Gradual Typing of Erlang Programs: A Wrangler Experience

Konstantinos Sagonas

Daniel Luna

School of Electrical and Computer Engineering, Nationaifgcal University of Athens, Greece
Department of Information Technology, Uppsala Universiiyeden

kostis@cs.ntua.gr

Abstract

Currently most Erlang programs contain no or very littleeyip-
formation. This sometimes makes them unreliable, hardeéparsd
difficult to understand and maintain. In this paper we déscaur
experiences from using static analysis tools to gradualty tgpe
information to a medium sized Erlang application that we rutitl
write ourselves: the code base of Wrangler. We carefullydamnt

the approach we followed, the exact steps we took, and discus
possible difficulties that one is expected to deal with ardetfort
which is required in the process. We also show the type of soft
ware defects that are typically brought forward, the oppaties

for code refactoring and improvement, and the expectedfitene
from embarking in such a project. We have chosen Wrangler for
our experiment because the process is better explained odea ¢
base which is small enough so that the interested readeetrace

its steps, yet large enough to make the experiment quitéeciggl

ing and the experiences worth writing about. However, weehav
also done something similar on large parts of Erlang/OTE. fER
sult can partly be seen in the source code of Erlang/OTP R3L2B-

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Programming by contract
F.3.3 LLogics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs

General Terms Documentation, Languages, Reliability
Keywords Erlang, software defect detection, contracts, Dialyzer

1. Introduction

Almost all Erlang applications have so far been written with
type information being explicitly present in their code. &@furse,
this is hardly surprising. After all, Erlang is a dynamigatyped
language where type information is only implicit during gram
development. Program testing typically uncovers many sygad
type errors and these are corrected in the process. In maeg,ca
type information in the form of (Edoc) comments is added io-pr
grams in order to document the intended interfaces of kegtioms
and modules which are part of the API.
In our experience, this mode of developing Erlang programs

is far from ideal. Even after extensive testing, many typod a

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang’08, September 27, 2008, Victoria, BC, Canada.
Copyright(© 2008 ACM 978-1-60558-065-4/08/09. . . $5.00.

daniel.luna@it.uu.se

type errors remain in the code. Often these errors appedrein t
not so commonly executed paths such as those handling seriou
error situations. Also, type information in the form of comamts is
often unreliable as it is not checked regularly by the coarpBuch
documentation sooner or later is bound to suffer from cotle ro

For a number of years now we have been trying to amelio-
rate this situation by developing and releasing tools thapert
and promote a different mode of program development in Brlan
Namely, one where most typos, type errors, interface abaises
other software defects are identified automatically usihgle/pro-
gram static analysis rather than testing, and where typenrdtion
is automatically added in the program code, becomes a péneof
code, is perhaps manually refined by the programmer and is sub
sequently automatically checked for validity after pragraenod-
ifications. What's interesting in our approach is that aisth are
achievedwithout imposing any (restrictive) static type system in
the language. Instead, programs can be tygmegradually as de-
sired and the programmer has total control of the amount of type
information that she wishes to expose and publicly document

During the last year, we have been practicing this approach
on a considerably large part of the Erlang/OTP system. lhdee
nowadays the entire code of the Dialyzer and Typer toolsrgela
part of the code of the High Performance native code compiler
for Erlang (HiPE), and many modules of the standard libeaak
Erlang/OTP R12B-3 come with explicit type information. Tire-
cess has uncovered many software defects, identified sobie du
ous interfaces and a significant number of discrepancieseaet
the published documentation and the actual behavior of keg-f
tions of the standard libraries. In the code of Erlang/Of@ythole
process has often been slow and painful, partly becauseas®h
worry about maintaining backwards compatibility and patie-
cause itinvolves a considerable amount of communicatioin thie
Erlang/OTP developers. Nevertheless, overall it has beep re-
warding and clearly worth its while. The resulting code isatier,
easier to understand and maintain, more robust, and mutér bet
documented.

This paper aims to document in detail the steps of the pro-
gram development mode we advocate and have been practicing
all this time; both on code produced by our group and on code
of Erlang/OTP. By doing so, others who are possibly inteest
in gradually typing existing Erlang applications can egiply see
what'’s involved in the process. In particular, they can saé the
benefits and costs of using our tools as well as many pitfads t
the more “traditional” mode of Erlang code development Ings.

We decided to start with a handicap: we do this experiment on
code that we did not write ourselves and for that reason plyssot
fully grasp. Also, for the experiment to be interesting, wanted
that the code should be of significant size and publicly at#dd so
that others can retrace our steps. After looking around anafil
of open source Erlang projects, we opted for the code of Weang
a refactoring tool for Erlang [3].

refac_atom_info.erl:715: Guard test length(M::atom()) can never succeed
refac_batch_rename_mod.erl:161: The call erlang:exit(’error’,[1..255,...]1) will fail
since it differs in argument position 1 from the success typing arguments: (pid() | port(),any())
refac_util.erl:921: Call to missing or unexported function refac_syntax:class_body/1
refac_util.erl:1322: The call erlang:’and’(bool(),[integer()]) will fail

since it differs in argument position 2 from the success typing arguments:

(bool() ,bool())

Figure 1. The main defects of Wrangler 0.1 as identified by Dialyzer

The code of Wrangler has various interesting charactesisti
with respect to what we want to do. First, it has been develope
by researchers who are experts in typed functional progiagm

the same module which in turn makes calls to these functions u
reachable. Indeed, these warnings were produced becaalyz i
also identified two calls to théile:open/2 function which vi-

For this reason, we expected that Wrangler's code base wouldolate both its published documentationwats.erlang.org and

be written in a type disciplined manner and would not contain
(m)any type errors. Second, we expected that its code baglel wo
contain an interesting set of uses of higher order functiens

the explicit type information which exists for this funation the
source code of theile module of Erlang/OTP R12B-3. We man-
ually modified the two offending calls to this function by clging

possibly more than in most Erlang code bases out there — andthem from the old-fashioned one:

this would be challenging for our tools and approach. Thihe,
authors of Wrangler have been heavily involved in a projeleted

to testing Erlang programs and have used Wrangler in cotiumc
with sophisticated testing technology such as QuviQ'’s Qbieck
tool for Erlang [2]. Finally, the authors of Wrangler are awaf the
tools of our group: as they acknowledge in Wrangler’s horgepa
they ‘make use some of the ideas from Dialyzer'. In short, we
expected that this would be a relatively easy task. Let'sveeat

we found.

