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Abstract

We present practical poisoning and name-server block-
ing attacks on standard DNS resolvers, by off-path,
spoofing adversaries. Our attacks exploit large DNS
responses that cause IP fragmentation; such long re-
sponses are increasingly common, mainly due to the use
of DNSSEC.

In common scenarios, where DNSSEC is partially or
incorrectly deployed, our poisoning attacks allow ‘com-
plete’ domain hijacking. When DNSSEC is fully de-
ployed, attacker can force use of fake name server; we
show exploits of this allowing off-path traffic analy-
sis and covert channel. When using NSEC3 opt-out,
attacker can also create fake subdomains, circumvent-
ing same origin restrictions. Our attacks circumvent
resolver-side defenses, e.g., port randomisation, IP ran-
domisation and query randomisation.

The (new) name server (NS) blocking attacks force re-
solver to use specific name server. This attack allows
Degradation of Service, traffic-analysis and covert chan-
nel, and also facilitates DNS poisoning.

We validated the attacks using standard resolver soft-
ware and standard DNS name servers and zones, e.g.,
org.

1 Introduction

The correctness and availability of information in the Do-
main Name System are crucial for the operation of the
Internet. In particular, DNS poisoning is a significant
threat to Internet security, and can be used for phishing,
credentials stealing (e.g., XSS), sending spam and phish-
ing emails, eavesdropping, and more. Due to its wide
use and universal availability, the DNS is also abused in
other ways for different goals, including Denial of Ser-
vice, fast-flux, covert botnet communication, and more.
Most DNS (poisoning and other) attacks ‘in the wild’,
as well as most research, considered an off-path adver-

sary that is able to send spoofed packets (but not to inter-
cept, modify or block packets). The most well known
is Kaminsky’s DNS poisoning attack [21]], which was
exceedingly effective against many resolvers at the time
(2008). Kaminsky’s attack, and most other known DNS
poisoning attacks, allows the attacker to cause resolvers
to provide incorrect (poisoned) responses to DNS queries
of the clients, and thereby ‘hijack’ a domain name. We
refer to this type of attack as Domain-hijacking DNS poi-
soning, to distinguish between it and two other variants
of DNS poisoning, to which we also present off-path at-
tacks; more below (and see Table [T).

The increased awareness to the risks of DNS poison-
ing, following the publication of Kaminsky’s attack, was
one of the factors helping to speed-up the (long-overdue)
adoption of the DNSSEC standard [2-4]. DNSSEC uses
digital signatures to prevent poisoning of the DNS re-
sponses, and is hence secure even against man-in-the-
middle (MitM) adversaries. DNSSEC had a long and
thorough design and evaluation process, and its secu-
rity is based on extensive evaluation by many experts,
as well as on results of formal analysis, e.g., by Bau and
Mitchell [5]]. (There are also alternate proposals for se-
curity against MitM, e.g., DNS Curve [7]).

However, deployment of DNSSEC is challenging and
would take considerable time. Hence, as a more im-
mediate response to Kaminsky’s attack, resolvers were
rapidly ‘patched’ to protect against it, mostly following
RFC5452 [19]]. The ‘patches’ include source port ran-
domisation, source and destination IP randomisation,
and query randomisation: case toggling (‘0x20 encod-
ing’, [9]) and addition of a random prefix to queries [30].

These ‘patches’ increase the entropy of ‘unpre-
dictable’ fields copied from DNS requests to DNS re-
sponses, and hence are trivially insecure against MitM
attackers. However, these patches are considered ‘best
practice’, since they are believed to provide sufficient se-
curity against off-path attackers (which is considered as
sufficient defenses for many systems).



We show that, under common scenarios - which seem
likely to become even more common in the future, an
off-path attacker can efficiently circumvent all of these
mechanisms. Namely, an off-path attacker can perform
effective ‘domain-hijacking’” DNS poisoning attack, cir-
cumventing all the ‘patches’, and with even better effi-
ciency than Kaminsky’s poisoning technique. However,
our domain-hijacking attack fails when DNSSEC is cor-
rectly and fully deployed. This attack works in scenarios
where DNSSEC is partially or incorrectly deployed, such
as permissive resolvers and islands of trust; currently,
such scenarios are rather common.

We also present three other attacks, which apply even
if DNSSEC is correctly and universally deployed:

Subdomain Injection, is a poisoning attack which
causes resolvers to accept, cache and provide to clients
a mapping for a non-existing (child) domain, of a
DNSSEC-protected parent domain. As [5]] observed,
when the parent zone supports NSEC3 opt-out, the at-
tacker can create fake (non-existing) sub-domains; this
can lead to attacks on Same Origin Policy such as XSS,
phishing and cookie stealing. We show how an off-path
attacker can achieve the same effect.

Name Server (NS) Hijacking, is a poisoning at-
tack which causes resolvers to cache and use incorrect
name servers for a DNSSEC-protected domain, typically,
pointing them to name servers belonging to the attacker.
We show how this attack provides new, efficient off-path
methods for traffic analysis, covert channels and Denial
of Service; notice the attack and its applications are vi-
able, even if DNSSEC is universally and correctly de-
ployed, since the delegation NS and A resource records
(RRs) are not signed.

Name Server (NS) Blocking, allows the attacker to
force resolvers to query name servers of his choice, and
stop using other name servers, by corrupting fragmented
responses from those name servers. This is not a poison-
ing attack, since it does not involve a resolver accepting
fake resource records. In fact, one application of this at-
tack is to facilitate poisoning, by causing resolvers to use
specific name servers, possibly known to be vulnerable;
this provides an effective mechanism to deploy the attack
of [32]], which was, so far, considered impractical. Under
certain situations, this attack can also be used for off-path
Degradation of Service and traffic analysis.

We summarise all our attacks, with their requirements,
in Table[T] The requirements are explained in Section 2}
for now, it suffices to mention that they all reflect com-
mon situations in the current DNS, many of which are not
expected to change, even if DNSSEC is fully, universally

and correctly deployed. The main exception is attacks
which require partial or incorrect DNSSEC deployment;
however, not only is this requirement currently often sat-
isfied, but it is also required only for the ‘domain hijack-
ing’ attack.

In fact, ironically, the use of DNSSEC is often what
provides necessary requirements for our attacks to work.
Specifically, all of our attacks require ‘Fragmentable
zone’, implying fragmented DNS responses; and three of
the attacks require ‘Poisonable zone’, implying that the
second fragment contains complete resource record(s),
from the ‘authority’ and/or ‘additional’ sections. More
details on the requirements are presented within.

DNSSEC requires long resource records (RRs) which
results in long DNS responses. Long DNS responses
(i.e., above 512 byte) require support of the EDNS exten-
sion mechanism, [35]], and often fragmented when sent
over UDP, since their size exceeds the path MTU. It is ex-
actly this fragmentation that facilitates our attacks; e.g.,
we show that off-path attackers can often replace the sec-
ond fragment of a packet, resulting in a seemingly-valid,
yet fake, DNS response, or ‘merely’ causing corruption
of the DNS response.

Fragmentation is known to be problematic or ‘harm-
ful’, mainly due to the negative impact on performance;
see the seminal paper of Kent and Mogul [23]]. As a
result, fragmentation is usually avoided, e.g., by use of
path MTU discovery [28,29], mainly for connection-
based transport protocol (TCP). However, DNS traffic is
usually sent over UDP; while several significant name
servers, e.g., com, edu, send long responses over TCP,
this may not be a good long-term solution, since the use
of TCP results in significant overhead.

