
No More HotDependencies:
Toward Dependency-Agnostic Online Upgrades in Distributed Systems

Tudor Dumitraş Jiaqi Tan Zhengheng Gho Priya Narasimhan
tudor@cmu.edu jiaqit@andrew.cmu.edu zgho@andrew.cmu.edu priya@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, PA 15217

Abstract

Traditional approaches for online upgrades of
distributed systems rely on dependency tracking to
preserve system integrity during and after the upgrade.
Because dependency reification can become intractable,
we aim to enforce the isolation of the old and new
versions during the upgrade. We achieve this by
installing the new version in a “parallel universe” – a
separate physical or virtual infrastructure that does not
communicate directly with the old version. This allows
our upgrading middleware to treat the complex IT
infrastructure as a black box with unknown hidden-
dependencies, and to validate the upgrade by cross-
checking the outputs of the two universes.

1. Introduction
An online upgrade [1] is a change in the behavior,
configuration, code, data or topology of a running
application. Online upgrades have to consider the
complex interactions between distributed components
using specific APIs, networking protocols, queuing
paths, configuration settings, etc. Such dependencies are
not always well documented or understood, and are
often hard to trace [2]. In general, complete dependency
information cannot be automatically determined using
either static analysis or runtime monitoring [2, 3].

An upgrading system must be careful not to disable
existing applications (by breaking hidden
dependencies), while still updating all of the
components required by the new version being
installed. Many online upgrades require massive
amounts of data to be converted to new schemas,
typically over a long period of time, and even as clients
continue to perform transactions using the data under
upgrade. Furthermore, an upgrade must be undoable,
allowing administrators to roll back to the previous
system if faults or unexpected behavior compromise the
integrity of the upgrade.

 We propose a dependency-agnostic online-upgrade
approach that does not rely on dependency tracking and
that does not induce downtime. Instead of an in-place
upgrade, we aim to isolate the new version from the old.
The new version, with a potentially different topology,
is the result of a fresh installation and does not
communicate directly with the old version. The old

version’s persistent data is transferred into the new
version even as the old version continues to service
requests. This is similar to the approaches used in
single-host operating systems for isolating applications
in virtual containers that prevent communication or
cross-coupling between unrelated processes [4].

Our online-upgrade protocol avoids data staleness by
invalidating the items that have changed during the data
transfer. The old version is functional during the
upgrade and remains intact afterwards. When the data
transfer is complete, the two versions continue to run in
parallel and to synchronize their states. As long as the
versions run in parallel, administrators can cross-
validate the outputs and roll back a failed upgrade.

This paper is organized as follows. In Section 2, we
describe a case-study of upgrading a medium-to-large
enterprise infrastructure. We discuss our dependency-
agnostic upgrade protocol in Section 3 and its practical
implications in Section 4.

2. Case study: Upgrading Wikipedia
To demonstrate our approach, we have chosen to mimic
the medium-to-large infrastructure supporting
www.wikipedia.org, a popular Web site providing a
multi-language, free encyclopedia. Wikipedia has 5
million articles, which generate peak request rates of
30,000 HTTP requests/s (600 Mb/s incoming and 2.8
GB/s outgoing traffic). Each article receives 3 database-
updates/s on average. This workload is supported by a
multi-tiered infrastructure [5] with file servers and
databases in the backend, running on 247 servers
located in 4 data centers worldwide. The size of the
database is 15 GB, not including images and other
media files that are stored on the file servers.1 The
front-end has 52 caching proxies, accessed using round-
robin DNS load-balancing. The proxies serve
approximately 75% of the Wikipedia content, handling
most of the page requests from visitors who are not
logged in. The proxies forward the cache-misses to a
load-balanced cluster of 150 web servers.

1 These numbers are accurate as of Feb 2007, but Wikipedia grows at
an exponential rate. For instance, in the English-language Wikipedia,
the number of articles (currently 1.6 million) has doubled every 346
days. Wikipedia ran on 39 servers in 2005 and on 1 server in 2004.

