
Flicker: An Execution Infrastructure for TCB Minimization∗

Jonathan M. McCune† Bryan Parno† Adrian Perrig† Michael K. Reiter†‡ Hiroshi Isozaki†§¶
† Carnegie Mellon University

‡ University of North Carolina at Chapel Hill
§ Toshiba Corporation

ABSTRACT
We present Flicker, an infrastructure for executing security-
sensitive code in complete isolation while trusting as few as
250 lines of additional code. Flicker can also provide mean-
ingful, fine-grained attestation of the code executed (as well
as its inputs and outputs) to a remote party. Flicker guar-
antees these properties even if the BIOS, OS and DMA-
enabled devices are all malicious. Flicker leverages new
commodity processors from AMD and Intel and does not
require a new OS or VMM. We demonstrate a full imple-
mentation of Flicker on an AMD platform and describe our
development environment for simplifying the construction of
Flicker-enabled code.

Categories and Subject Descriptors
K.6.5 [Security and Protection]

General Terms
Design, Security

Keywords
Trusted Computing, Late Launch, Secure Execution

∗This research was supported in part by CyLab at Carnegie
Mellon under grant DAAD19-02-1-0389 from the Army Re-
search Office, and grants CNS-0509004, CT-0433540 and
CCF-0424422 from the National Science Foundation, by the
iCAST project, National Science Council, Taiwan under the
Grants No. (NSC95-main) and No. (NSC95-org), and by
a gift from AMD. Bryan Parno is supported in part by a
National Science Foundation Graduate Research Fellowship.
The views and conclusions contained here are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either express
or implied, of AMD, ARO, CMU, NSF, or the U.S. Govern-
ment or any of its agencies.
¶Hiroshi Isozaki contributed to this work to satisfy the re-
quirements for an MS degree at Carnegie Mellon University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSys’08, April 1–4, 2008, Glasgow, Scotland, UK.
Copyright 2008 ACM 978-1-60558-013-5/08/04 ...$5.00.

1. INTRODUCTION
Today’s popular operating systems run a daunting amount

of code in the CPU’s most privileged mode. The plethora of
vulnerabilities in this code makes the compromise of systems
commonplace, and its privileged status is inherited by the
malware that invades it. The integrity and secrecy of every
application is at risk in such an environment.

To address these problems, we propose Flicker, an archi-
tecture for isolating sensitive code execution using a minimal
Trusted Computing Base (TCB). None of the software ex-
ecuting before Flicker begins can monitor or interfere with
Flicker code execution, and all traces of Flicker code exe-
cution can be eliminated before regular execution resumes.
For example, a Certificate Authority (CA) could sign certifi-
cates with its private key, even while keeping the key secret
from an adversary that controls the BIOS, OS, and DMA-
enabled devices. Flicker can operate at any time and does
not require a new OS or even a VMM, so the user’s platform
for non-sensitive operations remains unchanged.

Flicker provides strong isolation guarantees while requir-
ing the application to trust as few as 250 additional lines of
code for its secrecy and integrity. As a result, Flicker circum-
vents entire layers of legacy system software and eliminates
reliance on their correctness for security properties (see Fig-
ure 1). Once the TCB for code execution has been precisely
defined and limited, formal assurance of both reliability and
security properties enters the realm of possibility.

The use of Flicker, as well as the exact code executed
(and its inputs and outputs), can be attested to an external
party. For example, a piece of server code handling a user’s
password can execute in complete isolation from all other
software on the server, and the server can convince the client
that the secrecy of the password was preserved. Such fine-
grained attestations make a remote party’s verification much
simpler, since the verifier need only trust a small piece of
code, instead of trusting Application X running alongside
Application Y on top of OS Z with some number of device
drivers installed. Also, the party using Flicker does not leak
extraneous information about the system’s software state.

To achieve these properties, Flicker utilizes hardware sup-
port for late launch and attestation recently introduced in
commodity processors from AMD and Intel. These proces-
sors already ship with off-the-shelf computers and will soon
become ubiquitous. Although current hardware still has
a high overhead, we anticipate that future hardware per-
formance will improve as these functions are increasingly
used. Indeed, in concurrent work, we suggest hardware
modifications that can improve performance by up to six

CPU, Chipset

OS Flicker

TPM

App

1

App

n...

S

CPU, Chipset, DMA TPM

App

1 ...
App

n
S

OS

Figure 1: On the left, a traditional computer with an

application that executes sensitive code (S). On the right,

Flicker protects the execution of the sensitive code. The

shaded portions represent components that must be trusted;

other applications are included on the left because many ap-

plications run with superuser privileges.

orders of magnitude [19]. Finally, many applications per-
form security-sensitive operations where the speed of the
operations is not the first priority.

From a programmer’s perspective, the sensitive code pro-
tected by Flicker can be written from scratch or extracted
from an existing program. To simplify this task, the pro-
grammer can draw on a collection of small code modules
we have developed for common functions. For example, one
small module protects the existing execution environment
from malicious or malfunctioning PALs. A programmer can
also apply tools we have developed to extract sensitive op-
erations and relevant code from an application.

We present an implementation of Flicker using AMD’s
SVM technology and use it to improve the security of a
variety of applications. We develop a rootkit detector that
an administrator can run on a remote machine and receive a
guarantee that the detector executed correctly and returned
the correct result. We also show how Flicker can improve
the integrity of results for distributed computing projects.
Finally, we use Flicker to protect a CA’s private signing key
and to improve an SSH server’s password handling.

2. BACKGROUND
In this section, we provide background information on the

hardware technologies leveraged by Flicker.

2.1 TPM-Based Attestation
A computing platform containing a Trusted Platform Mod-

ule (TPM) can provide an attestation of the current platform
state to an external entity. The platform state is detailed in
a log of software events, such as applications started or con-
figuration files used. The log is maintained by an integrity
measurement architecture (e.g., IBM IMA [26]). Each event
is reduced to a measurement, m, using the SHA-1 crypto-
graphic hash function. For example, program a.out is re-
duced to a measurement by hashing its binary executable:
m←SHA-1(a.out). Each measurement is extended into one
of the TPM’s Platform Configuration Registers (PCRs) by
hashing the PCR’s current value concatenated with the new
measurement: PCRnew

i ← SHA-1(PCRold

i ||m). Version 1.1b
TPMs are required to contain at least 16 PCRs, and v1.2
TPMs must support at least 24 PCRs.

An attestation consists of an untrusted event log and a
signed quote from the TPM. The quote is generated in re-
sponse to a challenge containing a cryptographic nonce and
a list of PCR indices. It consists of a digital signature cover-
ing the nonce and the contents of the specified PCRs. The
challenger can then validate the untrusted event log by re-
computing the aggregate hashes expected to be in the PCRs
and comparing those to the PCR values in the quote signed
by the TPM.

To sign its PCRs, the TPM uses the private portion of
an Attestation Identity Key (AIK) pair. The AIK pair is
generated by the TPM, and the private AIK never leaves
the TPM unless it has been encrypted by the Storage Root
Key (SRK). The SRK is installed in the TPM by the man-
ufacturer, and the private SRK never leaves the TPM. A
certificate from a Privacy CA certifies that the AIK was
generated by a legitimate TPM.

Attestation allows an external party (or verifier) to make
a trust decision based on the platform’s software state. The
verifier authenticates the public AIK by validating the AIK’s
certificate chain and deciding whether to trust the issuing
Privacy CA. It then validates the signature on the PCR
values and checks that the PCR values correspond to the
events in the log by hashing the log entries and comparing
the results to the PCR values in the attestation. Finally, it
decides whether to trust the platform based on the events
in the log. Typically, the verifier must assess a list of all
software loaded since boot time (including the OS) and its
configuration information.

2.2 TPM-Based Sealed Storage
TPMs also provide sealed storage, whereby data can be

encrypted using a 2048-bit RSA key whose private compo-
nent never leaves the TPM in unencrypted form. The sealed
data can be bound to a particular software state, as defined
by the contents of various PCRs. The TPM will only un-
seal (decrypt) the data when the PCRs contain the values
specified by the seal command.

TPM Seal outputs a ciphertext, which contains the sealed
data and information about the platform configuration re-
quired for its release. Software is responsible for keeping it
on a non-volatile storage medium. There is no limit on the
use of sealed storage, but the data is encrypted using (rel-
atively slow) asymmetric algorithms inside the TPM. Thus,
it is common to encrypt and MAC the data to be sealed us-
ing (relatively fast) symmetric algorithms on the platform’s
main CPU, and then keep the symmetric encryption and
MAC keys in sealed storage. The TPM includes a random
number generator that can be used for key generation.

2.3 TPM v1.2 Dynamic PCRs
The TPM v1.2 specification [32] allows for static and dy-

namic PCRs. Only a system reboot can reset the value in a
static PCR, but under the proper conditions, the dynamic
PCRs 17–23 can be reset to zero without a reboot. A reboot
sets the value of PCRs 17–23 to −1, so that a remote veri-
fier can distinguish between a reboot and a dynamic reset.
Only a hardware command from the CPU can reset PCR 17,
and the CPU will issue this command only after receiving
an SKINIT instruction as described below. Thus, software
cannot reset PCR 17, though PCR 17 can be read and ex-
tended by software before calling SKINIT or after SKINIT
has completed.