Related Work.

Our work builds upon previous disclosures of vulnera-
bilities due to the design or implementations of the frag-
mentation mechanism; we next mention few of the most
relevant. Zalewski [37] suggested that it may be possi-
ble to spoof a non-first fragment of a (fragmented) TCP
packet. However, using such non-first-fragment injec-
tions to TCP packets seems challenging. Furthermore,
currently almost all TCP implementations use path MTU
discovery [28l29] and avoid fragmentation.

Several vulnerabilities related to IP fragmentation, and
specifically to predictable fragment identifiers (IP-ID)
values, are covered in [14,|15]]. Later, predictable IP-
ID values were shown [12] to allow interception and in-
jection of fragments, as well as dropping of fragmented
packets. While for our purposes, a simple, randomised
modification of fragments suffices, we modify the tech-
nique from [|12]] to improve the efficiency of the attack in
some scenarios; details within.
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Table 1: Our attacks and requirements.

Attacker Capabilities.

The required attacker capabilities include an arbitrary
off-path, spoofing-only adversary, that controls a ‘pup-
pet’, i.e., malicious (but sandboxed) script which can
query the resolver; see Figure I]
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Figure 1: Simplified network topology and attacker capabilities. The
spoofing attacker uses a puppet to invoke the query.

Contributions.

Incremental DNSSEC Deployment is Vulnerable We
show that incremental deployment of DNSSEC is
risky, and exposes resolvers to cache poisoning at-
tacks. We present techniques which allow efficient
and effective Kaminsky-style [22] cache poisoning
attacks, using off-path spoofing adversaries. Our
techniques (exploiting fragmentation) allow to
circumvent the entropy (randomisation of query,
source port and IP) in DNS responses, as those
entropy fields remain in the first fragment. This
exact technique of circumventing the entropy fields
allows us to revive the Kaminsky attack, and to
replace the authentic records in a DNS response
with spoofed records.

Subdomain Injection We show that an off-path at-
tacker can perform the attack that was believed to
be feasible for MitM.

Unsigned Delegation We suggest attacks exploiting un-
signed NS and A delegation records, breach-

ing privacy and anonymity, and inflicting de-
nial/degradation of service.

Name Server (NS) Blocking We introduce the name
server blocking technique, which allows an attacker
to force the resolver to stop using a particular name
server, and eventually, to query a name server of at-
tacker’s choice, e.g., a compromised name server,
when resolvers strictly follow RFC 4697 [25]].

We performed an experimental evaluation of our attacks
against standard resolver software and issuing queries
to real TLD name servers, such as org, and against
the name server of the domain of our university, i.e.,
sec.cs.biu.ac.il.

Organisation.

In Section [2] we outline the assumptions which are re-
quired for our attacks and in Section [3.1] we provide the
basic mechanisms for our attacks. Then, in Section [3.2}
we show techniques for name server blocking, and in
Section[d] we present the poisoning attacks. We then con-
clude and propose defenses in Section [3]

2 Attacks Requirements

In this section we describe the requirements of the differ-
ent attacks that we introduce in this work. See Table[Ilfor
the requirements of each attack. Below, we dedicate one
subsection to the ‘Fragmentable zone’ and ‘Poisonable
zone’ requirements, and another one to the ‘Permissive
or Island’ requirement. We initiate with a brief descrip-
tion of three technical requirements: IP-ID, NSEC3 opt-
out and RFC 4697.

2.1 Technical Requirements

The IP-ID requirement is that attackers have ‘reasonable’
probability of success in guessing the IP-ID in the re-
sponses from the name servers. In IPv4, the IP-ID field



consists of only 16 bits; considering that fragment re-
assembly can usually hold a significant number of frag-
ments for specific senders, typically at least 64, this im-
plies a good success probability even if attacker just
guesses the IP-ID values. Furthermore, many systems,
and in particular most name servers, authoritative for ma-
jor TLD zones, e.g., mil, use operating systems where IP-
ID is generated sequentially, either globally (for all des-
tinations) or with per-destination counters. In both cases,
we can significantly improve the probability for a correct
match. We optimised the IP-ID prediction, in the per-
destination case, by adapting the technique of [12] to be
used with resolver. Note that in IPv6, it is harder to pre-
dict the IP-ID, since it is 32 bits and is sent only in frag-
mented traffic; however, IPv6 specifically recommends
the use of sequential IP-ID, and hence can be guessed
with good chance of success. The bottom line is that the
IP-ID requirement is almost always satisfied.

The NSEC3 opt-out requirement is that the zone
uses NSEC3 DNSSEC record with opt-out option [26]].
This allows attackers to create fake (non-existing) sub-
domains, and thereby facilitate XSS, phishing and cookie
stealing attacks. Sub-domain injection attack was pro-
posed in [3f], that carried it out by a MitM attacker. In
fact, [5]], also suggested that the attack could be carried
out by an off-path attacker, assuming that only the trans-
action ID in DNS packets is randomised. However, this
assumption does not hold for most DNS resolvers, as
they (at the very least) support source port randomisa-
tion. In Section we show that such an attack can be
effectively carried out by an off-path attacker, that does
not intercept and inspect packets, and against patched
DNS resolvers, i.e., supporting source port randomisa-
tion, IP randomisation and DNS query randomisation.

In spite of the publication of this potential abuse by
MitM [5]], NSEC3 opt-out is still widely used, and often
even recommended, since it improves performance (esp.
as long as DNSSEC is deployed only in small fraction of
the domains).

The RFC 4697 requirement is that resolvers adhere
to (one of) the recommendations in RFC 4697 [25}36],
specifically, that a resolver will refrain from sending
queries to a name server after (few) failures, i.e., timeout
queries, within a predefined time interval, and to lame
name servers, i.e., those that provide DNS responses
where (some of) the DNSSEC records, e.g., signatures,
are missing or corrupted. We show in Section [3.2] that
this allows an attacker to cause resolvers to stop using
specific name server(s), facilitating poisoning attacks, as
well as other attacks, including off-path traffic analysis
and covert channel attacks. We validated this behaviour
in popular and standard DNS resolvers, see Section[3.2]

2.2 Fragmentable Zone and Poisonable
Zone Requirements

We now describe our two fragmentation requirements:
‘Fragmentable zone’ and ‘Poisonable zone’. The ‘Frag-
mentable zone’ requirement is necesssary to all of our
attacks, and essentially amounts to the ability of the at-
tacker to cause fragmentation of a response from a name
server. As can be seen in Figure [2] long second frag-
ments are rather common, and responses are fragmented
from most top level domains (which deploy DNSSEC),
e.g., in the gov top-level domain, which is the top-level
domain with maximal adoption of DNSSEC so far.

Note that fragmentation can also occur even if the
resolver does not deploy DNSSEC, e.g., it relays a
query for a DNSKEY from the client, or due to other
types of records which can be long, e.g., different TXT
records, and/or when fragmentation occurs at relatively
low packet length [, due to success in sending fake ICMP
fragmentation-required alerts (see Section [2.2).
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Figure 2: Length of ANY and NXDOMAIN responses of gov do-
mains. Domains taken from [10]

The ‘Poisonable zone’ requirement is necessary for
our poisoning attacks, and requires that at least one com-
plete record is present in the second fragment so that the
attacker can modify the second fragment and replace the
authentic resource record with a spoofed one, which gets
accepted and cached by the resolver. Details follow.

