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T
he aim of this note is to bring to the at-
tention of a wide mathematicalaudience

the recent application of division alge-
bras to wireless communication. The
application occurs in the context of

communication involving multiple transmit and
receive antennas, a context known in engineer-

ing as MIMO—short for multiple input, multiple
output. While the use of multiple receive anten-
nas goes back to the time of Marconi, the basic

theoretical framework for communication using
multiple transmit antennas was only published

about ten years ago. The progress in the field has
been quite rapid, however, and MIMO communica-
tion is widely credited with being one of the key

emerging areas in telecommunication. Our focus
here will be on one aspect of this subject: the

formatting of transmit information for optimum
reliability.

Recall that a division algebra is an (associative)

algebra with a multiplicative identity in which
every nonzero element is invertible. The center of

a division algebra is the set of elements in the
algebra that commute with every other element in

the algebra; the center is itself just a commutative
field, and the division algebra is naturally a vector
space over its center. We consider only division
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algebras that are finite-dimensional as such vector
spaces. Commutative fields are trivial examples
of these division algebras, but they are by no
means the only ones: for instance, class-field
theory tells us that over any algebraic number
field K, there is a rich supply of noncommutative
division algebras whose center is K and are finite-
dimensional over K.

Interest in MIMO communication began with the
papers [21, 10, 24, 11], in which it was established
that MIMO wireless transmission could be used
both to decrease the probability of error and to
increase the amount of information that can be
transmitted. This result caught the attention of
telecommunication operators, particularly since
MIMO communication does not require additional
resources in the form of either a larger slice of the
radio spectrum or increased transmitted power.

The basic setup is as follows: Complex numbers
Reıφ, encoded as the amplitude (R) and phase (φ)
of a radio wave, are sent from t transmit antennas
(one number from each antenna), and the encoded
signals are then received by r receive antennas.
The presence of obstacles in the environment, such
as buildings, causes attenuation of the signals; in
addition, the signals are reflected several times
and interfere with one another. The combined
degradation of the signals is commonly referred to
as fading, and achieving reliable communication
in the presence of fading has been the most
challenging aspect of wireless communication.
The received and transmitted signals are modeled
by the relation

Yr×1 = θHr×tXt×1 +Wr×1

where X is a t × 1 vector of information signals,
Y is an r × 1 vector of received signals, W is an
r × 1 vector of additive noise, H is an r × t matrix

1432 Notices of the AMS Volume 57, Number 11



that models the fading, and θ is a real number

chosen to multiply the information signals so as

to fit the power available for transmission. Under
the most commonly adopted model, the entries

of the noise vector W and the channel matrix

H are assumed to be Gaussian complex random
variables that are independent and identically

distributed with zero mean. (A Gaussian complex
random variable is one of the form w = x + ıy ,

where x and y are real Gaussian random variables

that are independent and have the same mean and
variance. The modulus of such a random variable,

and in particular the magnitude of each fading
coefficient hij , is then Rayleigh distributed. This

model is hence also known as the Rayleigh fading

channel model.) It is the presence of fading in the
channel that distinguishes this model from more

classical channels, where the primary source of

disturbance is the additive Gaussian noise W .
A common engineering model is to assume

that the channel characteristics (i.e., the fading
coefficients hij ) stay constant in some fixed but

small time interval and that these characteristics

are known to the receiver but not the transmit-
ter. (This is known as coherent transmission.) If

each antenna can transmit n times during such an

interval, then the transmission process is compart-
mentalized into blocks of length n: each antenna

transmits n times, and each receiver waits to re-
ceive all n transmissions before processing them.

A common simplifying assumption is to take

r = t = n, and the equation above is accordingly
modified to read

(1) Yn×n = θHn×nXn×n +Wn×n.
Thus the ith column of Y , θX, andW represent

(respectively) the received vectors, the transmitted
information, and the additive noise from the ith

transmission. A measure of the power available

during a single transmission from all n antennas,
i.e., a single use of the telecommunication chan-

nel, is the signal-to-noise ratio (SNR) ρ. Recall that
the Frobenius norm ||X||F of X = (xi,j) equals√∑

i,j |xi,j |2. Since the power required to send a

complex number varies as the square of its mod-

ulus, the normalization constant θ must satisfy
θ2||X||2F ≤ nρ.

