
The seven deadly sins of cloud computing research

Malte Schwarzkopf † Derek G. Murray ‡ Steven Hand †
†University of Cambridge Computer Laboratory ‡Microsoft Research Silicon Valley

Abstract

Research into distributed parallelism on “the cloud” has
surged lately. As the research agenda and methodology
in this area are being established, we observe a tendency
towards certain common simplifications and shortcuts
employed by researchers, which we provocatively term
“sins”. We believe that these sins, in some cases, are
threats to the scientific integrity and practical applicabil-
ity of the research presented. In this paper, we identify
and discuss seven “deadly sins” (many of which we have
ourselves committed!), present evidence illustrating that
they pose real problems, and discuss ways for the com-
munity to avoid them in the future.

Sin 1 Unnecessary distributed parallelism

Parallel computing is an old concept, but has recently
become a hot topic again due to two factors: multi-
core CPUs, and the need to process very large data sets.
The latter in particular has led the cloud community to
adopt distributed parallelism as a default, often based on
models such as MapReduce [11]. Unlike existing HPC
frameworks for parallel processing, MapReduce offers
an appealingly simple interface, and manages many as-
pects of the parallel coordination—such as synchroniza-
tion, data motion and communication—as part of frame-
work code.

However, it does not always make sense to paral-
lelize a computation. Firstly, doing so almost inevitably
comes with an additional overhead, both in runtime per-
formance and in engineering time. Secondly, although
MapReduce and similar data-flow frameworks aim to
migitate the engineering overhead, this transparency of-
ten results in programmers being ignorant of the potential
performance impact. This may arise from communicat-
ing large amounts of intermediate data across machine
boundaries, or from using algorithms which inherently
involve large amounts of frequently mutated shared state.

Thus, when designing a parallel implementation, its
performance should always be compared to an optimized
serial implementation, even if only for a small input data
set, in order to understand the overheads involved.

If we satisfy ourselves that parallel processing is in-
deed necessary or beneficial, it is also worth considering
whether distribution over multiple machines is required.
As Rowstron et al. recently pointed out, the rapid in-
crease in RAM available in a single machine combined
with large numbers of CPU cores per machine can make
it economical and worthwhile to exploit local, rather than
distributed, parallelism [36]. This observation is espe-
cially pertinent given that use of MapReduce for pro-
cessing relatively small data sets appears to be common-
place [3]. Harnessing locally available parallelism has
attractive benefits: it is possible to exploit shared mem-
ory and fast communication primitives; and data mo-
tion, which is often a bottleneck in distributed data pro-
cessing [9], is avoided. It is also worth noting that the
original MapReduce system was developed and used at
Google before multi-core CPUs were widely used. Mod-
ern many-core machines, however, can easily apply 48 or
more CPUs to processing a 100+ GB dataset entirely in
memory, which already covers many practical use cases.

There are, of course, many situations that warrant dis-
tributed parallelism: some data sets are too large for a
single machine, or suffer performance degradation due
to contention on shared I/O resources when running lo-
cally. The precise cross-over points between serial, lo-
cally parallelized and distributed implementation perfor-
mance depend on the exact workload, and it thus makes
sense to establish the need for distributed parallelism on
a case-by-case basis, rather than assume it by default.

Sin 2 Assuming performance homogeneity

Systems for cloud computing usually run on, and are
evaluated on, clusters of physical or virtual machines,
with production systems comprising as many as thou-



sands of machines [11, 19]. In academic research,
rented clusters of virtual machines in “the cloud” are
popular evaluation testbeds, since most academics do
not have access to large physical clusters. However, it
has been shown that virtualized cloud environments ex-
hibit highly variable and sometimes unpredictable per-
formance [23, 37].

Any results obtained from such environments should
hence be treated with care: it is absolutely essential to
base reported results on multiple benchmark runs, and to
report the performance variance over both a reasonable
number of runs and a reasonable time period. Surpris-
ingly many publications omit either [7, 10, 18, 24, 43,
44], are inconsistent [18, 42], or do not explicitly qual-
ify parameters, such as the number of repeats, whether
mean or median values are used, or what error bars on
plots mean.

Variance may also exist for reasons other than the un-
derlying multi-tenant cloud fabric: since cloud comput-
ing systems operate at a high level of abstraction, and
frequently ship large amounts of data over the network,
they are particularly vulnerable to performance interfer-
ence from external effects such as network congestion or
OS-level contention on shared resources. Again, many
publications that use local clusters neglect to report on
variance, or the absence thereof [6, 13, 14, 16, 25].