The ability to cause the required fragmentation de-
pends both on the records in the zone file, as well as
on the properties of the name server (including the route
from the name server to the resolver). In particular, frag-
mentation typically depends on the smallest MTU en-
route on the path from the name server to the resolver;
packets larger than 1500 bytes will normally be frag-
mented. The attacker may also sometimes be able to
‘trick’ the name server into fragmenting (even) shorter
packets before sending them. The attacker can inflict



fragmentation by sending a spoofed ICMP ‘fragmenta-
tion needed’ packet, similar to attacks in . Let [
denote the size of packets, above which attacker can
cause fragmentation - the minimal MTU along the path,
or the minimal length that the attacker can ‘force’ the
name server to use by issuing fake [CMP fragmentation-
needed alerts.

In principle, name servers could be configured to
never allow fragmentation of responses, by sending re-
sponse packets of length up to (some bound of) / bytes
with the DF (do not fragment) bit set, and send longer
responses only via TCP, relying on TCP’s path MTU
discovery mechanism. However, the use of TCP for
DNS requests and responses has significant performance
penalty, in addition to the overhead and complexity of
handling fragmentation-required ICMP alerts received
due to sending packets with the DF set, which reach
a network whose MTU is smaller than the packet size.
Hence, we do not expect name servers to send packets
with DF bit set (and indeed have not seen this behavior,
e.g., com, edu).

Note that for the ‘Fragmentable zone’ requirement to
hold, any fragmentation suffices, e.g., of 1 byte, and there
is no requirement on the contents or length of the sec-
ond fragments. Hence, we only require existence of a
response whose length is greater than [.

A ‘Poisonable zone’ requirement is a stronger assump-
tion, since it also implies that the attacker is able to in-
clude a (fake) resource record in the response, such that
the response - and in particular the fake record - would
pass validation at the resolver and get cached. This re-
quires that the second fragment is predictableﬂ (to allow
attacker to avoid corrupting the checksum), and that it
contains at least one modifiable record - typically, an
NS record in the authority section, or an A (‘glue’)
record in the additional section. The challenge here
is mainly to find queries which will result in second frag-
ments containing the necessary record(s) which the at-
tacker will replace with its own.

CACHING AND TIME TO LIVE (TTL). The DNS re-
solvers will not issue queries at all, if there is a corre-
sponding cached response. The TTL field of each DNS
resource record indicates how long it may be cached by
resolvers.

The majority of TTLs of DNS records range between
one hour to one day, . However, many records have
very low or even zero TTLs, e.g., records of content dis-
tribution networks (CDNs). Furthermore, some queries,
most notably for non-existent domain, always or usu-
ally would not be in cache. In fact issuing queries for
non-existent domain is similar to Kaminsky style attack,
and allows to initiate the attack as frequently as required

IThe (off-path) attacker can query the victim name server itself to
select the query whose response it will poison.

since the attacker simply prepends a new random string
to the query. We demonstrated attacks exploiting frag-
mented non-existent domairﬂ or na-datcﬂ (1], DNSSEC-
enabled responses. We also found that often DNSSEC
public verification key (DNSKEY) records, which typ-
ically exceed MTU and get fragmented, have relatively
short TTL e.g., 15 minutes in org domain; they also of-
ten indicate short expiration time in the signatures.

Hence, caching would usually not prevent the attack,
and the expiration time of some record from the cache
can be anticipated by the attacker; there may be some
impact on length of attack and possibly on its commu-
nication costs too, but this would not make the attack
infeasible. Usually, successful poisoning happens within
reasonable time.

2.3 ‘Permissive or Island’ requirement

The ‘Permissive or Island’ requirement is that DNSSEC
validation is either not used or is not correctly used, and
thus ignored by the resolver; ‘Island’ means that not
all the zones from the root to the target zone deploy
DNSSEC correctly, and ‘Permissive’ means that resolver
does not fail even DNSSEC-enabled responses do not
validate. In either of this cases, DNSSEC does not of-
fer protection, although deployed.

unprotected

protected ® island ®

Figure 3: The DNSSEC deployment, in the list from of 1500
subdomains of gov.

Permissive Resolvers. A permissive resolver is one
that supports DNSSEC, however, ignores DNSSEC val-
idation failures, e.g., if the signatures are missing or in-
valid; Unbound DNS resolver has an explicit ‘permis-
sive’ mode to support such operation. Obviously, for

2Non-existent domain DNS response contains an error bit in the
DNS header, i.e., RCODE=‘name error’, and indicates that the re-
quested name does not exists in the zone file.

3No data DNS response does not contain an error, i.e., RCODE=‘no
error’, and it means that the requested name exists in the zone file but
does not have the type requested in the DNS query.



such resolvers, DNSSEC does not provide added secu-
rity; yet, there appears to be a significant number of such
resolvers [8}/16]], apparently due to concerns about loss of
connectivity due to interoperability and other problems
upon enforcing DNSSEC. Such implementors deploy
DNSSEC incorrectly or possibly via an ‘incremental de-
ployment’, aiming to preserve DNS functionality with
intermediate Internet devices, e.g., firewalls, and legacy
resolvers which may discard DNSSEC enabled DNS re-
sponses or strip DNSSEC signatures. This approach ap-
parently assumes that permissive use of DNSSEC can
provide evidence on whether the network can deploy
DNSSEC fully without problems or not, while not harm-
ing their security; unfortunately, this is not the case and
such resolvers are open to poisoning.

Island of Security. When the parent zone returns an
NSEC or NSEC3 (indicating that the child does not sup-
port DNSSEC), while the child does, the resolver can-
not establish a ‘chain-of-trust’ to the target zone and thus
cannot validate the DNSKEY of the zone. This holds for
many second level domains, e.g., children of gov TLD
(Figure , and even for some TLDs, e.g., mil. As a re-
sult, the resolver falls back to non-validating mode, and
ignores the signatures in a DNS response.

3 Fragment Overwriting and NS-Blocking

In this section, we present the Name Server blocking (NS-
blocking) attack, allowing attackers to cause resolvers
to avoid querying a name server. This attack requires
much weaker assumptions than the poisoning attacks,
Section 4] and only assumes that the responses get frag-
mented. Both NS-blocking and the poisoning attacks,
rely on Fragment Overwriting.

Fragment Overwriting, explained next, allows attack-
ers to modify fragmented packets. In Section [3.2] we
explain how fragment overwriting allows an attacker to
cause standard-conforming resolvers to avoid a particular
name server, i.e., to perform NS-blocking. Then, in Sec-
tion[3.3] we discuss potential exploits of NS-blocking.

3.1 Fragment Overwriting

We now present a simple technique, allowing an attacker
to replace (overwrite) second fragments of (fragmented)
IP packets, in particular, of DNS responses sent to the
resolver; this basic technique is applied in all of our at-
tacks.

Suppose the original packet has payload x, and, after
fragmentation, it is sent as two IP packets y1, y2. Then,

the defragmentation process, running at the resolvelﬂ on
inputs < y,ys > reproduces x.

To overwrite the second fragment, the attacker sends a
fake second fragment v/ so that it arrives at the defrag-
mentation module before the authentic fragments y1, y2
of the DNS response. The defragmentation mechanism
in the IP layer will cache y5, in anticipation of the rest
of the packet. By default, an unmatched fragment is kept
in the cache for 30 seconds or so, hence, ‘planting’ such
fake fragments is easy; we now explain how the attacker
can ensure a match with the original packet. Note that
it is easy to adjust this technique for the (less common)
case where fragments are sent in a reverse order: attacker
removes the authentic second fragment ys from the re-
assembly buffer by sending an arbitrary ¢} (whose val-
idation fields match those of the y5), and the rest is the
same as above.