2. Using Dialyzer on Wrangler

We started our experiment with the first action we recommend t
any Erlang project: use Dialyzer [4]. Dialyzer is a statiogmam
analyzer that is really easy to use and is particularly goadénti-
fying software defects which may be hidden in Erlang codpees
cially in program paths which are not exercised by testingeed,
as we will see below, it is quite common that these defectairem
unnoticed for a long period of time.

2.1 The first experiment: Dialyzer on Wrangler 0.1

To learn something about Wrangler's evolution, we stariedl
taining the first version of Wrangler, which was publiclyeased
on the 25th of January 2007. We executed the following conastan

> wget http://www.cs.kent.ac.uk/projects/forse/wrangler/
distel3.3-wrangler/distel-wrangler-0.1.tar.gz

> tar zxvf distel-wrangler-0.1.tar.gz

> cd distel-wrangler-0.1/wrangler

> wc *.erl

2229 7247 73088 refac_atom_info.erl
. 24 more lines suppressed ...
34784 137281 1198955 total

As we can see from the output of the last command, the main

body of the code of Wrangler 0.1 contains a total of 25 mod-
ules comprising of about 35,000 lines of code. Out of thesd-mo
ules, many are modified versions of Erlang/OTP modules (@f th
syntax_tools application, thecompiler, and two supporting
modules ofdialyzer).

We postponed making the Wrangler system because we wantedth

to shake its code first. Instead, we run Dialyzer v1.8.1 devi:

> dialyzer --src -c *.erl

This analyzed all Wrangler modules and generated 67 wasning

in less than 2 minutes. About 50 of these warnings concermed t
refac_epp module and were warnings of the forifunction
F/A will never be called’. Suchwarnings are typically side-
effects of some failing or contract-violating function lsaarlier in

file:open(Name, read)

which is still allowed for backwards compatibility to the neo
kosher and documentation-conforming one:

[read])

In the process, we performed a similar change to two calls to
function file:path_open/3. Doing these changes took about
two minutes of our time and reduced the number of Dialyzer
warnings to 15. About half of these warnings concern modules
refac_compile, refac_sys_core_fold and refac_v3_core
which are clones of the corresponding modules of Erlang/OTP
with only minor modifications. These warnings are genuinersr
that have been fixed in Erlang/OTP R12B. We concentrate an fou
of the remaining warnings that are specific to the code of \§lean
These warnings are shown in Figure 1.

The first of them concerns a guard that will never succeed Thi
typically signifies a genuine bug or is a sign of severe pnognar
confusion. Indeed, very few Erlang programmers fancy wngiti
guards that always fail. In this case the Dialyzer warnireptdies
a programming error. The corresponding code is shown inrEigu
As can be seem is an atom and the call tbength/1 will always
fail in this case. However, since this call occurs in a guanatext
its failure is silenced and can easily remain undetectea$tyrig.

file:open(Name,

handle_call(Call, DefinedVars, State) ->

case is_c_atom(Mod) andalso is_c_atom(Fun) of
true ->
M = atom_val(Mod),

case {M_Loc, Call_Loc} of
{{L1, c1}, {12, c2}} ->
if (L1 < L2) or
((L1==L2) and ((C2-C1) > length(M)))

Figure 2. Portion of the code aofefac_atom_info.erl

The second warning identifies a call to teeit function with
e wrong arity. The corresponding code checks for an emodie
tion and if the condition is met it wants to exit the Wrangleogess
most probably with a tagged two tuple where the first elenwtite
atomerror. Instead, it constructs the call:

LS

This is a particularly nasty bug that is very hard to detedels§ing.
The problem is that this code will abort execution alrightt till
do so with a significantly different message than the program

exit(error,"Can not infer new module names,

expand_files([File|Left], Ext, Acc) -> %% concat(L) concatenate the list representation of

case filelib:is_dir(File) of %% the elements in L - the elements in L can be atoms,
true -> %/ numbers or strings. Returns a list of characters.
false —> -type concat_thing()
case filelib:is_regular(File) and atom() | integer() | float() | string().
filename:extension(File) == Ext of -spec concat([concat_thing()]) -> string().
true -> expand_files(Left, Ext, [FilelAccl);
false -> expand_files(Left, Ext, [Filel) concat (List) ->
end flatmap(fun thing_to_list/1, List).
end;

thing_to_list(X) when is_integer(X) ->
Figure 3. Portion of the code afefac_util.erl T

Figure 4. lists:concat/1 function annotated with a contract

intended. (Therlang:exit/2 function throws an exceptions and
exits a process in Erlang but expects a different type of iarthe
first argument and will throw a different exception if calleith an
atom in the first argument.)