2.4 Late Launch
In this section, we discuss the capabilities offered by AMD’s

Secure Virtual Machine (SVM) extensions [1]. Intel offers
similar capabilities with their Trusted eXecution Technol-
ogy (TXT, formerly LaGrande Technology (LT)) [12]. Both
AMD and Intel are shipping chips with these capabilities;
they can be purchased in commodity computers. In this pa-
per, we will focus on AMD’s SVM technology, but Intel’s
TXT technology functions analogously.

SVM chips are designed to allow the late launch of a Vir-
tual Machine Monitor (VMM) or Security Kernel at an ar-
bitrary time with built-in protection against software-based
attacks. To launch the VMM, software in CPU protection
ring 0 (e.g., kernel-level code) invokes the new SKINIT in-
struction (GETSEC [SENTER] on Intel TXT), which takes
a physical memory address as its only argument. The mem-
ory at this address is known as the Secure Loader Block
(SLB). The first two words (16-bit values) of the SLB are
defined to be its length and entry point (both must be be-
tween 0 and 64 KB).

To protect the SLB launch against software attacks, the
processor includes a number of hardware protections. When
the processor receives an SKINIT instruction, it disables di-
rect memory access (DMA) to the physical memory pages
composing the SLB by setting the relevant bits in the sys-
tem’s Device Exclusion Vector (DEV). It also disables inter-
rupts to prevent previously executing code from regaining
control. Debugging access is also disabled, even for hardware
debuggers. Finally, the processor enters flat 32-bit protected
mode and jumps to the provided entry point.

SVM also includes support for attesting to the proper in-
vocation of the SLB. As part of the SKINIT instruction, the
processor first causes the TPM to reset the values of PCRs
17–23 to zero, and then transmits the (up to 64 KB) contents
of the SLB to the TPM so that it can be measured (hashed)
and extended into PCR 17. Note that software cannot re-
set PCR 17 without executing another SKINIT instruction.
Thus, future TPM attestations can include the value of PCR
17 and hence attest to the use of the SKINIT instruction
and the identity of the SLB loaded.

3. PROBLEM DEFINITION

3.1 Adversary Model
At the software level, the adversary can subvert the op-

erating system, so it can also compromise arbitrary appli-
cations and monitor all network traffic. Since the adversary
can run code at ring 0, it can invoke the SKINIT instruction
with arguments of its choosing. We also allow the adver-
sary to regain control between Flicker sessions. We do not
consider Denial-of-Service attacks, since a malicious OS can
always simply power down the machine or otherwise halt
execution to deny service.

At the hardware level, we make the same assumptions
as does the Trusted Computing Group with regard to the
TPM [33]. In essence, the attacker can launch simple hard-
ware attacks, such as opening the case, power cycling the
computer, or attaching a hardware debugger. The attacker
can also compromise expansion hardware such as a DMA-
capable Ethernet card with access to the PCI bus. However,
the attacker cannot launch sophisticated hardware attacks,
such as monitoring the high-speed bus that links the CPU
and memory.

3.2 Goals
We describe the goals for isolated execution and explain

why SVM alone does not meet them.
Isolation. Provide complete isolation of security-sensitive
code from all other software (including the OS) and devices
in the system. Protect the secrecy and integrity of the code’s
data after it exits the isolated execution environment.
Provable Protection. After executing security-sensitive
code, convince a remote party that the intended code was
executed with the proper protections in place. Provide as-
surance that a remote party’s sensitive data will be handled
only by the intended code.
Meaningful Attestation. Allow the creation of attes-
tations that include measurements of exactly the code exe-
cuted, its inputs and outputs, and nothing else. This prop-
erty gives the verifier a tractable task, instead of learning
only that untold millions of lines of code were executed, and
leaks as little information as possible about the attestor’s
software state.
Minimal Mandatory TCB. Minimize the amount of soft-
ware that security-sensitive code must trust. Individual ap-
plications may need to include additional functionality in
their TCBs, e.g., to process user input, but the amount of
code that must be included in every application’s TCB must
be minimized.

On their own, AMD’s SVM and Intel’s TXT technologies
only meet two of the above goals. While both provide Isola-
tion and Provable Protection, they were both designed with
the intention that the SKINIT instruction would be used to
launch a secure kernel or secure VMM [9]. Either mechanism
will significantly increase the size of an application’s TCB
and dilute the meaning of future attestations. For example,
a system using the Xen [5] hypervisor with SKINIT would
add almost 50, 000 lines of code1 to an application’s TCB,
not including the Domain 0 OS, which potentially adds mil-
lions of additional lines of code to the TCB.

In contrast, Flicker takes a bottom-up approach to the
challenge of managing TCB size. Flicker starts with fewer
than 250 lines of code in the software TCB. The program-
mer can then add only the code necessary to support her
particular application into the TCB.

4. FLICKER ARCHITECTURE
Flicker provides complete, hardware-supported isolation

of security-sensitive code from all other software and de-
vices on a platform (even including hardware debuggers and
DMA-enabled devices). Hence, the programmer can include
exactly the software needed for a particular sensitive oper-
ation and exclude all other software on the system. For ex-
ample, the programmer can include the code that decrypts
and checks a user’s password but exclude the portion of the
application that processes network packets, the OS, and all
other software on the system.

4.1 Flicker Overview
Flicker achieves its properties using the late launch ca-

pabilities described in Section 2.4. Instead of launching
a VMM, Flicker pauses the current execution environment
(e.g., the untrusted OS), executes a small piece of code us-
ing the SKINIT instruction, and then resumes operation of
the previous execution environment. The security-sensitive

1http://xen.xensource.com/

Lo
ad

 F
lic

ke
r m

od
.

A
cc

ep
t u

ni
ni
t.

S
LB

In
iti
al
iz
e

S
LB

Execute PAL

C
le
an

up

Piece of Application Logic

E
xt
en

d
P
C
R

R
es

um
e

O
S

R
et

ur
n

ou
tp

ut
s

S
us

pe
nd

 O
S

Flicker Session

S
K
IN
IT

A
cc

ep
t i
np

ut
s

SLB

Figure 2: Timeline showing the steps necessary to execute

a PAL. The SLB includes the PAL, as well as the code nec-

essary to initialize and terminate the Flicker session. The

gap in the time axis indicates that the flicker-module is only

loaded once.

code selected for Flicker protection is the Piece of Applica-
tion Logic (PAL). The protected environment of a Flicker
session starts with the execution of SKINIT and ends with
the resumption of the previous execution environment. Fig-
ure 2 illustrates this sequence.

Application developers must provide the PAL and define
its interface with the remainder of their application (we dis-
cuss this process, as well as our work on automating it, in
Section 5). To create an SLB (the Secure Loader Block sup-
plied as an argument to SKINIT), the application developer
links her PAL against an uninitialized code module we have
developed called the SLB Core. The SLB Core performs the
steps necessary to set up and tear down the Flicker session.
Figure 3 shows the SLB’s memory layout.

To execute the resulting SLB, the application passes it to
a Linux kernel module we have developed, flicker-module.
It initializes the SLB Core and handles untrusted setup and
tear-down operations. The flicker-module is not included in
the TCB of the application, since its actions are verified.

4.2 Isolated Execution
We provide a simplified discussion of the operation of a

Flicker session by following the timeline in Figure 2.
Accept Uninitialized SLB and Inputs. SKINIT is
a privileged instruction, so an application uses the flicker-
module’s interface to invoke a Flicker session. In the sysfs,2

the flicker-module makes four entries available: control,
inputs, outputs, and slb. Applications interact with the
flicker-module via these filesystem entries. An application
first writes to the slb entry an uninitialized SLB containing
its PAL code. The flicker-module allocates kernel memory
in which to store the SLB; we refer to the physical address
at which it is allocated as slb_base. The application writes
any inputs for its PAL to the inputs sysfs entry; the inputs
are made available at a well-known address once execution of
the PAL begins (the parameters are at the top of Figure 3).
The application initiates the Flicker session by writing to
the control entry in the sysfs.
Initialize the SLB. When the application developer links
her PAL against the SLB Core, the SLB Core contains sev-
eral entries that must be initialized before the resulting SLB
can be executed. The flicker-module updates these values
by patching the SLB.

When the SKINIT instruction executes, it puts the CPU
into flat 32-bit protected mode with paging disabled, and be-
gins executing at the entry point of the SLB. By default, the
PAL is not built as position independent code, so it assumes

2A virtual file system that exposes kernel state.

