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Abstract  

Traditional approaches for online upgrades of 
distributed systems rely on dependency tracking to 
preserve system integrity during and after the upgrade. 
Because dependency reification can become intractable, 
we aim to enforce the isolation of the old and new 
versions during the upgrade. We achieve this by 
installing the new version in a “parallel universe” – a 
separate physical or virtual infrastructure that does not 
communicate directly with the old version. This allows 
our upgrading middleware to treat the complex IT 
infrastructure as a black box with unknown hidden-
dependencies, and to validate the upgrade by cross-
checking the outputs of the two universes. 

1. Introduction 
An online upgrade [1] is a change in the behavior, 
configuration, code, data or topology of a running 
application. Online upgrades have to consider the 
complex interactions between distributed components 
using specific APIs, networking protocols, queuing 
paths, configuration settings, etc. Such dependencies are 
not always well documented or understood, and are 
often hard to trace [2]. In general, complete dependency 
information cannot be automatically determined using 
either static analysis or runtime monitoring [2, 3]. 

An upgrading system must be careful not to disable 
existing applications (by breaking hidden 
dependencies), while still updating all of the 
components required by the new version being 
installed. Many online upgrades require massive 
amounts of data to be converted to new schemas, 
typically over a long period of time, and even as clients 
continue to perform transactions using the data under 
upgrade. Furthermore, an upgrade must be undoable, 
allowing administrators to roll back to the previous 
system if faults or unexpected behavior compromise the 
integrity of the upgrade.  

 We propose a dependency-agnostic online-upgrade 
approach that does not rely on dependency tracking and 
that does not induce downtime. Instead of an in-place 
upgrade, we aim to isolate the new version from the old. 
The new version, with a potentially different topology, 
is the result of a fresh installation and does not 
communicate directly with the old version. The old 

version’s persistent data is transferred into the new 
version even as the old version continues to service 
requests. This is similar to the approaches used in 
single-host operating systems for isolating applications 
in virtual containers that prevent communication or 
cross-coupling between unrelated processes [4]. 

Our online-upgrade protocol avoids data staleness by 
invalidating the items that have changed during the data 
transfer. The old version is functional during the 
upgrade and remains intact afterwards. When the data 
transfer is complete, the two versions continue to run in 
parallel and to synchronize their states. As long as the 
versions run in parallel, administrators can cross-
validate the outputs and roll back a failed upgrade.  

This paper is organized as follows. In Section 2, we 
describe a case-study of upgrading a medium-to-large 
enterprise infrastructure. We discuss our dependency-
agnostic upgrade protocol in Section 3 and its practical 
implications in Section 4. 

2. Case study: Upgrading Wikipedia 
To demonstrate our approach, we have chosen to mimic 
the medium-to-large infrastructure supporting 
www.wikipedia.org, a popular Web site providing a 
multi-language, free encyclopedia. Wikipedia has 5 
million articles, which generate peak request rates of 
30,000 HTTP requests/s (600 Mb/s incoming and 2.8 
GB/s outgoing traffic). Each article receives 3 database-
updates/s on average. This workload is supported by a 
multi-tiered infrastructure [5] with file servers and 
databases in the backend, running on 247 servers 
located in 4 data centers worldwide. The size of the 
database is 15 GB, not including images and other 
media files that are stored on the file servers.1 The 
front-end has 52 caching proxies, accessed using round-
robin DNS load-balancing. The proxies serve 
approximately 75% of the Wikipedia content, handling 
most of the page requests from visitors who are not 
logged in. The proxies forward the cache-misses to a 
load-balanced cluster of 150 web servers.  

                                                           
1 These numbers are accurate as of Feb 2007, but Wikipedia grows at 
an exponential rate. For instance, in the English-language Wikipedia, 
the number of articles (currently 1.6 million) has doubled every 346 
days. Wikipedia ran on 39 servers in 2005 and on 1 server in 2004. 