Finally, variance can also be caused by the system it-
self. For example, data loaded into the Hadoop Dis-
tributed File System (HDFS) is randomly distributed
across the cluster [39], leading to a variable distribution
of blocks corresponding to any single file. This partic-
ular issue has been ameliorated in some recent systems
by the use of two-random-choice load balancing [15, 28],
but some imbalance remains, and other issues inherent to
system construction may exist, making measurement of
performance variance in experiments a necessity.

Sin 3 Picking the low-hanging fruit

The Hadoop ecosystem is a highly popular basis for re-
search in cloud computing—partly due to its open source
nature, partly because of its generality and widespread
use in production environments, and partly because it can
easily be used as a benchmark for comparative evalua-
tion. It is the last quality, in particular, that has turned
out to be rather tempting to many.

Plenty of research projects have found ways of achiev-
ing a speedup over Hadoop for different kinds of work-
load, as depicted in Figure 1, ranging from double-digit
percentages to order-of-magnitude speedups [2, 4, 6, 7,
12–14, 16, 18, 24, 29, 41, 43–45]. While impressive,
the sheer magnitude and abundance of these speedup re-
sults does raise the question of their significance. To put
it differently, one might ask how hard it is to achieve a
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Figure 1: Maximum speedups over Hadoop claimed by a
selection of research endeavours; N.B. log-scale y-axis.
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Figure 2: k-means clustering with CIEL.

speedup over Hadoop? The answer is, of course, that
it depends. Hadoop, as a consequence of its MapRe-
duce roots, is an exceptionally general framework, while
many of the research efforts mentioned are specialized to
a particular application domain or class of algorithm. For
example, iterative processing systems exploit in-memory
caching [13, 34, 43, 45], and systems from the database
community trade off additional processing at data load
time for faster job execution times [1, 12].

It is unsurprising that it is easy to beat a general
system, unoptimized for particular application require-
ments, by specializing it. Hence, a better comparison
for any specialized system is with a domain-specific op-
timized solution, which may not be as scalable, fault-
tolerant or easy-to-use as Hadoop, but provides a rele-
vant performance baseline. Depending on the metric, we
should not necessarily expect to beat the domain-specific
solution—instead, the goal is to illustrate the cost of dis-
tributed processing, fault-tolerance or ease-of-use.

For example, we evaluated our CIEL system using the
iterative k-means clustering algorithm. In our initial eval-
uation, we found CIEL to outperform Hadoop by about
160s per iteration using the same compute kernel [29]
(Figure 2a). However, the margin is constant as the in-
put data size and number of workers increase, mean-
ing that CIEL has less constant overhead than Hadoop,
but does not scale any better. Subsequently, we also
built a more efficient k-means compute kernel using ar-
rays instead of Hadoop-like record I/O, and compared
its performance against an MPI-based implementation
(see Figure 2b). We found that with this implementation,
CIEL outperforms Hadoop by orders of magnitude, and
scales better—but yet still performs, and scales, worse
than MPI, which should be no surprise given its addi-
tional fault-tolerance overheads.



Furthermore, few researchers comment on the com-
posability of their solutions. For example, if it were pos-
sible to compose all of the speedups depicted in Fig-
ure 1, a Hadoop job that previously took 24 hours to
complete would be reduced to a duration of a mere 20
milliseconds! Clearly, some improvements proposed are
very similar to, or encompass, others, while some might
be mutually exclusive. If optimizations that have previ-
ously been published are used, this fact should be noted,
and speedups should be reported relative to the existing
work, rather than to “vanilla” Hadoop. PrIter [45] and
Hadoop++ [12] are model citizens in this regard, quanti-
fying the speedup over iMapReduce [44] and HadoopDB
[1], respectively.

Sin 4 Forcing the abstraction

MapReduce is a versatile paradigm, covering a wide
range of algorithms and problems, but it is not a panacea
or silver bullet. Yet it is often used over other, more ap-
propriate, approaches because it is simple and regarded
as a de-facto “standard”. As we note with Sin 3, the
MapReduce paradigm has been applied to anything from
databases to iterative processing.

