
Choose the Red Pill and the Blue Pill
A Position Paper

Ben Laurie
Google, Inc.

benl@google.com

Abe Singer
Laser Interferometer Gravitational Wave Observatory

California Institute of Technology

abe@caltech.edu

ABSTRACT
In the movie "The Matrix," our hero Neo must choose between
taking the Blue Pill and continuing to live in an online, synthe-
sized fantasy world, or taking the Red Pill and joining the real
world. The fantasy world appears to those living in it to be full of
flowers and trees and big steak dinners, but unknown to them
contains malicious Agents who can alter any portion of the world
to suit their needs. The real world, in turn, while real, has no visi-
ble sun, and the people have only gray mush for food.

Authorization and authentication of online transactions across a
network requires a trusted path between the user and the server.
We posit that those who attempt to solve this problem by creating
the trusted path on the general-purpose operating system have
taken the Blue Pill and are living in a fantasy world. One simply
cannot properly secure a general-purpose operating system.

Solving the problem by taking the Red Pill and completely replac-
ing currently used operating systems with ones that we can prop-
erly secure does not seem palatable. We suggest a solution that
involves taking both the Blue Pill and the Red Pill: providing the
trusted path by means of a separate device with a secure op-
erating system, used in tandem with the existing general pur-
pose operating system. Most user interaction occurs on the un-
trusted system, with the secure device only being used to finalise
transactions.

We believe that the technology required for such a device is read-
ily available. Obviously our idea is not a completely novel idea;
prior work in the area has had a similar goal. However, most of
those attempts have not properly addressed the requirements for
the trusted system, generally preferring to use existing general-
purpose systems even when on a "dedicated device." [Balfanz
1999] [Kingpin 2001] Others have a very limited scope of use.
[Blakely 2004]

We identify a minimum set of requirements for the trusted device.
This paper does not provide a working solution (it is a position
paper after all); we simply define how one should approach that
working solution. Because we advocate a hybrid system it is pos-
sible to simplify the trusted system to a point where it would not
be usable as a general purpose system, which should make the
trusted system rather easier to build and have confidence in.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection – Access con-
trols, Authentication, Cryptographic controls, Information flow
controls, Security Kernels.

General Terms
Design, Security, Human Factors.

Keywords
Authentication, Authorization, Trusted Path, Red Pill, Blue Pill,
Nebuchadnezzar, Scooby Doo, Rotating Shield Harmonics, Se-
cure Operating System, Grey Goo, The Matrix.

1. THE BLUE PILL
If we take the blue pill and continue to live in the reasonably com-
fortable world of modern operating systems, then we will have a
pleasant experience, but we will not be secure. In particular, even
if secure protocols are used to defend data in transit, it can still be
stolen or manipulated by malware on the machine. Secure proto-
cols cannot protect against a compromised endpoint. Solu-
tions which attempt to address compromises on the endpoint
merely push the problem around the problem space, and require
faith that an attacker has not compromised a particular component
of the endpoint.

It is our view that it is infeasible to secure an operating system
sufficiently to counter this threat without also making it quite
unpleasant to use: it will be inflexible and the user interface will
be boring and clunky.

1.1 The Compromised Endpoint Problem
Increasingly, attackers have focused on compromising client end-
point systems, as the average user, not being a professional system
or security administrator, does not have the required skills to se-
cure his computer. And we should not expect the average user to
have or acquire such skills. By analogy, we would not expect the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

NSPW’08, September 22–25, 2008, Lake Tahoe, California, USA.
Copyright 2008 ACM 978-1-60558-341-9/08/09...$5.00.

average car user to perform skilled car maintenance in order to
drive to the grocery store.

We assert that all attempts at securing online services eventually
fail because of a fundamental failure – extending trust to a system
that is untrustable, by attempting to execute trusted transactions
on demonstrably untrustable general purpose operating systems.
Nothing can protect software layered upon these operating
systems from subversion.
The "compromised endpoint problem" is not new, but there is
clearly no mechanism that allows for transactions to be safely
carried out between two endpoints when one of the endpoints is
compromised. We assert that no mechanism can be constructed
which can make existing clients trustable – the general purpose
operating systems in use today are simply do not meet the design
criteria for a trustable system and cannot provide a trusted path.
Nor do we believe that general-purpose operating systems can
ever solve this problem; their attack surface is just too large, and
must be so for them to be both useful and usable.