The web servers generate the content of the pages 
using a wiki engine called MediaWiki [6], which is 
implemented as a set of PHP scripts. MediaWiki 
retrieves the text of an article from a database, running 
on 12 servers in a master-slave configuration, and the 
images and media files from a remote filesystem. The 
web servers also use PHP accelerators that cache 
compiled PHP scripts.  

2.1. Wikipedia Dependencies 
• API dependencies: Wikipedia relies on many shared 

libraries and third-party components. For instance, 
MediaWiki 1.9 requires PHP 5.0 and MySQL 5, 
while PHP requires Apache 1.3 or newer. There are 
also some optional dependencies: ImageMagick 
(itself dependent on third-party image manipulation 
libraries), a PHP accelerator for performance, etc. The 
Apache and MySQL daemons require a set of 
standard libraries, while PHP requires the MySQL 
client library. Some of these dependencies can be 
determined using static analysis, but others cannot 
(e.g. the web server loads the PHP interpreter library 
dynamically, triggered by a directive from a 
configuration file). Most of the upgrade-breaking API 
changes are due to refactorings (modifications of 
program structure, not intended to change its 
behavior) [2]. 

• Configuration dependencies: These are settings in the 
configuration files of MediaWiki and the other 
components that specify the available PHP 
accelerator, the path to the image directory, the PHP 
version, etc. 

• Protocol dependencies: The front-end servers receive 
and handle HTTP requests, which may be forwarded 
to the servers in the middle tier. MediaWiki retrieves 
text from the database with SQL queries and image 
files from the filesystem with read() and write() 

system calls, while the MySQL clients connect to the 
database server using a binary protocol and the file 
servers provide the images using the NFS protocol.  

• Data dependencies: In some cases, the behavior of 
the system cannot be determined from an HTTP 
request alone because it depends on the persistent 
data. For instance, if the text of an article contains a 
Math object, MediaWiki may invoke a LaTeX 
interpreter. 

• Performance dependencies: The overall performance 
of Wikipedia depends on the software and hardware 
configuration. As the queuing paths in this 
infrastructure are very complex, performance issues 
that arise during an upgrade may be hard to diagnose. 
Moreover, the system behavior might depend on its 
performance: high latency can trigger communication 
exceptions; MediaWiki disables write-access to the 
database if the incoming load is too high, etc. 

2.2. Upgrade Scenario 
For upgrading to a new version, MediaWiki provides a 
script that inspects the database schema and converts it 
to the new format; this is a simple upgrade because it 
only involves the configuration files of the wiki 
software and the database layout — changes that can be 
made with the existing infrastructure left in place. 
Instead, we investigate a major and far more interesting 
upgrade scenario: switching to a completely different 
wiki software, such as TWiki [7]. While the two wiki 
engines (MediaWiki and TWiki) provide similar 
functionality, there are significant differences between 
them. The differences can be classified as semantic (e.g. 
TWiki has a fine-grained access control system; 
MediaWiki has a very detailed permission system, but 
no access-control lists); behavioral (deleting a page 
may have different outcomes, e.g. due to differences in 
the access control); transmutability (some data with 
identical semantics cannot be transferred between the 
two systems, e.g., hashed passwords); interface (e.g. 
different URLs to access similar pages); implementation 
(e.g. TWiki stores its data in file system instead of a 
database); or QoS (throughput and response-time 
mismatches). This major-upgrade scenario (replacing a 
wiki engine and its dependencies) is realistic because 
switching vendors for business reasons is common in 
the IT industry. 

3. Dependency-Agnostic Upgrades 
The key idea behind our dependency agnostic upgrades 
is to install the new version in a “parallel universe” in 
order to isolate the old and new versions from each 
other. Figure 1 illustrates this technique. The original 
system W1 has a parallel universe W2 where the new 
version will run.  W1 continues to service incoming 
requests during the upgrade. The only communication 
channel between the two universes is via our upgrading 
middleware M, which continuously transfers the 
persistent data from W1 to W2, monitors the updates 
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Figure 1. Dependency-agnostic upgrades. The old and 
new versions are installed and execute in parallel 
universes W1 and W2. The upgrading middleware M 
intercepts the request flow at the ingress (I1) and 
egress (I2) points of the old version. The rest of W1 is 
treated as a black box.  



