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About Chapter 50

The following exercise provides a helpful background for digital fountain codes.

> Exercise 50.1.1°] An author proofreads his K = 700-page book by inspecting
random pages. He makes N page-inspections, and does not take any
precautions to avoid inspecting the same page twice.

(a) After N = K page-inspections, what fraction of pages do you expect
have never been inspected?

(b) After N > K page-inspections, what is the probability that one or
more pages have never been inspected?

(c) Show that in order for the probability that all K pages have been
inspected to be 1 — §, we require N ~ K In(K/§) page-inspections.

[This problem is commonly presented in terms of throwing N balls at
random into K bins; what’s the probability that every bin gets at least
one ball?]
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50

Digital Fountain Codes

Digital fountain codes are record-breaking sparse-graph codes for channels
with erasures.

Channels with erasures are of great importance. For example, files sent
over the internet are chopped into packets, and each packet is either received
without error or not received. A simple channel model describing this situation
is a g-ary erasure channel, which has (for all inputs in the input alphabet
{0,1,2,...,q—1}) a probability 1 — f of transmitting the input without error,
and probability f of delivering the output ‘?’. The alphabet size ¢ is 2!, where
[ is the number of bits in a packet.

Common methods for communicating over such channels employ a feed-
back channel from receiver to sender that is used to control the retransmission
of erased packets. For example, the receiver might send back messages that
identify the missing packets, which are then retransmitted. Alternatively, the
receiver might send back messages that acknowledge each received packet; the
sender keeps track of which packets have been acknowledged and retransmits
the others until all packets have been acknowledged.

These simple retransmission protocols have the advantage that they will
work regardless of the erasure probability f, but purists who have learned their
Shannon theory will feel that these retransmission protocols are wasteful. If
the erasure probability f is large, the number of feedback messages sent by
the first protocol will be large. Under the second protocol, it’s likely that the
receiver will end up receiving multiple redundant copies of some packets, and
heavy use is made of the feedback channel. According to Shannon, there is no
need for the feedback channel: the capacity of the forward channel is (1 — f)I
bits, whether or not we have feedback.

The wastefulness of the simple retransmission protocols is especially evi-
dent in the case of a broadcast channel with erasures — channels where one
sender broadcasts to many receivers, and each receiver receives a random
fraction (1 — f) of the packets. If every packet that is missed by one or more
receivers has to be retransmitted, those retransmissions will be terribly re-
dundant. Every receiver will have already received most of the retransmitted
packets.

So, we would like to make erasure-correcting codes that require no feed-
back or almost no feedback. The classic block codes for erasure correction are
called Reed-Solomon codes. An (N, K) Reed—Solomon code (over an alpha-
bet of size ¢ = 2!) has the ideal property that if any K of the N transmitted
symbols are received then the original K source symbols can be recovered.
[See Berlekamp (1968) or Lin and Costello (1983) for further information;
Reed-Solomon codes exist for N < ¢q.] But Reed-Solomon codes have the
disadvantage that they are practical only for small K, N, and ¢: standard im-

589



Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

590 50 — Digital Fountain Codes

plementations of encoding and decoding have a cost of order K(N—K)log, N
packet operations. Furthermore, with a Reed—Solomon code, as with any block
code, one must estimate the erasure probability f and choose the code rate
R = K/N before transmission. If we are unlucky and f is larger than expected
and the receiver receives fewer than K symbols, what are we to do? We'd like
a simple way to extend the code on the fly to create a lower-rate (N’, K') code.
For Reed—Solomon codes, no such on-the-fly method exists.

There is a better way, pioneered by Michael Luby (2002) at his company
Digital Fountain, the first company whose business is based on sparse-graph
codes.

The digital fountain codes I describe here, LT codes, were invented by
Luby in 1998. The idea of a digital fountain code is as follows. The encoder is LT stands for ‘Luby transform’.
a fountain that produces an endless supply of water drops (encoded packets);
let’s say the original source file has a size of Kl bits, and each drop contains
Il encoded bits. Now, anyone who wishes to receive the encoded file holds a
bucket under the fountain and collects drops until the number of drops in the
bucket is a little larger than K. They can then recover the original file.