A subset S of the nonzero complex numbers

known as the signal set is selected as the alphabet
(a common situation is that S is a finite subset of

size q of the nonzero Gaussian integers Z[ı]−{0}),
and a k-tuple (s1, s2, . . . , sk), si ∈ S, constitutes the
message that the transmitter wishes to convey to

the receiver. Thus there are qk messages in all, and
it is assumed that each message is equally likely

to be transmitted. A space-time code is then a one-

to-one map X : Sk → Mn(C); we write X for X(Sk).
The transmitted matrix θXn×n in Equation (1) is

thus drawn from the set θX as (s1, s2, . . . , sk) vary

in Sk. Often X itself is referred to as the space-

time code. It is typically assumed that the map
X is “linear in Sk”, that is, it is the restriction

to Sk of a group homomorphism 〈S〉k → Mn(C),
where 〈S〉 is the additive subgroup of C generated

by S. (The term “space-time” refers to the fact
that information (s1, s2, . . . , sk) is packaged in the

spatial direction by sending it out through several
physically separated transmit antennas and in the

time direction by sending it out in n consecutive
transmissions.)

Under the information-theoretic framework de-
veloped by Shannon in 1948 ([18]) and adopted

ever since within the telecommunication commu-
nity, the amount of information conveyed by a

message in this setting is equal to log2(q
k) “bits”.

Since this amount of information is conveyed

in n transmissions over the MIMO channel, the
rate of information transmission is then given by
k

n
log2(q) bits per channel use. When q and n are

fixed a priori, the quantity k serves as a measure
of information rate.

Reliability of communication is commonly mea-

sured by the probability Pe of incorrectly decoding
the transmitted message at the receiver. The pair-

wise error probability Pe(i, j) (for i ≠ j) is the
probability that message i is transmitted and mes-

sage j is decoded. Performance analysis of MIMO
communication systems typically focuses on the

pairwise error probability, as it is easier to es-
timate and also because the error probability Pe
can be upper and lower bounded in terms of the
pairwise error probability.

It was shown in [21, 11] that for a fixed SNR
(i.e., power) ρ, in order to keep the pairwise error

probability low, the space-time code X must meet
the two criteria below, of which the first is primary:

(1) Rank Criterion: For s := (s1, s2, . . . , sk) and
s′ := (s′1, s′2, . . . , s′k) with s ≠ s′, the differ-
ence matrix

X(s)−X(s′)
must have full rank n, i.e., it must be
invertible.

(2) Coding Gain Criterion: For s and s′ as
above, s ≠ s′, the modulus of the determi-

nant of difference

|det(θX(s)− θX(s′))|
must be as large as possible.

Clearly, the second criterion comes into play only

when the first criterion has been met but then
subsumes it. Each criterion impacts a different

communication parameter, and the two are hence
stated independently. Note that one cannot arbi-

trarily scale the matrices X to increase the coding
gain because the assumption of fixed ρ, along with

the relation θ2||X||2F ≤ nρ, would simply cause a
corresponding decrease in θ. Note too that one

cannot increase the quantity k (a proxy for the rate
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of information) arbitrarily, as this would create
a larger set of matrices θX all circumscribed to
lie within a sphere of radius

√
nρ, which would

then cause the determinant of their differences
to get smaller, thereby going against the second
criterion.

Satisfying the Rank Criterion
The earliest space-time code, for two antennas,
was given by an engineer, Alamouti ([1]): given an
arbitrary signal set S, he chose X : S2 → M2(C) to
be

(2) X(s1, s2) =
(
s1 −s2
s2 s1

)

(where si stands for complex conjugation). It is easy
to see that the rank criterion is immediately met.
Writing s1 = u1+ıu2, s2 = u3+ıu4, each such matrix

can be expressed in the form X(s1, s2) =
∑4
i=1 uiAi .

The 2 × 2 complex matrices Aj are such that for
any complex 2×2 channel matrixH, the collection
of 2 × 2 matrices {HAi} is pairwise orthogonal
when regarded as vectors in R8 by writing out
sequentially the real and imaginary parts of each
entry of the {HAi}. The expansion above makes
it possible to do a least squares estimation of the
uj from the received matrix Y , also considered as

a vector in R8 as above, by projecting onto the
respective matrices HAj (we will consider this in
more detail later). It is this property that makes
the Alamouti code so easy to decode, and, not
surprisingly, the code has since been adopted
into the IEEE 802.11n “Wireless LAN” standard. In
applications, the {s1, s2} are typically drawn from
a subset of Z[ı]× Z[ı].