Page Tables

Init()

Out: PAL Outputs

(During Legacy OS Reload Only)

Size of SLB Entry point

Global Descriptor Table (GDT)

(Grows Towards Low Addresses)

Start of SLB

(arg. to SKINIT)

End of SLB

(Start + 64KB)

Parameters

Exit()

S
e
c
u
re

 L
o
a
d
e
r

B
lo

c
k
 (

S
L
B

)

Task State Segment (TSS)

S
L

B
 C

o
re

Stack Space (4 KB)

In: PAL Inputs

In: Saved Kernel State
End + 4 KB

End + 8 KB

End of PAL

(Start + 60KB)

Additional PAL Code

(Optional)

PAL

Figure 3: Memory layout of the SLB. The shaded region

indicates memory containing executable PAL code. The dot-

ted lines indicates memory used to transfer data into and

out of the SLB. After the PAL has executed and erased its

secrets, memory that previously contained executable code is

used for the skeleton page tables needed to reload the OS.

that it starts at address 0, whereas the actual SLB may start
anywhere within the kernel’s address space. The SLB Core
addresses this issue by enabling the processor’s segmenta-
tion support and creating segments that start at the base
of the PAL code. During the build process, the starting ad-
dress of the PAL code is unknown, so the SLB Core includes
a skeleton Global Descriptor Table (GDT) and Task State
Segment (TSS). Once the flicker-module allocates memory
for the SLB, it can compute the starting address of the PAL
code, and hence it can fill in the appropriate entries in the
SLB Core.
Suspend OS. SKINIT does not save existing state when
it executes. However, we want to resume the untrusted OS
following the Flicker session, so appropriate state must be
saved. This is complicated by the fact that the majority
of systems available with AMD SVM support are multi-
core. On a multi-CPU system, the SKINIT instruction has
additional requirements which must be met for secure ini-
tialization. In particular, SKINIT can only be run on the
Boot Strap Processor (BSP), and all Application Processors
(APs) must successfully receive an INIT Inter-Processor In-
terrupt (IPI) so that they respond correctly to a handshak-
ing synchronization step performed during the execution of
SKINIT . However, the BSP cannot simply send an INIT IPI
to the APs if they are executing processes. Our solution is
to use the CPU Hotplug support available in recent Linux
kernels (starting with version 2.6.19) to deschedule all APs.
Once the APs are idle, the flicker-module sends an INIT IPI
by writing to the system’s Advanced Programmable Inter-
rupt Controller. At this point, the BSP is prepared to exe-
cute SKINIT , and the OS state needs to be saved. In par-
ticular, we save information about the Linux kernel’s page
tables so the SLB Core can restore paging and resume the
OS after the PAL exits.
SKINIT and the SLB Core. The SKINIT instruction
enables hardware protections and then begins to execute the

SLB Core, which prepares the environment for PAL execu-
tion. Executing SKINIT enables the hardware protections
described in Section 2.4. In brief, the processor adds entries
to the Device Exclusion Vector (DEV) to disable DMA to
the memory region containing the SLB, disables interrupts
to prevent the previously executing code from regaining con-
trol, and disables debugging support, even for hardware de-
buggers. By default, these protections are offered to 64 KB
of memory, but they can be extended to larger memory re-
gions. If this is done, preparatory code in the first 64 KB
must add this additional memory to the DEV, and extend
measurements of the contents of this additional memory into
the TPM’s PCR 17 after the hardware protections are en-
abled, but before transferring control to any code in these
upper memory regions.

The Initialization operations performed by the SLB Core
once SKINIT gives it control are: (i) load the GDT, (ii)
load the CS, DS, and SS registers and (iii) call the PAL,
providing the address of PAL inputs as a parameter.
Execute PAL. Once the environment has been prepared,
the PAL executes its application-specific logic. To keep the
TCB small, the default SLB Core includes no support for
heaps, memory management, or virtual memory. Thus, it is
up to the PAL developer to include the functionality neces-
sary for her particular application. Section 5 describes some
of our existing modules that can optionally be included to
provide additional functionality. We have also developed
a module that can restrict the actions of a PAL, since by
default (i.e., without the module), a PAL can access the
machine’s entire physical memory and execute arbitrary in-
structions (see Section 5.1.2 for more details).

During PAL execution, output parameters are written to
a well-known location beyond the end of the SLB. When the
PAL exits, the SLB Core regains control.
Cleanup. The PAL’s exit triggers the cleanup and exit
code at the end of the SLB Core. The cleanup code erases
any sensitive data left in memory by the PAL.
Extend PCR. To signal the completion of the SLB, the
SLB Core extends a well known value into PCR 17. As
we discuss in Section 4.4.1, this allows a remote party to
distinguish between values generated by the PAL (trusted),
and those produced after the OS resumes (untrusted).
Resume OS. Linux operates with paging enabled and seg-
ment descriptors set to cover all of memory, but the SLB exe-
cutes in protected mode with segment descriptors starting at
slb_base. We transition between these states in two phases.
First, we reload the segment descriptors with GDT entries
that cover all of memory, and second, we enable paged mem-
ory mode.

We use a call gate in the SLB Core’s GDT as a well-known
point for resuming the untrusted OS. It is used to reload the
code segment descriptor register with a descriptor covering
all of memory.

After reloading the data and stack segments, we re-enable
paged memory mode. This requires the creation of a skele-
ton of page tables to map the SLB Core’s memory pages to
the virtual addresses where the Linux kernel believes they
reside. The procedure resembles that executed by the Linux
kernel when it first initializes. The page tables must con-
tain a unity mapping for the memory location of the next
instruction, allowing paging to be enabled. Finally, the ker-
nel’s page tables are restored by rewriting CR3 (the page
table base address register) with the value saved during the

Suspend OS phase. Next, the kernel’s GDT is reloaded, and
control is transferred back to the flicker-module.

The flicker-module restores the execution state saved dur-
ing the Suspend OS phase and fully restores control to the
Linux kernel by re-enabling interrupts. If the PAL outputs
any values, the flicker-module makes them available through
the sysfs outputs entry.

4.3 Multiple Flicker Sessions
PALs can leverage TPM-based sealed storage to maintain

state across Flicker sessions, enabling more complex appli-
cations. For example, a Flicker-based application may wish
to interact with a remote entity over the network. Rather
than include an entire network stack and device driver in
the PAL (and hence the TCB), we can invoke Flicker more
than once (upon the arrival of each message), using secure
storage to protect sensitive state between invocations.

Flicker-based secure storage can also be used by appli-
cations that wish to share data between PALs. The first
PAL can store secrets so that only the second PAL can
read them, thus protecting the secrets even when control
reverts to the untrusted OS. Finally, Flicker-based secure
storage can improve the performance of long-running PAL
jobs. Since Flicker execution pauses the rest of the system,
an application may prefer to break up a long work segment
into multiple Flicker sessions to allow the rest of the system
time to operate, essentially multitasking with the OS. We
first present the use of TPM Sealed Storage and then de-
scribe extensions necessary to protect multiple versions of
the same object from a replay attack against sealed storage.

4.3.1 TPM Sealed Storage
To save state across Flicker sessions, a PAL uses the TPM

to seal the data under the measurement of the PAL that
should have access to its secrets. More precisely, suppose
PAL P , operating in a Flicker session, wishes to securely
store data so that only PAL P ′, also operating under Flicker
protection, can read the data.3 P ′ could be a later invoca-
tion of P , or it could be a completely different PAL. Either
way, while it is executing within the Flicker session, PAL
P uses the TPM’s Seal command to secure the sensitive
data. As an argument, P specifies that PCR 17 must have
the value V ← H(0x0020||H(P ′)) before the data can be
unsealed. Only an SKINIT instruction can reset the value
of PCR 17, so PCR 17 will have value V only after PAL
P ′ has been invoked using SKINIT . Thus, the sealed data
can be unsealed if and only if P ′ executes under Flicker’s
protection. This allows PAL code to store persistent data
such that it is only available to a particular PAL in a future
Flicker session.

4.3.2 Replay Prevention for Sealed Storage
TPM-based sealed storage prevents other code from di-

rectly learning or modifying a PAL’s secrets. However, TPM
Seal outputs ciphertext c (for data d) that is handled by un-
trusted code: c ← TPM Seal(d,PCR list). The untrusted
code is capable of performing a replay attack where an older
ciphertext c′ is provided to a PAL. For example, consider a
password database that is maintained in sealed storage and
a user who changes her password because it is publicized.

3For brevity, we will assume that PALs operate with Flicker
protection. Similarly, a measurement of the PAL consists of
a hash of the SLB containing the PAL.

Seal(d): Unseal(c):
IncrementCounter() d||j′ ← TPM Unseal(c)
j ← ReadCounter() j ← ReadCounter()
c← TPM Seal(d||j,PCR List) if (j′ 6= j) Output(⊥)
Output(c) else Output(d)

Figure 4: Replay protection for sealed storage based on a

secure counter. Ciphertext c is created when data d is sealed.

To change a user’s password, version i of the database is
unsealed, updated with the new password, and then sealed
again as version i + 1. An attacker who can cause the sys-
tem to operate on version i of the password database can
gain unauthorized access using the publicized password. To
summarize, TPM Unseal ensures that the plaintext of c′ is
accessible only to the intended PAL, but it does not guar-
antee that c′ is the most recent sealed version of data d.

Replay attacks against sealed storage can be prevented if
a secure counter is available, as illustrated in Figure 4. To
seal an updated data object, the secure counter should be in-
cremented, and the data object should be sealed along with
the new counter value. When a data object is unsealed, the
counter value included in the data object at seal time should
be the same as the current value of the secure counter. If the
values do not match, either the counter was tampered with,
or the unsealed data object is a stale version and should be
discarded.

Options for realizing a secure counter with Flicker include
a trusted third party, and the Monotonic Counter and Non-
volatile Storage facilities of v1.2 TPMs [33]. We provide
a sketch of how to implement replay protection for sealed
storage with Flicker using the TPM’s Non-volatile Storage
facility, though a complete solution is outside the scope of
this paper. In particular, we do not treat recovery after a
power failure or system crash during the counter-increment
and sealed storage ciphertext-output. In these scenarios, the
secure counter can become out-of-sync with the latest sealed-
storage ciphertext maintained by the OS. An appropriate
mechanism to detect such events is also necessary.