1.2 Rotating the Shield Harmonics
Online services increasingly try to add security "features" to their
services to combat compromises. For example, some banks have
begun requiring their customers to authenticate with token-based
authentication. Other examples include transport encryption,
authentication "improvements" such as smart-cards and
CAPTCHAs, "trusted images" (where the server shows the user a
picture he chose earlier, and expects the user not to log in unless
he sees this picture) and system protection schemes such as net-
work firewalls, anti-virus software and "secure" plug-ins for web
browsers. [Langweg 2004] [Mannon 2006] [Chiasson 2006]

We refer to this approach of layering/changing security features
"rotating the shield harmonics," as the response only stops the
attack until the enemy determines the new shield frequency.
[STTNG 1990] These approaches only postpone the inevitable, as
attackers eventually change tactics to defeat these new features.
For example, one attacker's response to token authentication is to
compromise the client system, wait for the user to authenticate
and then hijack the session post-authentication. Another is to per-
suade the user to authenticate to a phishing site and then use the
token authentication at the real site. [Schneier 2005] Several
CAPTCHA systems have recently been compromised. [Protalin-
ski 2008] [Mori 2003] And usability studies show that with the
"trusted image technique," one can easily fool the users into ignor-
ing the absence of their picture. [Chiasson 2006]

These shield harmonic rotation schemes all fail because they rely
on one or more components of the operating system to not be
compromised, yet there is no way to provide that assurance.

1.3 Scooby-Doo Security
Furthermore, many proposed security solutions rely upon the user
having in-depth of knowledge of security, behaving properly
(every time) and having good judgment. The user is expected to
check the validity of certificates, maintain patches and protective
software on their system and, most amusingly, not visit "bad" web
sites, open "suspicious" attachments, or download and install in-
secure or malicious software. And, more fundamentally, the user
cannot make mistakes.

Unfortunately, for a sufficiently large population, the Bell Curve
always applies – some users will simply not get it. [Whitten
1999] A trustable system that can be used by the general popula-

tion must impose a very low burden of knowledge on the user.
Simply expecting users to properly secure their computers and
fully understand the threats it is under is an impossible goal. We
refer to this ideology as The Scooby Doo approach to security, as
failure often involves the designer saying "It would have worked
if it hadn't've been for those pesky users." [Scooby 1969]

2. WHAT IS THE TRUSTED PATH?
Much of what is done on a computer is of no immediate security
consequence. For example, if we are shopping at Amazon, the
process of choosing things to put in our shopping basket does not
raise any security issues – we do not need the server to be sure the
things it is putting in the basket are the things we intended to be
put there. In other words, we can use a "path" from the user to the
server that is untrusted.

Until we come to the moment of paying for all that stuff, and
choosing where it is delivered, we can continue to use this un-
trusted path. However, once we pay and choose a delivery ad-
dress, we want to be very sure that we are paying for what we
wanted and that it is going to be sent where we want. At this mo-
ment we need the trusted path from the user to the server. This
path can take many forms, but the characteristics we want are that
the user can be sure they are talking to the correct server, can see
what that server intends them to see, that the server can be sure
that the user sees what it wants shown, and that the actions taken
by the user are faithfully reflected to the server.

2.1 Who Needs the Trusted Path?
Many Internet or network transactions require authentication and
authorization. Examples of such transactions include online bank-
ing, purchasing merchandise, accessing email, and editing a blog
entry. The online service requires authentication and authoriza-
tion to ensure that only authorized users can access the provided
services, and so that one user cannot access the services provided
to another user. Users, in turn, want strong authentication and
authorization for assurance that transactions they authorize match
the transactions they requested. For example, if Neo purchases a
book from an online merchant for $50, Neo does not want to later
discover that he was actually charged $500 for other products that
he did not order and were delivered to someone else. These ac-
tivities all have a component which requires a trusted path.

