, A. M. Krishnakumar, C. Patti, A. Rai, S. Satnur,
A. Traeger, and Erez Zadok. Raif: Redundant array of
independent filesystems. InProceedings of the 24th
International IEEE Symposium on Mass Storage Systems
and Technologies, pages 199–212, San Diego, CA,
September 2007. IEEE.

[19] N. Joukov, A. Traeger, R. Iyer, C. P. Wright, and E. Zadok.
Operating system profiling via latency analysis. In
Proceedings of the 7th Symposium on Operating Systems
Design and Implementation (OSDI 2006), pages 89–102,
Seattle, WA, November 2006. ACM SIGOPS.

[20] N. Joukov and E. Zadok. Adding Secure Deletion to Your
Favorite File System. InProceedings of the third
international IEEE Security In Storage Workshop (SISW
2005), pages 63–70, San Francisco, CA, December 2005.
IEEE Computer Society.

[21] A. Kashyap, S. Patil, G. Sivathanu, and E. Zadok. I3FS: An
In-Kernel Integrity Checker and Intrusion Detection File
System. InProceedings of the 18th USENIX Large
Installation System Administration Conference (LISA 2004),

pages 69–79, Atlanta, GA, November 2004. USENIX
Association.

[22] P. Khanna. Operation consolidation: reducing the number of
servers can offer dramatic cost savings, but experts warn that
trying to cram too much onto one box can backfire.
Computing Canada, March 12 2004. by quoting G. Haff,
senior analyst at Illuminata, Inc.

[23] J. Koomey. Estimating total power consumption by servers in
the U.S. and the world. Technical Report Final Report,
Lawrence Berkeley National Laboratory, February 2007.

[24] P. Kulkarni, F. Douglis, J. LaVoie, and J. M. Tracey.
Redundancy elimination within large collections of files. In
Proceedings of the Annual USENIX Technical Conference,
pages 59–72, Boston, MA, June 2004. USENIX Association.

[25] Rakesh Kumar. Gartner: A message from data center
managers to CIOs: Floor space, power and cooling will limit
our growth, August 2006.

[26] G. Laden, P. Ta-Shma, E. Yaffe, M. Factor, and S. Fienblit.
Architectures for controller based CDP. InProceedings of
the Fifth USENIX Conference on File and Storage
Technologies (FAST ’07), pages 107–121, San Jose, CA,
February 2007. USENIX Association.

[27] J. Layton. The coming of diskless clusters.Linux Magazine,
October 2005.

[28] A. Mahesri and V. Vardhan. Power consumption breakdown
on a modern laptop. InProceedings of the Workshop on
Power-Aware Computer Systems (PACS 2004), Portland, OR,
December 2004. IEEE Computer Society.

[29] Y. Miretskiy, A. Das, C. P. Wright, and E. Zadok. Avfs: An
On-Access Anti-Virus File System. InProceedings of the
13th USENIX Security Symposium (Security 2004), pages
73–88, San Diego, CA, August 2004. USENIX Association.

[30] K. Muniswamy-Reddy, C. P. Wright, A. Himmer, and
E. Zadok. A Versatile and User-Oriented Versioning File
System. InProceedings of the Third USENIX Conference on
File and Storage Technologies (FAST 2004), pages 115–128,
San Francisco, CA, March/April 2004. USENIX
Association.

[31] E. Nightingale and J. Flinn. Energy-efficiency and storage
flexibility in the blue file system. InProceedings of the 6th
Symposium on Operating Systems Design and
Implementation (OSDI 2004), pages 363–378, San
Francisco, CA, December 2004. ACM SIGOPS.

[32] A. E. Papathanasiou and M. L. Scott. Energy efficient
prefetching and caching. InProceedings of the Annual
USENIX Technical Conference, pages 255–268, Boston,
MA, June 2004. USENIX Association.

[33] Z. N. J. Peterson and R. C. Burns. Ext3cow: The design,
Implementation, and Analysis of Metadata for a
Time-Shifting File System. Technical Report
HSSL-2003-03, Computer Science Department, The Johns
Hopkins University, 2003.http:
//hssl.cs.jhu.edu/papers/peterson-ext3cow03.pdf.