The third warning is simple but quite common in Erlang. The concat(Things) -> string()
code contains a call to a non-existing function (of an emgsti

ule provides aoncat/1 function. Its published documentation at
www.erlang.org reads:

module). One does not need Dialyzer to detect this errorztleé Types: _
tool would also have detected it. Things = [Thing] .
The last warning is the most interesting one. The correspgnd Thing = atom() | integer() | float() | string()

code is shown in Figure 3. To somebody not very familiar wii t c .
C . f oncatenates the text representation of the elements
|d|ocyncr§n0|es of th_e Erlang parser thls_code looks ctriEee of Things. The elements of Things can be atoms,
problem is thatand binds stronger thar= in Erlang and so the integers, floats or strings.
case expression in the code is parsed as:

However, the current implementation of thencat/1 function is

case (f::Llelib:::Ls_regui!.ar(F:i.le) aI_l(_i more liberal than its documentation claims it is. For examits
filename:extension(File)) == Ext of implementation in Erlang/OTP R12B-3 allows calls whereheac

that is, the code in Figure 3 effectively tries to test a banlealue Thing is a tuple:
with the value ofExt, instead of being parsed the way that the Eshell V5.6.3 (abort with ~C)
programmer intended: 1> lists:concat([[{a,1},{b,2}], [{c,3}1]).

case filelib:is_regular(File) and {a,1},{b,2},{c,3}]

(filename:extension(File) == Ext) of Note that the result in this case is not a string. The code aiigler

This bug can be fixed either by adding explicit parenthesebage is relying on an undocumented behaviour of a library functio
or by using theandalso operator instead afnd. Misunderstanding or abusing the interface of some librang{

Overall, we spent about half and hour understanding ancgfixin tion is a very common software defect in dynamically typeat la
the software defects of Wrangler 0.1 that were identified lg-D guages such as Erlang. We consider this problem quite sbeere
lyzer. We started from this version of Wrangler because wetech ~ Cause an application might give the impression of workinghat
to see which of Wrangler's defects are long-lived and madage but this remains sonly until the library has the same observable

survive from the first to the current release. undocumented behavior. Of course, this is something thabts
guaranteed by the library developers. We have noticed thés p
2.2 The second experiment: Dialyzer on Wrangler 0.3 nomenon happening again and again — even in our own code! —

in Erlang applications. For this reason, we have designddam
posed acontract language for Erlang [1] and have already anno-
tated key libraries of Erlang/OTP with their documenteeif#ce.
Indeed, in Erlang/OTP R12B, the corresponding code inthes
module reads as shown in Figure 4. Due to the presence of these
contracts, Dialyzer can easily detect such interface atarse warn

the user about them.

In this particular case, the problem is easily fixed. The cufde
Wrangler can simply use theists:append/1 function which has
the behaviour that its authors are after. There are 13 caitgal to
> cd distel-wrangler-0.3/vrangler/erl lists:concat/1 that should become calls Id sts:append/1.
> dialyzer --src -I ../hrl -c *.erl After this fix, Dialyzer reports 10 warnings in total. The mai

ones, those related to Wrangler files not from Erlang/OTP, ar
After about 50 seconds, Dialyzer produced warnings many of shown in Figure 5.

At the time of writing this section (early June 2008), versia3

was the most recent snapshot of Wrangler. It was releaseldeon t
7th of January 2008, almost a year after version 0.1. Thetsimel

of Wrangler's source code has changed a bit and some of the
modules of Wrangler 0.1 that were from Erlang/OTP are nodong
present. However, many modules of theitax_tools application

are still present and some new modules have been addedliglu
those modules, Wrangler’s code consists of 25 modules amat ab
27,000 lines of code. We run Dialyzer as follows:

which were in filerefac_epp and were due to using an atom The first and last of them are familiar. They are identicahtuse
rather than a list for the options argument of calls to fuorcdi of in Wrangler 0.1 and have remained unaffected by code ewoluti
thefile module. After manually fixing this issue, about 20 warn- and undetected by testing and uses of Wrangler. As mentidgned
ings remained. is not very surprising that the first of them has remained teuied

Some of these warnings were due to confusing one library-func since the defect appears in error-detection code which tisrino
tion with another one and abusing its interface. Thets mod- ously hard to exercise.

refac_batch_rename_mod.erl:161: The call erlang:exit(’error’,[1..255,...]) will fail

since it differs in argument position 1 from the success typing arguments: (pid() | port(),any())
refac_duplicated_code.erl:441: The pattern {’error’, _Reason} can never match the type ’false’ | {’value’,tuple()}
refac_fold_expression.erl:97: The pattern {’error’, ’reason’} can never match the type {’error’,’none’} | {’ok’,_}
refac_move_fun.erl:137: The pattern {’eror’, Reason} can never match the type {’error’,_}
refac_util.erl:921: Call to missing or unexported function refac_syntax:class_body/1

Figure 5. The main defects of Wrangler 0.3 as identified by Dialyzer

trim_clones(FileNames, Cs, MinLength, MinClones) ->

case lists:keysearch(Filel, 1, AnnASTs) of
{value, {Filel, AnnAST}} ->

{error, _Reason} -> {false, {Range, Len, F}}
end

Figure 6. Portion of the code afefac_duplicated_code.erl

The second warning is due to confusion about the possible
return values of theists:keysearch/3 function. The offending
code is shown in Figure 6. We have seen similar defects iowsri
other Erlang code bases. The remaining warnings are siryypbes t
in error checking code. Similar defects have a tendencyrtmie
unnoticed for a long time.

We manually corrected these problems but for the last ore (th
call to the missing function) which we did not know how to fix.
The whole process, including referring to Erlang/OTP’suioen-
tation and code to verify issues relatedltbsts:concat/1 vs.
lists:append/1, took us a bit more than two hours. With an al-
most warning-free code base, we could start adding costtathe
code of Wrangler in order to robustify its APl and in the hofie o
identifying more defects and interface abuses. Let's semrevthis
got us.