Online services increasingly find themselves subject to compro-
mise of user accounts, resulting in theft, fraud, and other mali-
cious activity (e.g. falsifying a blog entry, domain name hijacking,
spamming in the user's name and so forth). The user account
compromise may stem from a compromise of the server, intercep-
tion/man-in-the-middle attacks between client and server, or com-
promise of the client. Increasingly, attackers have focused on the
latter of these methods because, as stated above, the average user
does not know how to secure his computer. Nor should we expect
him to know.

These attacks can result in the theft of credentials which then get
used for fraudulent or unauthorized activities. For example, steal-
ing a credit card number, or using an online banking account to
transfer money elsewhere. Attackers often leverage credential
theft attacks to further compromise other systems. [Singer 2005]

As these attacks increase, users lose confidence in their ability to
safely use these services, especially as the perception of the fre-
quency of grows from the possible to the very probable. For
example, Trinity will likely stop using online services if she finds
that half the time the activity results in fraudulent charges, or

some similar difficulty from which she must then spend time to
recover from (if possible).

We also anticipate attacks where the transaction shown to user
does not represent the transaction actually executed. Restating the
example above, Agent Smith has compromised Trinity's machine,
and whenever she tries to go to AmaZion, Agent Smith intercepts
her web pages and shows her whatever he wants her to see (a
man-in-the-middle attack). He delivers a legitimate looking
AmaZion page to Trinity's web browser, allowing her to log in
and purchase items. So Trinity thinks she has logged in to AmaZ-
ion and has authorized a small purchase of books. But in turn
Agent Smith gives AmaZion a completely different request for
computer parts, which AmaZion believes placed by Trinity. She
has no way of determining that the attack has taken place until she
sees her credit card bill, and AmaZion has no way of knowing
about the attack until Trinity notifies them. Trinity then has the
burden of arguing with AmaZion, and her credit card company,
over the validity of the transaction, and runs the risk that AmaZ-
ion could claim that since the transaction was authorized from her
computer, and using her password, she must have authorized the
purchase.

3. THE RED PILL
As we have discussed above, taking the red pill to solve our prob-
lems may well improve security, but it will vastly reduce usability
and fun. The requirement for security will heavily constrain user
interface, data sharing and the functionality of software. Much of
the software we are used to would be impossible to run on a se-
cure system – for example, web browsers (and even worse, web
browser plugins and programming languages – no more Flash,
Javascript or PDFs for you).

3.1 Ms. Square Peg, meet Mr. Round Hole
For most things that the user does, he does not need a "secure"
operating system. Playing (non-online) games, editing docu-
ments, reading the news, listening to music, editing a photo, do
not normally require any trusted path operations. Why subject the
user to the overhead and inconvenience of a "secured" operating
system for these activities?

4. TAKE BOTH PILLS
Our position is that the general-purpose operating system is
fundamentally inadequate for trusted operations. One can
have a general-purpose system or a trusted system, but one
cannot get both in a single package. So two systems are
needed.
We propose using the general-purpose operating system for every-
thing but the bits that need security. Have a second system with a
built-secure operating system, which operates in tandem with the
first. The separate device is built for the purpose of providing a
trusted path, and providing a usable interface. We call this device
"The Nebuchadnezzar." [Wikipedia 2008] This device is not in-
tended to replace existing systems, but to work in concert with
them, being used only for the purpose of handling trusted path
activities such as authenticating and authorizing transactions.
This separate system has to be designed to meet the requirements
necessary for such trust. The Nebuchadnezzar has two key fea-
tures: a secure operating system which completely isolates appli-
cations from each other, and a user interface which presents the
user with information on the transaction being performed (and the
application performing it). The secure OS will be "boring" by

design, as it will have the capabilities it needs for operation and
no more – no flash animation, no paper clip assistants, no mine-
sweeper, skins or wallpaper, no umpteen megapixel camera nor
mp3 player. The Nebuchadnezzar should never be considered
useful for activities other than trusted path operations.