[34] D. Quigley, J. Sipek, C. P. Wright, and E. Zadok. UnionFS:
User- and Community-oriented Development of a
Unification Filesystem. InProceedings of the 2006 Linux
Symposium, volume 2, pages 349–362, Ottawa, Canada, July
2006.

[35] D. S. H. Rosenthal. Evolving the Vnode interface. In
Proceedings of the Summer USENIX Technical Conference,
pages 107–118, Anaheim, CA, June 1990. USENIX
Association.

[36] M. Russinovich. Inside the windows vista kernel: Part 2.
Microsoft TechNet Magazine, 2007.

[37] P. Sarbanes and M. G. Oxley.Sarbanes-Oxley Act of 2002.
U.S. Government Printing Office, July 2002.

[38] B. Schroeder and G. A. Gibson. Disk failures in the real
world: What does an MTTF of 1,000,000 hours mean to
you? InProceedings of the Fifth USENIX Conference on File
and Storage Technologies (FAST ’07), pages 1–16, San Jose,
CA, February 2007. USENIX Association.

[39] SPEC. SPEC SFS97R1 V3.0.www.spec.org/sfs97r1,
September 2001.

[40] Silicon Systems. Increasing flash solid state disk reliability,
April 2005.

[41] A. Traeger, K. Thangavelu, and E. Zadok. Round-trip privacy
with NFSv4. InProceedings of the Third ACM Workshop on
Storage Security and Survivability (StorageSS 2007), pages
1–7, Alexandria, VA, October 2007. ACM.

[42] M. Trainor. Overcoming disk drive access bottlenecks with
intel robson technology.Technology@Intel Magazine,
December 2006.

[43] A. A. Wang, P. Reiher, G. J. Popek, and G. H. Kuenning.
Conquest: Better Performance Through A
Disk/Persistent-RAM Hybrid File System. InProceedings of
the Annual USENIX Technical Conference, pages 15–28,
Monterey, CA, June 2002. USENIX Association.

[44] C. Weddle, M. Oldham, J. Qian, A. A. Wang, P. Reiher, and
G. Kuenning. PARAID: A gear-shifting power-aware RAID.
In Proceedings of the Fifth USENIX Conference on File and
Storage Technologies (FAST ’07), pages 245–260, San Jose,
CA, February 2007. USENIX Association.

[45] J. Wires and M. J. Feeley. Secure file system versioning at the
block level. InProceedings of the EuroSys 2007 Conference,
pages 203–215, Lisboa, Portugal, March 2007. ACM.

[46] C. P. Wright, N. Joukov, D. Kulkarni, Y. Miretskiy, and
E. Zadok. Auto-pilot: A platform for system software
benchmarking. InProceedings of the Annual USENIX
Technical Conference, FREENIX Track, pages 175–187,
Anaheim, CA, April 2005. USENIX Association.

[47] C. P. Wright, M. Martino, and E. Zadok. NCryptfs: A secure
and convenient cryptographic file system. InProceedings of
the Annual USENIX Technical Conference, pages 197–210,
San Antonio, TX, June 2003. USENIX Association.

[48] X. Yao and J. Wang. RIMAC: A novel redundancy-based
hierarchical cache architecture for energy efficient, high
performance storage systems. InProceedings of the EuroSys
2006 Conference, pages 249–262, Leuven, Belgium, April
2006. ACM.

[49] E. Zadok, J. M. Anderson, I. B̆adulescu, and J. Nieh. Fast
Indexing: Support for size-changing algorithms in stackable
file systems. InProceedings of the Annual USENIX
Technical Conference, pages 289–304, Boston, MA, June
2001. USENIX Association.

[50] E. Zadok, R. Iyer, N. Joukov, G. Sivathanu, and C. P. Wright.
On incremental file system development.ACM Transactions
on Storage (TOS), 2(2):161–196, May 2006.

[51] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wilkes.
Hibernator: Helping Disk Arrays Sleep through the Winter.
In Proceedings of the 20th ACM Symposium on Operating
Systems Principles (SOSP ’05), pages 177–190, Brighton,
UK, October 2005. ACM Press.