According to [18}31]] the fragments of a datagram are
associated with each other by their protocol number, the
value in their IP-ID field, and by the source/destination
IP address pair. Thus both the first authentic fragment
y1 and the second spoofed fragment 5 must have the
same destination IP address (of the resolver that sent the
query), the same source IP address (of the responding
DNS server), the same protocol field (UDP) and the same
fragment identifier (IP-ID). In addition, the spoofed sec-
ond fragment should have the correct offset (as in the
authentic second fragment). The fragment reassembly
process, applied to the pair < yi,y5 >, returns either a
failure or a different packet x’ # x.

Matching most of these parameters is not difficult. In
particular, path MTU changes infrequently, and can be
found by attacker easily, e.g., by trace-route. In many
scenarios, the resolver has a single, known IP address;
zones typically have 6 IP addresses on average. The at-
tacker may sometimes also have some knowledge on the
likely name servers since the server selection algorithms
of many resolvers can be predicted [36]], e.g., based on
latency, and may even use our attacks to disable some
name servers; in the worst case, the attacker can launch
the attack for each name server in parallel. In this work
we show techniques which often allow the attacker to
simply block the name servers of its choice.

It remains to ensure a match between the value of the
fragment identifier (IP-ID) field in the fake fragment y),
and the IP-ID in the authentic fragment y; of the orig-
inal response x. There are several possible options for
IP-ID prediction, depending on the version of the IP pro-
tocol (IPv4 or IPv6), the method that the name server’s
OS uses to select IP-IDs, and on the receiver implemen-
tation.

In the most common case the communication is over

4 Alternatively, defragmentation may happen and at intermediate de-
vice such as a firewall or NAT; there is no impact on the attack.



IPv4, where the IP-ID field is 16 bits; and the host per-
forming the defragmentation process, i.e., the resolver or
firewall, has cache of 64 (or more) fragments per partic-
ular <source IP, destination IP, protocol> combination;
note that when more than 64 fragments (for the same tu-
ple) arrive, the oldest fragment is evicted from cache and
is replaced with the new one. Assuming that the attacker
has no knowledge on the process according to which
the IP-ID is incremented, and assuming the IP-ID in the
packet and in the fake fragment are selected indepen-
dently, it suffices for the attacker to send 64 spoofed sec-
ond fragments, to ensure success probability of roughly
1/1000 of replacing the second fragment of a packet in
a single attempt. A much better probability of success
(as we discuss next) can typically be achieved, however,
even this attack can be sufficiently efficient for many sce-
narios.

Most systems select the IP-ID sequentially. Of these,
many use a single counter for all destinations (globally-
sequential), as in Windows and by default in FreeBSD.
Other systems, e.g., Linux, use per-destination 1P-ID
counters. In both of these cases, the attacker can ef-
ficiently predict the IP-ID, achieving high probability
of success (certainly compared to 1/1000). In particu-
lar, for globally-incrementing IP-ID, which appears to
be more widely used, e.g., mil, the attacker can simply
learn the current value, and the rate of propagation, by
querying the name server directly. The technique we use
to achieve improved success probability in the case of
per-destination IP-ID, is an improvement of the methods
of [12]. These techniques ensure feasibility of the attack
even for most implementations of IPv6, in spite of its use
of 32-bits IP-ID field.

3.2 Name-Server Blocking

In this subsection, we present the NS-blocking attack,
allowing an off-path attacker to dissuade resolvers from
querying particular name server(s); this can have multi-
ple goals, including denial/degradation of service, traffic
analysis and more (see next subsection).

As indicated in Table [T} the NS-blocking attack has
two main requirements: the ability of the attacker to gen-
erate a DNS query from the resolver, that will result in
fragmented response from the ‘victim’ name server; and
that the resolver follows a behaviour recommended in
RFC 4697 [25/36]], namely, of avoiding a name server if
there are two or more failures within some time interval
(the time interval depends on the resolver implementa-
tion). We first describe how the attacker is able to block
responses to a particular query, which does not rely on
the behaviour recommended in [25].

To block responses to a query from a particular name
server to the resolver, the attacker needs to send an ar-

bitrary fake second fragment y5 with the anticipated IP-
ID and other parameters, to match a legitimate response,
as described above. The reassembly process using the
legitimate first packet and the fake second fragment usu-
ally fails, and both fragments are silently dropped, by the
UDP layer or by the DNS resolver itself, due to incor-
rect checksum. The resolver will resend the query after
a timeout, but the timeout periods are known to the at-
tacker, who can easily send appropriate fake fragments
to cause loss of each of the responses, until the resolver
gives up. The number of attempted retransmissions de-
pends on the number of name servers that the zone uses;
if the zone uses one name server, the resolver gives up
in about 5 to 7 retransmissions, e.g., Bind9 after 7 time-
outs, and Unbound 1.4.10 after 5 timeouts, if the zone
uses more name servers then after one to two timeouts
the resolver queries the next name server.

We show how to apply this technique, in order to per-
form NS-blocking, i.e., block a specific name server, in-
stead of blocking just one particular packet. For this,
we need the assumption that the resolver avoids querying
unresponsive name servers, as per the recommendations
in [25//36]]. We exploit the fact that when the target name
server is not responsive, i.e., two or few queries times-
out, the resolver does not sen(ﬂ any more queries to it.

The attack is illustrated in Figure ] The idea is for
the attacker to send a spoofed fragment, e.g., one byte
long, which ruins the DNS response from the specific IP
address. After repeating the attack few times (depending
on the resolver software), e.g., twice in every 15 minute
interval for Unbound, the resolver marks the name server
(or rather the IP of the name server) as non-responsive
and does not send queries to it for the specified interval
of time which depends on the resolver implementation.

It is important to notice, that with most resolvers, NS-
blocking is effective against a specific name server IP,
and not limited to a specific domain. Namely, we can use
NS-blocking to dissuade a resolver from using a specific
name server, e.g., at I[P address 38.103.2.1, using queries
(with fragmented responses) to one domain isi-sns.info,
and as a result the resolver will also avoid this name
server for all the other domains which that server serves,
e.g., paypal.com. This can be very useful, as name
servers often host multiple domains, and some of these
may use DNSSEC (and have fragmented responses), or
be owned (or corrupted) by the attacker (who can put
some other record with fragmented response), while oth-
ers may only have short (unfragmented) responses, in ad-
dition, some domains are much less frequently queried,

SResolvers may send periodical probes, to detect when the target
server becomes responsive, however, the period is so long that we can
ignore it, e.g., for the Unbound name server, the period is 15 minutes.
A similar behaviour of avoiding non-responsive name servers was ob-
served by [36] in PowerDNS and WindowsDNS.
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Fi gure 4: The Name-Server blocking attacks.

e.g., info, than popular domains, e.g., paypal.com, that
use the same name server, allowing to match the IP-ID
with little effort; e.g., [32] show that a typical domain
name depends on 46 name servers on average which also
serve other domains.

