J&': Nested Intersection for Scalable Software Composition

Nathaniel Nystrom

Xin Qi

Andrew C. Myers

Computer Science Department
Cornell University

{nystrom,qixin,andru}@cs.cornell.edu

Abstract

This paper introduces a programming language that makes it conve-
nient to compose large software systems, combining their features
in a modular way. J& supports nested intersection, building on ear-
lier work on nested inheritance in the language Jx. Nested inher-
itance permits modular, type-safe extension of a package (includ-
ing nested packages and classes), while preserving existing type
relationships. Nested intersection enables composition and exten-
sion of two or more packages, combining their types and behavior
while resolving conflicts with a relatively small amount of code.
The utility of J& is demonstrated by using it to construct two com-
posable, extensible frameworks: a compiler framework for Java,
and a peer-to-peer networking system. Both frameworks support
composition of extensions. For example, two compilers adding dif-
ferent, domain-specific features to Java can be composed to obtain
a compiler for a language that supports both sets of features.

Categories and Subject Descriptors D.3.2 [Language Classifi-
cations]: Object-oriented languages; D.3.3 [Language Constructs
and Features]: Classes and objects, frameworks, inheritance, mod-
ules, packages

General Terms Languages

Keywords nested intersection, nested inheritance, compilers

1. Introduction

Most software is constructed by extending and composing exist-
ing code. Existing mechanisms like class inheritance address the
problem of code reuse and extension for small or simple exten-
sions, but do not work well for larger bodies of code such as com-
pilers or operating systems, which contain many mutually depen-
dent classes, functions, and types. Moreover, these mechanisms do
not adequately support composition of multiple interacting classes.
Better language support is needed.

This paper introduces the language J& (pronounced “Jet”),
which supports the scalable, modular composition and extension
of large software frameworks. J& builds on the Java-based lan-
guage Jx, which supports scalable extension of software frame-
works through nested inheritance [35]. J& adds a new language
feature, nested intersection, which enables composition of multi-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’06 October 22-26, 2006, Portland, Oregon, USA.

Copyright (© 2006 ACM 1-59593-348-4/06/0010. .. $5.00.

ple software frameworks to obtain a software system that combines
their functionality.

Programmers are familiar with a simple form of software com-
position: linking, which works when the composed software com-
ponents offer disjoint, complementary functionality. In the general
case, two software components are not disjoint. They may in fact
offer similar functionality, because they extend a common ancestor
component. Composing related frameworks should integrate their
extensions rather than duplicating the extended components. It is
this more general form of software composition that nested inter-
section supports.

A motivating example for software composition is the problem
of combining domain-specific compiler extensions. We demon-
strate the utility of nested intersection through a J& compiler
framework for implementing domain-specific extensions to the
Java language. Using the framework, which is based on the Poly-
glot compiler framework [36], one can choose useful language fea-
tures for a given application domain from a “menu” of available op-
tions, then compose the corresponding compilers to obtain a com-
piler for the desired language.

We identify the following requirements for general extension
and composition of software systems:

1. Orthogonal extension: Extensions may require both new data
types and new operations.

2. Type safety: Extensions cannot create run-time type errors.

3. Modularity: The base system can be extended without modify-
ing or recompiling its code.

4. Scalability: Extensions should be scalable. The amount of code
needed should be proportional to the functionality added.

5. Non-destructive extension: The base system should still be
available for use within the extended system.

6. Composability of extensions.

The first three of these requirements correspond to Wadler’s ex-
pression problem [49]. Scalability (4) is often but not necessarily
satisfied by supporting separate compilation; it is important for ex-
tending large software. Non-destructive extension (5) enables ex-
isting clients of the base system and also the extended system itself
to interoperate with code and data of the base system, an important
requirement for backward compatibility. Nested inheritance [35]
addresses the first five requirements, but it does not support exten-
sion composition. Nested intersection adds this capability.

This paper describes nested intersection in the J& language and
our experience using it to compose software. Section 2 consid-
ers a particularly difficult instantiation of the problem of scalable
extensibility and composition—the extension and composition of
compilers—and gives an informal introduction to nested intersec-
tion and J&. Nested intersection creates several interesting techni-
cal challenges, such as the problem of resolving conflicts among

composed packages; this topic and a detailed discussion of lan-
guage semantics are presented in Section 3. Section 4 then de-
scribes how nested intersection is used to extend and compose com-
pilers. The implementation of J& is described in Section 5, and Sec-
tion 6 describes experience using J& to implement and compose
extensions in the Polyglot compiler framework and in the Pastry
framework for building peer-to-peer systems [44]. Related work is
discussed in Section 7, and the paper concludes in Section 8.

2. Nested intersection

Nested intersection supports scalable extension of a base system
and scalable composition of those extensions. Consider building a
compiler with composable extensions. A compiler is of course not
the only system for which extensibility is useful; other examples
include user interface toolkits, operating systems, game engines,
web browsers, and peer-to-peer networks. However, compilers are
a particularly challenging domain because a compiler has several
different interacting dimensions along which it can be extended:
syntax, types, analyses, and optimizations.

2.1 Nested inheritance

Nested intersection builds on previous work on nested inheri-
tance [35]. Figure 1(a) shows a fragment of J& code for a simple
compiler for the lambda calculus extended with pair expressions.
This compiler translates the lambda calculus with pairs into the
lambda calculus without pairs.

Nested inheritance is inheritance of namespaces: packages and
classes. In J&, packages are treated like classes with no fields,
methods, or constructors. A namespace may contain other name-
spaces. A namespace may also extend another namespace, inher-
iting all its members, including nested namespaces. As with or-
dinary inheritance, the meaning of code inherited from the base
namespace is as if it were copied down from the base. A derived
namespace may override any of the members it inherits, including
nested classes and packages.

As with virtual classes [29, 30, 19], overriding of a nested class
does not replace the original class, but instead refines, or further
binds [29], it. If a namespace T’ extends another namespace T
that contains a nested namespace T.C, then T’.C inherits mem-
bers from T.C as well as from T’.C’s explicitly named base name-
spaces (if any). Further binding thus provides a limited form of
multiple inheritance: explicit inheritance from the named base of
T'.C and induced inheritance from the original namespace 7.C.
Unlike with virtual classes, T’.C is also a subtype of 7.C. In Fig-
ure 1(a), the pair package extends the base package, further bind-
ing the Visitor, TypeChecker, and Compiler classes, as illus-
trated by the base and pair boxes in the inheritance hierarchy
of Figure 2. The class pair.TypeChecker is a subclass of both
base.TypeChecker and pair.Visitor and contains both the
visitAbs and visitPair methods.

The key feature of nested inheritance that enables scalable ex-
tensibility is late binding of type names. When the name of a class
or package is inherited into a new namespace, the name is inter-
preted in the context of the namespace into which it was inherited,
rather than where it was originally defined. When the name occurs
in a method body, the type it represents may depend on the run-time
value of this.

In Figure 1(a), the name Visitor, in the context of the base
package, refers to base.Visitor. In the context of pair, which
inherits from base, Visitor refers to pair.Visitor. Thus, when
the method accept is called on an instance of pair.Pair, it must
be called with a pair.Visitor, not with a base.Visitor. This
allows Pair’s accept to invoke the visitPair method of the
parameter v.

base

Exp Visitor Compiler

Abs TypeChecker

N

pair sum
Exp Compiler Exp

Compiler

Abs Pair Abs Case

Visitor Visitor

TypeChecker TranslatePairs TypeChecker TranslateSums

A /

pair & sum

Exp Compiler
(abstract)

Abs Pair Case

Visitor

TypeChecker TranslatePairs TranslateSums

Figure 2. Inheritance hierarchy for compiler composition

Late binding applies to supertype declarations as well.
Thus, pair.Emitter extends pair.Visitor and inherits its
visitPair method. Late binding of supertype declarations thus
provides a form of virtual superclasses [30, 15], permitting inher-
itance relationships among the nested namespaces to be preserved
when inherited into a new enclosing namespace. The class hier-
archy in the original namespace is replicated in the derived name-
space, and in that derived namespace, when a class is further bound,
new members added into it are automatically inherited by sub-
classes in the new hierarchy.

Sets of mutually dependent classes may be extended at once. by
grouping them into a namespace. For example, the classes Exp and
Visitor in the base package are mutually dependent. Ordinary
class inheritance does not work because the extended classes need
to know about each other: the pair compiler could define Pair as
a new subclass of Exp, but references within Exp to class Visitor
would refer to the old base version of Visitor, not the appropriate
one that understands how to visit pairs. With nested inheritance
of the containing namespace, late binding of type names ensures
that relationships between classes in the original namespace are
preserved when these classes are inherited into a new namespace.

In general, the programmer may want some references to other
types to be late bound, while others should refer to a particular fixed
class. Late binding is achieved by interpreting unqualified type
names like Visitor as sugar for types nested within dependent
classes and prefix types. The semantics of these types are described
in more detail in Section 3. Usually, the programmer need not write
down these desugared types; most J& code looks and behaves like
Java code.