The TPM’s Non-volatile Storage facility exposes inter-
faces to Define Space, and Read and Write values to defined
spaces. Space definition is authorized by demonstrating
possession of the 20-byte TPM Owner Authorization Data,
which can be provided to a Flicker session using the protocol
we present in Section 4.4. A defined space can be configured
to restrict access based on the contents of specified PCRs.
Setting the PCR requirements to match those specified dur-
ing the TPM Seal command creates an environment where a
counter value stored in non-volatile storage is only available
to the desired PAL. Values placed in non-volatile storage are
maintained in the TPM, so there is no dependence on the
untrusted OS to store a ciphertext. This, combined with the
PCR-based access control, is sufficient to protect a counter
value against attacks from the OS.

4.4 Interaction With a Remote Party
Since neither SVM nor TXT include any visual indication

that a secure session has been initiated via a late launch, a
remote party must be used to bootstrap trust in a platform
running Flicker. Below, we describe how a platform attests
to the PAL executed, the use of Flicker, and any inputs or
outputs provided. We also demonstrate how a remote party
can establish a secure channel to a PAL.

4.4.1 Attestation and Result Integrity
A platform using Flicker can convince remote parties that

a Flicker session executed with a particular PAL. Our ap-
proach builds on the TPM attestation process described in
Section 2.1. Below, we refer to the party executing Flicker
as the challenged party, and the remote party as the verifier.

To create an attestation, the challenged party accepts a
random nonce from the verifier to provide freshness and re-
play protection. The challenged party then uses Flicker to
execute a particular PAL as described in Section 4.2. As
part of Flicker’s execution, the SKINIT instruction resets
the value of PCR 17 to 0 and then extends it with the mea-
surement of the PAL. Thus, PCR 17 will take on the value
V ← H(0x0020||H(P)), where P represents the PAL code.
The properties of the TPM, chipset, and CPU guarantee
that no other operation can cause PCR 17 to take on this
value. Thus, an attestation of the value of PCR 17 will
convince a remote party that the PAL was executed using
Flicker’s protection.

After Flicker terminates, the OS causes the TPM to load
its AIK, invokes the TPM’s Quote command with the nonce
provided by the verifier, and specifies the inclusion of PCR 17
in the quote.

To verify the use of Flicker, the verifier must know both
the measurement of the PAL, and the public key correspond-
ing to the platform’s AIK. These components allow the ver-
ifier to authenticate the attestation from the platform. The
verifier uses the platform’s public AIK to verify the signature
from the TPM. It then computes the expected measurement
of the PAL, as well as the hash of the input and output pa-
rameters. If these values match those extended into PCR 17
and signed by the TPM, the verifier accepts the attestation
as valid.

To provide result integrity, after PAL execution termi-
nates, the SLB Core extends PCR 17 with measurements of
the PAL’s input and output parameters. By verifying the
quote (which includes the value of PCR 17), the verifier also
verifies the integrity of the inputs and results returned by the
challenged party, and hence knows that it has received the
exact results produced by the PAL. The nonce provided by
the remote party is also extended into PCR 17 to guarantee
the freshness of the outputs.

As another important security procedure, after extending
the PAL’s results into PCR 17, the SLB Core extends PCR
17 with a fixed public constant. This provides several pow-
erful security properties: (i) it prevents any other software
from extending values into PCR 17 and attributing them to
the PAL; and (ii) it revokes access to any secrets kept in the
TPM’s sealed storage which may have been available during
PAL execution.

4.4.2 Establishing a Secure Channel
The techniques described above ensure the integrity of the

PAL’s input and output, but to communicate securely (i.e.,
with both secrecy and integrity protections) with a remote
party, the PAL and the remote party must establish a secure
channel. We create a secure channel by combining multiple
Flicker sessions, the attestation capabilities just described,
and some additional cryptographic techniques [18]. Essen-
tially, the PAL generates an asymmetric keypair within the
protection of the Flicker session and then transmits the pub-
lic key to the remote party. The private key is sealed for a
future invocation of the same PAL using the technique de-

#include "slbcore.h"

const char* msg = "Hello, world";

void pal_enter(void *inputs) {

for(int i=0;i<13;i++)

PAL_OUT[i] = msg[i]; }

Figure 5: A simple PAL that ignores its inputs, and out-

puts “Hello, world.” PAL_OUT is defined in slbcore.h.

scribed above. An attestation convinces the remote party
that the PAL ran with Flicker’s protections and that the
public key was a legitimate output of the PAL. Finally, the
remote party can use the PAL’s public key to create a secure
channel [10] to the PAL.

5. DEVELOPER’S PERSPECTIVE
Below, we describe the process of creating a PAL from

the perspective of an application developer. Then, we dis-
cuss techniques for automating the extraction of sensitive
portions of an existing application for inclusion in a PAL.

5.1 Creating a PAL
We have developed Flicker primarily in C, with some of

the core functionality written in x86 assembly. However, any
language supported by GNU binutils and that can be linked
against the core Flicker components is viable for inclusion
in a PAL.

5.1.1 A “Hello, World” Example PAL
As an example, Figure 5 illustrates a simple PAL that

ignores its inputs, and outputs the classic message, “Hello,
world.” Essentially, the PAL copies the contents of the global
msg variable to the well-known PAL output parameter loca-
tion (defined in the slbcore header file). Our convention
is to use the second 4-KB page above the 64-KB SLB. The
PAL code, when built using the process described below,
can be executed with Flicker protections. Its message will
be available from the outputs entry in the flicker-module
sysfs location. Thus the application can simply use open

and read to obtain the PAL’s results.

5.1.2 Building a PAL
To convert the code from Figure 5 into a PAL, we link

it against the object file representing Flicker’s core func-
tionality (described as SLB Core below) using the Flicker
linker script. The linker script specifies that the skeleton
data structures and code from the SLB Core should come
first in the resulting binary, and that the resulting output
format should be binary (as opposed to an ELF executable).
The application then provides this binary blob to the flicker-
module for execution under Flicker’s protection.

Application developers depend on a variety of libraries.
There is no reason this should be any different just because
the target executable is a PAL, except that it is desirable
to modularize the libraries further than is traditionally done
to help minimize the amount of code included in the PAL’s
TCB. We have developed several small libraries in the course
of applying Flicker to the applications described in Section 6.
The following paragraphs provide a brief description of the
libraries listed in Figure 6.

SLB Core. The SLB Core module provides the minimal
functionality needed to support a PAL. Section 4.2 describes
this functionality in detail. In brief, the SLB Core contains
space for the SLB’s entry point, length, GDT, TSS, and
code to manage segment descriptors and page tables. The
SLB Core transfers control to the PAL code, which per-
forms application-specific work. When the PAL terminates,
it transfers control back to the SLB Core for cleanup and
resumption of the OS.
OS Protection. Thus far, Flicker has focused on protect-
ing a security-sensitive PAL from all of the other software on
the system. However, we have also developed a module to
protect a legitimate OS from a malicious or malfunctioning
PAL. It is important to note that since SKINIT is a priv-
ileged instruction, only code executing at CPU protection
ring 0 (recall that x86 has 4 privilege rings, with 0 being
most privileged) can invoke a Flicker session. Thus, the OS
ultimately decides which PALs to run, and presumably it
will only run PALs that it trusts or has verified in some
manner, e.g., using proof carrying code [21]. Nonetheless,
the OS may desire additional guarantees. The OS Protec-
tion module restricts a PAL’s memory accesses to the ex-
act memory region allocated by the OS, thus preventing it
from intentionally or inadvertently reading or overwriting
the code and/or data of other software on the system. We
are also investigating techniques to limit a PAL’s execution
time using timer interrupts in the SLB Core. These tim-
ing restrictions must be chosen carefully, however, since a
PAL may need some minimal amount of time to allow TPM
operations to complete before the PAL can accomplish any
meaningful work.

To restrict the memory accessed by a PAL, we use seg-
mentation and run the PAL in CPU protection ring 3. Es-
sentially, the SLB Core creates segment descriptors for the
PAL that have a base address set at the beginning of the
PAL and a limit placed at the end of the memory region al-
located by the OS. The SLB Core then runs the PAL in ring
3 to prevent it from modifying or otherwise circumventing
these protections. When the PAL exits, it transitions back
to the SLB Core running in ring 0. The SLB Core can then
cleanse the memory region used and reload the OS.

In more detail, we transition from the SLB Core running
in ring 0 to the PAL running in ring 3 using the IRET in-
struction which loads the slb_base-offset segment descrip-
tors before the PAL executes. Executing the PAL in ring 3
only requires two additional PUSH instructions in the SLB
Core. Returning execution to ring 0 once the PAL termi-
nates involves the use of the call gate and task state segment
(TSS) in the GDT. This mechanism is invoked with a single
(far) call instruction in the SLB Core.
TPM Driver and Utilities. The TPM is a memory-
mapped I/O device. As such, it needs a small amount of
driver functionality to keep it in an appropriate state and
to ensure that its buffers never over- or underflow. This
driver code is necessary before any TPM operations can be
performed, and it is also necessary to release control of the
TPM when the Flicker session is ready to exit, so that the
Linux TPM driver can regain access to the TPM.

The TPM Utilities allow other PAL code to perform useful
TPM operations. Currently supported operations include
GetCapability, PCR Read, PCR Extend, GetRandom, Seal,
Unseal, and the OIAP and OSAP sessions necessary to au-
thorize Seal and Unseal [33].