3. Adding Contracts to Wrangler

The second action we recommend to any Erlang application is t
expose as much type information about functions and moddes
possible and make this information part of the code. Typicsipe
information is only implicit in most Erlang programs. Malgjirit
more explicit can happen in the following two ways:

Add explicit type guards in key places in the codeSuch an ac-
tion has the advantage that it exposes type informatioratcst

bulk of these annotations is in files that are minor modifaratiof
Erlang/OTP modules. Because for the more up-to-date vedfio
some of these modules (the ones in Erlang/OTP R12B-3) we had
already performed a similar action to the one we will desiib

this section, we decided to focus on thepec annotations in mod-
ules that have been written entirely by Wrangler’s authdrere

are 15 such modules but three of thepefac_module_graph,
wrangler distel andwrangler_options) contain no annota-
tions. In the remaining 12 modules there areesfec annotations

in total. Their breakdown according to module is shown inl@&dh

module

| @specs

refac_batch_rename_mod
refac_duplicated_code
refac_expr_search
refac_fold_expression
refac_gen
refac_move_fun
refac_new_fun
refac_rename_fun
refac_rename_mod
refac_rename_var
refac_util

wrangler

WNNEFENNNPRP PP

21
11

Table 1. Number ofespecs in modules of Wrangler 0.3; modules
with no@specs and modules from Erlang/OTP have been excluded

3.1 Turning @spec annotations into -spec declarations

At least syntacticly, converting an existiRgpec annotation into a
-spec declaration is a rather straightforward procedure. Fomrexa
ple, inrefac_batch_rename_mod.erl the@spec annotation:

%% @spec batch_rename_mod(0ldNamePattern::string(),

Do NewNamePattern::string(),
YAA SearchPaths: : [string()]) ->
hh ok | {error, string(}

analysis tools such as Dialyzer and at the same time ensurescan immediately be turned into:

that calls to these functions will fail if they violate thegge
tests during program execution. One disadvantage is theg th
is a runtime cost associated with this action, but this istai-
cally quite small. A more serious disadvantage is that @Enogr
may not be prepared to gracefully handle such failures.

Add type declarations and contracts. Type declarations can give

convenient names to key data structures which can then be
used to document function and module interfaces. Such type

information can then be used by Dialyzer to detect interface
violations without occurring any runtime overhead. Quifien
such information already exists in comments: either in Edoc
format or even in plain text.

Of course, these two methods of exposing type informatiemat
mutually exclusive and projects can employ the combinatianis
best suited for each situation in hand.

In the case of Wrangler 0.3, its source code already contains ol

a fair amount ofespec annotations (336 in total). However, the

-spec batch_rename_mod(0ldNamePattern::string(),
NewNamePattern: :string(),
SearchPaths: : [string()]) ->

ok’ | {’error’, string()}.

The single quotes around the atoms are not really neededayebut
recommend their use so that it is clear to the reader whatis.g.
supposed to be the atomk’, which denotes a singleton type in
the language of types, rather thie() type where the programmer
has mistakenly forgotten the parentheses.

Quite often, one also needs to make up names for types which
are not built-in types. For examplesfac_duplicated_code.erl
contains the followin@spec annotation:

%% @spec duplicated_code(FileName ::filename(),
T MinLines ::integer(),
% MinClones::integer()) -> term().

which, after making some educated guess, can be turned into:

-type filename() :: string(). if one excludes warnings that are quite clearly a side-efiesome

-spec duplicated_code(FileName ::filename(), other warning.) In any case, 42 is a much more manageableerumb
MinLines ::integer(), than 164. Most warnings were due to eight additicstadcs in the
MinClones: :integer ()) -> any(). code of Wrangler 0.3 being erroneous, which we also comecte

If one continues this way, she is qu|ck|y faced with a prob|em Their modules are indicateq in the ‘global’ Column of Tabl& Be
Becausespec annotations are not routinely checked by the com- Whole process took about six hours. Of course, it would hakert

piler or any static analysis tool, many of them have suffdreth us less time had we been familiar with Wrangler’s code.
severe code rot and have become inaccurate, outdated joc@ave
pletely wrong. For example, to be correct, let alone predise wrong@specs
above-spec declaration should actually read: [_module | @specs [local | global
refac_batch_rename_mod 1
-type filename() :: string(). refac_duplicated_code 1 1
-spec duplicated_code(FileNames::[filename()], refac_expr_search 1
MinLines ::[byte()], refac_fold_expression 2
MinClones:: [byte()]1) -> any(). refac_gen 7 1
refac_move_fun 2
Note that the problem is not in the type declaration that virsin refac_new_fun 1 1
duced but in that the origin@spec annotation that the file con- refac_rename_fun 2
tained is not correct. refac_rename_mod 2
Out of curiosity, we performed the following experiment. We refac_rename_var 3 2
converted all 54@spec annotations of Wrangler 0.3 tespec refacutil 21 6 =
wrangler 11 2

declarations and added very loose type declarations ferrgmes
which were not documented in the code: we basically mapped Table 2. Wrong@specs in Wrangler 0.3; blank entries denote 0
most of these types tany (). This makes the contracts containing

these types as forgiving as possible. We then run Dialyzehen

Wrangler files. Dialyzer reported a total of 164 warningsc&le 3.2 Fixing defects exposed byspec declarations

that this was on a set of files which were warning-free witlt ~ \when-spec declarations become part of the code, interesting soft-
—spec deCIaranOnS. ThIS IS not the fII’St time we eXpenenced thlS ware defects are exposed by Dialyzer_ For example, the \Ae'ang
behaviour: Edoc annotations need to be treated with caution file refac_util.erl contains the following@spec annotation:

In our experience, the ‘convert allspecs at once’ approach
is very crude. The user is simply overwhelmed by the number @spec pos_to_var_name(Node::syntaxTree(), Pos::Pos) —->
of warnings that Dialyzer reports. We recommend the foltayyvi {?ok’, {atom(), {Pos, Pos}}} | ...
approach instead.