2.2 Extensibility requirements

Nested inheritance in Jx meets the first five requirements described
in Section 1, making it a useful language for implementing exten-
sible systems such as compiler frameworks:

Orthogonal extension. Compiler frameworks must support the
addition of both new data types (e.g., abstract syntax, types,
dataflow analysis values) and operations on those types (e.g., type
checking, optimization, translation). It is well known that there is
a tension between extending types and extending the procedures
that manipulate them [42]. Nested inheritance solves this problem

package base;

abstract class Exp {
Type type;
abstract Exp accept(Visitor v);

}

package pair extends base;

class Pair extends Exp {
Exp fst, snd;
Exp accept(Visitor v) {
fst.accept(v); snd.accept(v);

package sum extends base;

class Case extends Exp {
Exp test, ifLeft, ifRight;
}

class Visitor {

class Abs extends Exp {

return v.visitPair(this);

Exp visitCase(Case c) {

String x; Exp e; // Ax.e 3 return c;
Exp accept(Visitor v) { } }
e = e.accept(v); class Visitor { }
return v.visitAbs(this); Exp visitPair(Pair p) { return p; } class TypeChecker extends Visitor
} } {...}
} class TypeChecker extends Visitor { class TranslateSums extends Visitor
class Visitor { Exp visitPair(Pair p) { ... } {...}
Exp visitAbs(Abs a) { } class Compiler {
return a; class TranslatePairs extends Visitor { void main() { ... }
} Exp visitPair(Pair p) { Exp parse() { ... }
} return ...;
class TypeChecker extends Visitor { // (Ax.Ay.Af. fxy) [p.-fst] [p.snd]
Exp visitAbs(Abs a) { ... } (b) Lambda calculus + sums compiler
} }

class Emitter extends Visitor {
Exp visitAbs(Abs a) {
print(...); return a;

class Compiler {
void main() {

class Compiler {
void main() { ... }
Exp parse() { ... }

(a) Lambda calculus + pairs compilers

Exp e = parse();

} e.accept(new TypeChecker());
} e = e.accept(new TranslatePairs());
e.accept(new Emitter());

}
Exp parse() { ... }

package pair_and_sum extends pair & sum;

// Resolve conflicting versions of main
class Compiler {
void main() {

Exp e = parse();

e.accept(new TypeChecker());
= e.accept(new TranslatePairs());
e.accept(new TranslateSums());
.accept(new Emitter());

e
e
e

Exp parse() { ... }

(c) Conflict resolution

Figure 1. Compiler composition

because late binding of type names causes inherited methods to op-
erate automatically on data types further bound in the inheriting
context.

Type safety. Nested inheritance is also type-safe [35]. Dependent
classes ensure that extension code cannot use objects of the base
system or of other extensions as if they belonged to the extension,
which could cause run-time errors.

Modularity and scalability. Extensions are subclasses (or sub-
packages) and hence are modular. Extension is scalable for several
reasons; one important reason is that the name of every method,
field, and class provides a potential hook that can be used to extend
behavior and data representations.

Non-destructive extension. Nested inheritance does not affect
the base code, so it is a non-destructive extension mechanism,
unlike open classes [12] and aspects [27]. Therefore, base code
and extended code can be used together in the same system, which
is important in extensible compilers because the base language is
often used as a target language in an extended compiler.

The sixth requirement, composition of extensions, is discussed in
the next section.

2.3 Composition

To support composition of extensions, J& extends Jx with nested
intersection: New classes and packages may be constructed by
inheriting from multiple packages or classes; the class hierarchies
nested within the base namespaces are composed to achieve a
composition of their functionalities.

For two namespaces S and T, S& T is the intersection of these
two namespaces. Nested intersection is a form of multiple inheri-
tance implemented using intersection types [43, 13]: S& T inherits
from and is a subtype of both S and T.

Nested intersection is most useful when composing related
packages or classes. When two namespaces that both extend a com-
mon base namespace are intersected, their common nested name-
spaces are themselves intersected: if S and 7' contain nested name-
spaces S.C and T.C, the intersection S& T contains (S&T').C, which
isequal to S.C&T.C.

Consider the lambda calculus compiler from Figure 1(a). Sup-
pose that we had also extended the base package to a sum package
implementing a compiler for the lambda calculus extended with
sum types. This compiler is shown in Figure 1(b).

The intersection package pair & sum, shown in Fig-
ure 2, composes the two compilers, producing a com-
piler for the lambda calculus extended with both product
and sum types. Since both pair and sum contain a class
Compiler, the new class (pair & sum).Compiler extends
both pair.Compiler and sum.Compiler. Because both
pair.Compiler and sum.Compiler define a method main, the
class (pair & sum).Compiler contains conflicting versions of
main. The conflict is resolved in Figure 1(c) by creating a new
derived package pair_and_sum that overrides main, defining the
order of compiler passes for the composed compiler. A similar
conflict occurs with the parse method.

3. Semantics of J&

This section gives an overview of the static and dynamic semantics
of J&. A formal presentation of the J& type system is omitted for
space but can be found in an associated technical report [37].

3.1 Dependent classes and prefix types

In most cases, J& code looks and behaves like Java code. However,
unqualified type names are really syntactic sugar for nested classes
of dependent classes and prefix types, introduced in Jx [35].

The dependent class p.class represents the run-time class of
the object referred to by the final access path p. A final access
path is either a final local variable, including this and final formal
parameters, or a field access p.f, where p is a final access path and
f is a final field of p. In general, the class represented by p.class
is statically unknown, but fixed: for a particular p, all instances of
p-.class have the same run-time class, and not a proper subclass,
as the object referred to by p.

The prefix type P[T] represents the enclosing namespace of
the class or interface 7 that is a subtype of the namespace P.
It is required that P be a non-dependent type: either a top-level
namespace C or a namespace of the form P’.C. In typical use T
is a dependent class. P may be either a package or a class. Prefix
types provide an unambiguous way to name enclosing classes and
packages of a class without the overhead of storing references to
enclosing instances in each object, as is done in virtual classes.
Indeed, if the enclosing namespace is a package, there are no run-
time instances of the package that could be used for this purpose.

Late binding of types is provided by interpreting unqualified
names as members of the dependent class this. class or of a pre-
fix type of this.class. The compiler resolves the name C to the
type this.class.C if the immediately enclosing class contains or
inherits a nested namespace named C. Similarly, if an enclosing
namespace P other than the immediately enclosing class contains
or inherits C, the name C resolves to P[this.class].C. Derived
namespaces of the enclosing namespace may further bind and re-
fine C. The version of C selected is determined by the run-time
class of this.

For example, in Figure 1(a), the name Visitor is sugar
for the type base[this.class].Visitor. The dependent class
this.class represents the run-time class of the object referred to
by this. The prefix package base[this.class] is the enclos-
ing package of this.class that is a derived package of base.
Thus, if this is an instance of a class in the package pair,
base[this.class] represents the package pair.

Both dependent classes and prefixes of dependent classes are
exact types [5]: all instances of these types have the same run-time
class, but that class is statically unknown in general. Simple types
like base.Visitor are not exact since variables of this type may
contain instances of any subtype of Visitor.

J& provides a form of family polymorphism [17]. All types
indexed by a given dependent class—the dependent class itself,
its prefix types, and its nested classes—are members of a fam-
ily of interacting classes and packages. By initializing a variable
with instances of different classes, the same code can refer to
classes in different families with different behaviors. In the con-
text of a given class, other classes and packages named using
this.class are in the same family as the actual run-time class
of this. In Figure 1(a), pair.Pair.accept’s formal parameter v
has type base[this.class].Visitor. If this is a pair.Pair,
base[this.class].Visitor mustbe apair.Visitor, ensuring
the call to visitPair is permitted.

The type system ensures that types in different families (and
hence indexed by different access paths) cannot be confused with
each other accidentally: a base object cannot be used where a pair
object is expected, for example. However, casts with run-time type

class A {

class B { }
void m() { }
}
class Al extends A { class A2 extends A {
class B { } class B { }
class C { } class C { }
void m() { } void m() { }
void p() { %} void p() { }
} }

abstract class D extends A1 & A2 { }

Figure 3. Multiple inheritance with name conflicts

checks allow an escape hatch that can enable wider code reuse.
Casting an object to a dependent class p.class checks that the
object has the same run-time class as p. This feature allows objects
indexed by different access paths to be explicit coerced into another
family of types.

Nested inheritance can operate at every level of the containment
hierarchy. Unlike with virtual classes [19], in J& a class nested
within one namespace can be subclassed by a class in a different
namespace. For example, suppose a collections library util is
implemented in J& as a set of mutually dependent interoperating
classes. A user can extend the class util.LinkedList to a class
MyList not nested within util. A consequence of this feature is
that a prefix type P[T] may be defined even if T is not directly
nested within P or within a subtype of P. When the current object
this is a MyList, the prefix type util[this.class] is well-
formed and refers to the util package, even though MyList is not
a member class of util.

To ensure soundness, the type p.class is well-formed only if p
is final. However, to improve expressiveness and to ease porting of
Java programs to J&, a non-final local variable x may be implicitly
coerced to the type x.class under certain conditions. When x is
used as an actual argument of a method call, a constructor call, or
a new expression, or as the source of a field assignment, and if x
is not assigned in the expression, then it can be implicitly coerced
to type x.class. Consider the following code fragment using the
classes of Figure 1(a):

base.Exp e = new pair.Pair();
e.accept(new base[e.class].TypeChecker());

In the call to accept, e is never assigned and hence its run-time
class does not change between the time e is first evaluated and
method entry. If e had been assigned, say to a base.Exp, the new
expression would have allocated a base . TypeChecker and passed
itto pair.Pair.accept, leading to a run-time type error. Implicit
coercion is not performed for field paths, since it would require
reasoning about aliasing and is in general unsafe for multithreaded
programs.

3.2 Intersection types

Nested intersection of classes and packages in J& is provided in
the form of intersection types [43, 13]. An intersection type S& T
inherits all members of its base namespaces S and 7. With nested
intersection, the nested namespaces of S and 7 are themselves
intersected.

To support composition of classes and packages inherited more
than once, J& provides shared multiple inheritance: when a sub-
class (or subpackage) inherits from multiple base classes, the
new subclass may inherit the same superclass from more than
one immediate superclass; however, instances of the subclass will

not contain multiple subobjects for the common superclass. For
instance, pair_and_sum.Visitor in Figure 1(c) inherits from
base.Visitor only once, not twice through both pair and sum.
Similarly, the package pair_and_sum contains only one Visitor
class, the composition of pair.Visitor and sum.Visitor.