PHASE I: BOOTSTRAPPING 
Initialize the transfer table TT with all the persistent data items to be transferred to W2; ∀x ∈ TT, TT (x) ← (invalid) 
Initialize non-blocking queue NQ for tracking in-progress updates and blocking queue BQ for enforcing quiescence 
Initialize interceptors I1 and I2 
 

PHASE II: DATA TRANSFER 
while (∃x ∈ TT such that x was never transferred) 
 x ← top(TT) 

Query x from the data store of W1  
Convert x to the data schema of W2  
Inject x into the data store of W2  
TT (x) ← (valid, transferred) 
Reorder TT  such that top(TT) ∉ NQ and top(TT) is invalid 
if (I1 detects that data item y is updated) then 

NQ.enqueue(y) 
if (I2 detects that data item z is updated) then 

TT (z) ← (invalid) 
NQ.dequeue(z) 

 
PHASE III: PARALLEL EXECUTION 

Stage 1: enforce quiescence 
Flush all caches from W1 and disable caching (or configure a write-through cache policy) 
while (NQ is not empty) 

if (I1 detects that data item y is updated) then 
BQ.enqueue(y) 

if (I2 detects that data item z is updated) then 
TT (z) ← (invalid) 
NQ.dequeue(z) 

Transfer all invalid items from TT 
 
Stage 2: Execute in parallel 
master_universe ← W1 
for all x ∈ BQ and all x intercepted at I1 

Send request(x) to both W1 and W2 
Propagate reply from master_universe to the client 

 
PHASE IV: SWITCHOVER 

Discard volatile state (e.g. sessions) 
master_universe ← W2  
Continue with parallel execution 

handled by W1 to prevent data-staleness and disables 
updates to W1 to enforce quiescence.  

For this purpose, we assume that the system has a 
few well-defined ingress and egress points. M 
transparently intercepts the request flow at the ingress 
points I1, where the HTTP requests enter the old 
version, and at the egress points I2, where persistent 
data is stored (e.g. the master database or the file 
system, in the case of Wikipedia). We use a transfer 
table TT to keep track of the transferred data items that 
have been updated, and a non-blocking queue NQ to 
monitor in-progress updates. The principal idea is that 
the information from I1 and I2 should be sufficient for 
maintaining data consistency, allowing us to treat the 
rest of the W1 infrastructure as a black-box. Since the 
old version is rendered a black-box, all its complex 
dependencies end up being irrelevant to our upgrading 

process. I1 also allows us to “lock down” the old 
version, using a blocking queue BQ, and to prevent W1 
from handling requests when the upgrade protocol 
requires a period of quiescence. Figure 2 shows the 
pseudocode of our protocol. 

3.1. Protocol Phases 
Bootstrapping. The biggest problem in bootstrapping 
the upgrade process is to capture in-progress updates, 
i.e. requests that trigger an article update and that have 
passed the ingress interception-point before the I1 
interceptor is operational but have not yet been 
committed to the database because they are still 
executing. This problem is aggravated by the presence 
of caches at various tiers in the infrastructure, which 
may delay the insertion of the update into the database.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Pseudocode of the dependency-agnostic upgrade protocol. 