Start from some easy files. Easy files are either those that do
not contain manyspec annotations or those that depend on only
few other modules. This way, one has the chance to run Dialyze
on asingle module at a time and correct the defects that Dialyzer
identifies on a module-local basis. Then continue this wai} ath
modules have been processed. Note that this is not guadatitee -type pos() :: {integer(), integer()}.
result with a set of files which, when considered together, lwa -spec pos_to_var_name(Node::syntaxTree(), Pos::pos()) ->
analyzed by Dialyzer without any warnings. If the warnirgsttare {’ok’, {atom(), {pos(), posO}, catO}} | ...
produced are too many, then analyze the modules by consideri
the strongly connected components that they form, fix wasnin
in the process, and expand on this set until all modules can be
analyzed warning-free.

Fixing warnings of only one or of a small set of modules is usu-
ally quite easy. For example, for thefac_rename_var module,
one gets the following warning from Dialyzer.

To ease exposition, let us drop the variable names for ieéprr
to types, introduce a type declaration for what the authdrs o
Wrangler denote aBos, and fix this annotation so that its return
type is actually correct. The intended specification forction
refac_util:pos_to_var_name/2 should read:

wherecat () is some type. Iirefac_rename_var.erl this func-
tion is used as shown in Figure 7. In this code, Dialyzer wénas
the equality test betweerefinePos, which is a two tuple, and a
singleton list will always fail. Once again, this is a veryfidult bug
to spot or discover by testing because it is in code which lesnd
exceptional cases. (Under typical executions, the code tgothe
true branch anyway.)
refac_rename_var.erl:66:
The call cond_check(..., ..., NewNamel::atom())
breaks the contract (..., ..., NewName::string())

rename_var (Fname, Line, Col, NewName, SearchPaths) ->

case refac_util:pos_to_var_name(AST, {Line,Col}) of

where one can immediately see that there is something wrathg i {ok, {VarNeme, {_, DefinePos}, C}} ->

last argument of this function; either in the call on line 6rothe if DefinePos == [{0,0}] ->

contract of the function (i.e., thespec declaration that we added). {error, "Renaming of ... is not supported!"};
Finding out which of these two is to blame is a bit more tricky, true ->

especially if one is unfamiliar with the code. Quite ofterugh ... % code that renames the variable here

the module has some code part that gives a strong indicabiout a case cond_check(AST1, DefinePos, NewName) of
where to assign blame. e
We followed the approach we describe above and converted

all @specs to-specs ending up with a set of modules for which Figure 7. Portion of the code afefac_rename_var.erl

Dialyzer gave no warnings when run on a single module at a time

In the process we had to fix a total of ten erronespiscs out of the Once this problem gets exposed, Dialyzer also warns about
54 original ones. The ‘local’ column of Table 2 shows how thase other problems further down in the code. Figure 8 shows alsmal
partitioned per module. We then run Dialyzer on the comet®f portion of the code of theond_check/3 function. The call to

modules, which resulted in a total of 42 warnings. (In faotyd 7 lists:any/2 demands thaPos, which comes fronDefinePos

cond_check(Tree, Pos, NewName) ->

_) > B end, ...),
Bds) ->

BdVars = lists:map(fun(_, B,
Clash = lists:any(fun(bound,

F_Member = fun (P) -> ... end,
lists:any(F_Member, Pos) and ...
end, BdVars),

Figure 8. Portion of the code ofefac_rename_var.erl

in Figure 7, is a list. This code will surely fail if ever exded.
We could not decipher what exactly thidsts:any/2 call and
two similar occurrences further down in the code efid_check/3

try to do, so we did the best action we could think of: we simply
wrapped thePos variables in a list. This silenced all but one Dia-
lyzer warnings on the complete set of files of Wrangler 0.3.

3.3 Strengthening and factoring-type declarations

Since we were unfamiliar with Wrangler’s code, when addiag-c
tracts we initially mapped most types mentione@ipec annota-
tions (like for example the typesyntaxTree() andcat () in the
example of the previous section) to the typs () . This is the most
general type of the type system, representing the set ofrih&
terms. Mapping these typesday () has the property that Dialyzer
will not report any contract violations due to a mistake ia thef-
initions of these types. On the other hand, it is clear thahost
cases these type names denote only a subset of all Erlang aedn
mapping them tany () is a gross overapproximation. We can and
should do better than that.

However, unless one is pretty certain about the values afstyp
we recommend that initially one is not overly zealous in ¢@is-
ing them. The reason is that over-constrained type de@asatan
result in a lot of warnings from Dialyzer. As a result, it mighe
quite hard to find the culprits and correct these warningsoim- ¢
junction with erroneous-spec declarations. We instead recom-
mend that one first tries to come to a state where the existipgc
declarations do not result in any warnings from Dialyzer anty
then start constraining the types. Indeed, this is the @mbrove
followed when typing Wrangler.

Sometimes, Edo@type annotations already exist in the files
and these can be changed to the correspongigge declarations.
Some other times, type declarations are pretty obvious,gagc
the case of théilename () type that we mapped totring(). Fi-
nally, often information about types exists in commentypes are
pretty clear from the structure of terms and the names ohlbas.
This is for example what we did fqros (). In various parts of the
code, it was mentioned that this type denotes a pair of intege
Thus, we initially added the declaration:

-type pos() :: {integer(), integer()}.

and corrected the warnings reported by Dialyzer. None ohtivas
related to this declaration. Then, looking deeper in theecagk re-
alized thatpos () denotes the line and column numbers of a posi-
tion in the program source; the positi¢n,0} was used to denote
the default position or the absense of position informatitta sub-
sequently refined its declaration to exclude negative areg

-type pos() :: {non_neg integer(), non_neg_integer()}.

For safety, a Wrangler programmer might want to further trans
this type to appropriate integer ranges for lines and cokithat a
source file might contain. For example, the above declaratam
be refined to:

-type pos() :: {0..100000, 0..200}.