Module Properties LOC Size (KB)
SLB Core Prepare environment, execute PAL, clean environment, resume OS 94 0.312
OS Protection Memory protection, ring 3 PAL execution 5 0.046
TPM Driver Communication with the TPM 216 0.825
TPM Utilities Performs TPM operations, e.g., Seal, Unseal, GetRand, PCR Extend 889 9.427
Crypto General purpose cryptographic operations, RSA, SHA-1, SHA-512 etc. 2262 31.380
Memory Management Implementation of malloc/free/realloc 657 12.511
Secure Channel Generates a keypair, seals private key, returns public key 292 2.021

Figure 6: Modules that can be included in the PAL. Only the SLB Core is mandatory. Each adds some number of lines of

code (LOC) to the PAL’s TCB and contributes to the overall size of the SLB binary.

Crypto. We have developed a small library of crypto-
graphic functions. Supported operations include a multi-
precision integer library, RSA key generation, RSA encryp-
tion and decryption, SHA-1, SHA-512, MD5, AES, and RC4.
Memory Management. We have implemented a small
version of malloc/free/realloc for use by applications. The
memory region used as the heap is simply a large global
buffer.
Secure Channel. We have implemented the protocol de-
scribed in Section 4.4 for creating a secure channel into a
PAL from a remote party. It relies on all of the other mod-
ules we have developed (except the OS Protection module
which the developer may add).

5.2 Automation
Ideally, we envision each PAL containing only the security-

sensitive portion of each application, rather than the appli-
cation in its entirety. Minimizing the PAL makes it easier to
ensure that the required functionality is performed correctly
and securely, facilitating a remote party’s verification task.
Previous research indicates that many applications can be
readily split into a privileged and an unprivileged compo-
nent. Such privilege separation can be performed manu-
ally [14,17,24,31], or automatically [4, 6, 35].

While each PAL is necessarily application-specific, we have
developed a tool using the source-code analysis tool CIL [22]
to help extract functionality from existing programs. Since
CIL can replace the C compiler (e.g., the programmer can
simply run “CC=cil make” using an existing Makefile), our
tool can operate even on large programs with complex build
dependencies.

The programmer supplies our tool with the name of a tar-
get function within a larger program (e.g., rsa_keygen()).
The tool then parses the program’s call graph and extracts
any functions that the target depends on, along with rel-
evant type definitions, etc., to create a standalone C pro-
gram. The tool also indicates which additional functions
from standard libraries must be eliminated or replaced. For
example, by default, a PAL cannot call printf or malloc.
Since printf usually does not make sense for a PAL, the
programmer can simply eliminate the call. For malloc, the
programmer can convert the code to use statically allocated
variables or link against our memory management library
(described above). While the process is clearly not com-
pletely automated, the tool does automate a large portion
of PAL creation and eases the programmer’s burden, and
we continue to work on increasing the degree of automation
provided. We found the tool useful in our application of
Flicker to the applications described next.

6. FLICKER APPLICATIONS
In this section, we demonstrate the versatility of the Flicker

platform by showing how Flicker can be applied to several
broad classes of applications. Within each class, we describe
our implementation of one or more applications and show
how Flicker significantly enhances security in each case. In
Section 7, we evaluate the performance of the applications,
as well as the general Flicker platform.

We have implemented Flicker for AMD SVM on a 32-
bit Linux kernel v2.6.20, including the various modules de-
scribed in Section 5. Each application described below uti-
lizes precisely the modules needed (and some application-
specific logic) and nothing else. On the untrusted OS, the
flicker-module loadable kernel module is responsible for in-
voking the PAL and facilitating delivery of inputs and recep-
tion of outputs from the Flicker session. Further, it manages
the suspension and resumption of the untrusted OS before
and after the Flicker session. We also developed a TPM
Quote Daemon (the tqd) on top of the TrouSerS4 TCG Soft-
ware Stack that runs on the untrusted OS and provides an
attestation service.

6.1 Stateless Applications
Many applications do not require long-term state to op-

erate effectively. For these applications, the primary over-
head of using Flicker is the time required for the SKINIT
instruction, since the attestation can be generated by the
untrusted OS (see Section 4.4.1). As a concrete example,
we use Flicker to provide verifiable isolated execution of a
kernel rootkit detector on a remote machine.

For this application, we assume a network administrator
wishes to run a rootkit detector on remote hosts that are
potentially compromised. For instance, a corporation may
wish to verify that employee laptops have not been com-
promised before allowing them to connect to the corporate
Virtual Private Network (VPN).

We implement our rootkit detector for version 2.6.20 of
the Linux kernel as a PAL. After the SLB Core hands con-
trol to the rootkit detector PAL, it computes a SHA-1 hash
of the kernel text segment, system call table, and loaded ker-
nel modules. The detector then extends the resulting hash
value into PCR 17 and copies it to the standard output mem-
ory location. Once the PAL terminates, the untrusted OS
resumes operation and the tqd provides an attestation to
the network administrator. Since the attestation contains
the TPM’s signature on the current PCR values, the ad-
ministrator knows that the correct rootkit detector ran with

4http://trousers.sourceforge.net/

Flicker protections in place and can verify that the untrusted
OS returns the correct value. Finally, the administrator can
compare the hash value returned against known-good values
for that particular kernel.

6.2 Integrity-Protected State
Some applications may require multiple Flicker sessions,

and hence a means of preserving state across sessions. For
some, simple integrity protection of this state will suffice
(we consider those that also require secrecy in Section 6.3).
To illustrate this class of applications, we apply Flicker to a
distributed computing application.

Applications such as SETI@Home [3] divide a task into
smaller work units and distribute these units to hosts with
spare computation capacity. When the hosts are untrusted,
the application must take measures to detect erroneous re-
sults. A common approach distributes the same work unit
to multiple hosts and compares the results. Unfortunately,
this wastes significant amounts of computation, and does
not provide any tangible correctness guarantees [20]. With
Flicker, the clients can process their work units inside a
Flicker session and attest the results to the server. The
server then has a high degree of confidence in the results
and need not waste computation on redundant work units.

In our implementation, we apply Flicker to the BOINC
framework [2], which is a generic framework for distributed
computing applications. It is currently used by several dozen
projects.5 By targeting BOINC, rather than a specific appli-
cation, we can allow all of these applications to take advan-
tage of Flicker’s security properties (though some amount of
application-specific modifications are still required). As an
illustration, we developed a simple distributed application
using the BOINC framework that attempts to factor a large
number by naively asking clients to test a range of numbers
for potential divisors.

In this application, our modified BOINC client contacts
the server to obtain a work unit. It then invokes a Flicker
session to perform application specific work. Since the PAL
may have to compute for an extended period of time, it
periodically returns control to the untrusted OS. This allows
the OS to process interrupts (including a user’s return to the
computer) and multitask with other programs.

Since many distributed computing applications care pri-
marily about the integrity of the result, rather than the se-
crecy of the intermediate state, our implementation focuses
on maintaining the integrity of the PAL’s state while the
untrusted OS operates. To do so, the very first invocation
of the BOINC PAL generates a 160-bit symmetric key based
on randomness obtained from the TPM and uses the TPM
to seal the key so that no other code can access it. It then
performs application specific work.

Before yielding control back to the untrusted OS, the PAL
computes a cryptographic MAC (HMAC) over its current
state (for the factoring application, the state is simply the
current prospective divisor and any successful divisors found
thus far). Each subsequent invocation of the PAL unseals
the symmetric key and checks the MAC on its state before
beginning application-specific work. When the PAL finally
finishes its work unit, it extends the results into PCR 17 and
exits. Our modified BOINC client then returns the results
to the server, along with an attestation. The attestation
demonstrates that the correct BOINC PAL executed with

5http://boinc.berkeley.edu/projects.php

Client: has KPAL

Server: has sdata, salt , hashed passwd

generates nonce

Server → Client: nonce

Client: user inputs password

c←encryptKPAL
({password ,nonce})

Client → Server: c

Server → PAL: c, salt , sdata,nonce

PAL: K
−1

PAL
← unseal(sdata)

{password ,nonce ′} ← decrypt
K

−1

PAL

(c)

PAL: if (nonce ′ 6= nonce)
then abort

hash ← md5crypt(salt , password)
extend(PCR17,⊥)

PAL → Server: hash

Server: if (hash = hashed passwd)
then allow login

else abort

Figure 7: The protocol surrounding the second Flicker ses-

sion for our SSH implementation. sdata contains the sealed

private key, K−1

PAL
. Variables salt and hashed passwd are

components of the entry in the system’s /etc/passwd file for

the user attempting to log in. The nonce serves to prevent

replay attacks against a well-behaved server.

Flicker protections in place and that the returned result was
truly generated by the BOINC PAL. Thus, the application
writer can trust the result.

6.3 Secret and Integrity-Protected State
Finally, we consider applications that need to maintain

both the secrecy and the integrity of their state between
Flicker invocations. To evaluate this class of applications, we
developed two additional applications. The first uses Flicker
to protect SSH passwords, and the second uses Flicker to
protect a Certificate Authority’s private signing key.