3.3 Name conflicts

Since an intersection class type does not have a class body in
the program text, its inherited members cannot be overridden by
the intersection itself; however, subclasses of the intersection may
override members.

When two namespaces declare members with the same name, a
name conflict may occur in their intersection. How the conflict is
resolved depends on where the name was introduced and whether
the name refers to a nested class or to a method. If the name was
introduced in a common ancestor of the intersected namespaces,
members with that name are assumed to be semantically related.
Otherwise, the name is assumed to refer to distinct members that
coincidentally have the same name, but different semantics.

When two namespaces are intersected, their corresponding
nested namespaces are also intersected. In Figure 3, both A1 and
A2 contain a nested class B inherited from A. Since a common an-
cestor introduces B, the intersection type A1 & A2 contains a nested
class (A1&A2).B, which is equivalent to A1.B& A2.B. The subclass
D has an implicit nested class D.B, a subclass of (A1 &A2).B.

On the other hand, A1 and A2 both declare independent nested
classes C. Even though these classes have the same name, they
are assumed to be unrelated. The class (A1 & A2).C is ambiguous.
In fact, A1 & A2 contains two nested classes named C, one that
is a subclass of A1.C and one a subclass of A2.C. Class D and
its subclasses can resolve the ambiguity by exploiting prefix type
notation: A1[D].C refers to the C from A1 and A2[D].C refers to
the C from A2. In A1, references to the unqualified name C are
interpreted as Al[this.class].C. If this is an instance of D,
these references refer to the A1.C. Similarly, references to C in A2
are interpreted as A2[this. class].C, and when this is a D, these
references refer to A2.C.

A similar situation occurs with the methods Al.p and A2.p.
Again, D inherits both versions of p. Callers of D.p must resolve
the ambiguity by up-casting the receiver to specify which one of
the methods to invoke. This solution is also used for nonvirtual
“super” calls. If the superclass is an intersection type, the call may
be ambiguous. The ambiguity is resolved by up-casting the special
receiver super to the desired superclass.

Finally, two or more intersected classes may declare methods
that override a method declared in a common base class. In this
case, illustrated by the method m in Figure 3, the method in the
intersection type A1 & A2 is considered abstract. Because it cannot
override the abstract method, the intersection is also abstract and
cannot be instantiated. Subclasses of the intersection type (D, in the
example), must override m to resolve the conflict, or else also be
declared abstract.

3.4 Anonymous intersections

An instance of an intersection class type A & B may be created by
explicitly invoking constructors of both A and B:

new A() & BQ);

This intersection type is anonymous. As in Java, a class body
may also be specified in the new expression, introducing a new
anonymous subclass of A&B:

new AO & BO { ... };

class C { void n() { ... } }

class A1 {
class Bl extends C { }
class B2 extends C { }
void m() {
new Al[this.class].B1() & Al[this.class].B2();
}
}

class A2 extends A1l {
class Bl extends C { void n() { ..
class B2 extends C { void n() { ..
// now Bl & B2 conflict

}

-1}
.1}

Figure 4. Conflicts introduced by late binding

If A and B have a name conflict that causes their intersection to
be an abstract class, a class body must be provided to resolve the
conflict.

Further binding may also introduce name conflicts. For exam-
ple, in Figure 4, A1.B1 and A1.B2 do not conflict, but A2.B1 and
A2.B2 do conflict. Since the anonymous intersection in A1.m may
create an intersection of these two conflicting types, it should not be
allowed. Because the type being instantiated is statically unknown,
it is a compile-time error to instantiate an anonymous intersection
of two or more dependent types (either dependent classes or pre-
fixes of dependent classes); only anonymous intersections of non-
dependent, non-conflicting classes are allowed.

3.5 Prefix types and intersections

Unlike with virtual classes [19], it is possible in J& to extend
classes nested within other namespaces. Multiple nested classes or
a mix of top-level and nested classes may be extended, resulting
in an intersection of several types with different containers. This
flexibility is needed for effective code reuse but complicates the
definition of prefix types. Consider this example:

class A { class B{ B m(Q; ... } }

class Al extends A { class B{ B x =m(Q; } }
class A2 extends A { class B { } }

class C extends A1.B & A2.B { }

As explained in Section 3.1, the unqualified name B in the body
of class A.B is sugar for the type A[this.class].B. The same
name B in A1.B is sugar for A1[this.class].B. Since the method
m and other code in A.B may be executed when this refers to an
instance of A1.B, these two references to B should resolve to the
same type; that is, it must be that A[this.class] is equivalent to
A1[this.class]. This equivalence permits the assignment of the
result of m() to x in A1.B. Similarly, the three types A[C], A1[C],
and A2 [C] should all be equivalent.

Prefix types ensure the desired type equivalence. Two types P
and P’ are related by further binding if they both contain nested
types P.C and P'.C that are inherited from or further bind a common
type P”.C. We write P ~ P’ for the symmetric, transitive closure of
this relation. In general, if P ~ P’, then P[T] and P'[T] should
be equivalent. The prefix type P[T] is defined as the intersection
of all types P’, where P ~ P’ where T has a supertype nested in P
and a supertype nested in P’. Using this definition A, A1 and A2 are
all transitively related by further binding. Thus, A[C], A1[C], and
A2[C] are all equivalent to A1 & A2.

Prefix types impose some restrictions on which types may be
intersected. If two classes 71 and 7> contain conflicting methods,

class A { A(int x); }
class B {

class C extends A { C(int x) { A(x+1); } }
}
class Bl extends B {

class C extends A { void m(Q); }
}
class B2 extends B { }

class C extends A { void p(); }
}
class D extends B1 & B2 { }

Figure 5. Constructors of a shared superclass

then their intersection is abstract, preventing the intersection from
being instantiated. If 77 or 7> contain member classes, a prefix type
of a dependent class bounded by one of these member classes could
resolve to the intersection 77 &7, . To prevent these prefix types from
being instantiated, all member classes of an abstract intersection are
also abstract.

3.6 Constructors

Like Java, J& initializes objects using constructors. Since J& per-
mits allocation of instances of dependent types, the class being allo-
cated may not be statically known. Constructors in J& are inherited
and may be overridden like methods, allowing the programmer to
invoke a constructor of a statically known superclass of the class
being allocated.

When a class declares a final field, it must ensure the field is
initialized. Since constructors are inherited from base classes that
are unaware of the new field, J& requires that if the field declaration
does not have an explicit initializer, all inherited constructors must
be overridden to initialize the field.

To ensure fields can be initialized to meaningful values, con-
structors are inherited only via induced inheritance, not via explicit
inheritance. That is, the class 7’.C inherits constructors from 7.C
when T is a supertype of T’, but not from other superclasses of
T'.C. If a constructor were inherited from both explicit and induced
superclasses, then every class that adds a final field would have
to override the default Object () constructor to initialize the field.
Since no values are passed into this constructor, the field may not
be able to be initialized meaningfully.

Since a dependent class p.class may represent any subclass of
p’s statically known type, a consequence of this restriction is that
p.class can only be explicitly instantiated if p’s statically known
class is final; in this case, since p.class is guaranteed to be equal
to that final class, a constructor with the appropriate signature
exists. The restriction does not prevent nested classes of dependent
classes from being instantiated.

A constructor for a given class must explicitly invoke a con-
structor of its declared superclass. If the superclass is an intersec-
tion type, it must invoke a constructor of each class in the intersec-
tion. Because of multiple inheritance, superclass constructors are
invoked by explicitly naming them rather than by using the super
keyword as in Java. In Figure 5, B. C invokes the constructor of its
superclass A by name.

Because J& implements shared multiple inheritance, an inter-
section class may inherit more than one subclass of a shared super-
class. Invoking a shared superclass constructor more than once may
lead to inconsistent initialization of final fields, possibly causing
a run-time type error if the fields are used in dependent classes.
There are two cases, depending on whether the intersection inherits
one invocation or more than one invocation of a shared constructor.

In the first case, if all calls to the shared superclass’s construc-
tor originate from the same call site, which is multiply inherited
into the intersection, then every call to the shared constructor will
pass it the same arguments. In this case, the programmer need do
nothing; the operational semantics of J& will ensure that the shared
constructor is invoked exactly once.

For example, in Figure 5, the implicit class D.C is a subclass of
B1.C&B2.C and shares the superclass A. Since B1.C and B2.C both
inherit their C(int) constructor from B.C, both inherited construc-
tors invoke the A constructor with the same arguments. There is no
conflict and the compiler need only ensure that the constructor of
A is invoked exactly once, before the body of D.C’s constructor is
executed. Similarly, if the programmer invokes:

new (Bl & B2).C(1);

there is only one call to the A(int) constructor and no conflict.

If, on the other hand, the intersection contains more than one
call site that invokes a constructor of the shared superclass, or of
the intersection itself is instantiated so that more than one construc-
tor is invoked, then the programmer must resolve the conflict by
specifying the arguments to pass to the constructor of the shared
superclass. The call sites inherited into the intersection will not be
invoked. It is up to the programmer to ensure that the shared super-
class is initialized in a way that is consistent with how its subclasses
expect the object to be initialized.

In Figure 5, if one or both of B1 and B2 were to override the
C(int) constructor, then B1.C and B2.C would have different
constructors with the same signature. One of them might change
how the C constructor invokes A(int). To resolve the conflict,
D must further bind C to specify how C(int) should invoke the
constructor of A. This behavior is similar to that of constructors of
shared virtual base classes in C++.

There would also be a conflict if the programmer were to in-
voke:

new B1.C(1) & B2.C(2);

The A(int) constructor would be invoked twice with different
arguments. Thus, this invocation is illegal; however, since B1.C&
B2.Cis equivalent to (B1&B2).C, the intersection can be instantiated
using the latter type, as shown above.