The web servers generate the content of the pages
using a wiki engine called MediaWiki [6], which is
implemented as a set of PHP scripts. MediaWiki
retrieves the text of an article from a database, running
on 12 servers in a master-slave configuration, and the
images and media files from a remote filesystem. The
web servers also use PHP accelerators that cache
compiled PHP scripts.

2.1. Wikipedia Dependencies
• API dependencies: Wikipedia relies on many shared

libraries and third-party components. For instance,
MediaWiki 1.9 requires PHP 5.0 and MySQL 5,
while PHP requires Apache 1.3 or newer. There are
also some optional dependencies: ImageMagick
(itself dependent on third-party image manipulation
libraries), a PHP accelerator for performance, etc. The
Apache and MySQL daemons require a set of
standard libraries, while PHP requires the MySQL
client library. Some of these dependencies can be
determined using static analysis, but others cannot
(e.g. the web server loads the PHP interpreter library
dynamically, triggered by a directive from a
configuration file). Most of the upgrade-breaking API
changes are due to refactorings (modifications of
program structure, not intended to change its
behavior) [2].

• Configuration dependencies: These are settings in the
configuration files of MediaWiki and the other
components that specify the available PHP
accelerator, the path to the image directory, the PHP
version, etc.

• Protocol dependencies: The front-end servers receive
and handle HTTP requests, which may be forwarded
to the servers in the middle tier. MediaWiki retrieves
text from the database with SQL queries and image
files from the filesystem with read() and write()

system calls, while the MySQL clients connect to the
database server using a binary protocol and the file
servers provide the images using the NFS protocol.

• Data dependencies: In some cases, the behavior of
the system cannot be determined from an HTTP
request alone because it depends on the persistent
data. For instance, if the text of an article contains a
Math object, MediaWiki may invoke a LaTeX
interpreter.

• Performance dependencies: The overall performance
of Wikipedia depends on the software and hardware
configuration. As the queuing paths in this
infrastructure are very complex, performance issues
that arise during an upgrade may be hard to diagnose.
Moreover, the system behavior might depend on its
performance: high latency can trigger communication
exceptions; MediaWiki disables write-access to the
database if the incoming load is too high, etc.

2.2. Upgrade Scenario
For upgrading to a new version, MediaWiki provides a
script that inspects the database schema and converts it
to the new format; this is a simple upgrade because it
only involves the configuration files of the wiki
software and the database layout — changes that can be
made with the existing infrastructure left in place.
Instead, we investigate a major and far more interesting
upgrade scenario: switching to a completely different
wiki software, such as TWiki [7]. While the two wiki
engines (MediaWiki and TWiki) provide similar
functionality, there are significant differences between
them. The differences can be classified as semantic (e.g.
TWiki has a fine-grained access control system;
MediaWiki has a very detailed permission system, but
no access-control lists); behavioral (deleting a page
may have different outcomes, e.g. due to differences in
the access control); transmutability (some data with
identical semantics cannot be transferred between the
two systems, e.g., hashed passwords); interface (e.g.
different URLs to access similar pages); implementation
(e.g. TWiki stores its data in file system instead of a
database); or QoS (throughput and response-time
mismatches). This major-upgrade scenario (replacing a
wiki engine and its dependencies) is realistic because
switching vendors for business reasons is common in
the IT industry.

3. Dependency-Agnostic Upgrades
The key idea behind our dependency agnostic upgrades
is to install the new version in a “parallel universe” in
order to isolate the old and new versions from each
other. Figure 1 illustrates this technique. The original
system W1 has a parallel universe W2 where the new
version will run. W1 continues to service incoming
requests during the upgrade. The only communication
channel between the two universes is via our upgrading
middleware M, which continuously transfers the
persistent data from W1 to W2, monitors the updates

W2

M

W1

I1 I2HTTP

NQ

BQ TT

W2

M

W1

I1 I2HTTP

NQ

BQ TT

Figure 1. Dependency-agnostic upgrades. The old and
new versions are installed and execute in parallel
universes W1 and W2. The upgrading middleware M
intercepts the request flow at the ingress (I1) and
egress (I2) points of the old version. The rest of W1 is
treated as a black box.