We envision the Nebuchadnezzar as a small handheld device, with
a graphic user interface, manual input (e.g. buttons or touch
screen), one or more communications interfaces, such as USB,
Ethernet, Bluetooth, etc., and some non-volatile storage. The
device may have a unique identifier which a remote system can
use to assure itself it is communicating with the same device – or
other means might be used, such as a per-application, per-device
key (which would have better privacy properties). The device can
run multiple applications for different types of transactions, but
the server can readily identify which application is being used (for
example, by virtue of a secret shared with only that application).

When a transaction between user and a system requires the trusted
path, the user can provide the system in touch with the Nebuchad-
nezzar. The device provides the user with a display of the transac-
tion, and the user then interacts with the device GUI to authorize
the transaction.

The communications between the device and the system can pro-
vide end-to-end data integrity and confidentiality, so they may
utilize an untrusted communication path (e.g. through the general
purpose OS, or over an independent wireless connection).

The Nebuchadnezzar is not a one-trick pony, though. We can
foresee a range of capabilities for this device, from simple authen-
tication and authorization, to more complex activities such as
online banking, shopping or peer-to-peer transactions. In corpo-
rate environments such devices could be useful for single sign-on,
for maintaining required audit trails and for activities such as
delegation of authority.

A net benefit of such a device is that the control of the trusted
activity can be placed literally in the user's hands, as opposed to
the current paradigm where the operating system and remote site
maintain much of the control. For example, currently when a user
purchases goods online, the user provides his credit card informa-
tion to the merchant via a web browser. The user must trust that
the information shown on the web page accurately reflects the
purchase being performed, and will not know otherwise until the
credit card bill arrives. Furthermore, the user must trust that the
remote site to whom he is providing his credit card is actually the
intended site and that he has not been diverted by an attacker to a
malicious site.
With our proposed device, the user shops with their computer as
usual, and then, when ready to purchase, the device can present
the user with information on the requested transaction, e.g. a list
of items to purchase and a dollar amount. The user can then use
the device to authorize the transaction. The authorization re-
sponse is sent over the trusted path. The user has verified the
transaction as requested, and the merchant has a trustable signa-
ture on the transaction request.

Most or all of the technology necessary to build the Nebuchad-
nezzar already exists. In this respect we are not trying to invent a
new technology, just apply previous work that has gone unused in
this context.

Limiting the purpose of the Neb to only trusted path operations
allows us to greatly simplify the design of the system, which in
turn leads us to believe that building the device would be feasible

and cost effective. For example, the applications on the device
never have to communicate with each other or share data, so by
not having IPC and by partitioning storage in the operating sys-
tem, we can make it impossible for applications to do so. Such
an approach would not be desirable for a general-purpose operat-
ing system.

4.1 This Part is Important!
Approaches have been proposed which, at least superficially,
seem very similar to the Neb. However, they often miss the mark
by making use of an insecure operating system, relying on just the
fact that the operating system is (somewhat) different. The secure
device really needs to be secure; it's not enough to just have a
second system that's equally insecure. Thus we have to use an OS
on the device that has the appropriate security properties.

Other approaches try to address the secure OS requirement, but do
not have enough of a user interface, so the user cannot be assured
as to what the device is actually doing. The trusted system has to
provide the user with enough feedback that the user can properly
understand the transactions he is being asked to authorise. Thus
the device has to have an acceptably rich user interface,

We provide detailed requirements below. We emphasize here the
key points of our requirements:

1. A non-spoofable user interface so the user knows what
the device is doing

2. An operating system that's built secure from the ground
up to be secure

3. The device is not intended to be general purpose (e.g. it
doesn't run a web browser)

5. USE CASES
We provide here some examples of how different sorts of transac-
tions would play out with the Neb, including how this method
compares to similar operations on an insecure operating system.

5.1 Case A: Simple Authentication
Neo wants to edit his blog, which requires that he authenticate to
the Zion blog server. He connects to the blog server and makes
the required edits (for this example, we assume that no secret
information is displayed during the editing process, and therefore
no authentication or authorization is needed to start the edit).
Once he is happy with his edits, he submits them to the server.
The server then establishes a connection with Neo's Neb (it knows
which one is his from prior association with Neo's account) and
sends it the proposed edit. The Neb displays the edit to Neo and
asks him to confirm. When he does, the Neb responds to the
server with, say, a signature for the edit. If this matches, the edit is
applied. If it does not, then Agent Smith is playing games again
and the edit is ignored.