6.3.1 SSH Password Authentication
We have applied Flicker to password-based authentication

with SSH. Since people tend to use the same password for
multiple independent computer systems, a compromise on
one system may yield access to other systems. Our primary
goal is to prevent any malicious code on the server from
learning the user’s password, even if the server’s OS is com-
promised. Our secondary goal is to convince the client sys-
tem (and hence, the user) that the secrecy of the password
has been preserved. Flicker is well suited to these goals, as
it makes it possible to restrict access to the user’s cleartext
password on the server to a tiny TCB (the PAL), and to at-
test to the client that this indeed was enforced. While other
techniques (e.g., PwdHash [25]) exist to ensure varied user
passwords across servers, SSH provides a useful illustration
of Flicker’s properties when applied to a real-world system.

Our implementation is built upon the basic components
we have described in the preceding sections, and consists of
five main software components. A modified SSH client runs
on the client system. The client system does not need hard-
ware support for Flicker, but a compromise of the client
may leak the user’s password. We are investigating tech-
niques for utilizing Flicker on the client side. We add a new
client authentication method, flicker-password , to OpenSSH

version 4.3p2. The flicker-password module establishes a se-
cure channel to the PAL on the server using the protocol
described in Section 4.4.2 and implements the client portion
of the protocol shown in Figure 7.

The other four components, a modified SSH server dae-
mon, the flicker-module kernel module, the tqd , and the SSH
PAL, all run on the server system. Below, we describe the
two Flicker sessions used to protect the user’s password on
the server.
First Flicker Session (Setup). The first session uses our
Secure Channel module to provide the client system with a
secure channel for sending the user’s password to the second
Flicker session.

In more detail, the Secure Channel module conveys a pub-
lic key KPAL to the client in such a way that the client
is convinced that the corresponding private key is acces-
sible only to the same PAL in a subsequent Flicker ses-
sion. Thus, by verifying the attestation from the first Flicker
session, the client is convinced that the correct PAL exe-
cuted, that the legitimate PAL created a fresh keypair, and
that the SLB Core erased all secrets before returning con-
trol to the untrusted OS. Using its authentic copy of KPAL,
the client encrypts the user’s password for transmission to
the second Flicker session on the server. We use PKCS1
encryption which is chosen-ciphertext-secure and nonmal-
leable [15]. The end-to-end encryption of the user’s pass-
word, from the client system all the way into the PAL, pro-
tects the user’s password in the event that any of the server’s
software is malicious.
Second Flicker Session (Login). The second Flicker ses-
sion processes the user’s encrypted password and outputs
a hash of the (unencrypted) password for comparison with
the user’s login information in the server’s password file (see
Figure 7).

When the second session begins, the PAL uses TPM Un-
seal to retrieve its private key K−1

PAL
from sdata. It then

uses the key to decrypt the user’s password. Finally, the
PAL computes the hash of the user’s password and salt6 and
outputs the result for comparison with the server’s password
file. The end result is that the user’s unencrypted password
only exists on the server during a Flicker session.

No attestation is necessary after the second Flicker ses-
sion because, thanks to the properties of Flicker and sealed
storage, the client knows that K−1

PAL
is inaccessible unless

the correct PAL is executing within a Flicker session.
Instead of outputting the hash of the password, an alter-

native implementation could keep the entire password file in
sealed storage between Flicker sessions. This would prevent
dictionary attacks, but make the password file incompatible
with local logins.

An obvious optimization of the authentication procedure
described above is to only create a new keypair the first time
a user connects to the server. Between logins, the sealed pri-
vate key can be kept at the server, or it could even be given
to the user to be provided during the next login attempt.
If the user loses this data (e.g., if she uses a different client
machine) or provides invalid data, the PAL can simply cre-
ate a new keypair, at the cost of some additional latency for
the user.

6Most *nix systems compute the hash of the user’s password
concatenated with a“salt”value and store the resulting hash
value in an authentication file (e.g., /etc/passwd).

6.3.2 Certificate Authority
Our final application, a Flicker-enhanced Certificate Au-

thority (CA), is similar to the SSH application but focuses
on protecting the CA’s private signing key. The benefit of
using Flicker is that only a tiny piece of code ever has ac-
cess to the CA’s private signing key. Thus, the key will
remain secure, even if all of the other software on the ma-
chine is compromised. Of course, malevolent code on the
server may submit malicious certificates to the signing PAL.
However, the PAL can implement arbitrary access control
policies on certificate creation and can log those creations.
Once the compromise is discovered, any certificates incor-
rectly created can be revoked. In contrast, revoking a CA’s
public key, as would be necessary if the private key were
compromised, is a more heavyweight proposition in many
settings.

In our implementation, one PAL session generates a 1024-
bit RSA keypair using randomness from the TPM and seals
the private key under PCR 17. The public key is made
generally available. The second PAL session takes in a cer-
tificate signing request (CSR). It uses TPM Unseal to obtain
its private key and certificate database. If the access con-
trol policy supplied by an administrator approves the CSR,
then the PAL signs the certificate, updates the certificate
database, reseals it, and outputs the signed certificate.

7. PERFORMANCE EVALUATION
Below, we describe our experimental setup and evaluate

the performance of the Flicker platform, as well as the vari-
ous applications described in Section 6. While the overhead
for several applications is significant, in concurrent work, we
have identified several hardware modifications that improve
performance by up to six orders of magnitude [19]. Thus, it
is reasonable to expect significantly improved performance
in future versions of this technology. Finally, we evaluate
the impact of Flicker sessions on the rest of the system, e.g.,
the untrusted OS and applications.

7.1 Experimental Setup
Our primary test machine is an HP dc5750 which contains

an AMD Athlon64 X2 Dual Core 4200+ processor running
at 2.2 GHz, and a v1.2 Broadcom BCM0102 TPM. In exper-
iments requiring a remote verifier, we use a generic PC with
a CPU running at 1.6 GHz. The remote verifier is 12 hops
away (determined using traceroute) with minimum, maxi-
mum, and average ping times of 9.33 ms, 10.10 ms, and 9.45
ms over 50 trials.

All of our timing measurements were performed using the
RDTSC instruction to count CPU cycles. We converted
cycles to milliseconds based on each machine’s CPU speed,
obtained by reading /proc/cpuinfo.

7.2 Stateless Applications
We evaluate the performance of the rootkit detector by

measuring the total time required to execute a detection
query. We perform additional experiments to break down
the various components of the overhead involved. Finally,
we measure the impact of regular runs of the rootkit detector
on overall system performance.
End-to-End Performance. We begin by evaluating the
total time required for an administrator to run our rootkit
detector on a remote machine. Our first experiment mea-
sures the total time between the time the administrator ini-

Operation Time (ms)
SKINIT 15.4
PCR Extend 1.2
Hash of Kernel 22.0
TPM Quote 972.7
Total Query Latency 1022.7

Table 1: Breakdown of Rootkit Detector Overhead. The

first three operations occur during the Flicker session, while

the TPM Quote is generated by the OS. The standard devi-

ation was negligible for all operations.

SLB Size (KB) 0 4 16 32 64
Avg (ms) 0.0 11.9 45.0 89.2 177.5

Table 2: Time required to execute the SKINIT instruction

on our AMD test machine with SLBs of various sizes.

tiates the rootkit query on the remote verifier and the time
the response returns from the AMD test machine. Over
25 experiments, the average query time was 1.02 seconds,
with a standard deviation of less than 1.4 ms. This rela-
tively small latency suggests that it would be reasonable to
run the rootkit detector on remote machines before allowing
them to connect to the corporate VPN, for example.
Microbenchmarks. To better understand the overhead of
the rootkit detector, we performed additional microbench-
marks to determine the most expensive operations involved
(see Table 1). The results indicate that the highest overhead
comes from the TPM Quote operation. This performance
is TPM-specific. Other TPMs contain faster implementa-
tions; for example, an Infineon TPM can generate a quote
in under 331 ms. Within the PAL, the main Flicker-related
overhead arises from the SKINIT operation. This prompts
us to further analyze the overhead of SKINIT .
SKINIT Overhead. The overhead of SKINIT is divided
into two parts: the time needed to place the CPU in an
appropriate state with protections enabled, and the time to
transfer the SLB to the TPM.

To investigate the breakdown of the SKINIT ’s perfor-
mance overhead, we ran the SKINIT command on our AMD
test machine with SLBs of various sizes. We invoke RDTSC
before executing SKINIT and invoke it a second time as
soon as code from the SLB can begin executing. Figure 2
summarizes the timing results. The first column (with a
zero-byte SLB) shows that that changing the CPU state re-
quires less than 1 ms, indicating that most of the overhead
from SKINIT is TPM related. The linear growth in runtime
as the size of the SLB increases confirms that sending the
SLB to the TPM for hashing results in significant overhead.
SKINIT Optimization. Short of changing the speed of
the TPM and the bus through which the CPU communi-
cates with the TPM, the best opportunity for improving the
performance of SKINIT is to reduce the size of the SLB.
To maintain the security properties provided by SKINIT ,
however, code in the SLB must be measured before it is
executed. Note that SKINIT enables the Device Exclusion
Vector for the entire 64 KB of memory starting from the base
of the SLB, even if the SLB’s length is less than 64 KB. One
viable optimization is to create a PAL that only includes a
cryptographic hash function and enough TPM support to

Detection Benchmark Standard
Period [m:s] Time [m:s] Deviation [s]
No Detection 7:22.6 2.6

5:00 7:21.4 1.1
3:00 7:21.4 0.9
2:00 7:21.8 1.0
1:00 7:21.9 1.1
0:30 7:22.6 1.7

Table 3: Impact of the Rootkit Detector. Kernel build

time when run with no detection and with rootkit detection

run periodically. Note that the detection does not actually

speed up the build time; rather the small performance impact

it does have is lost in experimental noise.