3.7 Type substitution

Because types may depend on final access paths, type-checking
method calls requires substitution of the actual arguments for the
formal parameters. A method may have a formal parameter whose
type depends upon another parameter, including this. The actual
arguments must reflect this dependency. For example, the class
base. Abs in Figure 1 contains the following call:

v.visitAbs(thisy);
to a method of base.Visitor with the signature:
void visitAbs(base[thisy.class].Abs a);

For clarity, each occurrence of this has been labeled with
an abbreviation of its declared type. Since the formal type
base[thisy.class].Abs depends on the receiver thisy, the type
of the actual argument thisy must depend on the receiver v.

The type checker substitutes the actual argument types for de-
pendent classes occurring in the formal parameter types. In this ex-
ample, the receiver v has the type base [thisy.class].Visitor.
Substituting this type for thisy.class in the for-
mal parameter type base[thisy.class].Abs yields
base[base[thisy.class] .Visitor].Abs, which is equiv-
alent to base[thisy.class].Abs.

The type substitution semantics of J& generalize the original Jx
substitution rules [35] to increase expressive power. However, to

package pair; package pair_and_sum

extends pair;

class TgtExp = base.Exp;
class Rewriter { class Rewriter {
TgtExp rewrite(Exp e) TgtExp rewrite(Exp e)
{... %} {...1}
} }

Figure 6. Static virtual types

class TgtExp = pair.Exp;

ensure soundness, some care must be taken. If the type of v were
base.Visitor, then v might refer at run time to a pair.Visitor
while at the same time this, refers to a base.Abs. Substitu-
tion of base.Visitor for thisy.class in the formal parameter
type would yield base [base.Visitor].Abs, which is equivalent
to base.Abs. Since the corresponding actual argument has type
base[this,.class].Abs, which is a subtype of base.Abs, the
call would incorrectly be permitted, leading to a potential run-time
type error. The problem is that there is no guarantee that the run-
time classes of thisy and v both have the same enclosing base
package.

To remedy this problem, type substitution must satisfy the re-
quirement of exactness preservation; that is, when substituting into
an exact type—a dependent class or a prefix of a dependent class—
the resulting type must also be exact. This ensures that the run-time
class or package represented by the type remains fixed. Substituting
the type base [this,.class].Visitor. for thisy.class is per-
mitted since both base [thisy.class] and base[this,.class]
are exact. However, substituting base.Visitor for thisy.class
is illegal since base is not exact; therefore, a call to visitAbs
where v is declared to be a base.Visitor is not permitted.

Implicit coercion of a non-final local variable x to dependent
class x.class, described in Section 3.1, enhances the expressive-
ness of J& when checking calls by enabling x.class to be substi-
tuted for a formal parameter or this. Since this substitution pre-
serves exactness, the substitution is permitted. If x’s declared type
were substituted for the formal instead, exactness might not have
been preserved.

3.8 Static virtual types

Dependent classes and prefix types enable classes nested within
a given containment hierarchy of packages to refer to each other
without statically binding to a particular fixed package. This allows
derived packages to further bind a class while preserving its rela-
tionship to other classes in the package. It is often useful to refer to
other classes outside the class’s containment hierarchy without stat-
ically binding to a particular fixed package. J& provides static vir-
tual types to support this feature. Unlike virtual types in BETA [29],
a static virtual type is an attribute of an enclosing package or class
rather than of an enclosing object.

In Figure 6, the package pair declares a static virtual
type TgtExp representing an expression of the target lan-
guage of a rewriting pass, in this case an expression from
the base compiler. The rewrite method takes an expression
with type pair[this.class].Exp and returns a base.Exp.
The pair_and_sum package extends the pair package and
further binds TgtExp to pair.Exp. A static virtual type can
be further bound to any subtype of the original bound. Be-
cause pair_and_sum.TgtExp is bound to pair.Exp, the method
pair_and sum.Rewriter.rewrite mustreturn a pair.Exp, rather
than a base.Exp as in pair.Rewriter.rewrite.

With intersections, a static virtual type may be inherited from
more than one superclass. Consider the declarations in Figure 7.
Class B1&B2 inherits T from both B1 and B2. The type (B1&B2).T

class A { }
class Al extends A { }
class A2 extends A { }

class B { class T = A; }
class Bl extends B { class T = Al; }
class B2 extends B { class T = A2; }

Figure 7. Static virtual types example

must be a subtype of both A1 and A2; thus, (B1&B2).T is bound to
A1 &A2.

To enforce exactness preservation by type substitution, static
virtual types can be declared exact. For a given container name-
space T, all members of the exact virtual type 7.C are of the same
fixed run-time class or package. Exact virtual types can be further
bound in a subtype of their container. For example, consider these
declarations:

class B { exact class T = A; }
class B2 extends B { exact class T = A2; }

The exact virtual type B.T is equivalent to the dependent class
(new A).class; thatis, B.T contains only instances with run-time
class A and not any subtype of A. Similarly, B2.T is equivalent to
(new A2).class. If a variable b has declared type B, then an
instance of b.class.T may be either a A or a A2, depending on
the run-time class of b.

3.9 Packages

J& supports inheritance of packages, including multiple inheri-
tance. In fact, the most convenient way to use nested inheritance is
usually at the package level, because large software is usually con-
tained inside packages, not classes. The semantics of prefix pack-
ages and intersection packages are similar to those of prefix and
intersection class types, described above. Since packages do not
have run-time instances, the only exact packages are prefixes of a
dependent class nested within the package, e.g., pkg[x.class],
where x is an instance of class pkg.C.

4. Composing compilers

Using the language features just described we can construct a
composable, extensible compiler. In this section, we sketch the
design of such a compiler. Most of the design described here was
used in our port to J& of the Polyglot compiler framework [36]
except where necessary to maintain backward compatibility with
the Java version of Polyglot.

The base package and packages nested within it contain
all compiler code for the base language: Java, in the Polyglot
framework. The nested packages base.ast, base.types, and
base.visit contain classes for AST nodes, types, and visitors
that implement compiler passes, respectively. All AST nodes are
subclasses of base.ast.Node; most compiler passes are imple-
mented as subclasses of base.visit.Visitor.

4.1 Orthogonal extension

Scalable, orthogonal extension of the base compiler with new data
types and new operations is achieved through nested inheritance. To
extend the compiler with new syntax, the base package is extended
and new subclasses of Node can be added to the ast package.
New passes can be added to the compiler by creating new Visitor
subclasses.

Because the Visitor design pattern [21] is used to imple-
ment compiler passes, when a new AST node class is added
to an extension’s ast package, a visit method for the class

transform

transform
9 children @ root node

@ X EH X [X

source intermediate target

Figure 8. AST transformation

must be added to the extension’s visit.Visitor class. Be-
cause the classes implementing the compiler passes extend
base[this.class].visit.Visitor, this visit method is inher-
ited by all Visitor subclasses in the extension. Visitor classes in
the framework can transform the AST by returning new AST nodes.
The Visitor class implements default behavior for the visit
method by simply returning the node passed to it, thus implement-
ing an identity transformation. Visitors for passes affected by the
new syntax can be overridden to support it.

4.2 Composition

Independent compiler extensions can be composed using nested in-
tersection with minimal effort. If the two compiler extensions are
orthogonal, as for example with the product and sum type com-
pilers of Section 2.3, then composing the extensions is trivial: the
main method needs to be overridden in the composing extension
to specify the order in which passes inherited from the composed
extensions should run.

If the language extensions have conflicting semantics, this will
often manifest as a name conflict when intersecting the classes
within the two compilers. These name conflicts must be resolved to
be able to instantiate the composed compiler, forcing the compiler
developer to reconcile the conflicting language semantics.

It is undecidable to determine precisely whether two programs,
including compilers, have conflicting semantics that prevent their
composition. Several conservative algorithms based on program
slicing have been proposed for integrating programs [23, 2, 31].
These algorithms detect when two procedures are semantically
compatible, or noninterfering. Interprocedural program integra-
tion [2] requires the whole program and it is unclear whether the
algorithm can scale up to large programs. Formal specification of-
fers a way to more precisely determine if two programs have se-
mantic conflicts.

4.3 Extensible rewriters

One challenge for building an extensible compiler is to implement
transformations between different program representations. In Fig-
ure 1, for example, a compiler pass transforms expressions with
pairs into lambda calculus expressions. For a given transformation
between two representations, compiler extensions need to be able
to scalably and modularly extend both the source and target repre-
sentations and the transformation itself. However, if the extensions
to the source and target representations do not interact with a trans-
formation, it should not be necessary to change the transformation.

Consider an abstract syntax tree (AST) node representing a bi-
nary operation. As illustrated in Figure 8, most compiler transfor-
mations for this kind of node would recursively transform the two
child nodes representing the operands, then invoke pass-specific
code to transform the binary operation node itself, in general con-
structing a new node using the new children. This generic code can
be shared by many passes.

However, code for a given base compiler transformation might
not be aware of the particular extended AST form used by a given
compiler extension. The extension may have added new children to
the node in the source representation of which the transformation is

unaware. It is therefore hard to write a reusable compiler pass; the
pass may fail to transform all the node’s children or attributes.

In the pair compiler of Figure 1, the TranslatePairs pass
transforms pair AST nodes into base AST nodes. If this compiler
pass is reused in a compiler in which expressions have, say, addi-
tional type annotations, the source and target languages node will
have children for these additional annotations, but the pass will not
be aware of them and will fail to transform them.