Alamouti’s code led to a furious search among
engineers and coding theorists for generalizations
for higher numbers of antennas. Much of the early
work (see [22], for example) focused on combinato-
rial methods. The matrixX in Equation (2) is almost
unitary: it satisfiesXX† = (s1s1+s2s2)I2, where the
superscript † stands for transpose conjugate, and
I2 stands for the 2×2 identity matrix. Not surpris-
ingly, early workers (see [22], for example) sought
n × n matrices X(s1, . . . , sk) whose entries come
from the set {±sj ,±sj ,±ısj ,±ısj , j = 1, . . . , k} and
satisfy

(3) XX† = (s1s1 + · · · + sksk)In.
This quickly leads to a necessary condition: the
existence of 2k − 1 complex n × n matrices Ai
satisfying A

†
i Ai = In, A†i = −Ai , and AiAj = −AjAi

for 1 ≤ i < j ≤ 2k − 1. These are, of course, the
Hurwitz-Radon-Eckmann matrices, and classical
results of Hurwitz-Radon-Eckmann (see [6], for
instance) severely limits the values of k for which
such matrices can exist. If n = 2a(2b + 1), then
the Hurwitz-Radon-Eckmann result says that the
maximum possible value of k equals (a+1). Thus

k = n if and only if n = 2, k ≤ 3n

4
for n > 2, and

k ≤ n

2
for n > 4. It follows that these general-

izations of the Alamouti code transmit too few

information symbols for more than two transmit

antennas. (A similar analysis of the matricesAi us-

ing representations of Clifford algebras was made

by Tirkkonen and Hottinen in [20].)

In 2001 Sundar Rajan, a professor of com-

munication engineering at the Indian Institute of

Science, introduced the problem of designing ma-

trices X(s1, . . . , sk) satisfying the rank criterion

to this author. Given his algebraic background,

this author could recognize easily that matrices

arising from embeddings of fields and division

algebras can be utilized to solve this problem. Let

f : D → Mn(C) be an embedding, i.e., an (injective)

ring homomorphism of a division algebra D into

the n × n matrices over C. Then for X1 = f (d1)

and X2 = f (d2) (X1 ≠ X2), X1 − X2 must neces-

sarily be invertible. This is because d1 − d2, being

a nonzero element of the division algebra D, is

automatically invertible, and since f is a homo-

morphism, the same must also be true of X1 −X2.

Thus the matrices in f (D) automatically satisfy

the rank criterion. Using this observation, Sun-

dar Rajan, his Ph.D. student Shashidhar, and this

author ([19]) proposed several schemes for con-

structing space-time codes from various signal

sets. For each signal set S and for each n, they

constructed suitable division algebras D, suitable

embeddings f : D → Mn(C), and suitable injective

maps X : Sk → f (D), for suitable k.

For simplicity of construction in the noncom-

mutative case, the authors of [19] used cyclic

division algebras for their codes. A cyclic divi-

sion algebra is constructed from two data: a field

extension K/F of degree n that is Galois with

cyclic Galois group 〈σ〉, and a nonzero element

γ ∈ F that satisfies the property that for any

i = 1, . . . , n− 1, γ i is not a norm1 from K to F . As

a K-vector space, the algebra is expressible as

D =
n−1⊕
i=0

Kui

where u is a symbol. The multiplication in this

algebra is given by the relations uk = σ(k)u

for all k ∈ K, and un = γ. The bilinearity of

multiplication, along with these relations, then

allows us to determine the product of any two

elements ofD. One can prove that this construction

indeed yields a division algebra with centerF . (Such

a division algebra is said to be of index n.)