Digital fountain codes are rateless in the sense that the number of encoded
packets that can be generated from the source message is potentially limitless;
and the number of encoded packets generated can be determined on the fly.
Regardless of the statistics of the erasure events on the channel, we can send
as many encoded packets as are needed in order for the decoder to recover
the source data. The source data can be decoded from any set of K’ encoded
packets, for K’ slightly larger than K (in practice, about 5% larger).

Digital fountain codes also have fantastically small encoding and decod-
ing complexities. With probability 1 — §, K packets can be communicated
with average encoding and decoding costs both of order K In(K/J) packet
operations.

Luby calls these codes universal because they are simultaneously near-
optimal for every erasure channel, and they are very efficient as the file length
K grows. The overhead K’ — K is of order vK (In(K/6))2.

» 50.1 A digital fountain’s encoder

Each encoded packet t,, is produced from the source file s15953...5x as
follows:

1. Randomly choose the degree d,, of the packet from a degree distri-
bution p(d); the appropriate choice of p depends on the source file
size K, as we’ll discuss later.

2. Choose, uniformly at random, d,, distinct input packets, and set t,
equal to the bitwise sum, modulo 2 of those d,, packets. This sum
can be done by successively exclusive-or-ing the packets together.

This encoding operation defines a graph connecting encoded packets to
source packets. If the mean degree d is significantly smaller than K then the
graph is sparse. We can think of the resulting code as an irregular low-density
generator-matrix code.

The decoder needs to know the degree of each packet that is received, and
which source packets it is connected to in the graph. This information can
be communicated to the decoder in various ways. For example, if the sender
and receiver have synchronized clocks, they could use identical pseudo-random
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number generators, seeded by the clock, to choose each random degree and
each set of connections. Alternatively, the sender could pick a random key,
Kn, given which the degree and the connections are determined by a pseudo-
random process, and send that key in the header of the packet. Aslong as the
packet size I is much bigger than the key size (which need only be 32 bits or
s0), this key introduces only a small overhead cost.

» 50.2 The decoder

Decoding a sparse-graph code is especially easy in the case of an erasure chan-
nel. The decoder’s task is to recover s from t = Gs, where G is the matrix
associated with the graph. The simple way to attempt to solve this prob-
lem is by message-passing. We can think of the decoding algorithm as the
sum—product algorithm if we wish, but all messages are either completely un-
certain messages or completely certain messages. Uncertain messages assert
that a message packet s; could have any value, with equal probability; certain
messages assert that s; has a particular value, with probability one.

This simplicity of the messages allows a simple description of the decoding
process. We'll call the encoded packets {¢,} check nodes.

1. Find a check node t,, that is connected to only one source packet
sk. (If there is no such check node, this decoding algorithm halts at
this point, and fails to recover all the source packets.)

(a) Set s = tp.
(b) Add s to all checks ¢,/ that are connected to sg:

Figure 50.1. Example decoding for

ty = tp + s, for all n’ such that G/, = 1. (50.1) a digital fountain code with
K = 3 source bits and N =4
(c) Remove all the edges connected to the source packet sy. encoded bits.

2. Repeat (1) until all {s;} are determined.

This decoding process is illustrated in figure 50.1 for a toy case where each
packet is just one bit. There are three source packets (shown by the upper
circles) and four received packets (shown by the lower check symbols), which
have the values t1tot3t4 = 1011 at the start of the algorithm.

At the first iteration, the only check node that is connected to a sole source
bit is the first check node (panel a). We set that source bit s; accordingly
(panel b), discard the check node, then add the value of s1 (1) to the checks to
which it is connected (panel c), disconnecting s; from the graph. At the start
of the second iteration (panel c), the fourth check node is connected to a sole
source bit, so. We set so to t4 (0, in panel d), and add sy to the two checks
it is connected to (panel e). Finally, we find that two check nodes are both
connected to sz, and they agree about the value of s3 (as we would hope!),
which is restored in panel f.