In practice, since upgrades are often long-running 
processes, the in-progress updates will usually finish 
executing by the time W2 is ready to start executing in 
parallel. To guarantee that no updates are overlooked, 
our upgrading middleware will flush all of the caches 
from the old system, or, as a last resort, restart the entire 
W1 infrastructure, with the same effect.  
Data Transfer. During this phase, we transfer the 
persistent data from W1 to W2, converting it to the new 
schema as needed. The mapping between the two 
schemas must be specified in advance, before starting 
the upgrade. Based on this mapping our middleware 
will attempt to find the closest equivalent of a data item 
in the new database. The main content of a wiki, 
represented by the text of the articles and the media 
files, can be accurately converted. Some items (e.g. 
links and certain statistics) do not need to be transferred 
because they can be recreated afresh. Others (e.g. 
formatting instructions for the wiki text) need to be 
transferred, but might have only an approximate 
equivalent in the new database. Finally, certain items 
cannot be converted at all, such as encrypted or hashed 
data (e.g. user-account passwords). Users must then 
reset their passwords when logging in to the new system 
for the first time.  The transfer table TT keeps track of 
the data items already transferred. When the interceptor 
I2 detects that a data item is updated in the old universe 
W1, its corresponding entry in the page list is 
invalidated and the item is (re)scheduled for a fresh 
transfer to the new universe. The data transfer will 
eventually terminate if the transfer rate exceeds the rate 
at which previously converted data is invalidated. 
Parallel Execution. After the database transfer is 
complete, the two universes may enter the parallel-
execution stage. The middleware freezes the state of W1 
by blocking update requests (these are queued in BQ 
and applied later). When all of the outstanding updates 
have been committed to the database in the old version 
and transferred to W2 (we determine this by comparing 
the requests observed at I1 and I2; the mapping between 
HTTP requests and database queries must be known in 
advance), the persistent states of the two universes are 
synchronized. W1 and W2 can start executing in parallel. 

HTTP requests intercepted at I1 are injected into both 
W1 and W2, after yet another conversion step. This step 
translates URLs in the old format for use with W1 to the 
new, (approximately) equivalent form for use with W2. 
Our upgrading middleware can then compare the two 
outputs in order to validate the upgrade’s integrity. The 
mapping between corresponding URLs from W1 and 
W2 needs to be known in advance. Only the output from 
the master universe (W1) is propagated to the clients.  
Switchover. The switchover changes the master 
universe from W1 to W2. All new requests for URLs 
from W1 will be automatically converted and redirected 
to W2. Volatile state, such as user sessions, is discarded 
and users will be required to log in again. After the 
switchover, the two universes can continue to execute in 

parallel, allowing administrators to validate the upgrade 
by monitoring the outputs. The states of the two parallel 
will not be perfectly synchronized because of intrinsic 
behavioral differences between the two systems; indeed, 
this modified behavior could have been the very reason 
for initiating the upgrade. However, as long as the two 
universes continue to execute in parallel, our 
middleware can switch back and forth between W1 and 
W2. If the result of the upgrade is deemed inappropriate 
for some reason, the administrators can initiate a 
switchover from W2 back to W1, thereby rolling back 
the upgrade without loss of data.  

4. Discussion and Conclusions 
We propose a dependency-agnostic approach for 
performing major behavioral/semantic upgrades in 
complex distributed systems. This technique 
intentionally enforces isolation between the old and new 
versions by executing them in parallel universes and 
transferring data in the background. The parallel 
execution of the two versions provides a way to validate 
the upgrade by cross-checking their outputs. If needed, 
the upgrade can also be rolled back.  

This approach assumes full knowledge of the 
mapping between the HTTP requests and database 
queries in both universes, and of correspondences 
between the requests in the two systems. In general, the 
behavior of the software needs to be well understood, as 
is the case for any upgrade strategy. Moreover, if the 
new version’s parallel universe is virtual (e.g. realized 
via an overlay network), there may be performance 
dependencies between the old and the new versions.  

The advantage of dependency-agnostic upgrades is 
that they allow us to ignore hidden dependencies 
between distributed components and to treat the entire 
IT infrastructure as a black box. The resulting upgrade 
is not a surgical procedure and is likely unsuitable for 
regular maintenance activities such as applying security 
patches. This approach is most appropriate for large-
scale, major distributed upgrades because it avoids 
downtime and reduces the administrative burden by 
eliminating the need for dependency tracking.  
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