There is a well-known embedding of such a D

into Mn(K) that sends k0 + k1u+ ·· ·kn−1u
n−1 to

1This is a sufficient condition to obtain a cyclic division

algebra.
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(4)




k0 γσ(kn−1) γσ 2(kn−2) . . . γσn−1(k1)

k1 σ(k0) γσ 2(kn−1) . . . γσn−1(k2)
k2 σ(k1) σ 2(k0) . . . γσn−1(k3)

k3 σ(k2) σ 2(k1) . . . γσn−1(k4)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
kn−2 σ(kn−3) σ 2(kn−4) . . . γσn−1(kn−1)

kn−1 σ(kn−2) σ 2(kn−3) . . . σn−1(k0)




By taking F to be various subfields of C containing
Q(S) (the field generated by the elements of S
over Q) in this formulation, and for each such F
taking various K and γ, a wide variety of space-
time codes can be constructed for a wide range of
signal sets. For further simplicity of construction,
particularly in the selection of the elementγ above,
the authors of [19] chose all their base fields F to
contain transcendental elements; in most cases,
their cyclic extensions K/F were of the form
K0(x)/F0(x), where K0/F0 is a cyclic extension of
number fields, and x is a transcendental. In these
cases, the authors’ construction yielded codes

X : Sn
2 → Mn(C), i.e., with k = n2.

Alamouti’s original code above arises as a
special case of this formulation: the matrices
of Equation (2) are just the matrices of Equa-
tion (4) above specialized to the cyclic algebra
(C/R, σ ,−1), where σ stands for complex con-
jugation. This is nothing other than Hamilton’s
quaternions: the four-dimensional R algebra R ⊕
Rı⊕Rj ⊕Rk subject to the relations ı2 = j2 = −1,
ıj = −jı = k. (The signal set in Alamouti’s con-
struction is contained in K instead of F , unless of
course S is real.)

Satisfying the Coding Gain Criterion
The coding community immediately recognized
the potential of cyclic division algebras as a funda-
mental tool for constructing space-time codes and
began to work with the coding paradigm intro-
duced in [19]. However, there was still a drawback.
Although the specific codes of [19] certainly sat-
isfied the rank criterion, their performance was
not satisfactory. The reason for this became clear:
the specific division algebras of [19] were pro-
posed only for mathematical simplicity—merely
as easy examples of the larger paradigm of di-
vision algebras—and were not optimized for the
coding gain performance criterion above. The use
of transcendental numbers in the codes in [19]
caused the determinants of the difference matri-
ces to come arbitrarily close to zero and limited
their performance.

This situation was quickly remedied in [2] by a
very clever technique. To provide a lower bound on
the moduli of the determinants of the difference
of code matrices, the authors Belfiore, Rekaya,
and Viterbo first constructed division algebras
from cyclic extensions K/Q(ı) and γ ∈ Z[ı], but
then restricted the various ki in the matrix (4)
above to entries in OK , the ring of integers of K.

The net result, as can easily be seen, is that the

determinant of the difference of any two such
matrices will live in Z[ı] and therefore will have
modulus bounded below by 1. Moreover, this will

be true no matter how large a subset of Z[ı] is used
as the signal set. They called this last property
the “nonvanishing determinant property”, and

they called the specific code they proposed the
Golden Code. It was so named for the Golden
Ratio that appears naturally: it is derived from
the division algebra (Q(ı,

√
5)/Q(ı), σ , ı). Here, σ

is the automorphism of K = Q(ı,
√

5) that sends√
5 to −

√
5 and acts as the identity on Q(ı). A

Z[ı]-basis for OK is given by 1 and φ = 1+
√

5

2
. Write

ψ forσ(φ) = 1−
√

5

2
. For a signal set S ⊂ Z[ı] ⊂ Q(ı)

(the most common kind of signal set), this code
sends S4 to Mn(C) via the matrix

(5)
1√
5

(
s0,1α+ s0,2αφ ı(s1,1θ + s1,2θψ)
s1,1α+ s1,2αφ s0,1θ + s0,2θψ

)
.

Here, the
1√
5

scale factor, α = 1+ ı(1−φ),
and θ = σ(α) = 1+ ı(1−ψ) are used to shape
the code (more on this later). Comparing with

the matrix (4) above and ignoring the scale fac-
tor, we see that k0 = s0,1α + s0,2αφ and k1 =
s1,1α + s1,2αφ. Note that this code encodes four

information symbols in each matrix. (A variant
of this code, also based on the division algebra
(Q(ı,

√
5)/Q(ı), σ , ı), also incorporating the shap-

ing criterion described later, is currently part of
the IEEE 802.16e “WiMAX” standard. The Alamouti

code based on the quaternions is also part of this
standard.)