As illustrated in Figure @] we performed the attack
against a 404.gov domain, whose non-existing domain
responses exceed 1500 bytes and thus get fragmented en-
route. This phase, of forcing the resolver to use a specific
IP, requires a puppet, i.e., a script confined in a browser,
which issues DNS requests via the local caching DNS
resolver, at IP 1.2.3.4 in Figure 4]

In steps 1 and 2 the puppet coordinates with the
attacker and issues a DNS request for $123.404.gov
(where $123 is a random prefix). In steps 3 and 4, the
spoofer sends a forged second fragment, for all the possi-
ble name servers (i.e., a total of 2 spoofed fragments) ex-
cept one which the attacker wants the resolver to use for
its queries during the poisoning phase; the 404.gov do-
main has three name servers. This ensures that only one
IP address will result in a valid response, and the other
two result in a malformed DNS packets. The spoofed
second fragment is incorrect, and contains a single arbi-
trary byte (in addition to headers). In step 5, the spoofed
second fragment is reconstructed with the authentic first
fragment resulting in a malformed DNS packet which
leaves the fragments reassembly buffer. This malformed
DNS response is then discarded by the resolver, and the
IP of the name server is markecﬂ as ‘non-responsive’.
When the authentic second fragment arrives, it does not
have a match and is discarded after a timeout. As a re-
sult the resolver does not receive the response, and after
a timeout it resends the DNS request to the next DNS
server, step 6. The same procedure applies here, and the
response is discarded. In step 9 a valid response arrives

SIn reality the resolver marks the server as ‘non-responsive’ after
two unsuccessful responses; this is handled by sending two spoofed
fragments with consecutive IP-ID in IP headers.

from IP 162.138.183.11. This way, by wrecking the re-
sponses from all name servers except one, we forced the
resolver to direct all its queries for 404.gov domain to
162.138.183.11.

The IP-ID allocation algorithm does not have a signif-
icant impact on our attacks against such resolvers (e.g.,
Unbound), since ‘misses’, i.e., valid responses arriving
to the resolver from some IP, do not prevent the attack;
e.g., two failed (timed-out) queries suffice for Unbound
to mark the server as non-responsive for 15 minute inter-
val.

The Wireshark capture, in Figure[5] that was run on the
resolver, demonstrates the experimental evalutation, i.e.,
the DNS packets entering/leaving the network card of the
resolver. During the course of the experiment the puppet
issued 6000 querieﬂto the resolver. The spoofer initiates
the attack by sending three spoofed fragments to each IP
address except 162.138.183.11. For simplicity, the cap-
ture presents only the packets exchanged between the re-
solver and the name server of 404.gov at 162.138.191.23
(by adjusting a corresponding filter in wireshark); the
complete capture contains queries/responses from other
name servers too. Packets numbered 18-20 are the forged
fragments sent by the spoofer, with sequentially incre-
menting IP-IDs. Then puppet triggers a DNS request,
packet 29. The response from the name server contains
two fragments, packets 33 and 34. The first fragment
is reassembled with spoofed fragment 18, resulting in a
malformed packet which is discarded by the resolver.

The second fragment is discarded after a timeout. In
packet 48 the resolver requests a public verification key
of the 404.gov zone. The response contains three frag-
ments 49-51; the first fragment is reconstructed with the
spoofed fragment in packet 20, which also results in a

"Note that our goal was to test the behaviour of the resolver, and
to check the frequency of the queries to non-responsive servers; in real
attack, once the IP-ID is known it is sufficient to issue two queries to
mark the server as non-responsive.
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No. . Time source Destination Protocol  Info
18 19:28:47.243364 162.138.191.23 132.70.6.119 Ip
19 19:28:47.243393 162.138.191.23 132.70.6.119 Ip
20 19:28:47.243402 162.138.191.23 132.70.6.119 IP

33 19:28:49.488072 162.138.191.23 132.76.6.119 DNS
34 19:28:49.488117 162.138.191.23 132.70.6.119  IP

19 19: 2. 16 132 119 162.138.191.2

44 19:28:49.650954 162.138.191.23 132.70.6.119 DNS
49 19:28:506.018788 162.138.191.23 132.760.6.119 DNS
50 19:28:50.018836 162.138.191.23 132.70.6.119  IP

51 19:28:50.018850 162.138.191.23 132.70.6.119  IP

Standard que
Fragmented IP protocol (proto=UDP €x11, off=148e, ID=2cca)
Fragmented IP protocol (proto=UDP @x11, off=296@, ID=2cca)

Fragmented IP protocol (proto=UDP €x11, off=1480, ID=2¢c8) [Reassembled in #33]
Fragmented IP protocol (proto=UDP ©x11, off=1480, ID=2cc9)
Fragmented IP protocol (proto=UDP 6x11, off=1480, ID=2cca) [Reassembled in #49]

Standard query response, No such name[Malformed Packet]
Fragmented IP protocol (proto=UDP ©x11, off=1480, ID=2cc8)

Standard query response

response DNSKEY DNSKEY DNSKEY DNSKEY DNSKEY DNSKEY[Malformed Packet]

Figlll' € 5: The wireshark capture of the attack, presenting only the packets exchanged between the name server 162.183.191.23 and the resolver. As can be observed,
after two malformed responses the resolver refrains from sending further queries to that name server for 15 minutes. Fragmented packets are coloured in white, DNS

requests in black, and reassembled DNS fragments in blue.

malformed DNS response and is discarded. Note that
this request, in packet 48, was sent at 19:28. Based
on our tests it can be seen that when Unbound encoun-
ters a timeout twice for the same destination IP, it stops
sending further packets to that destination for 15 min-
utes. Indeed, the next packet that is sent to that IP is
packet number 6848, at time 19:43. The same scenario
was observed with IP 162.138.191.11. The queries be-
tween 19:28 and 19:43 were sent only to 162.138.183.11,
avoiding 162.138.191.11 and 162.183.191.23. Note that
even if some of the responses (between packets 33 and
49) were valid and accepted by resolver, e.g., if they were
not fragmented, it did not make a difference, and two
timed-out responses in a 15 minute interval were suffi-
cient for Unbound to stop querying those IP addresses;
this fact shows that the success probability of the attack
does not depend on the IP-ID selection mechanism.

3.3 NS-Blocking: Applications

NS-blocking is rarely a goal by itself; more often, it can
serve as a mechanism for other goals. We discuss three
such goals: facilitation of DNS poisoning; degradation
of service, and traffic analysis.

Facilitate DNS poisoning In [32], Ramasubramanian
and Sirer conducted a survey showing that a typical do-
main name depends on 46 servers on average, and names
belonging to countries depend on a few hundred servers.
They note that compromising a server can lead to domain
hijacks and postulate that it is possible to hijack 30% of
the domains in Yahoo and DMOZ.org directories; DNS
servers are known to have vulnerabilities [11},24]. How-
ever, [32] did not suggest a technique which can be used
to force a resolver to query a specific name server. NS-
blocking can provide exactly the necessary mechanism.

Also note that NS-blocking can assist in other DNS
cache poisoning attacks, including these in the next sec-
tion of this paper, as it allows the attacker to reduce the
number of servers that the resolver can query, possibly to
only one.

Off-path Degradation of Service By blocking ‘good’
name servers, an attacker can cause resolvers to send
their traffic to specific, ‘bad’ name servers. In particu-
lar, resolvers may resort to name servers with very high
latency, causing unnecessary delays. Note that the zone
administrators often deploy techniques to distribute the
load between several physical servers sharing the same
IP, e.g., using load balancing or Anycast [[17]]. Typically
not all the name servers of a domain deploy such optimi-
sations, e.g., 6 out of 13 root servers, [27]. Our technique
allows the attacker to block those servers and to ‘force’
the resolver to query a name server which does not sup-
port such load balancing.