» 50.3 Designing the degree distribution

The probability distribution p(d) of the degree is a critical part of the design:
occasional encoded packets must have high degree (i.e., d similar to K) in
order to ensure that there are not some source packets that are connected to
no-one. Many packets must have low degree, so that the decoding process
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can get started, and keep going, and so that the total number of addition
operations involved in the encoding and decoding is kept small. For a given
degree distribution p(d), the statistics of the decoding process can be predicted
by an appropriate version of density evolution.

Ideally, to avoid redundancy, we’d like the received graph to have the prop-
erty that just one check node has degree one at each iteration. At each itera-
tion, when this check node is processed, the degrees in the graph are reduced
in such a way that one new degree-one check node appears. In expectation,
this ideal behaviour is achieved by the ideal soliton distribution,

p1) = UK

p(d) = ﬁ (50.2)

ford=2,3,...,K.
The expected degree under this distribution is roughly In K.

Exercise 50.2.12] Derive the ideal soliton distribution. At the first iteration
(t = 0) let the number of packets of degree d be hy(d); show that (for
d > 1) the expected number of packets of degree d that have their degree
reduced to d — 1 is ho(d)d/K; and at the tth iteration, when ¢ of the
K packets have been recovered and the number of packets of degree d
is h(d), the expected number of packets of degree d that have their
degree reduced to d — 1 is hy(d)d/(K —t). Hence show that in order
to have the expected number of packets of degree 1 satisfy hy(1) = 1
for all t € {0,... K — 1}, we must to start with have ho(1l) = 1 and
ho(2) = K/2; and more generally, ht(2) = (K — t)/2; then by recursion
solve for ho(d) for d = 3 upwards.

This degree distribution works poorly in practice, because fluctuations
around the expected behaviour make it very likely that at some point in the
decoding process there will be no degree-one check nodes; and, furthermore, a
few source nodes will receive no connections at all. A small modification fixes
these problems.

The robust soliton distribution has two extra parameters, ¢ and J; it is
designed to ensure that the expected number of degree-one checks is about

S =chn(K/0)VK, (50.3)

rather than 1, throughout the decoding process. The parameter ¢ is a bound
on the probability that the decoding fails to run to completion after a certain
number K’ of packets have been received. The parameter c is a constant of
order 1, if our aim is to prove Luby’s main theorem about LT codes; in practice
however it can be viewed as a free parameter, with a value somewhat smaller
than 1 giving good results. We define a positive function

S1
7(d)=q 2In(S/8) ford=K/S (50.4)
0 ford > K/S

(see figure 50.2 and exercise 50.4 (p.594)) then add the ideal soliton distribu-
tion p to 7 and normalize to obtain the robust soliton distribution, pu:

(50.5)

where Z = 3", p(d) + 7(d). The number of encoded packets required at the
receiving end to ensure that the decoding can run to completion, with proba-
bility at least 1 — 4, is K/ = KZ.
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Figure 50.2. The distributions
p(d) and 7(d) for the case

K =10000, ¢c = 0.2, § = 0.05,
which gives § =244, K/S = 41,
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Figure 50.3. The number of
degree-one checks S (upper figure)
and the quantity K’ (lower figure)
as a function of the two
parameters ¢ and ¢, for

K =10000. Luby’s main theorem
proves that there exists a value of
¢ such that, given K’ received
packets, the decoding algorithm
will recover the K source packets
with probability 1 — 4.
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Luby’s (2002) analysis explains how the small-d end of 7 has the role of
ensuring that the decoding process gets started, and the spike in 7 at d = K/S
is included to ensure that every source packet is likely to be connected to a
check at least once. Luby’s key result is that (for an appropriate value of the M
constant c¢) receiving K’ = K 4 21n(S5/6)S checks ensures that all packets can
be recovered with probability at least 1 — §. In the illustrative figures I have
set the allowable decoder failure probability J quite large, because the actual
failure probability is much smaller than is suggested by Luby’s conservative J
analysis.