With the introduction of cyclic division algebras
as a fundamental construction paradigm and with

the use of codes constructed with entries from
OK for suitable extensions of Q(ı), the subject of
space-time coding took off. It is harmless and very

often actually useful to assume that the signal set
S is infinite: typically, S is assumed to be one of
the standard lattices Z, Z[ı] or the Eisenstein lat-

tice Z[ω], where ω stands for the primitive third

root of unity
−1+

√
−3

2
. (Under these assumptions

the code forms an additive group, so one only

needs to consider the rank of X(s1, . . . , sk) and the
modulus of the determinant |detθX(s1, . . . , sk)| in
the rank criterion and the coding gain criterion.)

Coding theorists immediately looked for specific
constructions of division algebras of the form
(K/F, σ , γ) for the cases where F = Q, F = Q(ı),
and F = Q(

√
−3), corresponding to signal sets

equaling one of the three lattices above. While
such constructions have been known in principle

to mathematicians working with division alge-
bras, the coding theorists absorbed the necessary
number-theoretic background in very short order

and explicitly constructed division algebras over
such fields for all indices n ([15] and [7]). (The
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hard task here is to select γ ∈ OF so that it has

the property that γ i is not a norm from K to

F for i = 1, . . . , n − 1.) In all such cases, an OF -
basis βj of OK is chosen, and each ki is written

as
∑n
j=1 si,jβj for si,j in the signal set. Thus n2

elements from the signal set are coded in each ma-

trix, and by construction, the determinant of each

matrix is nonzero and lies in one of the discrete

lattices above. The modulus of the determinant

will therefore be bounded below by the length of

the shortest vector in the lattice so the code will

have the nonvanishing determinant property.

Other Performance Measures
In parallel, as the subject became better under-

stood, several additional performance criteria

started to be imposed on codes. In a funda-

mental paper ([25]), Zheng and Tse provided a

precise quantification of the trade-off (known as

the diversity-multiplexing gain or “DMG” trade-

off) between information rate and reliability. They

defined numerical measures for each of the ben-

efits and showed that the pair of benefits lie

in a region of the first quadrant whose upper

boundary is a piecewise linear concave up curve.

In the paper [7], Vijay Kumar and his students

showed that all codes constructed from cyclic di-

vision algebras with the additional nonvanishing

determinant property will automatically perform

at the upper boundary of this region and will

hence be “DMG optimal”. This of course further

cemented the use of cyclic division algebras for

code construction.

Another set of criteria was proposed by Oggier

and coworkers in the paper [17]. One first rewrites

the matrix (4) as a single n2 × 1 vector. When

ki =
∑n
j=1 si,jβj for si,j in the signal set and βj

an OF basis for OK , this n2 × 1 vector can be ex-

pressed asM.v, whereM is an n2×n2 matrix and v

is the column vector (s0,1, s0,2, . . . , si,j , . . . , sn−1,n)
T .

One now requires that the matrix M be unitary

and that |γ| = 1. The first condition is called good

shaping, and the idea behind it is that this forces

the average energy needed to send the vector v

without coding to be the same as that needed to

send it in the coded matrix form (4). The condition

|γ| = 1 causes the average energy transmitted per

antenna to be equal for all transmissions. Oggier

and coworkers called such codes “perfect” and

constructed perfect codes for n = 2,3,4, and 6.

This was followed by work of Elia and cowork-

ers ([8]), who constructed perfect codes for all

values of n and additionally showed that perfect

codes satisfy other information-theoretic proper-

ties such as information-losslessness (a concept

introduced by Damen and coworkers in [4]) and

approximate universality (a concept introduced by

Tavildar and Viswanath in [23]).

The mathematicsneededfor the workonperfect

codes is quite interesting. Analyzing the condition
that M be unitary, we find that it is sufficient to
make the following matrix unitary:

U({β1, . . . , βn}) =




β1 · · · βn
σ(β1) · · · σ(βn)

...
σ n−1(β1) · · · σ n−1(βn)



.