Off-path Traffic Analysis and Covert Channel
Many names servers provide side-channels allowing an
attacker to learn or estimate the rate of requests handled
by the server. In particular, one simple and effective side-
channel is the IP-ID used by the name server.

We next show how an off-path attacker can use this
side channel, in conjunction with NS-blocking, to esti-
mate (analyse) the rate of requests from some resolver
7, to a particular domain foo.bar. NS-blocking can fa-
cilitate such off-path traffic analysis in several ways; as
we later explain, this side-channel can even allow covert
communication (between a bot using the resolver, and an
attacker which is not controlling the name server).

First consider the case that one (or more) of the name
servers of foo.bar, say ns.foo.bar, is using globally-
incrementing IP-IDs (this is common). By using NS-
blocking, we can direct all or most of the DNS re-
quests from 7 to ns.foo.bar; by periodically querying
ns.foo.bar, the attacker can measure the rate of progress
of the IP-ID (and hence of responses sent by ns.foo.bar).
To further improve the measurement, the adversary may
use NS-blocking to cause other major resolvers to avoid
using ns.foo.bar.

This mechanism also allows off-path covert channel,
between an agent, say a bot b, which can use the resolver
r, and an off-path attacker o, which can make queries to
the name server ns.foo.bar. The bot can, e.g., encode in-



formation by signaling via the queries to ns.foo.bar (or
possibly, signaling using distinct queries to several do-
mains, each mapped to a specific, distinct name server).
The attacker can communicate to the bot by signaling via
loss of DNS responses.

The traffic analysis attack is applicable also if none of
the name servers of foo.bar use globally-incrementing
IP-ID, provided at least one of them, say ns.foo.bar, uses
per-destination incrementing IP-ID. In this case, the at-
tacker will also need the ability to use the resolver r, e.g.,
via a puppet (malware such as script, in a sandbox). At-
tacker will use the puppet to keep track of the IP-ID used
by ns.foo.bar to send packets to r.

4 DNS Response Poisoning

The main idea behind our DNS cache poisoning attacks
is to apply Second-fragment Overwriting technique to
change the content of a DNS response by replacing au-
thentic resource records (RRs) with spoofed A or NS
RRs either for the existing domain or for a new subdo-
main. Specifically, the off-path attacker triggers a DNS
request to some victim domain, e.g., using a puppet (ma-
licious script confined in a browser), and then spoofs
the second fragment. Depending on the section (of the
DNS response) which the second fragment contains, i.e.,
authorityoradditional, the attacker replaces au-
thentic records with his fake records®]

The main difference between the attacks is related to
the two intertwined issues: (1) frequency at which the
attack can be repeated, and (2) the queries which the at-
tacker can request. Both these issues depend on the free-
dom of the attacker over the (suitable) queries which it
can request.

NXDOMAIN or No-Data Responses. To evade
caching of the resolver the attacker can issue DNS re-
quests for ‘non-existing domain names’, i.e., responses
containing an RCODE with name error, or responses in-
dicating that the domain name exists but with a different
type, i.e., with ‘no data no error’ responses. Such re-
sponses exist in every domain. We found that domains
that use NSEC3 (which is currently the majority of the
domains) to indicate nxdomain (and no data) responses,
to be most suitable for our attacks as those responses
get fragmented in the authority section, such that
the second fragment contains at least one complete RR
(not including the EDNS RR). This technique is simi-
lar to Kamisky attack, as it allows the attacker to repeat
the attack as frequently as required, by selecting a differ-

8The attacker can also replace the RRs in the answer section, e.g.,
if it can issue DNS requests for ANY type RR, and if the DNSSEC is
either incorrectly, or not at all, deployed.
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ent random name (prepended to the real domain name)
in each query. However, nxdomain responses may not
always get fragmented, e.g., if the zone does not use
NSEC3.

‘Existing Domain’ Responses. If the attacker triggers
the attack with queries for existing domain names (with
a non-zero TTL) that get fragmented, e.g., responses to
DNSKEY, then it can trigger the attack only if the record
is not in cache. If the attack fails the first time, it has
to wait till the record expires from cache, i.e., the TTL
reaches O or sinature expires.

Records with zero TTL, e.g., used for CDN networks,
can be requested repeatedly, thus allowing to launch
the attack as frequently as required, since they are not
cached. Such DNS responses with (zero TTL) records in
the answer section also contain (among others) NS and
A records (in authority and additional sections
respectively) with a cache-able TTL, which the attacker
can replace. However, the zero TTL records may not ex-
ist in every domain, and in particular, may not exist in a
domain which the attacker wishes to poison.

Thus the typically query choice of the attacker is be-
tween ‘nxdomain/no-data’ or ‘exiting domain’ (with a
non-zero TTL).

Poisoning the Cache. Inserting spoofed records into
the cache is not straight forward, and merely changing
the records in a DNS response will not necessarily result
in resolver accepting and (then) caching them. In par-
ticular, the forged DNS response must comply with the
caching (and other) conditions which the resolvers im-
pose on DNS responses: the forged packet p’ must be a
valid DNS response; the ‘poisonous’ resource record 7’
must be valid for the specific response and section of the
response; and the resolver must cache 7.

The choice of forged DNS records, which we ap-
ply when modifying the DNS response, and semantics
and values of each field in a DNS record, essentially
follow the known rules for DNS cache poisoning and
were investigated and studied (most notably) by Kamin-
sky [22] and Son and Shmatikov [33], and by Bau and
Mitchell [5] for DNSSEC enabled DNS responses.

4.1 Domain Hijacking

Domain hijacking can be performed when the ‘Permis-
sive or Island’ requirement is satisfied in tandem with
‘Poisonable zone’, i.e., either the resolver is permissive
or zone is an island of security and there is at least one
RR in the second fragment. In this case the attacker can
replace the RR(s) in the authentic second fragment of a
DNS response with (spoofed) NS or A RR(s) pointing at



his name server; the TTL in those spoofed RRs has to
match the TTL of the other RRs in that RRset.

Note that our domain hijacking techniques (below)
trivially apply to (fragmented) DNS responses which
are not protected with DNSSEC, we show such attack,
exploiting queries for TXT RRs and the correspond-
ing responses that get fragmented in full paper (the at-
tack course is essentially similar to the attacks presented
next).

We tested the domain hijacking attack in two scenar-
ios (as elaborated above): (1) nxdomain/no-data and (2)
existing domain. The ‘nxdomain/no-data’ (NSEC33) re-
sponse is often fragmented in the authority section,
and the additional section contains ar’] EDNS RR.
This allows replacing the authority records in the
second fragment with fake NS RRs; we show this at-
tack in Section [.I.1] replacing an NSEC3 record with
a spoofed NS record in the authority section in re-
sponse to a request for some non-exiting domain within
sec.cs.biu.ac.il, i.e., the (DNSSEC-enabled) domain of
the security group of the computer science department
within our university.. The ‘existing domain’ response,
e.g., DNSKEY or TXT, is also often fragmented. Such
responses typically contain records in the additional
section too, and allow changing the IP of name server
with IP of the attacker. We show this attack in Sec-
tion[&.1.21