Static virtual types (Section 3.8) are used to make a pass aware
of any new children added by extensions of the source language,
while preserving modularity. The solution is for the compiler to
explicitly represent nodes in the intermediate form as trees with
a root in the source language but children in the target language,
corresponding to the middle tree of Figure 8. This design is shown
in Figure 9. In the example of Figure 1, this can be done by creating,
for both the source (i.e., pair) and target (i.e., base) language,
packages ast_struct defining just the structure of each AST
node. The ast_struct packages are then extended to create ast
packages for the actual AST nodes. Finally, a package is created
inside each visitor class for the intermediate form nodes of that
visitor’s specific source and target language.

In the ast_struct package, children of each AST node re-
side in a child virtual package. The ast package extends the
ast_struct package and further binds child to the ast package
itself; the node classes in ast have children in the same package as
their parent.

The Visitor.tmp package also extends the ast_struct pack-
age, but further binds child to the target package, which repre-
sents the target language of the visitor transformation. AST node
classes in the tmp package have children in the target package,
but parent nodes are in the tmp package; since tmp is a subpack-
age of ast_struct, nodes in this package have the same structure
as nodes in the visitor’s sibling ast_struct package. Thus, if the
ast_struct package is overridden to add new children to an AST
node class, the intermediate nodes in the tmp package will also
contain those children.

Both the child and target virtual packages are declared to
be exact. This ensures that the children of a tmp node are in the
target package itself (in this case base.ast) and not a derived
package of the target (e.g., pair.ast).

5. Implementation

We implemented the J& compiler in Java using the Polyglot frame-
work [36]. The compiler is a 2700-LOC (lines of code, excluding
blank and comment lines) extension of the Jx compiler [35], itself
a 22-kLOC extension of the Polyglot base Java compiler.

J& is implemented as a translation to Java. The amount of
code produced by the translation is proportional to the size of
the source code. The translation does not duplicate code to imple-
ment inheritance. Class declarations are generated only for explicit
classes, those classes (and interfaces) declared in the source pro-
gram. Classes inherited from another namespace but not further
bound are called implicit classes. Data structures for method dis-
patching and run-time type discrimination for implicit classes and
intersection types are constructed on demand at run time.

5.1 Translating classes

Each explicit J& class is translated into four Java classes: an in-
stance class, a subobject class, a class class, and a method interface.
Figure 10 shows a simplified fragment of the translation of the code
in Figure 1. Several optimizations discussed below are not shown.

At run time, each instance of a J& class T is represented as an
instance of T’s instance class, IC(T"). Each explicit class has its
own instance class. The instance class of an implicit class or inter-
section class is the instance class of one of its explicit superclasses.

package base.ast_struct;

exact package child = ast_struct;
abstract class Exp { }
class Abs extends Exp {

String x; child.Exp e;

}
}

package base.ast extends ast_struct;

exact package child
= base.ast[this.class];
abstract class Exp {
abstract v.class.target.Exp
} accept (Visitor v);
void childrenExp(Visitor v,
v.class.tmp.Exp t) {

package base;

class Visitor {
// source language
// = base[this.class].ast
// target language
// <= base.ast;
exact package target = base.ast;
package tmp extends ast_struct {
exact package child = target;
}

Figure 9. Extensible rewriting example

An instance of IC(T") contains a reference to an instance of the class
class of T, CC(T). The class class contains method and construc-
tor implementations, static fields, and type information needed to
implement instanceof, prefix types, and type selection from de-
pendent classes. If J& were implemented natively or had virtual
machine support, rather than being translated to Java, then the ref-
erence to CC(T) could be implemented more efficiently as part of
IC(T)’s method dispatch table. All instance classes implement the
interface JetInst.

Subobject classes and field accesses. Each instance of 1C(T)
contains a subobject for each explicit superclass of 7', including
T itself if it is explicit. The subobject class for a superclass T’ con-
tains all instance fields declared in 7’; it does not contain fields
inherited into 7”. The instance class maintains a map from each ex-
plicit superclass of T to the subobject for that superclass. The static
view method in the subobject class implements the map lookup
function for that particular subobject. If J& were implemented na-
tively, the subobjects could be inlined into the instance class and
implemented more efficiently.

To get or set a field of an object, the view method is used to
lookup the subobject for the superclass that declared the field. The
field can then be accessed directly from the subobject. The view
method could be inlined at each field access, but this would make
the generated code more difficult to read and debug.

Class classes and method dispatch. For each J& class, there is a
singleton class class object that is instantiated when the class is first
used. A class class declaration is created for each explicit J& class.
For an implicit or intersection class 7', CC(T') is the runtime system
class JetClass; the instance of JetClass contains a reference to
the class class object of each immediate superclass of 7'.

The class class provides functions for accessing run-time type
information to implement instanceof and casts, for constructing
instances of the class, and for accessing the class class object of
prefix types and member types, including static virtual types. The
code generated for expressions that dispatch on a dependent class (a
new x.class() expression, for example) evaluates the dependent
class’s access path (i.e., x) and uses the method jetGetClass()
to locate the class class object for the type.

All methods, including static methods, are translated to instance
methods of the class class. This allows static methods to be invoked
on dependent types, where the actual run-time class is statically
unknown. Nonvirtual super calls are implemented by invoking the
method in the appropriate class class instance.

Each method has an interface nested in the method interface
of the J& class that first introduced the method. The class class
implements the corresponding interfaces for all methods it declares
or overrides. The class class of the J& class that introduces a
method m also contains a method m$disp, responsible for method
dispatching. The receiver and method arguments as well as a class

package base;

// method interfaces for Exp
interface Exp$methods {
interface Accept
{ JetInst accept(JetInst self, JetInst v); }
}

// class class of Exp
class Exp$class implements Exp$methods.Accept {
JetInst accept(JetInst self, JetInst v)
{ /* cannot happen */ }
static JetInst accept$disp(JetClass c, JetInst self,
JetInst v) {
JetClass r = ... // find the class class with the
// most specific implementation
return ((Exp$methods.Accept)r).accept(self, v);
}

)

// class class of Abs
class Abs$class implements Exp$methods.Accept {
JetInst accept(JetInst self, JetInst v) {
Abs$ext.view(self).e =
Exp$class.accept$disp(null, Abs$ext.view(self).e, v);
return Visitor$class.visitAbs$disp(null, v, self);

}
L

// instance class of Abs
class Abs implements JetInst {
JetSubobjectMap extMap; // subobject map
JetClass jetGetClass()
{ /* get the class class instance */ }

)

// subobject class of Abs
class Abs$ext {
String x; JetInst e;
static Abs$ext view(JetInst self) {
// find the subobject for Abs in self.extMap
}
}

Figure 10. Fragment of translation of code in Figure 1

class are passed into the dispatch method. The class class argument
is used to implement nonvirtual super calls; for virtual calls, null
is passed in and the receiver’s class class is used.

Single-method interfaces allow us to generate code only for
those methods that appear in the corresponding J& class. An alter-
native, an interface containing all methods declared for each class,
would require class classes to implement trampoline methods to
dispatch methods they inherit but do not override, greatly increas-
ing the size of the generated code.

Each virtual method call is translated into a call to the dispatch
method, which does a lookup to find the class class of the most
specific implementation. The class class object is cast to the ap-
propriate method interface and then the method implementation is
invoked.

As shown in Figure 10, all references to J& objects are of type
JetInst. The translation mangles method names to handle over-
loading. Name mangling is not shown in Figure 10 for readability.

Allocation. A factory method in the class class is generated for
each constructor in the source class. The factory method for a J&
class T first creates an instance of the appropriate instance class,
and then initializes the subobject map for 7"’s explicit superclasses,
including T itself. Because constructors in J& can be inherited and
overridden, constructors are dispatched similarly to methods.

Initialization code in constructors and initializers are factored
out into initialization methods in the class class and are invoked
by the factory method. A super constructor call is translated into a
call to the appropriate initialization method of the superclass’s class
class.

5.2 Translating packages

To support package inheritance and composition, a package p is
represented as a package class, analogous to a class class. The
package class provides type information about the package at run
time and access to the class class or package class instances of its
member types. The package class of p is a member of package
p- Since packages cannot be instantiated and contain no methods,
package classes have no analogue to instance classes, subobject
classes, or method interfaces.

5.3 Java compatibility

To leverage existing software and libraries, J& classes can inherit
from Java classes. The compiler ensures that every J& class has
exactly one most specific Java superclass. When the J& class is
instantiated, there is only one super constructor call to some con-
structor of this Java superclass.

In the translated code, the instance class IC(T) is a subclass of
the most specific Java superclass of 7. When assigning into a vari-
able or parameter that expects a Java class or interface, the instance
of IC(T') can be used directly. A cast may need to be inserted be-
cause references to IC(T) are of type JetInst, which may not be
a subtype of the expected Java type; these inserted casts always
succeed. The instance class also overrides methods inherited from
Java superclasses to dispatch through the appropriate class class
dispatch method.

5.4 Optimizations

One problem with the translation described above is that a single
J& object is represented by multiple objects at run time: an instance
class object and several subobjects. This slows down allocation and
garbage collection.

A simple optimization is to not create subobjects for J& classes
that do not introduce instance fields. The instance class of explicit
J& class T can inline the subobjects into IC(7T'). Thus, at run
time, an instance of an explicit J& class can be represented by

a single object; an instance of an implicit class or intersection
class is represented by an instance class object and subobjects for
superclasses not merged into the instance class object. We expect
this optimization to greatly improve efficiency.

6. Experience
6.1 Polyglot

Following the approach described in Section 4, we ported the Poly-
glot compiler framework and several Polyglot-based extensions,
all written in Java, to J&. The Polyglot base compiler is a 31.9
kLOC program that performs semantic checking on Java source
code and outputs equivalent Java source code. Special design pat-
terns make Polyglot highly extensible [35]; more than a dozen re-
search projects have used Polyglot to implement various extensions
to Java (e.g., JPred [34], JMatch [28], as well as Jx and J&). For this
work we ported six extensions ranging in size from 200 to 3000
LOC.