Here, it is not necessary that the βj be an OF basis
of OK ; it is sufficient that they be an OF linearly
independent subset of OK . (So, for example, in the
Golden Code (5) above, α is chosen so that with
β1 = α and β2 = αφ, the matrix

(
α αφ
θ θψ

)

is unitary after being multiplied by the
1√
5

scale

factor.) So the question is: how to find OF sub-

modules of OK that satisfy this unitary condition?
For n = 2b, it is easy to see that for the field
K = Q(ζ) and F = Q(ı), where ζ is a primitive
2b+2th root of unity, the various powers of ζ are
Z[ı]-linearly independent and satisfy the unitary
condition above. For odd n, Elia and coworkers use

a construction due to B. Erez [9] that was needed
in a different context: Erez was showing that for
certain cyclic extensions K/Q with Galois group
G, the square root of the inverse different is a free
Z[G] module that has an orthogonal basis with
respect to the usual trace form on K that sends

x, y to TrK/Q(xy).
The most recent performance criteria for space-

time codes, and in some sense the most mathe-
matically exciting, have come from Lahtonen and
coworkers ([13]). For the usual cases in which S
is one of Z, Z[ı], Z[ω], it is easy to see from the

linearity of the code matrices X that on writing
eachX as an n2×1 vector as above and separating
the real and imaginary parts, one gets a full lattice

in R2n2
, i.e., the additive group generated by 2n2

linearly independent vectors in R2n2
. We refer to

this lattice as the code lattice. After normalizing
all code matrices so that infX∈X |det(X)| = 1, they
postulate that codes whose lattice points are the

most dense inR2n2
will have the best performance,

and, indeed, they find this is borne out in several
circumstances by simulations. To obtain a suitable
numerical measure for the relative density, they

invert the situation: they normalize the code lat-
tice to have fundamental volume 1 instead. Thus
they define the normalized minimum determinant
of a code lattice Λ of rank 2n2 in a Q(ı) divi-
sion algebra of index n (embedded in Mn(C)) as
the minimum of the moduli of the determinants

|det(X(s1, . . . , sn2))| as X(s1, . . . , sn2) runs through
the lattice, divided by the fundamental volume of
Λ. Since a smaller fundamental volume represents
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a higher density, the goal is to construct codes

whose code lattice Λ would maximize this ratio

among all full lattices in the division algebra.

Recall that if D is a division algebra with center

F and if R is a subring of F whose quotient field

is F , then an R-order in D is a subring T of D

containing R that is finitely generated as an R-

module and satisfies TF = D. A maximal R-order

is one that is maximal with respect to inclusion.

In the typical situation where S is one of Z, Z[ı],
or Z[ω], so F is one of Q, Q(ı), or Q(

√
−3), and

where the ki of the matrices in (4) are constrained

to lie in OK and γ ∈ OF , the code matrices of (4)

naturally form an S-order. Thus the code matrices

have a dual structure of an S-order and a full lattice

in R2n2
. Lahtonen and coworkers investigate the

interplay between these two structures. They ask:

How will the code’s performance as measured

by its normalized minimum determinant vary if,

in addition to carrying its natural structure of a

full Z-lattice in R2n2
, we choose our code to form

an arbitrary S-order inside an F-division algebra?

In these cases, the minimum modulus of the

determinants of the code matrices is 1, so it follows

from the definition of the normalized minimum

determinant that the smaller the fundamental

volume of the lattice the better the code. If T1 and

T2 are S-orders andΛT1 andΛT2 the corresponding

lattices with fundamental volumes VT1 and VT2 ,

then T1 ⊆ T2 implies ΛT1 ⊆ ΛT2 , which in turn

means that VT2 ≤ VT1 . It follows therefore that

the best normalized minimum determinant will

arise when a maximal order is used for the code.

The authors then relate the fundamental volume
of the code lattice to the Z-discriminant of the

maximal order and then invoke known formulas

for discriminants of maximal orders to compute

the best normalized minimum determinant of

codesarising fromOF orders inside a givendivision

algebra. In particular, they show (for the fieldsQ(ı),
Q(
√
−3) and Q) that the best division algebras to

use will be ones that are ramified at precisely two

of the “smallest” primes of the field (where the size

of a prime P =< π > is defined to be the modulus

|π|). Thus, for Q(ı) for example, one needs to

transmit on a code arising from a maximal order

inside a division algebra ramified only at (1 + ı)
and (2+ ı) (or (2 − ı)). (Much of this was part of

Vehkalahti’s Ph.D. thesis.)

One of the drawbacks of using maximal orders

is that the corresponding code lattice may not

have good shape. Thus optimizing a code for min-

imum normalized determinant may destroy any

optimization for shape. The recent work of Raj

Kumar and Caire ([3]) proposes a very clever tech-

nique of mapping lattice points to certain cosets

of a suitably chosen sublattice of a standard cubic

lattice; this smooths out an irregular lattice and

gives it better shape. In particular, their technique

applies to codes from lattices from maximal or-

ders and provides a further performance boost in

such cases.