In short: like applications, types can lgadually refined and
strengthened up to the point that the programmer wishesosex
information about sets of values and impose constraintshein t
uses. This way, programs can protect themselves from ateite
violating these constraints.

Once types are declared, often one notices that the same type
definition appears in more than one file. For example, the @bov
type declaration fopos () was added and refined in a total of four
Wrangler files. It is of course bad software engineering firac
to have the same information in different places in the cte
can either place this type definition in a common header filiefwh
can then be included by all files that need it, or place it inyonl
one file, saym.erl, and then in all other files can use the notation
m:t () to refer to thist () type definition that module contains.
For Wrangler, since arangler . hrl file already existed, we opted
for factoring all type declarations that were used in moentbne
module to this header file.

3.4 Strengthening underspecifiedspec declarations

The next step is to gradually strengthen sorapec declarations,
because quite often many of them are underspecified. For-exam
ple, in the code of Wrangler about a third of @ipec annotations
specify a return type oferm() for the corresponding functions.
Obviously, this return type is not very precise; most of ehfsc-
tions return terms with a statically known structure.

Luckily, whenspecs become part of the code, there is an easy
automatic way to discover the underspecified ones among them

> dialyzer -Wunderspecs --src -I ../hrl -c *.erl

Running this command revealed a total of 19 underspecified
-spec declarations (out of the 54 ones). This was after we strength
ened the-type declarations; the number would have been 24 if we
had not done so.

Correcting the underspecified declarations is quite easy. F
example, for one of them Dialyzer reports:

refac_duplicated_code.erl:53:
Type specification for duplicated_code/3 ::
([filename (O], [byte ()], [byte()]) -> any()
is a supertype of the success typing:
([string (01, [byte 01, [byte()]) -> {’ok’,[1..255,...]1}

and of course it is a simple matter to change the return type in
the -spec declaration of this function fronany () to either the
return type which is reported by Dialyzer (denoting a twolgup
where the second element is a hon-empty string) or to thhtklig
underspecified but much more readable typek’ ,string() }.

It is important to note that the success typing informatien r
ported by the-Wunderspecs option of Dialyzer is a conservative
approximation of the behaviour of the function which is dafeise
and can be copied and pasted in the file as is. Its use will mever
sult in any additional Dialyzer warnings. Dialyzer does reslly
need its presence because it is the one that it infers. Bt the
a good reason to explicitly add this information in the fitepiio-
vides useful documentation and from that point on its caests/
with the code can be statically checked by Dialyzer.

Sometimes this search for underspecified contracts urgover
repeated patterns which are so common that they deserve thei
own type declaration. For example, the Dialyzer call abae r
vealed that many Wrangler files define an auxiliary function
application_info/1 thatreturns a two tuple of the forf{ _, _},
non_neg_integer () }. Turns out that the two underscores are al-
ways atoms and the non-negative integer represents tlyeofudt
function. We thus added the following type declaration:

-type appl_info() :: {{atom(),atom()}, arity()}.

> erlc +warn_missing_spec -I ../hrl refac_rename_var.erl

./refac_rename_var.erl:166: Warning: missing specification for function pre_cond_check/4

> typer --show-exported -I ../hrl refac_rename_var.erl
Unknown functions: [{refac_syntax,get_ann,1}, ...,
{refac_util,envs_bounds_frees,1}, ...,

%% File: "refac_rename_var.erl"
YA
-spec pre_cond_check(tuple(),_,_,atom()) -> bool().

{refac_util,write_refactored_files,1}]

-spec rename(Tree: :syntaxTree() ,DefinePos: :pos(),NewName: :atom()) -> {syntaxTree(),bool()}.
-spec rename_var(FileName::filename(),...,SearchPaths::[string()]) -> {’ok’,string()} | {’error’,string()}.

> typer --show-exported -1
Unknown functions: [{refac_syntax,get_ann,1}, RN

../hrl refac_rename_var.erl -T refac_util.erl

{refac_util,parse_annotate_file,4},{refac_util,post_refac_check,3}]

%% File:
hh

"refac_rename_var.erl"

-spec pre_cond_check(tuple() ,non_neg_integer () ,non_neg_integer(),atom()) -> bool().
-spec rename(Tree::syntaxTree(),DefinePos: :pos(),NewName::atom()) -> {syntaxTree(),bool()}.
-spec rename_var(FileName::filename(),...,SearchPaths::[string()]) -> {’ok’,string()} | {’error’,string()}.

Figure 9. Finding missing contracts for exported functions of modtdéac_rename_var using Typer

in the header file of Wrangler although we could refine the two
atom() types even further.

With the help of Dialyzer, many underspecified contracts can
be strengthened more or less automatically. However, ooelégh
be aware that Dialyzer does not report all underspecifiettacts.
Instead, Dialyzer only reports thos&pec declarations that are
found strictly more general than the correspondincgess typings
that it infers for these functions [5]. If there exists evereargu-
ment position in the-spec declaration which is more specific than
the corresponding success typing, Dialyzer will not repibese
declarations as underspecified. For this reason, one might
manually inspect altspec declarations to spot arguments and re-
turn values whose types are underspecified. In fact, thihéat we
did for Wrangler 0.3. After we corrected underspecified cats
which Dialyzer reported, we usegkep to detect-spec declara-
tions with an occurrence of theerm() or any () type and manu-
ally corrected these. There were an additionally nine suglec
declarations. The whole process described in this sulosetibk
about two hours to complete.

3.5 Adding -spec declarations for exported functions

To ease development and maintainability of Erlang appboat
we recommend that modules contaispec declarations for all
their exported functions. This way, at least their publiteiface

is documented and Dialyzer can detect possible violatibm$elp
detect modules whose public interface is not documentednwe
troduced a new compiler option in Erlang/OTP R12B-3, called
warn missing spec, which warns about missingspec declara-
tions for all exported functions of a module. We used thidarpt
on the files of Wrangler 0.3 which are not from Erlang/OTP. The
number of existing and missingpecs for exported functions for
these modules is shown in Table 3. As can be seen, only hdigof t
exported functions have a publicly documented interface.