Reviewers have commented that devices like token-based one-
time passwords, or sending a one-time password via SMS to a
cell-phone, etc. would provide equivalent security. We disagree.
Some of those solutions require entering the password via the web
browser on the untrusted system. All of them require approval of
the edit on the untrusted system. Agent Smith could present Neo
with a forged web site, and forged responses from the server,
tricking Neo into thinking he is communicating with the actual
blog while Agent Smith uses Neo's credential for other purposes
(such as writing a blog entry supporting Smith's cause). Neo has

no ability to determine what actually happened when he interacted
with the server.

Reviewers have strongly argued for the effectiveness of using a
cell phone as an out-of-band communications channel. We re-
spond that this approach really just rotates the shield harmonics.
The supporters first presume that the cell phone cannot be com-
promised, whilst the media clearly contradicts this notion. The
follow-on presumption is that even if the phone were to be com-
promised, the attacker would not be able to tie the activity on the
phone with activity on the computer. Given that users routinely
connect their cell phone and computer together, the ability of an
attacker to identify the pairing does not seem so far-fetched.

Should Agent Smith try to use Neo's Neb to authenticate to a dif-
ferent service, Neo will see the request on the Neb, but know that
he did not make the request, and reject it. Likewise, if Neo pro-
vides an incorrect Neb, he will never see the follow-up on his
Neb. In both cases, improper authentication attempts fail.

5.2 Case B: Online Shopping
Neo wants to buy Trinity some flowers. Neo shops online with
his web browser at AmaZion.com, and at checkout AmaZion
connects to his Neb. AmaZion sends the purchase information to
the Neb. The AmaZion application on the Neb presents Neo with
the order and the purchase amount. Neo can verify these and
authorize the transaction with his private key. Should Agent
Smith try to spoof Neo's web browser and try to purchase $1000
of software, Neo will readily see that the transaction amount on
the Neb does not match what he sees on the screen, and refuse to
authorize the sale. Furthermore, the Neb could store the signed
authorization as a purchase receipt.

Should Agent Smith spoof Neo's browser and try to make pur-
chases at AmaZion with Neo's account, Neo will see that the
authorisation request on his Neb contains the wrong items, and
can refuse to authorize the request.

Similarly, if Smith uses his own machine to try to simply imper-
sonate Neo at AmaZion it will all go well until he clicks the "buy"
button – at which time, at worst, Neo's Neb will unexpectedly ask
him to authorise a purchase, which he will decline. At best, the
Neb won't be online, so Neo won't even be bothered.

6. PRIVACY
Although we do not specifically discuss privacy in most of this
paper, it should be noted that The Neb is neutral from a privacy
perspective. Because each user/server pair ends up with its own
keys, by necessity, the Neb reveals no more about its user than
would be revealed in any case (i.e. the linked history of all his
actions at each particular site, not linked between sites). It should
also be possible for a user to have multiple independent accounts
at the same server without The Neb giving the game away.

Of course, a Neb-like device could choose to link the user across
sites, but it is by no means required by the design.

7. REQUIREMENTS
As we stated above, achieving an actual trusted path requires
specifying (and implementing) proper requirements for the device.
Here we elaborate on the minimal set of requirements for the
Nebuchadnezzar to fulfill its role.
· It must be able to do cryptography.
This is needed because the Nebuchadnezzar will have to prove
that it was involved in transactions. As far as we know, the only

efficient and practical way to provide such proofs is through cryp-
tography.
· It must be able to do asymmetric cryptography.

Although it is possible to use symmetric ciphers or hashing to
prove involvement, this always leaves one side open to the other
party in the transaction forging the transaction. The only way for
Neo to prove that he and only he (or rather, his Nebuchadnezzar)
was involved is by doing asymmetric cryptography.
· It must interact with the user's untrusted system.