Key Challenge: Decoding
What are some of the key problems that need

to be solved in space-time codes? Perhaps the

biggest engineering challenge in the subject is the

issue of decoding. The problem quite simply is

the following: given the received vectors in Y (see

Equation (1)), determine the entries of the matrix

X that represent the original information. Assume

that k symbols are coded in the matrix X and that

the entries of X are linear in the signal entries

s1, . . . , sk (typically arising from Z, Z[ı], or Z[ω]).

By writing out sequentially the real and imaginary

parts of each entry of Y , W , and s1, . . . , sk, we

may rewrite Equation (1) as Ỹ = Zv + W̃ . Here Z

is a 2n2 × 2k real matrix that depends on H, θ,

and the parameters of the code matrix X, v is the

signal vector (x1, y1, . . . , xi , yi , . . . , xk, yk)
T with xi

and yi being the real and imaginary parts of si, and

similarly for Ỹ and W̃ . If the columns of Z were

orthonormal, decoding would be quite simple: we

would have ZT Ỹ = v + ZT W̃ with ZT W̃ also hav-

ing independent, identically distributed Gaussian

entries. Hence, under maximum likelihood esti-

mation, v can be taken to be the closest vector

in Sk (viewed inside the Euclidean space R2k) to

ZT Ỹ . This is a very simple and computationally

fast scheme: we march through ZT Ỹ component

pair by component pair, and we find the element

of the signal lattice S closest to that component

pair.

The process above is called single symbol de-

coding. (For k < n2 this is the same as orthogonal

projection onto the subspace of R2n2
determined

by the columns of Z .) There are some nice sit-

uations in which the matrix Z is (essentially)

orthogonal; this happens in the case of the

Alamouti code, and more generally, in the codes

satisfying Equation (3). The matrixZ for such codes

satisfies ZZT = θ2Tr(HH†)I2k. We may divide the

relation Ỹ = Zv+W̃ by θ
√
Tr(HH†). The entries of

the new noise vector 1/(θ
√
Tr(HH†))W̃ are still in-

dependent identically distributed Gaussian, while

the columns of the matrix 1/(θ
√
Tr(HH†))Z are

now orthonormal. Thus single symbol decoding

can be employed in all these cases.

But for other codes Z is rarely orthogonal!

In general, given that the entries of W are in-

dependent identically distributed Gaussian, for

maximum likelihood estimation one needs to

search in Sn
2

(viewed inside the Euclidean space

R2n2
) for that vector v = (x1, y1, . . . , xn2 , yn2)T such

that Zv is closest to Ỹ . (Here we will assume

that k = n2, as is usually the case for codes from

cyclic division algebras.) This can no longer be
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accomplished symbol by symbol, and one needs

to search in the full space Sn
2

instead of just in S.

There is an algorithm called the sphere decoding
algorithm (see [5], for instance) that accomplishes
this search in an intelligent manner, but as is to be

expected of any search in Sn
2
, even this algorithm

gets very cumbersome oncen exceeds2. (One must
keep in mind that the search for v such that Zv

is closest to Ỹ is essentially a closest lattice point

search, and this is known to be NP-hard. What

saves the day is that the received vectors Ỹ are not

random but have a Gaussian distribution about
the lattice vectors Zv . In [12], Hassibi and Vikalo
show that under certain technical assumptions,

the expected complexity of the sphere decoding
algorithm is polynomial, although the worst-case
complexity is exponential.)

SinceZ is rarely orthogonal, we may ask whether
we can take advantage of the obvious algebraic

structure of the code and simplify the closest
vector problem for our particular application. A
very clever set of ideas of Luzzi et al. [16] does

just that and gives an approximate solution to the
decoding problem for the Golden Code (Equation
(5)) by reducing the situation to the action of