With the help of this new compiler option and of the Typer
tool the missing function specifications can also be geadrsgmi-
automatically. For example, Figure 9 shows the three cordsare
used to find the missing contract of modulefac_rename_var.
The first command uses the new compiler option to see the &por
functions without specifications; there is only one of thenthis
module. Subsequently, Typer is used to generate spedadifisatbr
all exported functions in this module. For all functions hvix-
isting specifications (e.g. functiongname/3 andrename_var/5

@specS
[module present]| missing
refac_batch_rename_mod 1
refac_duplicated_code 1 1
refac_expr_search 1 2
refac_fold_expression 2
refac_gen 2 4
refac_module_graph 1
refac_move_fun 2
refac_new_fun 1
refac_rename_fun 1 1
refac_rename_mod 1
refac_rename_var 2 1
refac_util 21 21
wrangler 11
wrangler_distel 13
wrangler_options 1

Table 3. Number of existing and missingpecs for all exported
functions of Wrangler 0.3 modules; blank entries denote 0

in this case) Typer is printing them as these appear in the file
But Typer also generates conservative approximationsefipa-
tions for the remaining functions. As can be seen, the fitetit
to generate such a specification for functigte_cond_check/4
was only partly successful. The generated specificatiotagmno
type information for the second and third argument of thecfun
tion because Typer also complained that it does not knowharyt
about functions of modulesefac_syntax andrefac_util that
the refac_rename_var module is using. By instructing Typer to
trust the existing function specifications of fileefac_util.erl
(but recall that this module has specifications for only ludlfts
functions), Typer is able to infer an accurate specificatiwriunc-
tion pre_cond_check/4.

Actually, in this particular case, we happened to be somewha
lucky. Module refac_util contained type specifications which
are sufficient for Typer to infer a relatively accurate typforma-
tion for pre_cond_check/4. However, often this is not the case. In
those situations, we recommend that the user startsl&aimod-
ules (i.e., modules which do not call functions from othedules),
use Typer to annotate their exported functions with cotgraand
continue bottom up in the module dependency graph until al-m
ules are annotated with contracts.

One can even be brave and usethennotate option of Typer,
which will automatically insert the generatedpecs in the source
code of the file(s) on which Typer is run.

Of course, one must always keep in mind that the specification
that Typer generates are conservative approximationgdin they
are success typings) and will never contain any constraints that
are not present or enforced by the source code of the module.
In other words, these automatically generated specifitatire
correct but possibly imprecise. In most cases, the usersneed
refine them manually, both in order to strengthen them anddaro
to use appropriate type names for their arguments. For deathp
occurrence otuple () in the specification opre_cond_check/4
denotes ayntaxTree().

4. Contacting the Authors of Wrangler

At this point, instead of proceeding on our own, we decidedeb
in touch with the authors of Wrangler. We sent them our paptr w
the information it contains up to this point.

In the beginning of July 2008, the code of Wrangler had been
extended and somewhat changed compared with the versian-of J
uary 2008 that we were looking at, but most of our steps coasd e
ily be retraced even in the development version of Wranglee
Wrangler authors confirmed our findings. They also adesggkec
declarations for most exported functions of Wrangler megduUn-
fortunately, they added these specifications in one go ane suh-
sequently confronted with many Dialyzer warnings that tbeyld
not figure out their cause. So, they asked for our help. Ofsmur
the culprit was that some of thespecs that they added were in
conflict with the functions’ uses. In other words, the Wramngiu-
thors did not only confirm our findings but also corroborated o
opinion that converting aldspec annotations inte-spec declara-
tions in one go is something not recommendable in code bdses o
significant size.

With our help, the erroneous function specifications whiehnev
resulting in warnings from Dialyzer were corrected. Thererav
eight of them in a total of about 156spec declarations. In the
process, some of the specifications written by the authovgrah-

detects while the test suite is running. The recording ofatitact
violations happens using the Erlang error logger and carabeds
in a file, if so desired. The contract checker is straightfoto
use for code bases with an already existing test suite. The on
drawback, albeit a serious one, is that the test suite will ig-
nificantly slower. However, because all calls to contrautedated
functions originating from non debug-compiled modulesl wit

be checked, the user can fully control which parts of the duade
will be contract checked and the amount of runtime overhealet
test suite.

The authors of Wrangler provided us with a small test suite
that we used to test the validity ekpec declarations in files that
were somehow “touched” by this test suite. These files coathi
a total of 106-specs out of which 55 were checked at least once;
the remaining 51 concerned functions that were not callethby
test suite. The contract checker detected a total of sixraont
violations: two in calls to functions and four cases wherrfions
returned a value of different type than promised.

Two of the contract violations involved functioget_toks/1
and concat_toks/1 of the heavily calledrefac_util module.
They were both due to an erroneous declaration oftiieen ()
type by the Wrangler authors. This type was declared as:

-type token() :: {’var’, pos(), atom()}
| {’integer’, pos(), integer()}
| {’float’, pos(), float()}
| {’char’, pos(), char()}
| {’string’, pos(), string()}
| {’atom’, pos(), atom()}
| {atom(), pos(O}

but failed to account for the fact that the lexical analyzksoa
returns white spaces and comments as tokens. We extended thi
declaration by including the following two cases:

| {’whitespace’, pos(), whitespace()}
| {’comment’, pos(), string()}.

and added an appropriate definition for theitespace () type.
Therefac_util module contained another contract violation.

gler were tightened and a few more were added by us. The endThe functionget_bound vars/1 was declared as:

result was a Wrangler code base which was totally free froez Di
lyzer warnings, more robust, and with better documentadioout
its main functions. The Wrangler authors were happier buives
still not fully satisfied...