The extensions are summarized in Table 1. The parsers for the
base compiler, extensions, and compositions were generated from
CUP [24] or Polyglot parser generator (PPG) [36] grammar files.
Because PPG supports only single grammar inheritance, grammars
were composed manually, and line counts do not include parser
code.

The port of the base compiler was our first attempt to port a large
program to J&, and was completed by one of the authors within a
few days, excluding time to fix bugs in the J& compiler. Porting
of each of the extensions took from one hour to a few days. Much
of the porting effort could be automated, with most files requiring
only modification of import statements, as described below in
Section 6.3.

The ported base compiler is 28.0 kLOC. The code becomes
shorter because it eliminates factory methods and other extension
patterns which were needed to make the Java version extensible, but
which are not needed in J&. We eliminated only extension patterns
that were obviously unnecessary, and could remove additional code
with more effort.

The number of type downcasts in each compiler extension is
reduced in J&. For example, coffer went from 192 to 102 down-
casts. The reduction is due to (1) use of dependent types, obviating
the need for casts to access methods and fields introduced in ex-
tensions, and (2) removal of old extension pattern code. Receivers
of calls to conflicting methods sometimes needed to be upcast to
resolve the ambiguities; there are 19 such upcasts in the port of
coffer.

Table 2 shows lines of code needed to compose each pair of
extensions, producing working compilers that implemented a com-
posed language. The param extension was not composed because it
is an abstract extension containing infrastructure for parameterized
types; however, coffer extends the param extension.

The data show that all the compositions can be implemented
with very little code; further, most added code straightforwardly
resolves trivial name conflicts, such as between the methods that re-
turn the name and version of the compiler. Only three of ten compo-
sitions (coffer & pao, coffer & covarRet, and pao & covarRet)
required resolution of nontrivial conflicts, for example, resolving
conflicting code for checking method overrides. The code to re-
solve these conflicts is no more 10 lines in each case.

6.2 Pastry

We also ported the FreePastry peer-to-peer framework [44] version
1.2 to J& and composed a few Pastry applications. The sizes of
the original and ported Pastry extensions are shown in Table 3.
Excluding bundled applications, FreePastry is 7.1 kLOC.

[Name | Extends Java 1.4 ... [LOC original [LOC ported | % original |
polyglot | with nothing 31888 27984 87.8
param with infrastructure for parameterized 513 540 105.3
types
coffer with resource management facilities 2965 2642 89.1
similar to Vault [14]
jo with pedagogical features 679 436 64.2
pao to treat primitives as objects 415 347 83.6
carray with constant arrays 217 122 56.2
covarRet | to allow covariant method return types 228 214 93.9
Table 1. Ported Polyglot extensions
jo pao carray | covarRet [Name [LOC original [LOC ported |
coffer 63 86 34 66 Pastry 7082 7363
30 46 34 37 Bechive 3686 3634
pao 34 53 PC-Pastry 695 630
carray 31 CorONA 626 591
cache N/A 140
Table 2. Polyglot composition results: lines of code CorONA-Beehive N/A 68
CorONA-PC-Pastry N/A 28

Host nodes in Pastry exchange messages that can be handled
in an application-specific manner. In FreePastry, network mes-
sage dispatching is implemented with instanceof statements and
casts. We changed this code to use more straightforward method
dispatch instead, thus making dispatch extensible and eliminating
several downcasts. Messages are dispatched to several protocol-
specific handlers. For example, there is a handler for the routing
protocol, another for the join protocol, and others for any appli-
cations built on top of the framework. The Pastry framework al-
lows applications to choose to use one of three different messaging
layer implementations: an RMI layer, a wire layer that uses sock-
ets or datagrams, and an in-memory layer in which nodes of the
distributed system are simulated in a single JVM. Family polymor-
phism enforced by the J& type system statically ensures that mes-
sages associated with a given handler are not delivered to another
handler and that objects associated with a given transport layer are
not used by code for a different layer implementation.

Pastry implements a distributed hash table. Beehive and PC-
Pastry extend Pastry with caching functionality [41]. PC-Pastry
uses a simple passive caching algorithm, where lookups are cached
on nodes along the route from the requesting node to a node con-
taining a value for the key. Beehive actively replicates objects
throughout the network according to their popularity. We intro-
duced a package cache containing functionality in common be-
tween Beehive and PC-Pastry; the CorONA RSS feed aggregation
service [40] was modified to extend the cache package rather than
Beehive.

Using nested intersection, the modified CorONA was composed
first with Beehive, and then with PC-Pastry, creating two appli-
cations providing the CorONA RSS aggregation service but using
different caching algorithms. Each composition of CorONA and a
caching extension contains a single main method and some con-
figuration constants to initialize the cache manager data structures.
The CorONA-Beehive composition also overrides some CorONA
message handlers to keep track of each cached object’s popularity.
We also implemented and composed test drivers for the CorONA
extension, but line counts for these are not included since the orig-
inal Java code did not include them.

The J& code for FreePastry is 7.4 kKLOC, 300 lines longer than
the original Java code. The additional code consists primarily of
interfaces introduced to implement network message dispatching.

Table 3. Ported Pastry extensions and compositions

The Pastry extensions had similar message dispatching overhead;
since code in common between Beehive and PC-Pastry was fac-
tored out into the cache extension, the size of the ported extensions
is smaller. The size reduction in CorONA is partially attributable to
moving code from the CorONA extension to the CorONA—-Bechive
composition.

6.3 Porting Java to J&

Porting Java code to J& was usually straightforward, but certain
common issues are worth discussing.

Type names. In J&, unqualified type names are syntactic sugar
for members of this.class or a prefix of this.class, e.g.,
Visitor might be sugar for base[this.class].Visitor. In
Java, unqualified type names are sugar for fully qualified names;
thus, Visitor would resolve to base.Visitor. To take full ad-
vantage of the extensibility provided by J&, fully qualified type
names sometimes must be changed to be only partially qualified.

In particular, import statements in most compilation units are
rewritten to allow names of other classes to resolve to depen-
dent types. For example, in Polyglot the import statement import
polyglot.ast.*; was changed to import ast.*; so that im-
ported classes resolve to classes in polyglot [this.class].ast
rather than in polyglot.ast.

Final access paths. To make some expressions pass the type
checker, it was necessary to declare some variables final so they
could used in dependent classes. In many cases, non-final access
paths used in method calls could be coerced automatically by the
compiler, as described in Section 3.1. However, non-final field
accesses are not coerced automatically because the field might
be updated (possibly by another thread) between evaluation and
method entry. The common workaround is to save non-final fields
in a final local variable and then to use that variable in the call.
This issue was not as problematic as originally expected. In fact,
in 30 KLOC of ported Polyglot code, only three such calls needed
to be modified. In most other cases, the actual method receiver type
was of the form P[p.class].Q and the formal parameter types
were of the form P[this.class].R. Even if an actual argument

were updated between its evaluation and method entry, the type
system ensures its new value is a class enclosed by the same run-
time namespace P [p.class] as the receiver, which guarantees that
the call is safe.

Path aliasing. The port of Pastry and its extensions
made more extensive use of field-dependent classes (e.g.,
this.thePastryNode.class) than the Polyglot port. Several
casts needed to be inserted in the J& code for Pastry to allow a type
dependent upon one access path to be coerced to a type dependent
upon another path. Often, the two paths refer to the same object,
ensuring the cast will always succeed. A simple local alias analysis
would eliminate the need for many of these casts.

7. Related work

There has been great interest in the past several years in mech-
anisms for providing greater extensibility in object-oriented lan-
guages. Nested intersection uses ideas from many of these other
mechanisms to create a powerful and relatively transparent mecha-
nism for code reuse.

Virtual classes. Nested classes in J& are similar to virtual
classes [29, 30, 25, 19]. Virtual classes were originally developed
for the language BETA [29, 30], primarily for generic program-
ming rather than for extensibility.

Although virtual classes in BETA are not statically type safe,
Ernst’s generalized BETA (gbeta) language [15, 16] uses path-
dependent types, similar to dependent classes in J&, to ensure static
type safety. Type-safe virtual classes using path-dependent types
were formalized by Ernst et al. in the vc calculus [19].

A key difference between J&’s nested classes and virtual classes
is that virtual classes are attributes of an object, called the enclosing
instance, rather than attributes of a class. Virtual classes may only
have one enclosing instance. For this reason, a virtual class can
extend only other classes nested within the same object; it may
not extend a more deeply nested virtual class. This can limit the
ability to extend components of a larger system. Because it is
unique, the enclosing instance of a virtual class can be referred
to unambiguously with an out path: this.out is the enclosing
instance of this’s class. In contrast, J& uses prefix types to refer
to enclosing classes.

Both J& and gbeta provide virtual superclasses, the ability to
late-bind a supertype declaration. When the containing namespace
of a set of classes is extended via inheritance, the derived name-
space replicates the class hierarchy of the original namespace,
forming a higher-order hierarchy [18]. Because virtual classes are
contained in an object rather than in a class, there is no subtyping
relationship between classes in the original hierarchy and further
bound classes in the derived hierarchy, as there is in J&.

The gbeta language supports multiple inheritance. As in J&,
commonly named virtual classes inherited into a class are them-
selves composed [16]. However, multiple inheritance is limited to
other classes nested within the same enclosing instance.