Operation Time (ms)
Application Work 1000 2000 4000 8000
SKINIT 14.3 14.3 14.3 14.3
Unseal 898.3 898.3 898.3 898.3
Flicker Overhead 47% 30% 18% 10%

Table 4: Operations for Distributed Computing. This

table indicates the significant expense of the Unseal opera-

tion, as well as the tradeoff between efficiency and latency.

perform a PCR Extend. This PAL can then measure and
extend the application-specific PAL. A PAL constructed in
this way offloads most of the burden of computing code mea-
surement to the system’s main CPU. We have constructed
such a PAL in 4736 bytes. When this PAL runs, it measures
the entire 64 KB and extends the resulting measurement
into PCR 17. Thus, when SKINIT executes, it only needs
to transfer 4736 bytes to the TPM. In 50 trials, we found the
average SKINIT time to be 14 ms. While only a small sav-
ings for the rootkit detector, it saves 164 ms of the 176 ms
SKINIT requires with a 64-KB SLB. We use this optimiza-
tion in the rest of our applications.
System Impact. As a final experiment, we evaluate the
rootkit detector’s impact on the system by measuring the
time required to build the 2.6.20 Linux kernel while also
running the rootkit detector periodically. Table 3 summa-
rizes our results. Essentially, our results suggest that even
frequent execution of the rootkit detector (e.g., once every
30 seconds) has negligible impact on the system’s overall
performance.

7.3 Integrity-Protected State
At present, our distributed computing PAL periodically

exits to check whether the main system has work to per-
form. The frequency of these checks represents a tradeoff
between low latency in responding to system events (such as
a user returning to the computer) and efficiency of computa-
tion (the percentage of time performing useful, application-
specific computation), since the Flicker-induced overhead is
experienced every time the application resumes its work.

In our experiments, we evaluate the amount of Flicker-
imposed overhead by measuring the time required to start
performing useful application work, specifically, between the
time the OS executes SKINIT , and the time at which the
PAL begins to perform application-specific work.

Table 4 shows the resulting overhead, as well as its most
expensive constituent operations, in particular, the time for

1 2 3 4 5 6 7 8 9 10
User Latency [s]

0

0.2

0.4

0.6

0.8

1

E
ff

ic
ie

nc
y

(%
) Flicker

3-Way
5-Way
7-Way

Figure 8: Flicker vs. Replication Efficiency. Replicating

to a given number of machines represents a constant loss in

efficiency. Flicker gains efficiency as the length of the peri-

ods during which application work is performed increases.

the SKINIT , and the time to unseal and verify the PAL’s
previous state.7 The table demonstrates how the applica-
tion’s efficiency improves as we allow the PAL to run for
longer periods of time before exiting back to the untrusted
OS. For example, if the application runs for one second be-
fore returning to the OS, only 53% of the Flicker session is
spent on application work; the remaining 47% is consumed
by Flicker’s setup time. However, if we allow the application
to run to two or four seconds at a time, then Flicker’s over-
head drops to only 30% or 18%, respectively. Table 4 also
indicates that the vast majority of the overhead arises from
the TPM’s Unseal operation. Again, a faster TPM, such as
the Infineon, can unseal in under 400 ms.

While Flicker adds additional overhead on a single client,
the true savings come from the higher degree of trust the ap-
plication writer can place in the results returned. Figure 8
illustrates this savings by comparing the efficiency of Flicker-
enhanced distributed computing with the standard solution
of using redundancy. With our current implementation, a
two second user latency allows a more efficient distributed
application than replicating to three or more machines. As
the performance of this new hardware improves, the effi-
ciency of using Flicker will only increase.

7.4 Secret and Integrity-Protected State
Since both SSH and the CA perform similar activities, we

focus on the modified SSH implementation and then high-
light places where the CA differs.

7.4.1 SSH Password Authentication
Our first set of experiments measures the total time re-

quired for each PAL on the server. The quote generation,
seal and unseal operations are performed on the TPM us-
ing 2048-bit asymmetric keys, while the key generation and
the password decryption are performed by the CPU using
1024-bit RSA keys.

Figure 9 presents these results, as well as a breakdown
of the most expensive operations that execute on the SSH
server. The total time elapsed on the client between the es-
tablishment of the TCP connection with the server, and the
display of the password prompt for the user is 1221 ms (this
includes the overhead of the first PAL, as well as 949 ms

7As described in Section 6.2, the initial PAL must also gen-
erate a symmetric key and seal it under PCR 17. We discuss
this overhead in more detail in Section 7.4.

Operation Time
(ms)

SKINIT 14.3
Key Gen 185.7
Seal 10.2
Total Time 217.1

(a) PAL 1

Operation Time
(ms)

SKINIT 14.3
Unseal 905.4
Decrypt 4.6
Total Time 937.6

(b) PAL 2

Figure 9: SSH Overhead. Average server side perfor-

mance over 100 trials, including a breakdown of time spent

inside each PAL. The standard error on all measurements

is under 1%, except key generation at 14%.

for the TPM Quote operation), compared with 210 ms for
an unmodified server. Similarly, the time elapsed beginning
immediately after password entry on the client, and ending
just before the client system presents the interactive session
to the user is approximately 940 ms while the unmodified
server only requires 10 ms. The primary source of over-
head is clearly the TPM. As these devices have just been
introduced by hardware vendors and have not yet proven
themselves in the market, it is not surprising that their per-
formance is poor. Nonetheless, current performance suffices
for lightly-loaded servers, or for less time-critical applica-
tions, such as the CA.

During the first PAL, the 1024-bit key generation clearly
imposes the largest overhead. This cost could be mitigated
by choosing a different public key algorithm with faster key
generation, such as ElGamal, and is readily parallelized.
Both Seal and SKINIT contribute overhead, but compared
to the key generation, they are relatively insignificant. We
also make one call to TPM GetRandom to obtain 128 bytes
of random data (it is used to seed a pseudorandom number
generator), which averages 1.3 ms. The performance of PCR
Extend is similarly quick and takes less than 1 ms on the
Broadcom TPM.

Quote is an expensive TPM operation, averaging 949 ms,
but it is performed while the untrusted OS has control.
Thus, it is experienced as a latency only for the SSH client.
It does not impact the performance of other processes run-
ning on the SSH server, as long as they do not require access
to the TPM.

The second PAL’s main overhead comes from the TPM
Unseal. As mentioned above, the Unseal overhead is TPM-
specific. An Infineon TPM can Unseal in 391 ms.

7.4.2 Certificate Authority
For the CA, we measure the total time required to sign

a certificate request. In 100 trials, the total time averaged
906.2 ms (again, mainly due to the TPM’s Unseal). For-
tunately, the latency of the signature operation is far less
critical than the latency in the SSH example. The com-
ponents of the overhead are almost identical to the SSH
server’s, though in the second PAL, the CA replaces the
RSA decrypt operation with an RSA signature operation.
This requires approximately 4.7 ms.

7.5 Impact on Suspended Operating System
Flicker runs with the legacy OS suspended and interrupts

disabled. We have presented Flicker sessions that run for
more than one second, e.g., in the context of a distributed
computing application (Table 4). While these are long times

to keep the OS suspended and interrupts disabled, we have
observed relatively few problems in practice. We relate
some of our experience with Flicker, and then describe the
options available today to reduce Flicker’s impact on the
suspended system. Finally, we introduce some recommen-
dations to modify today’s hardware architecture to better
support Flicker.

While a Flicker session runs, the user will perceive a hang
on the machine. Keyboard and mouse input during the
Flicker session may be lost. Such responsiveness glitches
sometimes occur even without Flicker, and while unpleas-
ant, they do not put valuable data at risk. Likewise, net-
work packets are sometimes lost even without Flicker, and
today’s network-aware applications can and do recover. The
most significant risk to a system during a Flicker session is
lost data in a transfer involving a block device, such as a
hard drive, CD-ROM drive, or USB flash drive.

We have performed experiments on our HP dc5750 copy-
ing large files while the distributed computing application
runs repeatedly. Each run lasts an average of 8.3 seconds,
and the legacy OS runs for an average of 37 ms in between.
We copy files from the CD-ROM drive to the hard drive,
from the CD-ROM drive to the USB drive, from the hard
drive to the USB drive, and from the USB drive to the hard
drive. Between file copies, we reboot the system to ensure
cold caches. We use a 1-GB file created from /dev/urandom

for the hard drive to/from USB drive experiments, and a
CD-ROM containing five 50-200-MB Audio-Video Interleave
(AVI) files for the CD-ROM to hard drive / USB drive exper-
iments. During each Flicker session, the distributed comput-
ing application performs a TPM Unseal and then performs
division on 1,500,000 possible factors of a 384-bit prime num-
ber. In these experiments, the kernel did not report any I/O
errors, and integrity checks with md5sum confirmed that the
integrity of all files remained intact.

To provide stronger guarantees for the integrity of device
transfers on a system that supports Flicker, these transfers
should be scheduled such that they do not occur during a
Flicker session. This requires OS awareness of Flicker ses-
sions so that it can quiesce devices appropriately. Mod-
ern devices already support suspension in the form of ACPI
power events [11], although this is sub-optimal since power
will remain available to devices. The best solution is to
modify device drivers to be Flicker-aware, so that minimal
work is required to prepare for a Flicker session. We plan
to further investigate Flicker-aware device drivers and OS
extensions, but the best solution may be an architectural
change for next-generation hardware.