4.1.1 Injecting NS RR to NSEC3 Response

Typically, responses of type ‘non-existing domain (nxdo-
main) name error’ or ‘no data no error’, in domains that
support NSEC3, are of size between 1700 to 2000 bytes
on average, and when fragmented, at least one record
from the authority section appears in the second frag-
ment. This allows the attacker to replace the authen-
tic NSEC3 or RRSIG RR(s) with a NS RR for a new
name server; Figure [6] If the response does not contain
any other NS RRs then the attacker can set an arbitrary
high TTL, e.g., 6 days, to ensure that his RR stays in
cache even when the authentic NS RRs for that domain
expire. The attacker triggers a DNS request (via a pup-
pet) and synchronises (steps 1 and 2, Figure [6). Then
(step 3) the attacker sends a spoofed second fragment
containing an NS RR for domain sec.cs.biu.ac.il. This
spoofed fragment is combined with the authetic first frag-
ment (step 3) and enters the cache; the authentic second
fragment is discarded after a timeout (step 5). Note that
the attacker can provide any arbitrary NS RR, in par-
ticular, one that is not in the same domain as the vic-
tim; in this attack we spoofed the response with name

This is not a requirement, and according to [[1] an A RR can ap-
pear in the additional section too. In this case, the attacker simply
replaces the A RR (instead of NS).
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Figure 6: Poisoning an nxdomain (or no data) response, by replacing
the NSEC3 RR with an NS RR.

for a new NS RR, i.e., ams.sec.cs.biu.ac.il, in our do-
main, i.e., sec.cs.biu.ac.il, for testing purposes to ob-
serve that the subsequent queries of the resolver to do-
main sec.cs.biu.ac.il are sent to ams.sec.cs.biu.ac.il
and responses get cached. To find the IP of the new NS
the resolver initiates a request for the A RR, and receives
and caches the IP supplied by the attacker (who controls
that name server).

The wireshark capture of the resulting poisoned DNS
response is in Figure [7] The authentic fragment con-
tained part of the RRSIG and two complete records,
i.e., NSEC3 and a corresponding RRSIG. The spoofed
fragment contained the authentic part of the RRSIG,
spanning the first and second fragments, and two fake
NS records which replaced the authentic NSEC3 and
RRSIG. Note that since the RRSIG (as well as NSEC3)
are much larger than NS RRs, the attacker has to pad the
packet (with zeros) to the required length; the checksum
is adjusted in the padded area after the EDNS RR. For a
comparison, see the authentic DNS response in Figure 8]

Questions: 1
Answer RRs: ©

Authority RRs: 8 Query with a
Additional RRs: 1

random prefix
= Queries

+ [I238ww]sec.cs.biu.ac.il: type A, class IN
- Authoritative nameservers
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V6RIQ3ME4B9I3HO4HFS8SIILQUIP58PR6. sec.cs.biu.ac.il:
V6RIQ3ME4B93HO4HFS8SIILQUIPS8PR6.sec.cs.biu.ac.il:
VFNBKOH55G6DUG4HAB1FENKUNDTEGLOV. sec.cs.biu.ac.il:
VFNBKOH55GODUG4HA® 1FONKUNDTEG1O0V . sec.cs.biu.ac.il:
J44MDE5FN2KSTUICGMIQLDASFE7IVUBO. sec.cs.biu.ac. 1l
J44MDE5FN2KITU1CGMIQLDASFE7IVUBQ. sec.cs.biu.ac.il:
+ Additional records

'

type NSEC3,
type RRSIG,
type NSEC3,
type RRSIG,
Type NSEC3,
type RRSIG,

o Jss IN
c| pss IN
clpss IN
cllpss IN
class IN
class IN

i+

+

Figure 8:
sec.cs.biu.ac.il.

An authentic nxdomain response for domain

4.1.2 Injecting A RR to DNSKEY Response

When the second fragment contains at least one complete
record (excluding the EDNS RR) in the additional
section, the attacker can replace the IP address in the
fragment with a spoofed IP. In this attack we spoof the
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Figure 7: Poisoning an nxdomain (or no data) response for domain sec.cs.biu.ac.il, by replacing the NSEC3 RR with an NS RR.

IP for the name server of org domain, in a DNS response
for a DNSKEY of org domain.

In Figure [9] the resolver issues a DNS request for
the DNSKEY of org; this is an indirect way to trig-
ger a query, i.e., the resolver asks for the DNSKEY of
some domain automatically, when the DNSKEY expires
from cache, or when it needs to validate records for that
domain, e.g., to be able to validate an A record or a
non-existing domain (NSEC3) record; an attacker may
also be able to cause a resolver, which does not support
DNSSEQC, to issue such a query, by sending an appropri-
ate request to the resolver. This query type is useful if
the response to an nxdomain query is not fragmented.

Name Server
ORG

Recursive resolver
132.70.6.202

Spoofer

199.249.112.1

DNSKEY?ORG
1

SrclP: 199.249.112.1 dstIP: 132.70.6.202 IP-ID: 777 Offset:1480
PAYLOAD: ... ORG NS bo.org.afilias-nst.ORG; bo.org afilias-nst.ORG A 6.6.6.6
T

Resolyer's Cache
SrclP:199.249.112.1 dstIP:132.70.6.202 IP-ID: 777 Offset:0

ORG Ns bo.orgafilias-nst.ORG
PAYLOAD: ...

bo.org-afilias-nst.ORG A 6.6.6.6 @ 3

SrclP:199.249.112.1 dstIP:132.70.6.202 IP-ID:777 Offset:1480
PAYLOAD: ...

Discarded after
30 seconds 5

Figure 9: DNS poisoning attack of name server TP of org domain.
The resolver issues a query for a DNSKEY (e.g., when it expires from
cache, 15 minutes for org), and the spoofer sends a poisoned second
fragment containing the forged entries of org. The query for DNSKEY
of org can also be triggered indirectly by issuing a query for non-
existing (or for some other) domain within org.

The annotated screen caption of the attack in
Figure [9] is illustrated in Figure [I0] presents the out-
come of the attack. The first line (122) contains the
‘forged second fragment’; this fragment is kept in
the defragmentation cache of the resolver, waiting
for a matching first fragment (i.e., with the same
set of (source IP=199.249.112.1, dest
IP=132.70.6.202, fragment ID=7cébe,
protocol=UDP)). In the next line (133), the resolver
sends the DNS query to the name server.

Next line (134) is the first fragment of authentic re-
sponse to the query, sent by the name server of org (at IP
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199.249.112.1). This response matches the fake second
fragment already in the defragmentation cache, hence it
appears as a complete DNS response packet. The con-
tents of this packet are described in the lower panes; in
particular, see the two forged resource records in the ad-
ditional section, which contain incorrect (adversarial) IP
addresses for two of the name servers of the org domain.

Finally, notice that the authentic second fragment,
received in line 135, has no matching first fragment
(since the one received was already reassembled with the
spoofed second fragment). Hence, it is entered into the
defragmentation cache, where it is likely to remain until
discarded (typically, after maximal lifetime of about 30
seconds).

4.2 Subdomain Injection

The delegation records, NS (name server) and A (IP ad-
dress), located in authority and additional sec-
tions, are not signed, [3]. This allows the attacker to
change the IP address (in the additional section) of
the name server of some victim domain, to its own ad-
dress, or to add a new name server (in authority sec-
tion) for the victim domain. Such NS and A records are
usually cached and used, for queries to the specified do-
main; see [33]]. At this point, the attacker managed to
cause queries for the victim subdomain to be sent to a
machine controlled by the attacker.