PHASE I: BOOTSTRAPPING
Initialize the transfer table TT with all the persistent data items to be transferred to W2; ∀x ∈ TT, TT (x) ← (invalid)
Initialize non-blocking queue NQ for tracking in-progress updates and blocking queue BQ for enforcing quiescence
Initialize interceptors I1 and I2

PHASE II: DATA TRANSFER
while (∃x ∈ TT such that x was never transferred)
 x ← top(TT)

Query x from the data store of W1
Convert x to the data schema of W2
Inject x into the data store of W2
TT (x) ← (valid, transferred)
Reorder TT such that top(TT) ∉ NQ and top(TT) is invalid
if (I1 detects that data item y is updated) then

NQ.enqueue(y)
if (I2 detects that data item z is updated) then

TT (z) ← (invalid)
NQ.dequeue(z)

PHASE III: PARALLEL EXECUTION

Stage 1: enforce quiescence
Flush all caches from W1 and disable caching (or configure a write-through cache policy)
while (NQ is not empty)

if (I1 detects that data item y is updated) then
BQ.enqueue(y)

if (I2 detects that data item z is updated) then
TT (z) ← (invalid)
NQ.dequeue(z)

Transfer all invalid items from TT

Stage 2: Execute in parallel
master_universe ← W1
for all x ∈ BQ and all x intercepted at I1

Send request(x) to both W1 and W2
Propagate reply from master_universe to the client

PHASE IV: SWITCHOVER

Discard volatile state (e.g. sessions)
master_universe ← W2
Continue with parallel execution

handled by W1 to prevent data-staleness and disables
updates to W1 to enforce quiescence.

For this purpose, we assume that the system has a
few well-defined ingress and egress points. M
transparently intercepts the request flow at the ingress
points I1, where the HTTP requests enter the old
version, and at the egress points I2, where persistent
data is stored (e.g. the master database or the file
system, in the case of Wikipedia). We use a transfer
table TT to keep track of the transferred data items that
have been updated, and a non-blocking queue NQ to
monitor in-progress updates. The principal idea is that
the information from I1 and I2 should be sufficient for
maintaining data consistency, allowing us to treat the
rest of the W1 infrastructure as a black-box. Since the
old version is rendered a black-box, all its complex
dependencies end up being irrelevant to our upgrading

process. I1 also allows us to “lock down” the old
version, using a blocking queue BQ, and to prevent W1
from handling requests when the upgrade protocol
requires a period of quiescence. Figure 2 shows the
pseudocode of our protocol.

3.1. Protocol Phases
Bootstrapping. The biggest problem in bootstrapping
the upgrade process is to capture in-progress updates,
i.e. requests that trigger an article update and that have
passed the ingress interception-point before the I1
interceptor is operational but have not yet been
committed to the database because they are still
executing. This problem is aggravated by the presence
of caches at various tiers in the infrastructure, which
may delay the insertion of the update into the database.

Figure 2. Pseudocode of the dependency-agnostic upgrade protocol.

In practice, since upgrades are often long-running
processes, the in-progress updates will usually finish
executing by the time W2 is ready to start executing in
parallel. To guarantee that no updates are overlooked,
our upgrading middleware will flush all of the caches
from the old system, or, as a last resort, restart the entire
W1 infrastructure, with the same effect.
Data Transfer. During this phase, we transfer the
persistent data from W1 to W2, converting it to the new
schema as needed. The mapping between the two
schemas must be specified in advance, before starting
the upgrade. Based on this mapping our middleware
will attempt to find the closest equivalent of a data item
in the new database. The main content of a wiki,
represented by the text of the articles and the media
files, can be accurately converted. Some items (e.g.
links and certain statistics) do not need to be transferred
because they can be recreated afresh. Others (e.g.
formatting instructions for the wiki text) need to be
transferred, but might have only an approximate
equivalent in the new database. Finally, certain items
cannot be converted at all, such as encrypted or hashed
data (e.g. user-account passwords). Users must then
reset their passwords when logging in to the new system
for the first time. The transfer table TT keeps track of
the data items already transferred. When the interceptor
I2 detects that a data item is updated in the old universe
W1, its corresponding entry in the page list is
invalidated and the item is (re)scheduled for a fresh
transfer to the new universe. The data transfer will
eventually terminate if the transfer rate exceeds the rate
at which previously converted data is invalidated.
Parallel Execution. After the database transfer is
complete, the two universes may enter the parallel-
execution stage. The middleware freezes the state of W1
by blocking update requests (these are queued in BQ
and applied later). When all of the outstanding updates
have been committed to the database in the old version
and transferred to W2 (we determine this by comparing
the requests observed at I1 and I2; the mapping between
HTTP requests and database queries must be known in
advance), the persistent states of the two universes are
synchronized. W1 and W2 can start executing in parallel.