Virtual classes in gbeta support family polymorphism [17]: two
virtual classes enclosed by distinct objects cannot be statically con-
fused. When a containing namespace is extended, family polymor-
phism ensures the static type safety of the classes in the derived
family by preventing it from treating classes belonging to the base
family as if they belonged to the extension. In gbeta, each object de-
fines a family of classes: the collection of mutually dependent vir-
tual classes immediately nested within it. Because nested classes in
J& are attributes of their enclosing class, rather than an enclosing
object, J& supports what Clarke et al. [11] call class-based fam-
ily polymorphism. With virtual classes, all members of the fam-
ily are named from a single “family object”, which must be made
accessible throughout the system. Moreover, only nested classes

of the family object are part of the family. In contrast, with class-
based family polymorphism, each dependent class defines a family
of classes nested within and also enclosing. By using prefix types,
any instance of a class in the family can be used to name the family,
not just a single family object.

Tribe [11] is another language that provides a variant of virtual
classes. By treating a final access path p as a type, nested classes
in Tribe can be considered attributes of an enclosing class as in Jx
and J& or as attributes of an enclosing instance as in BETA and
its derivatives. This flexibility allows a further bound class to be a
subtype of the class it overrides, like in J& but unlike with virtual
classes. Tribe also supports multiple inheritance. However, super-
classes of a Tribe class must be nested within the same enclosing
class, limiting extensibility. This restriction allows the enclosing
type to be named using an owner attribute: T.owner is the enclos-
ing class of 7.

Concord [26] also provides a type-safe variant of virtual classes.
In Concord, mutually dependent classes are organized into groups,
which can be extended via inheritance. References to other classes
within a group are made using types dependent on the current
group, MyGrp, similarly to how prefix types are used in J&. Rel-
ative supertype declarations provide functionality similar to virtual
superclasses. Groups in Concord cannot be nested, nor can groups
be multiply inherited.

Multiple inheritance. J& provides multiple inheritance through
nested intersection. Intersection types were introduced by Reynolds
in the language Forsythe [43] and were used by Compagnoni and
Pierce to model multiple inheritance [13]. Cardelli [9] presents a
formal semantics of multiple inheritance.

The distinction between name conflicts among methods intro-
duced in a common base class and among methods introduced in-
dependently with possibly different semantics was made as early as
1982 by Borning and Ingalls [3]. Many languages, such as C++ [47]
and Self [10], treat all name conflicts as ambiguities to be resolved
by the caller. Some languages [32, 4, 45] allow methods to be re-
named or aliased.

A mixin [4, 20], also known as an abstract subclass, is a class
parameterized on its superclass. Mixins are able to provide uniform
extensions, such as adding new fields or methods, to a large number
of classes. Mixins can be simulated using explicit multiple inheri-
tance. J& also provides additional mixin-like functionality through
virtual superclasses.

Since mixins are composed linearly, a class may not be able to
access a member of a given super-mixin because the member is
overridden by another mixin. Explicit multiple inheritance imposes
no ordering on composition of superclasses.

Traits [45] are collections of abstract and non-abstract methods
that may be composed with state to form classes. Since traits do not
have fields, many of the issues introduced by multiple inheritance
(for example, whether to duplicate code inherited through more
than one base trait) are avoided. The code reuse provided by traits is
largely orthogonal to that provided by nested inheritance and could
be integrated into J&.

Scala Scala [38] is another language that supports scalable exten-
sibility and family polymorphism through a statically safe virtual
type mechanism based on path-dependent types. However, Scala’s
path-dependent type p.type is a singleton type containing only the
value named by access path p; in J&, p.class is not a single-
ton. For instance, new x.class(...) creates a new object of type
x.class distinct from the object referred to by x. This difference
gives J& more flexibility, while preserving type soundness. Scala
provides virtual types, but not virtual classes. It has no analogue to
prefix types, nor does it provide virtual superclasses, limiting the
scalability of its extension mechanisms. Scala supports composi-

tion using traits. Since traits do not have fields, new state cannot be
easily added into an existing class hierarchy.

Self types and matching. Bruce et al. [7, 5] introduce matching
as an alternative to subtyping, with a self type, or MyType, rep-
resenting the type of the method’s receiver. The dependent class
this.class is similar but represents only the class referred to by
this and not its subclasses. Type systems with MyType decouple
subtyping and subclassing; in PolyTOIL and LOOM, a subclass
matches its base class but is not a subtype. With nested inheritance,
subclasses are subtypes. Bruce and Vanderwaart [8, 6] propose type
groups as a means to aggregate and extend mutually dependent
classes, similarly to Concord’s group construct, but using match-
ing rather than subtyping.

Open classes and expanders. An open class [12] is a class to
which new methods can be added without needing to edit the
class directly, or recompile code that depends on the class. Nested
inheritance provides similar functionality through class overriding
in an extended container. Nested inheritance provides additional
extensibility that open classes do not, such as the “virtual”” behavior
of constructors, and the ability to extend an existing class with new
fields that are automatically inherited by its subclasses.

Similar to open classes, expanders [50] are a mechanism for
extending existing classes. They address the limitations of open
classes by enabling classes to be updated not only with new meth-
ods, but also with new fields and superinterfaces. Expanders do not
change the behavior of existing clients of extended classes. Exist-
ing classes are extended with new state using wrapper objects. One
limitation of this approach is that object identity is not preserved,
which may cause run-time type checks to return incorrect results.

Classboxes. A classbox [1] is a module-based reuse mechanism.
Classes defined in one classbox may be imported into another
classbox and refined to create a subclass of the imported class.
By dispatching based on a dynamically chosen classbox, names
of types and methods occurring in imported code are late bound to
refined versions of those types and methods. This feature provides
similar functionality to the late binding of types provided by this-
dependent classes and prefix types in J&.

Since reuse is based on import of classboxes rather than inher-
itance, classboxes do not support multiple inheritance, but they do
allow multiple imports. When two classboxes that both refine the
same class are imported, the classes are not composed like in J&.
Instead, one of the classes is chosen over the other.

Class hierarchy composition. Ossher and Harrison [39] propose
an approach in which extensions of a class hierarchy are written
in separate sparse extension hierarchies containing only new func-
tionality. Extension hierarchies can be merged and naming conflicts
detected. However, semantic incompatibilities between extension
hierarchies are not detected. Unlike with nested intersection, hier-
archies do not nest and there is no subtyping relationship between
classes in different hierarchies.

Tarr et al. [48] define a specification language for composing
class hierarchies. Rules specify how to merge “concepts” in the
hierarchies. Nested intersection supports composition with a rule
analogous to merging concepts by name.

Snelting and Tip [46] present an algorithm for composing class
hierarchies and a semantic interference criterion. If the hierarchies
are interference-free, the composed system preserves the original
behavior of classes in the hierarchies. J& reports a conflict if com-
posed class hierarchies have a static interference, but makes no ef-
fort to detect dynamic interference.

Aspect-oriented programming. Aspect-oriented programming
(AOP) [27] is concerned with the management of aspects, func-
tionality that cuts across modular boundaries. Nested inheritance

provides aspect-like extensibility; an extension of a container may
implement functionality that cuts across the class boundaries of the
nested classes. Aspects modify existing class hierarchies, whereas
nested inheritance creates a new class hierarchy, allowing the new
hierarchy to be used alongside the old. Caesar [33] is an aspect-
oriented language that also supports family polymorphism, permit-
ting application of aspects to mutually recursive nested types.

8. Conclusions

This paper introduces nested intersection and shows that it is an
effective language mechanism for extending and composing large
bodies of software. Extension and composition are scalable because
new code needs to be written only to implement new functionality
or to resolve conflicts between composed classes and packages.
Novel features like static virtual types offer important expressive
power.

Nested intersection has been implemented in an extension of
Java called J&. Using J&, we implemented a compiler framework
for Java, and showed that different domain-specific compiler exten-
sions can easily be composed, resulting in a way to construct com-
pilers by choosing from available language implementation com-
ponents. We demonstrated the utility of nested intersection outside
the compiler domain by porting the FreePastry peer-to-peer system
to J&. The effort required to port Java programs to J& is not large.
Ported programs were smaller, required fewer type casts, and sup-
ported more extensibility and composability.

We have informally described here the static and dynamic se-
mantics of J&. A formal treatment with a proof of soundness can
be found in an associated technical report [37].

Nested intersection is a powerful and convenient mechanism for
building highly extensible software. We expect it to be useful for a
wide variety of applications.

Acknowledgments

Steve Chong, Jed Liu, Ruijie Wang, and Lantian Zheng provided
useful feedback on various drafts of this paper. Thank you to
Michael Clarkson for his very detailed comments and for the pun.
Thanks also to Venugopalan Ramasubramanian for insightful dis-
cussions about Pastry and Beehive.

This research was supported in part by ONR Grant N0O0014-
01-1-0968, by NSF Grants 0133302, 0208642, and 0430161, and
by an Alfred P. Sloan Research Fellowship. The U.S. Government
is authorized to reproduce and distribute reprints for Government
purposes, notwithstanding any copyright annotation thereon. The
views and conclusions here are those of the authors and do not
necessarily reflect those of ONR, the Navy, or the NSF.

References

[1] Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz. Class-
box/J: Controlling the scope of change in Java. In Proc. OOPSLA
'05, pages 177-189, San Diego, CA, USA, October 2005.

[2] David Binkley, Susan Horwitz, and Thomas Reps. Program
integration for languages with procedure calls. ACM Transactions
on Software Engineering and Methodology (TOSEM), 4(1):3-35,
January 1995.

Alan Borning and Daniel Ingalls. Multiple inheritance in Smalltalk-
80. In Proceedings of the National Conference on Artificial
Intelligence (AAAI), pages 234-237, August 1982.

Gilad Bracha and William Cook. Mixin-based inheritance. In Norman
Meyrowitz, editor, Proc. OOPSLA 90, pages 303-311, Ottawa,
Canada, 1990. ACM Press.

[5] Kim B. Bruce. Safe static type checking with systems of mutually
recursive classes and inheritance. Technical report, Williams College,
1997. http://cs.williams.edu/"kim/ftp/RecJava.ps.gz.