It would be nice to demand that users only ever used their trusted
system to do anything leading to a transaction requiring trust. This
is not realistic. One can hardly expect the user to do all their
browsing on their Nebuchadnezzar, for example (indeed, if that
were possible, then their untrusted system could be trusted, but we
claim that cannot be so).

Therefore we must allow the user to do most of the work on an
untrusted system and only involve the trusted system at the mo-
ment of trust.
· It must have a user interface.

It is tempting to suppose that we could allow the UI to take place
on the untrusted system and only delegate cryptographic opera-
tions to the trusted system. But then we have a problem: the un-
trusted system could be showing "authorise the purchase of this
$10 book from Amazon" while the trusted system is signing "give
$10,000 to evil.org".
Therefore the trusted system must at least be able to display the
thing it is about to sign (or otherwise cryptographically process)
and confirm that the user intends this action. Note that this may
mean that the trusted system has to be able to interpret and display
encoded (as opposed to encrypted) data.
· It must be updateable
It is implausible to think that we could design and ship a device
that, without change, can handle all current and future authentica-
tion and secrecy requirements. It will also be necessary to update
keys for CAs and other trusted third parties.
· It must be able to run multiple applications
It seems equally implausible to suppose that there's a one-size-
fits-all application that could meet all our cryptographic needs.
For example, the application that authorizes a $10 purchase from
Amazon is probably not the same one we want to do our banking
with, and neither would be suited to sending encrypted messages
to our mistresses.

In particular, it is important that the user be able to clearly under-
stand what he is doing when using the Nebuchadnezzar, and this
is likely to require a diversity of user interfaces.
· It must have an absolutely bullet-proof kernel

As will be seen from discussion below, security of the system will
not rely on trust in the application but will derive solely from the
security of the kernel. Therefore the kernel needs to be secure!

We do not address in detail how this might be done, but we do
claim that the substantially reduced complexity of the trusted
operating system, which it enjoys precisely because it is not re-
quired to be general purpose, will at least reduce the task of pro-
viding convincing security from the clearly insurmountable prob-
lem of securing, say, Windows.

7.1 What It Doesn't Need
So how does this differ from our standard untrusted operating
systems?
Most importantly. it doesn't have to run more than one application
at the same time. We are either doing banking or buying a book
from Amazon, not both at once. Eliminating multi-tasking elimi-
nates side-channel attacks and wall-banging. It also makes it pos-
sible to absolutely partition resources – only those needed by the
currently running application need to be available at all.

It doesn't have to support IPC. Obviously, eliminating multitask-
ing takes most of the fun out of IPC, but it is worth stating that
there's no need for tasks to communicate. In fact, there's probably
no need for tasks to share any resources (including cryptographic
keys) at all, other than communications devices. If tasks do not
share resources then the threat posed by untrusted programs on
one's Nebuchadnezzar is vastly reduced. Indeed, it may even be
possible to run arbitrary code on the system since the code would
have no access to any resources other than its own: obviously the
absence of side-channel attacks is crucial to this argument.

If the code chosen to represent any particular trust relationship is
agreed by both parties then it can be argued that it doesn't matter
if the code is "malicious": this is what the parties intended (or, at
least, agreed to). In any case, maliciousness is restricted to that
single relationship, which is a vast improvement over the current
status. It is worth noting, however, that insecure applications
might lead to malicious attacks that are not the responsibility of
either party – for example, if an application can be persuaded to
display something other than what was intended, then it could be
abused by a third party. So, the presence of a secure operating
system does not absolve application developers from their duty of
care. But it does at least make it realistically possible for them to
discharge that duty.
This leads to another requirement.
· It must be able to attest to the software it is running.
If Neo is the user, and Trinity is the remote half of a transaction
the Nebuchadnezzar is participating in, she may want to know that
the device is running the software she agreed (with Neo) it should
run in order to perform the transaction (for example, if the trans-
action is legally binding Trinity may want to be able to prove that
Neo must have given consent). Trinity may also want to be as-
sured that Neo has been diligent in keeping the device up-to-date.