HTTP requests intercepted at I1 are injected into both
W1 and W2, after yet another conversion step. This step
translates URLs in the old format for use with W1 to the
new, (approximately) equivalent form for use with W2.
Our upgrading middleware can then compare the two
outputs in order to validate the upgrade’s integrity. The
mapping between corresponding URLs from W1 and
W2 needs to be known in advance. Only the output from
the master universe (W1) is propagated to the clients.
Switchover. The switchover changes the master
universe from W1 to W2. All new requests for URLs
from W1 will be automatically converted and redirected
to W2. Volatile state, such as user sessions, is discarded
and users will be required to log in again. After the
switchover, the two universes can continue to execute in

parallel, allowing administrators to validate the upgrade
by monitoring the outputs. The states of the two parallel
will not be perfectly synchronized because of intrinsic
behavioral differences between the two systems; indeed,
this modified behavior could have been the very reason
for initiating the upgrade. However, as long as the two
universes continue to execute in parallel, our
middleware can switch back and forth between W1 and
W2. If the result of the upgrade is deemed inappropriate
for some reason, the administrators can initiate a
switchover from W2 back to W1, thereby rolling back
the upgrade without loss of data.

4. Discussion and Conclusions
We propose a dependency-agnostic approach for
performing major behavioral/semantic upgrades in
complex distributed systems. This technique
intentionally enforces isolation between the old and new
versions by executing them in parallel universes and
transferring data in the background. The parallel
execution of the two versions provides a way to validate
the upgrade by cross-checking their outputs. If needed,
the upgrade can also be rolled back.

This approach assumes full knowledge of the
mapping between the HTTP requests and database
queries in both universes, and of correspondences
between the requests in the two systems. In general, the
behavior of the software needs to be well understood, as
is the case for any upgrade strategy. Moreover, if the
new version’s parallel universe is virtual (e.g. realized
via an overlay network), there may be performance
dependencies between the old and the new versions.

The advantage of dependency-agnostic upgrades is
that they allow us to ignore hidden dependencies
between distributed components and to treat the entire
IT infrastructure as a black box. The resulting upgrade
is not a surgical procedure and is likely unsuitable for
regular maintenance activities such as applying security
patches. This approach is most appropriate for large-
scale, major distributed upgrades because it avoids
downtime and reduces the administrative burden by
eliminating the need for dependency tracking.

References
[1] M. E. Segal and O. Frieder, "On-the-fly program

modification: Systems for dynamic updating," IEEE
Software, vol. 10, pp. 53-65, 1993.

[2] D. Dig and R. Johnson, "How do APIs evolve? A story of
refactoring," Journal of Software Maintenance and
Evolution: Research and Practice, vol. 18, pp. 83 - 107,
2006.

[3] F. Kon and R. H. Campbell, "Dependence Management
in Component-Based Distributed Systems," IEEE
Concurrency, vol. 8, pp. 26-36, 2000.

[4] S. Potter and J. Nieh, "Reducing Downtime Due to
System Maintenance and Upgrades," in LISA, San Diego,
CA, 2005, pp. 47-62.

[5] https://wikitech.leuksman.com/view/Server_roles.
[6] MediaWiki, http://www.mediawiki.org/wiki/MediaWiki.
[7] TWiki, http://twiki.org/.