SL2(C) on three-dimensional hyperbolic spaceH3.
Their work is a veritable tour de force of the ap-

plication of abstract mathematics to engineering
problems. Their goal is to approximate the channel
matrix H (normalized to have determinant 1) by

an element U of determinant 1 in the Z[ı]-order
R = (OK/Z[ı], σ , ı). Writing H = EU with E simply
being the error HU−1, they argue that choosing U

so that the Frobenius norm of E−1 = UH−1 is min-
imized approximates the original problem by the

following: given a vector Y in Cn
2

and an unknown

vector S in Z[ı]n
2

determine a “best” estimate of
S if the difference vector W = Y − S is known
to be approximately independent identically dis-

tributed Gaussian (in a suitable sense). Given this
assumption about the noise vectorW , a reasonable

way to proceed is to assume that W is actually
independent identically distributed Gaussian. In
this situation, the maximum-likelihood estimate

of S is obtained by taking the ith entry of S to be
the lattice point in Z[ı] closest to the ith entry of
Y . The authors find that their scheme gives a fast

and acceptably accurate decoding.
What is fascinating is the mathematics behind

their choice of U . First, they need to determine
generators and relations for the group of norm 1
units U1(R) of R (i.e., the set of multiplicatively

invertible elements of R whose determinant as a
code matrix is 1). In general, it is very difficult to
find these for orders in division algebras, but in the

case of certain special quaternion algebras over
number fields, generators and relations forU1(R)
are known. Much of the idea behind this goes

back to Poincaré. The norm 1 units in the order R

above (modulo the subgroup {±1}) turns out to be

a Kleinian group, i.e., a discrete subgroup of the

projective special linear group PSL2(C). As a sub-

group of PSL2(C), U1(R) (modulo {±1}) acts on

the upper half-space model of hyperbolic 3-space
H3 as a group of orientation-preserving isometries,

and Poincaré’s fundamental polyhedron theorem

gives a set of generators and relations for such

a group in terms of certain automorphisms of a
fundamental domain for the group. Given a point

P in H3, the Dirichlet polyhedron centered on P

is the closure of the set of points x such that

dH(x, P) < dH(g(x), P) for all g ∈ U1(R) (modulo

{±1}), g ≠ 1, where dH is the hyperbolic metric on
H3. The authors construct a Dirichlet polyhedron

centered on J = (0,0,1); this is a fundamental

domain for U1(R). From this polyhedron, using

Poincaré’s theorem and a computer search, they
determine a set of generators of U1(R). They do

this ahead of time and store the results. Next, in

real time, given a fading matrix H (normalized to

have determinant 1), they need to find an element

U ofU1(R) such that the Frobenius norm of UH−1

is minimized. They observe that viewing UH−1 as

an element of PSL2(C) acting on H3, the Frobe-

nius norm of UH−1 is just 2 cosh dH(J, UH
−1(J)),

where J and dH are as above. Since U is an isom-
etry, they must find U ∈ U1(R) that minimizes

cosh dH(U
−1(J),H−1(J)). From the definition of

Dirichlet polyhedra, this means that they need

to find a Dirichlet polyhedron centered on some

U−1(J) which contains H−1(J). They use the ge-
ometry of H3 relative to the action of U1(R) to

find such a U : they just need to repeatedly con-

sider the various Dirichlet polyhedra centered on

J and the various gi(J), where the gi run through

the generators of U1(R) that they have computed
ahead of time, along with their inverses.

Role of Mathematicians
What is the role of mathematicians in this field?

The subject is clearly very mathematical; yet, un-
like classical coding theory, which now has a

mathematical life of its own and can, for instance,

be thought of as a theory of subspaces of vec-

tor spaces over finite fields, the center of gravity
of space-time codes currently lies very solidly in

engineering. There is as yet no deep independent

“mathematics of space-time codes”: the driving

force behind the subject consists of fundamental

engineering problems that need to be solved be-
fore MIMO wireless communication reaches its full

practical potential, particularly for three or more

antennas. This author therefore believes that, as

things stand now, isolated mathematical investiga-

tions of space-time codes that are not grounded in
concrete engineering questions would very likely

lead to sterile results. At least for now, mathe-

maticians can best contribute to the subject by
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working in collaboration with engineers who are

motivated by fundamental engineering questions.

This author has found that the leading engineers

in the field already have a practical and intuitive

understanding of much abstract mathematics but

welcome help from trained mathematicians. (This

author has also found that they are a genuine plea-

sure to collaborate with.) There is clearly a lot of

work for mathematicians to do: particularly in de-

coding systems with large numbers of receive and

transmit antennas, but also in other areas of MIMO

communication that we have not touched upon in

this article, such as cooperative communication in

networks, or noncoherent communication, where

the matrix H is not known to either the receiver

or the transmitter.
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