As we consider this, it is worth recalling that MapRe-
duce was designed with a primary design goal of scal-
ably processing huge data sets in a fault-tolerant way.
Indeed, one main design focus of MapReduce was to al-
leviate the I/O bottleneck of disk spindle performance by
parallelizing over many disks [11], and dealing with the
consequent additional failure scenarios. Furthermore,
jobs were assumed to be processing so much data that
they would take a long time, even when parallelized over
many machines. Hadoop inherited this goal, and it is re-
flected in its design choices.1

There is, however, evidence that, at least in some
places, many Hadoop jobs are quite short—median job
lengths of around 90s have been reported [21, 43], al-
though it is unclear whether these are representative of
production environments. It does, however, seem to be
the case that much research finding high speedups over
Hadoop considers relatively small datasets (see Figure
3), which typically correspond to relatively small and
short jobs.

This effect is compounded in the case of high-level
languages that translate a program into a set of MapRe-
duce jobs: Hive [40], Pig Latin [31] and FlumeJava [8]
are recent examples. While we certainly agree that there
is a case to be made for languages lending more expres-
sivity to data-parallel paradigms, we believe that it is
more appropriate to consider execution models that can

1For example, task dispatch messages are piggy-backed onto
Hadoop’s periodic ping messages, so that a job can take up to 30s to
start—this is insignificant for long-running jobs, but not for short ones.
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Figure 3: Max. input data set sizes considered in various
research systems’ evaluations; N.B. log-scale y-axis.

perform iterations within a single job, instead of chain-
ing MapReduce jobs, as this allows for whole program
optimization and avoids having many short jobs.

In some application domains, it is unclear if a
MapReduce-like approach can offer any benefits, and in-
deed, some have argued that it is fruitless as a research
direction [33].

In other application domains, the research community
has a more pleasing track record of coming up with new,
domain-specific systems. Examples of these include iter-
ative processing [29, 43, 45], stream processing [17, 32],
and graph processing [25, 26]. Ideally, future research in
these application domains should build on these best-of-
breed solutions, rather than on the MapReduce paradigm.

Sin 5 Unrepresentative workloads

Cloud computing workloads are evaluated on clusters of
machines, and usually a particular type of cluster setup is
implicitly assumed. Popular setups appear to be (i) large,
shared, multi-framework, multi-job, multi-user clusters;
(ii) single-purpose, but multi-user and multi-job clusters;
or (iii) per-job (possibly virtual) clusters. There is evi-
dence that some large data centre operators use the first
option [27, 35, 38], and research on fair sharing of a clus-
ter between multiple frameworks is emerging [18]. Fur-
thermore, short batch computations can make up a large
portion of a multi-job cluster’s jobs, while using only
a fraction of the resources [35]. Nonetheless, the com-
mon assumption in academic research systems is that the
cluster workload is relatively homogeneous—that is, of
the same job type and general nature—or that different
kinds of workload do not interfere, or both. This as-
sumption may stem from using workload traces with a
single job type [3, 20, 43], or the assumption that in a
“cloud” world of rented resources, clusters are spun up
and down on demand. However, even in an environment
such as EC2, interference exists, manifesting itself e.g.
as contention on I/O resources such as disks and NICs,
and resulting in variable performance (see Sin 2).

In a cluster shared between heterogeneous jobs, we
may wish to prioritize some workloads over others. A
common example of this is mixing revenue-critical web
applications with backened data-analysis jobs, which are
more tolerant of failures and extended runtimes [35].



This may necessitate preemptions of running tasks,
which can also be used to improve locality [20].

Having established the widespread sharing of clusters
between jobs in the “real world”, we note that most re-
search evaluations measure performance by running a
single job on an otherwise idle cluster. This may be de-
fended by noting that, at least with experiments on EC2,
the effect of other jobs running manifests itself as per-
formance variance (cf. Sin 2), but due to the random and
uncontrollable nature of the variance, this affects the re-
producibility of results, and it is unclear how closely it
resembles the situation in large commercial clusters.

Instead, running a single job on an idle cluster is the
moral equivalent of an OS micro-benchmark, and should
be complemented by appropriate macro-benchmarks. In
the OS community, the lack of a representative “desktop
mix” benchmark prompted a call for better multi-core
benchmarks [22], and in a similar vein, we believe the
cloud computing community needs representative cluster
benchmarks. Hadoop GridMix2 is a good starting point,
but only covers MapReduce jobs. Comprehensive cluster
traces covering multiple job types, such as recent Google
traces,3 may aid generating synthetic workloads.

Sin 6 Assuming perfect elasticity

The cloud paradigm is closely associated with the con-
cept of utility computing and its promise of an unlimited
supply of computation. The notion that one can use 10
machines for 100 hours or 1000 machines for one hour
at the same price [5], and get the same work done, is an
oft-misquoted canard.