[3

=

[4

—

[6]

[7]

[8]

[9

—

[10]

(11

[12

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

Kim B. Bruce. Some challenging typing issues in object-oriented
languages. Electronic Notes in Theoretical Computer Science,
82(8):1-29, October 2003.

Kim B. Bruce, Angela Schuett, and Robert van Gent. PolyTOIL:

A type-safe polymorphic object-oriented language. In European

Conference on Object-Oriented Programming (ECOOP), number

952 in Lecture Notes in Computer Science, pages 27-51. Springer-
Verlag, 1995.

Kim B. Bruce and Joseph C. Vanderwaart. Semantics-driven language
design: Statically type-safe virtual types in object-oriented languages.
In Mathematical Foundations of Programming Semantics (MFPS),
Fifteenth Conference, volume 20 of Electronic Notes in Theoretical
Computer Science, pages 5075, New Orleans, Louisiana, April 1999.

Luca Cardelli. A semantics of multiple inheritance. Information
and Computation, 76:138—164, 1988. Also in Readings in Object-
Oriented Database Systems, S. Zdonik and D. Maier, eds., Morgan
Kaufmann, 1990.

Craig Chambers, David Ungar, Bay-Wei Chang, and Urs Holzle.
Parents are shared parts of objects: Inheritance and encapsulation in
Self. Lisp and Symbolic Computation, 4(3):207-222, June 1991.

Dave Clarke, Sophia Drossopoulou, James Noble, and Tobias
Wrigstad. Tribe: More types for virtual classes. Submitted for pub-
lication. Available at http://slurp.doc.ic.ac.uk/pubs.html,
December 2005.

Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein.
MultiJava: Modular open classes and symmetric multiple dispatch
for Java. In OOPSLA 2000 Conference on Object-Oriented
Programming, Systems, Languages, and Applications, Minneapolis,
Minnesota, volume 35(10), pages 130—145, 2000.

Adriana B. Compagnoni and Benjamin C. Pierce. Higher order
intersection types and multiple inheritance. Mathematical Structures
in Computer Science, 6(5):469-501, 1996.

Robert DeLine and Manuel Fiahndrich. Enforcing high-level protocols
in low-level software. In Proceedings of the ACM Conference on
Programming Language Design and Implementation, pages 59-69,
June 2001.

Erik Ernst. gbeta — a Language with Virtual Attributes, Block
Structure, and Propagating, Dynamic Inheritance. PhD thesis,
Department of Computer Science, University of Aarhus, Arhus,
Denmark, 1999.

Erik Ernst. Propagating class and method combination. In
Proceedings of the Thirteenth European Conference on Object-
Oriented Programming (ECOOP’99), number 1628 in Lecture Notes
in Computer Science, pages 67-91. Springer-Verlag, June 1999.

Erik Ernst. Family polymorphism. In Proceedings of the 15th
European Conference on Object-Oriented Programming (ECOOP),
LNCS 2072, pages 303-326, Heidelberg, Germany, 2001. Springer-
Verlag.

Erik Ernst. Higher-order hierarchies. In Proceedings of the 17th
European Conference on Object-Oriented Programming (ECOOP),
volume 2743 of Lecture Notes in Computer Science, pages 303-329,
Heidelberg, Germany, July 2003. Springer-Verlag.

Erik Ernst, Klaus Ostermann, and William R. Cook. A virtual class
calculus. In Proc. 33th ACM Symp. on Principles of Programming
Languages (POPL), pages 270-282, Charleston, South Carolina,
January 2006.

Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen.
Classes and mixins. In Proc. 25th ACM Symp. on Principles
of Programming Languages (POPL), pages 171-183, San Diego,
California, 1998.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Reading, MA, 1994.

Carl Gunter and John C. Mitchell, editors. Theoretical aspects of
object-oriented programming. MIT Press, 1994.

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

[32]

(33]

(34]

[35]

[36]

(371

(38]

[39]

[40]

Susan Horwitz, Jan Prins, and Thomas Reps. Integrating noninter-
fering versions of programs. ACM Transactions on Programming
Languages and Systems, 11(3):345-387, July 1989.

Scott E. Hudson, Frank Flannery, C. Scott Ananian, Dan Wang,
and Andrew Appel. CUP LALR parser generator for Java, 1996.
Software release. Located at http://www.cs.princeton.edu/
~appel/modern/java/CUP/.

Atsushi Igarashi and Benjamin Pierce. Foundations for virtual types.
In Proceedings of the Thirteenth European Conference on Object-
Oriented Programming (ECOOP’99), number 1628 in Lecture Notes
in Computer Science, pages 161-185. Springer-Verlag, June 1999.

Paul Jolly, Sophia Drossopoulou, Christopher Anderson, and Klaus
Ostermann. Simple dependent types: Concord. In ECOOP Workshop
on Formal Techniques for Java Programs (FTfJP), Oslo, Norway,
June 2004.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Proceedings of 11th European Conference
on Object-Oriented Programming (ECOOP’97), number 1241 in
Lecture Notes in Computer Science, pages 220-242, Jyviskyld,
Finland, June 1997. Springer-Verlag.

Jed Liu and Andrew C. Myers. JMatch: Abstract iterable pattern
matching for Java. In Proc. 5th Int’l Symp. on Practical Aspects of
Declarative Languages (PADL), pages 110-127, New Orleans, LA,
January 2003.

O. Lehrmann Madsen, B. Mgller-Pedersen, and K. Nygaard. Object
Oriented Programming in the BETA Programming Language.
Addison-Wesley, June 1993.

Ole Lehrmann Madsen and Birger Mgller-Pedersen. Virtual classes:
A powerful mechanism for object-oriented programming. In Proc.
OOPSLA 89, pages 397-406, October 1989.

Katsuhisa Maruyama and Ken-Ichi Shima. An automatic class gener-
ation mechanism by using method integration. /EEE Transactions on
Software Engineering, 26(5):425-440, May 2000.

Bertrand Meyer. Object-oriented Software Construction. Prentice
Hall, New York, 1988.

M. Mezini and K. Ostermann. Conquering aspects with Caesar.
In Proceedings of the 2nd International Conference on Aspect-
Oriented Software Development (AOSD), pages 90-100, Boston,
Massachusetts, March 2003.

Todd Millstein. Practical predicate dispatch. In Proceedings of the
19th ACM Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), October 2004.

Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers. Scalable
extensibility via nested inheritance. In Proceedings of the 19th ACM
Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA), pages 99-115, October 2004.

Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers.
Polyglot: An extensible compiler framework for Java. In Gorel
Hedin, editor, Compiler Construction, 12th International Conference,
CC 2003, number 2622 in Lecture Notes in Computer Science, pages
138-152, Warsaw, Poland, April 2003. Springer-Verlag.

Nathaniel Nystrom, Xin Qi, and Andrew C. Myers. Nested
intersection for scalable software extension, September 2006.
http://www.cs.cornell.edu/nystrom/papers/jet—tr.pdf.

Martin Odersky and Matthias Zenger. Scalable component abstrac-
tions. In Proc. OOPSLA 05, pages 41-57, San Diego, CA, USA,
October 2005.

Harold Ossher and William Harrison. Combination of inheritance
hierarchies. In Proc. OOPSLA ’92, pages 25-40, October 1992.

Venugopalan Ramasubramanian, Ryan Peterson, and Emin Giin
Sirer. Corona: A high performance publish-subscribe system for the
World Wide Web. In Proceedings of Networked System Design and
Implementation (NSDI), May 2006.

[41] Venugopalan Ramasubramanian and Emin Giin Sirer. Beehive: O(1)

[42

[43

[44

[45

1

1

lookup performance for power-law query distributions in peer-to-peer
overlays. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI), March 2004.

John C. Reynolds. User-defined types and procedural data structures
as complementary approaches to data abstraction. In Stephen A.
Schuman, editor, New Directions in Algorithmic Languages, pages
157-168. Institut de Recherche d’Informatique et d’ Automatique, Le
Chesnay, France, 1975. Reprinted in [22], pages 13-23.

John C. Reynolds. Design of the programming language Forsythe.
Technical Report CMU-CS-96-146, Carnegie Mellon University,
June 1996.

Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer systems.
In IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), pages 329-350, November 2001.

Nathanael Schirli, Stéphane Ducasse, Oscar Nierstrasz, and An-
drew P. Black. Traits: Composable units of behavior. In Luca
Cardelli, editor, Proceedings of the 17th European Conference on
Object-Oriented Programming (ECOOP 2003), number 2743 in
Lecture Notes in Computer Science, pages 248-274, Darmstadt,
Germany, July 2003. Springer-Verlag.

[40]

[47]

[48]

[49]

[50]

Gregor Snelting and Frank Tip. Semantics-based composition of
class hierarchies. In Proceedings of the 16th European Conference on
Object-Oriented Programming (ECOOP), volume 2374 of Lecture
Notes in Computer Science, pages 562-584, Mdlaga, Spain, 2002.
Springer-Verlag.

Bjarne Stroustrup. The C++ Programming Language. Addison-
Wesley, 1987.

Peri Tarr, Harold Ossher, William Harrison, and Jr. Stanley M. Sutton.
N degrees of separation: Multi-dimensional separation of concerns.
In Proceedings of the 1999 International Conference on Software
Engineering (ICSE), pages 107-119, May 1999.

Philip Wadler et al. The expression problem, December 1998.
Discussion on Java-Genericity mailing list.

Alessandro Warth, Milan Stanojevi¢, and Todd Millstein. Statically
scoped object adaptation with expanders. In Proceedings of the 2006
Conference on Object Oriented Programming Systems Languages
and Applications (OOPSLA ’06), Portland, OR, October 2006.