This vulnerability, of redirecting DNSSEC enabled
DNS requests to malicious server by a man-in-the-
middle, was pointed out by Bernstein [6], yet with-
out a specific application for such an exploit. Bau and
Mitchell, [5], refute Bernstein’s claim of this being a vul-
nerability, by proving that it does not enable a man-in-
the-middle attacker any additional capabilities, and con-
clude that it does not pose a significant threat. Indeed,
not signing the delegation records does not break the de-
sign requirements defined for DNSSEC, [3|]. However,
it exposes to NS Hijacking (leading to a range of other
attacks), Section @ and to subdomain injection (as we
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Figure 10: A Wireshark capture presenting the DNS packets in a DNS cache poisoning attack exploiting fragmented DN responses by spoofing
the second fragment of the response to the DNSKEY query; messages exhange diagram corresponding to this caption is in FigureEl

discuss next).

Resource records in the answer section of DNSSEC-
enabled domains are signed, hence, if the resolver per-
forms strict validation of DNSSEC, it should not ac-
cept unsigned records in the answer section. How-
ever since the delegation records in the authority
and additional sections are not signed, the attacker
can create a new subdomain, e.g., secure.bank.com
under bank.com, by creating an NS record (in the
authority section) for the new subdomain se-
cure.bank.com mapping it to the name server which
the attacker controls. This attack is only applicable to
DNSSEC protected domains that use NSEC3 opt-out:
the attacker may be able to use legitimate NSEC3 re-
sponses, e.g., for non-existing sub-domain, or other type
responses, e.g., DNSKEY, and turn them into what ap-
pears to be a legitimate referral to an unprotected sub-
domain; this can be used for phishing attacks. Fur-
thermore, as [5]] show, domains which deploy NSEC3
opt-out records are vulnerable to browser cookie theft
by a man-in-the-middle attacker, as they allow the at-
tacker to insert insecure delegations into DNS responses.
This is in contrast to the recommendations in [26] which
suggest that NSEC3 opt-out does not pose a significant
threat. Bau and Mitchell performed the attack with a
man-in-the-middle attacker, using our techniques an off-
path spoofing attacker can perpetrate such attacks, see

Figure
The attack is similar to the attack in Section[d.1.1} thus
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to save space, we performed the addition of a new subdo-
main as part of the name server hijacking attack, see Fig-
ure[7] The record: www.sec.cs.biu.ac.il is a new (non-
existing) subdomain under sec.cs.biu.ac.il and it points
at the name server ams.sec.cs.biu.ac.il controlled by
the attacker.

4.3 NS Hijacking

Using ‘server blocking’ the attacker can ‘fix’ the target
name server. If the attacker compromised that server then
the attack is very damaging. Server fixing can be useful
for other attacks too, e.g., to degrade efficiency (if the
target server is the slowest), for traffic analysis, e.g., if
the attacker has man-in-the-middle capabilities but only
on the path to that ‘fixed’ server, but not to other servers
for that domain.

Server fixing in tandem with DNS poisoning can allow
the attacker to force the resolver to use a malicious name
server which the attacker controls, we call this ‘NS hi-
jacking’. This attack is most relevant when DNSSEC is
properly deployed. If the DNSSEC is not deployed cor-
rectly, then the attacker can simply hijack the domain.
The attack is combined of two phases: (1) poisoning the
A (or respectively NS) record in the DNS response (by
changing the authentic IP to the IP controlled by the at-
tacker), then (2) applying server blocking by ruining re-
sponses from all other name servers so that the resolver
marks those authentic servers as non-responsive.

Note that phase (2), i.e., server blocking, is not es-



sential and the poisoning attack by itself implies NS hi-
jacking. This is due to the fact that the TTL of the poi-
soned RR is higher than the TTL of the records cached
from previous responses, therefore, once those authentic
records expire from cache, the resolver will not request
them and will use the poisoned cached NS RR.

As a result of this attack the resolver will only query
the server of the attacker (as it is the only one that re-
sponds). However, the attacker cannot produce valid sig-
natures for the records that it returns, and therefore it
responds to resolver’s queries with records that are not
protected with DNSSEC. This attack has the ‘cache-or-
crash’ effect, i.e., the resolver will either cache those re-
sponses, or will timeout and not be able to provide re-
sponses (since this is the only name server that the re-
solver has for the victim domain). The response depends
on the specific resolver in question, e.g., Unbound 1.4.1
in permissive mode caches such responses, while Bind9
times-out and does not.

5 Conclusions and Defenses

We showed how an off-path attacker can efficiently ex-
ploit fragmented DNS responses to poison DNS caches.
Most DNS responses are short, and hence not frag-
mented; our attacks exploit DNSSEC records, which of-
ten result in fragmented responses.

We also showed that fragmented responses can be ex-
ploited by off-path attackers to force the resolvers to
query name servers of attacker’s choice.

The attacks are effective against valid implementation
of the DNS and IP specifications; furthermore, we have
confirmed effectiveness against several domains, using
real network scenarios and common resolvers (Unbound
1.4.1 and Bind9).

We want to caution against drawing the conclusion
that DNSSEC should not be used. In fact, the best de-
fense is to apply DNSSEC correctly in all resolvers and
domains (without using NSEC3 opt-out); this will cer-
tainly prevent many of our poisoning attacks, and even
defend against more powerful Man-in-the-Middle adver-
saries. However, incremental DNSSEC deployment is
vulnerable to our cache poisoning attacks, and complete
adoption of DNSSEC may take considerable time, since
it depends on adoption by both name server and resolver.
Furthermore, this will not prevent the server blocking
attacks. Hence, we also discuss some other defenses,
which can be utilised by only one of the parties (unilat-
erally), and can also prevent the DNS response blocking
attacks.

The vulnerability which allowed us to launch the poi-
soning attacks against recursive resolvers, is due to the
fact that the resolver advertises a large EDNS buffer,
which is usually larger than the MTU, e.g., 1500 bytes.
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Although support of large DNS responses is critical to fa-
cilitate DNSSEC enabled DNS responses, or public-key
certificates [|34f], such long responses can be (temporar-
ily) sent over TCP, using path MTU discovery and avoid-
ing fragmentation - unfortunately, at significant perfor-
mance costs. Another countermeasure, possible at re-
solver, name server or even at intermediate gateway (fire-
wall), is to set a maximal EDNS buffer value to at most
1500, or even less, to avoid fragmentation. In fact, re-
solvers may implement a simple protocol similar to path
MTU discovery, then set the value of the EDNS buffer
accordingly to the minimal MTU en route between the
resolver and the DNS server. When sending responses,
the name server should also set the DF bit in the IP
header to 1, i.e., do not fragment.

Another short-term defense, which administrators of
resolvers can apply, is to reduce the maximal number of
fragments cached; e.g., currently 64 by default in Linux
(per (source IP , dest IP , protocol) triplet). Of course,
reduction in this parameter may also increase packet loss.

Yet another possible defense for name servers, is to al-
ways add a random RR to any packet over certain size
(i.e., which may be fragmented). A simple type A re-
source record, containing random IP address for some
fictitious domain name, would suffice. The TTL of such
an RR should be set to zero to prevent the resolver from
caching that record. This would prevent the attacker from
being able to predict and (correctly) adjust the checksum
value. If there are multiple vulnerable fragments, such a
random RR should appear in each fragment.

Finally, we suggest to be careful when deploying the
proposal in [2536] (for server selection) which recom-
mends to avoid querying non-responsive servers. Re-
solvers that do not conform to that recommendation, e.g.,
Bind9, are not vulnerable to our server-pinning attacks.
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