As researchers, we know that this is, of course, a fal-
lacy, because workloads do not exhibit infinite parallel
speedup. That said, even ignoring the issues of algo-
rithmic scalability and financial concerns, the scalability
and supply of compute resources are not in fact infinite.
For example, as the size of a compute cluster grows, it
runs increasingly many tasks, which are scheduled by a
single cluster scheduler in contemporary architectures—
clearly, scheduler throughput will eventually become a
bottleneck. Similarly, there are limits to the scalability of
data center communication infrastructure and logic. TCP
incast is a well-known issue in large-scale distributed
systems [30], and especially affects systems that operate
a single “master” node, as is the case with most existing
frameworks [11, 19, 29].4 Another reason for diminish-
ing returns from parallelization is the increasing likeli-
hood of failures, and greater vulnerability to performance
interference, resulting in, e.g. “straggler” tasks [41].

2http://goo.gl/brd6y
3http://goo.gl/XO5YQ
4Notably, Hadoop avoids this problem by only having workers com-

municate indirectly with the job tracker.

Sin 7 Ignoring fault tolerance

Two of the key challenges in the cloud are scale and fault
tolerance. Indeed, the original MapReduce paper empha-
sizes ease-of-use and automatic handling of failures via
task re-execution [11]. This is not a surprise: as jobs
scale to thousands of tasks, the chance of the job being
affected by a failure increases.

Yet despite this, many recent systems neglect to ac-
count for the performance implications of fault tolerance,
or indeed of faults occurring [7, 10, 13]. This may be an-
other reason for observing high speedups over Hadoop
(cf. Sin 3): for example, a popular optimization is to store
intermediate data in memory, but this obviously reduces
fault tolerance and may necessitate re-running tasks.

Instead, for each system, we should ask the question
whether fault tolerance is relevant or required for the ap-
plication considered. If it is, it makes sense to check
precisely what level is required, and what faults are to
be protected against. The evaluation in this case should
explicitly consider and ideally quantify the cost of fault
tolerance. If it is not deemed to be required—e.g. be-
cause the job is running within a single fault tolerance
domain—then this should, again, be argued explicitly.

Discussion and conclusions

We believe that the “sins” we discussed in this paper are
widely committed—not maliciously, but for reasons of
unwareness, or to simplify matters. While we do not be-
lieve that this (necessarily) invalidates existing research,
we see a danger of these sins becoming entrenched in the
research agenda and methodology.

Thus, we propose a set of remedies for the individual
sins. Most of these can be best enforced by reviewers
and shepherds, but we believe that, as a community, we
should not require force—instead, we should cultivate
awareness and avoid the sins by default, by following the
suggestions below or otherwise.

1. Compare serial and distributed implementation per-
formance of algorithms, or alternatively provide a
formal or informal derivation of the maximum par-
allel speedup. Justify, if non-obvious, why the algo-
rithm demands more parallelism than can be attained
locally on a single machine.

2. Perform repeated runs and indicate performance vari-
ance on benchmarks, especially those executed in a
virtualized environments. State clearly how many re-
peated runs the data is based on, and what the error
bars signify (σ , max-min, percentiles, etc.).

3. Do not use or accept speedup over Hadoop as an in-
dication of quality; instead, compare with relevant al-
ternatives or justify why comparison with Hadoop is



appropriate. The parallel speedup over a serial exe-
cution is a good alternative metric, ideally compared
to the maximum attainable speedup.

4. Use common sense, rather than ideology or ease-of-
implementation, to decide if MapReduce is an appro-
priate paradigm for solving a problem. If it is not, but
a MapReduce-based solution is significantly cheaper
to implement, quantify the loss in performance by
comparing with an appropriate alternative.

5. Consider different job types, priorities and preemp-
tion! Instead of, or in addition to, benchmarking in-
dividual jobs, benchmark cluster “job mixes”.

6. When talking about elasticity, clearly qualify the as-
sumptions made and note scalability bottlenecks.

7. Clearly state the fault tolerance characteristics of the
proposed system, and justify why they are appropri-
ate and satisfy the requirements.

We do realise that it may not be possible to avoid these
sins all the time, but we believe that the onus should be
on us as researchers to show that committing the sin is
either unavoidable, or does not matter to answering the
research question addressed. For some of the sins, such
as the fifth and the sixth, this may be easy to argue; for
others, such as the second, there really is no excuse ;-).
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