5. Testing Contracts of Wrangler

What troubled us was the following. Because Dialyzer’s ysialis
conservative and based on approximations, Dialyzer negorts
a code discrepancy if it is not absolutely certain that tiesome-
thing wrong with the code. In particular, alkpec declarations are
trusted and are assumed correct unless Dialyzer discovdeaa
conflict between their definitions and uses. For functionth wb
calls, for functions whose calls are with arguments whopegyare
not precise enough, or in cases where the return value isnpot i
volved in any explicit pattern matching, contract violatsowill not
be detected or reported.
For this reason, we have created yet another tool that, given
test suite, dynamically checks the validity-efpec declarations in
a set of files. This tool is not yet publicly available and itterface
is subject to changes so we will only describe its main idea.he
Currently, the tool starts with a set obean files and a test
suite which can be called from some top-level function (e.g.
mytest :run/N) possibly with some arguments. For all files which
have been compiled witebug_info on (and thus whosespecs
are retained in the byte code), it will employ runtime morniitg
to check the validity of their contracts and record all vimas it

%% @doc Return the bound variables of an AST node.

-spec get_bound_vars(Node: :syntaxTree()) -> [atom()].
get_bound_vars(Node) ->
get_bound_vars_1(refac_syntax:get_ann(Node)).

failing to account for the fact that a variable annotation ca&-
casionally be a two tuple containing an atom and a positiom (e
{78e1f’,{77,11}}).

The forth violation concerns functiofold_expression/3 of
therefac_fold expression module. Its contract reads:

-spec fold_expression(filename(),integer(),integer()) ->
{’0k’, [filename()1} | {’error’, string()}

but it is clear from the code, shown in Figure 10, that thiscfion
returns something different than a list of filenames (s8jnghen
the last argument to th&»1d_expression/4 function isemacs.

A similar, though not the same violation, concerned therretu
type of refac_move_fun:move_fun/6. Finally, the last violation
was detected in the contract of functiosfac_gen: generalise/5
whose last argument was erroneously specified as bedig @
when in fact it should bédir ()] (i.e. a list of directories).

After the corresponding changes, the contract checkerrtegpo
no violations when running Wrangler's test suite. Of coutbés
does not mean that Wrangler’s contracts were not erroneous a
more. Instead, it just means that contracts which were ezt by
the test suite accurately reflect their common uses.

fold_expression(FileName, Line, Col) ->
fold_expression(FileName, Line, Col, emacs).

fold_expression(FileName, Line, Col, Editor) ->
case refac_util:parse_annotate_file(FileName, true, []) of
{ok, {AnnAST, _Info}} —->

Candidates = search_candidate_exprs(AnnAST, FunName, FunClauseDef),
case Candidates of

[1 -> {error, "No expressions that are suitable for folding against ..."};
_ —> Regions = case Editor of
emacs —>

lists:map(fun({{{StartLine, StartCol}, {EndLine, EndCol}},NewExp}) ->
{StartLine, StartCol, EndLine, EndCol, NewExp, {FunClauseDef, ClauselIndex}}
end, Candidates);
eclipse -> Candidates
end,
{ok, Regions} %% or {ok, FunClauseDef, Regions}? CHECK THIS.
end;
{error, Reason} -> {error, Reason}

Figure 10. Portion of the code ofefac_fold _expression.erl

6. Concluding Remarks References
In this paper we described in detail the steps needed to gligdu [1] M. Jiménez, T. Lindahl, and K. Sagonas. A language faciping
type the code base of an existing Erlang application. Wefuiiye type contracts in Erlang and its interaction with succegitys. In

Proceedings of the 2007 ACM S GPLAN Erlang Workshop, pages
11-17, New York, NY, USA, Sept. 2007. ACM Press.

H. Liand S. Thompson. Testing Erlang refactorings withi€kCheck.
In Pre-proceedings of Implementation of Functional Languages, Sept.
2007.

H. Li and S. Thompson. Tool support for refactoring fuongl
programs. InProceedings of the 2008 ACM SSIGPLAN Symposium

documented the methodology we advocate, the effort thag-is r
quires, and the pitfalls that it may involve. In most codedsathe
process is far from straightforward, but with the help of tatic (2]
and dynamic analysis tools we have developed it can at least b
performed semi-automatically.

In our experience, what we have described for the code base of 8

Wrang!er in no way refects on its qual!ty asan app|lcatl0l’fb.1bt, on Partial Evaluation and Semantics-Based Program Manipulation,
it is quite typical for most Erlang applications out therewhich pages 199-203. ACM Press, Jan. 2008.
we .hav.e applied Dialyzer. Type lnfprmatlon is not a panabed, [4] T. Lindahl and K. Sagonas. Detecting software defectteiacom
having it as part of the code helps in catching some easy &xtet applications through lightweight static analysis: A warrgt In C. Wei-
programming errors, documents intended uses of functions a Ngan, editor,Programming Languages and Systems. Proceedings of
results in code which is easier to understand and whoseatoess the Second Asian Symposium (APLAS 04), volume 3302 ofLNCS,
is easier to maintain. pages 91-106. Springer, Nov. 2004.

[5] T. Lindahl and K. Sagonas. Practical type inference dasesuccess
Acknowledgements typings. InProceedings of the 8th ACM SIGPLAN Symposium on

Principles and Practice of Declarative Programming, pages 167-178,
The research of the second author has been supported inypart b New York, NY, USA, 2006. ACM Press.
a grant from the Swedish Research Council (Vetenskapdrade
We thank Huiging Li and Simon Thompson for confirming our
findings, giving us access to their repository and sending test
suite for Wrangler.