In practice, LT codes can be tuned so that a file of original size K ~ 10000 10000 10500 11000 11500 12000
packets is recovered with an overhead of about 5%. Figure 50.4 shows his-
tograms of the actual number of packets required for a couple of settings of
the parameters, achieving mean overheads smaller than 5% and 10% respec-
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10000 10500 11000 11500 12000

tively. 10000 10500 11000 11500 12000
» 50.4 Applications Figure 50.4. Histograms of the
actual number of packets N
Digital fountain codes are an excellent solution in a wide variety of situations.  required in order to recover a file

of size K = 10000 packets. The
parameters were as follows:
top histogram: ¢ =0.01, § = 0.5
Storage (S =10, K/S = 1010, and

Z ~1.01);
You wish to make a backup of a large file, but you are aware that your magnetic | ;4qle: C): 0.03, 6 = 0.5 (S = 30

tapes and hard drives are all unreliable in the sense that catastrophic failures, K/S =337, and Z ~ 1.03);
in which some stored packets are permanently lost within one device, occur at ~ bottom: ¢ = 0.1, 6 = 0.5 (S = 99,
a rate of something like 1073 per day. How should you store your file? K/S =101, and Z ~ 1.1).
A digital fountain can be used to spray encoded packets all over the place,
on every storage device available. Then to recover the backup file, whose size
was K packets, one simply needs to find K’ ~ K packets from anywhere.
Corrupted packets do not matter; we simply skip over them and find more
packets elsewhere.
This method of storage also has advantages in terms of speed of file re-
covery. In a hard drive, it is standard practice to store a file in successive
sectors of a hard drive, to allow rapid reading of the file; but if, as occasion-
ally happens, a packet is lost (owing to the reading head being off track for
a moment, giving a burst of errors that cannot be corrected by the packet’s
error-correcting code), a whole revolution of the drive must be performed to
bring back the packet to the head for a second read. The time taken for one
revolution produces an undesirable delay in the file system.
If files were instead stored using the digital fountain principle, with the
digital drops stored in one or more consecutive sectors on the drive, then one
would never need to endure the delay of re-reading a packet; packet loss would
become less important, and the hard drive could consequently be operated
faster, with higher noise level, and with fewer resources devoted to noisy-
channel coding.

Let’s mention two.

> Exercise 50.3.[%] Compare the digital fountain method of robust storage on
multiple hard drives with RAID (the redundant array of independent
disks).

Broadcast

Imagine that ten thousand subscribers in an area wish to receive a digital
movie from a broadcaster. The broadcaster can send the movie in packets



Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

594 50 — Digital Fountain Codes

over a broadcast network — for example, by a wide-bandwidth phone line, or
by satellite.

Imagine that not all packets are received at all the houses. Let’s say
f = 0.1% of them are lost at each house. In a standard approach in which the
file is transmitted as a plain sequence of packets with no encoding, each house
would have to notify the broadcaster of the fK missing packets, and request
that they be retransmitted. And with ten thousand subscribers all requesting
such retransmissions, there would be a retransmission request for almost every
packet. Thus the broadcaster would have to repeat the entire broadcast twice
in order to ensure that most subscribers have received the whole movie, and
most users would have to wait roughly twice as long as the ideal time before
the download was complete.

If the broadcaster uses a digital fountain to encode the movie, each sub-
scriber can recover the movie from any K’ ~ K packets. So the broadcast
needs to last for only, say, 1.1 K packets, and every house is very likely to have
successfully recovered the whole file.

Another application is broadcasting data to cars. Imagine that we want to
send updates to in-car navigation databases by satellite. There are hundreds
of thousands of vehicles, and they can receive data only when they are out
on the open road; there are no feedback channels. A standard method for
sending the data is to put it in a carousel, broadcasting the packets in a fixed
periodic sequence. ‘Yes, a car may go through a tunnel, and miss out on a
few hundred packets, but it will be able to collect those missed packets an
hour later when the carousel has gone through a full revolution (we hope); or
maybe the following day. ..’

If instead the satellite uses a digital fountain, each car needs to receive
only an amount of data equal to the original file size (plus 5%).

Further reading

The encoders and decoders sold by Digital Fountain have even higher efficiency
than the LT codes described here, and they work well for all blocklengths, not
only large lengths such as K 2> 10000. Shokrollahi (2003) presents raptor
codes, which are an extension of LT codes with linear-time encoding and de-
coding.

» 50.5 Further exercises

> Exercise 50.4.[%] Understanding the robust soliton distribution.