In concurrent work, we make recommendations for the
next generation of trusted computing technology [19]. Sys-
tems should support secure execution on a subset of CPU
cores, while allowing untrusted legacy code to continue to
execute on other cores. This will eliminate problems with
interrupts being disabled, since they can remain enabled on
other CPU cores. Another problem with our current archi-
tecture is the use of TPM-based sealed storage even when it
is known in advance that another Flicker session will be run-
ning with the same data following an external event, such
as the arrival of a network packet. Hardware mechanisms to
protect PAL state while a PAL is context-switched out can
potentially eliminate a major source of Flicker’s overhead
related to sealed storage.

8. RELATED WORK
In an earlier extended abstract [18], we described the goals

and motivation for a system like Flicker, and suggested that
the new processors from AMD and Intel could support such
an architecture. This work expands the abstract with a
detailed design, implementation, supporting tools, multiple
applications, evaluation results, and lessons learned. In con-
current work [19], we make recommendations for next gener-
ation hardware that can alleviate many of the performance
concerns experienced by Flicker today. Below, we discuss
closely related work in the area of code isolation, code in-
tegrity and remote attestation.

Various systems provide isolation through virtualization
(e.g., Terra [8], Nizza [29] and Proxos [31]) or by running
the code inside trusted hardware, for example the Dyad HW
architecture [34], the IBM 4758 [14,30] or the Cerium proces-
sor [7]. Jiang used a secure coprocessor to build an SSL co-
server to process student passwords and grades [13]. Flicker
adds less than 250 lines of code to the TCB of a PAL, com-
pared with tens or hundreds of thousands of lines of code
for today’s popular VMMs. While Flicker does not achieve
the same level of physical tamper-resistance as do secure co-
processors, it provides the same strong software guarantees
using modern commodity hardware.

In the area of providing code integrity guarantees, IBM’s
Integrity Measurement Architecture (IMA) is a realization of
the trusted boot approach [26]. Unfortunately, the security
of a newly executed piece of code depends on the security
of all previously executed code. Due to the lack of isola-
tion, a single compromised piece of code may compromise
all subsequent code. Such large attestations can be difficult
to verify and leak information about the software on the
attestor’s platform. The BIND system guarantees the safe
execution of a small piece of code to an external party [28],
but BIND relies on the security of a trusted kernel that was
never implemented. The Pioneer system provides code in-
tegrity guarantees to an external verifier [27]. However, the
verifier in Pioneer needs to be a local host, because Pioneer
cannot be used across the Internet.

Kauer developed the Open Secure Loader (OSLO) [16],
which employs SKINIT to eliminate the BIOS and boot-
loader from the TCB and establish a dynamic root of trust
for trusted boot. OSLO consists of just over 1,000 lines
of code, and is larger than Flicker because it executes at
boot time and includes support for the Multiboot Spec-
ification [23]. OSLO also includes an implementation of
SHA-1 to hash the OS kernel, whereas SHA-1 is optional
with Flicker. OSLO served as a starting point for the devel-
opment of our Flicker implementation.

9. CONCLUSION
Flicker allows code to verifiably execute with hardware-

enforced isolation. Flicker itself adds as few as 250 lines
of code to the application’s TCB. Given the correlation be-
tween code size and bugs in the code, Flicker significantly
improves the security and reliability of the code it executes.
New desktop machines already contain the hardware sup-
port necessary for Flicker, so widespread Flicker-based appli-
cations can soon become a reality. As a result, our research
brings a Flicker of hope for securing commodity computers.

10. ACKNOWLEDGMENTS
The authors would like to thank Leendert van Doorn and

Elsie Wahlig for their support throughout the project. We
are also grateful for the feedback and comments from our
shepherd, Hermann Härtig, and our reviewers. Suggestions
from Michael Abd-El-Malek, Diana Parno, Matthew Wachs,
and Dan Wendlandt greatly improved the paper.

11. REFERENCES
[1] Advanced Micro Devices. AMD64 virtualization:

Secure virtual machine architecture reference manual.
AMD Publication no. 33047 rev. 3.01, May 2005.

[2] D. P. Anderson. BOINC: A system for public-resource
computing and storage. In Proceedings of the
Workshop on Grid Computing, Nov. 2004.

[3] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky,
and D. Werthimer. SETI@Home: An experiment in
public-resource computing. Communications of the
ACM, 45(11):56–61, 2002.

[4] D. Balfanz. Access Control for Ad-hoc Collaboration.
PhD thesis, Princeton University, 2001.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
Proceedings of the Symposium on Operating Systems
Principles, 2003.

[6] D. Brumley and D. Song. Privtrans: Automatically
partitioning programs for privilege separation. In
Proceedings of USENIX Security Symposium, 2004.

[7] B. Chen and R. Morris. Certifying program execution
with secure procesors. In Proceedings of HotOS, 2003.

[8] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: A virtual machine-based platform
for trusted computing. In Proceedings of the
Symposium on Operating System Principles, 2003.

[9] D. Grawrock. The Intel Safer Computing Initiative:
Building Blocks for Trusted Computing. Intel Press,
2006.

[10] S. Halevi and H. Krawczyk. Public-key cryptography
and password protocols. ACM Trans. Information and
System Security, 2(3), 1999.

[11] Hewlett-Packard, Intel, Microsoft, Phoenix, and
Toshiba. Advanced configuration and power interface
specification. Revision 3.0b, Oct. 2006.

[12] Intel Corporation. LaGrande technology preliminary
architecture specification. Intel Publication no.
D52212, May 2006.

[13] S. Jiang. WebALPS implementation and performance
analysis. Master’s thesis, Dartmouth College, 2001.

[14] S. Jiang, S. Smith, and K. Minami. Securing web
servers against insider attack. In Proceedings of the
Computer Security Applications Conference, 2001.

[15] B. Kaliski and J. Staddon. PKCS #1: RSA
cryptography specifications. RFC 2437, 1998.

[16] B. Kauer. OSLO: Improving the security of Trusted
Computing. In Proceedings of the USENIX Security
Symposium, Aug. 2007.

[17] D. Kilpatrick. Privman: A library for partitioning
applications. In USENIX Annual Technical
Conference, 2003.

[18] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and
A. Seshadri. Minimal TCB code execution (extended
abstract). In Proceedings of the IEEE Symposium on
Security and Privacy, May 2007.

[19] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and
A. Seshadri. How low can you go? Recommendations
for hardware-supported minimal TCB code execution.
In Proceedings of the ACM Conference on
Architectural Support for Programming Languages and

Operating Systems, Mar. 2008.
[20] D. Molnar. The SETI@Home problem. ACM

Crossroads, 7.1, 2000.
[21] G. C. Necula and P. Lee. The design and

implementation of a certifying compiler. In
Proceedings of the ACM Conference on Programming
Language Design and Implementation, 1998.

[22] G. C. Necula, S. McPeak, S. Rahul, and W. Weimer.
CIL: Intermediate language and tools for analysis and
transformation of C programs. In Proceedings of the
Conference on Compilier Construction, 2002.

[23] Y. K. Okuji, B. Ford, E. S. Boleyn, and K. Ishiguro.
The multiboot specification. Version 0.6.95, 2006.

[24] N. Provos, M. Friedl, and P. Honeyman. Preventing
privilege escalation. In the USENIX Security
Symposium, Aug. 2003.

[25] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C.
Mitchell. Stronger password authentication using
browser extensions. In Proceedings of the USENIX
Security Symposium, Aug. 2005.

[26] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn.
Design and implementation of a TCG-based integrity
measurement architecture. In Proceedings of the
USENIX Security Symposium, 2004.

[27] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. VanDoorn,
and P. Khosla. Pioneer: Verifying integrity and
guaranteeing execution of code on legacy platforms. In
Proceedings of the Symposium on Operating Systems
Principals, 2005.

[28] E. Shi, A. Perrig, and L. van Doorn. BIND: A
time-of-use attestation service for secure distributed
systems. In Proceedings of IEEE Symposium on
Security and Privacy, May 2005.

[29] L. Singaravelu, C. Pu, H. Haertig, and C. Helmuth.
Reducing TCB complexity for security-sensitive
applications: Three case studies. In Proceedings of the
ACM European Conference in Computer Systems,
2006.

[30] S. W. Smith and S. Weingart. Building a
high-performance, programmable secure coprocessor.
Computer Networks, 31(8), Apr. 1999.

[31] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces:
Making trust between applications and operating
systems configurable. In Proceedings of the Symposium
on Operating Systems Design and Implementation,
2006.

[32] Trusted Computing Group. PC client specific TPM
interface specification (TIS). Version 1.2, Revision
1.00, July 2005.

[33] Trusted Computing Group. Trusted platform module
main specification, Part 1: Design principles, Part 2:
TPM structures, Part 3: Commands. Version 1.2,
Revision 103, July 2007.

[34] B. S. Yee. Using Secure Coprocessors. PhD thesis,
Carnegie Mellon University, 1994.

[35] S. Zdancewic, L. Zheng, N. Nystrom, and A. Myers.
Secure program partitioning. ACM Trans. on
Computer Systems, 20(3), Aug. 2002.