Repeat the analysis of exercise 50.2 (p.592) but now aim to have the
expected number of packets of degree 1 be hy(1) = 1+ S for all ¢, instead
of 1. Show that the initial required number of packets is

K S
ho(d) = ——+ = ford> 1. 50.6
The reason for truncating the second term beyond d = K/S and replac-
ing it by the spike at d = K/S (see equation (50.4)) is to ensure that
the decoding complexity does not grow larger than O(K In K).
Estimate the expected number of packets >, ho(d) and the expected
number of edges in the sparse graph ,ho(d)d (which determines the
decoding complexity) if the histogram of packets is as given in (50.6).
Compare with the expected numbers of packets and edges when the
robust soliton distribution (50.4) is used.
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Exercise 50.5.14] Show that the spike at d = K/S (equation (50.4)) is an ade-
quate replacement for the tail of high-weight packets in (50.6).

Exercise 50.6.[7C] Investigate experimentally how necessary the spike at d =
K /S (equation (50.4)) is for successful decoding. Investigate also whether
the tail of p(d) beyond d = K/S is necessary. What happens if all high-
weight degrees are removed, both the spike at d = K/S and the tail of
p(d) beyond d = K/S?

Exercise 50.7.14] Fill in the details in the proof of Luby’s main theorem, that
receiving K’ = K 4+21In(S/§)S checks ensures that all the source packets
can be recovered with probability at least 1 — §.

Exercise 50.8.[4€] Optimize the degree distribution of a digital fountain code
for a file of K = 10000 packets. Pick a sensible objective function for
your optimization, such as minimizing the mean of N, the number of
packets required for complete decoding, or the 95th percentile of the
histogram of N (figure 50.4).

> Exercise 50.9.[3] Make a model of the situation where a data stream is broad-
cast to cars, and quantify the advantage that the digital fountain has
over the carousel method.

Exercise 50.10.1%] Construct a simple example to illustrate the fact that the
digital fountain decoder of section 50.2 is suboptimal — it sometimes
gives up even though the information available is sufficient to decode
the whole file. How does the cost of the optimal decoder compare?

> Exercise 50.11.12] 1f every transmitted packet were created by adding together
source packets at random with probability 1/2 of each source packet’s
being included, show that the probability that K’ = K received packets
suffice for the optimal decoder to be able to recover the K source packets
is just a little below 1/2. [To put it another way, what is the probability
that a random K X K matrix has full rank?]

Show that if K/ = K + A packets are received, the probability that they
will not suffice for the optimal decoder is roughly 22,

> Exercise 50.12.[4€1 Implement an optimal digital fountain decoder that uses
the method of Richardson and Urbanke (2001b) derived for fast encod-
ing of sparse-graph codes (section 47.7) to handle the matrix inversion
required for optimal decoding. Now that you have changed the decoder,
you can reoptimize the degree distribution, using higher-weight packets.
By how much can you reduce the overhead? Confirm the assertion that
this approach makes digital fountain codes viable as erasure-correcting
codes for all blocklengths, not just the large blocklengths for which LT
codes are excellent.

> Exercise 50.13.1%] Digital fountain codes are excellent rateless codes for erasure
channels. Make a rateless code for a channel that has both erasures and
noise.
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» 50.6 Summary of sparse-graph codes

A simple method for designing error-correcting codes for noisy channels, first
pioneered by Gallager (1962), has recently been rediscovered and generalized,
and communication theory has been transformed. The practical performance
of Gallager’s low-density parity-check codes and their modern cousins is vastly
better than the performance of the codes with which textbooks have been filled
in the intervening years.

Which sparse-graph code is ‘best’ for a noisy channel depends on the cho-
sen rate and blocklength, the permitted encoding and decoding complexity,
and the question of whether occasional undetected errors are acceptable. Low-
density parity-check codes are the most versatile; it’s easy to make a compet-
itive low-density parity-check code with almost any rate and blocklength, and
low-density parity-check codes virtually never make undetected errors.

For the special case of the erasure channel, the sparse-graph codes that are
best are digital fountain codes.

» 50.7 Conclusion

The best solution to the communication problem is:

Combine a simple, pseudo-random code

with a message-passing decoder.