Note that this requirement gets us on to potentially thin ice with
user-unfriendly practices, such as DRM. We would argue that we
should not throw the baby out with the bath water. Just because
evil is possible with a device, that is not sufficient reason not to
use the device: one should, instead, refrain from using and cam-
paign against the evil and benefit from the good uses. This is
definitely uncontroversial where the owner of both ends of the
connection is the same person.

So can we build this OS? It seems to us that we can, and it must
be easier than securing an existing general purpose OS, or creat-
ing a new, secure, general purpose OS, though there definitely
some research challenges.

8. RELATED WORK
As we mentioned above, attempts have been made to provide
solutions similar to what we propose. However, in our view,
those solutions did not understand the necessary requirements.
We discuss some of those solutions here.

8.1 Smartcards
Whilst smartcards have some of the data and application isolation
we require, they have no user interface. In general, they rely on UI
displayed on the untrusted system, which clearly can be subverted
to show one thing while the smartcard is authorising another.

8.2 Mobile Phones
Mobiles come closer to the Neb's requirements, but still, they tend
to be too open. Multitasking is allowed, as are IPC and shared
data. They run browsers, too. We do admit that it might be possi-
ble, with sufficient care, to somehow share the same device as a
mobile phone and as a Neb.

8.3 Operating System Plugins
The claim is sometimes made that an OS plugin could somehow
have better security than the rest of the OS and this provide the
trusted path and the isolated storage. Although there is some merit
to this idea, it is pretty clear that you still have to secure most of
the operating system in order to protect this component, and we
have already claimed that that is not possible.

8.4 Browser Plugins
Pretty clearly, browser plugins stand even less chance than operat-
ing system plugins – firstly, because the browser is, in practice, a
monolithic application, it is not possible to secure one component
from another, and secondly because any user interface the browser
might display can clearly be simulated by any other application
program – and likely it can be controlled by other applications,
too.

9. OPEN QUESTIONS
· Can we strongly tie the transaction to the user interface?

It is vital to this proposal that the user is shown what they are
authorising. This means that there must be a direct link between
what is displayed and the underlying cryptographic operation. Can
we provide a UI that is sufficiently usable and pleasant whilst
maintaining this link?

 It seems trivially true that we can supply an unpleasant and
unusable UI for this; the question is whether we can improve on
that without compromising the security of the device.

· Can we strongly tie the transaction to the work done on the
user's (untrusted) machine?

For example, if the user's machine tells him he is doing business
with Amazon, and The Neb tells him he is doing business with
Amaz0n, will he notice? One obvious idea here is to use the pet-
name system [Miller], but this only solves the problem for domain
names. Can we extend petnames to cover other aspects of transac-
tions? For instance, if the transaction is via a third party, say Pay-
pal, then the pet name would cover Paypal itself, but would it
naturally extend to cover the eventual recipient of the funds?
Likewise, if we were buying a Canon D7000 from eBay, would
we notice if the trusted device told us we were buying a Can0n
D7ooo?
· How do we persuade users to carry such a device?

It is sometimes suggested that users would be reluctant to carry a
device just for the purpose of security, and this has led to many
attempts to instead use inherently insecure devices, such as cell
phones, for the purposes we describe. However, users seem will-
ing to carry an extra device (e.g. iPod) when they perceive the
value of doing so to be high.

Our view is that users already carry devices solely intended to
provide security benefits, so there is no fundamental problem
here. A couple of examples are keys and credit cards. The open
question is how to persuade users to view The Neb as something
in the same class as the things they already carry.
· What happens when the device is lost?

Like any other credential, loss is bad. Centralised revocation and
re-issue seems the way to go here, but it would be fair to say that
we do not have real-world evidence that this is a solved problem,
despite its apparent tractability.

10. REFERENCES
[AP 2002] "Mobster's son pleads guilty of gambling; computer

spying helped seal case," Associated Press, March 1, 2002.

[Blakely 2004] Blakely, R. and Blakely, G.R. "All Sail, No An-
chor II: Acceptable High-End PKI," International Journal of
Information Security (2004) 2(2):66-77.

[CERT 2008] "Adobe Flash Updates for Multiple Vulnerabili-
ties," Technical Cyber Security Alert TA08-100A. US-
CERT. April 9, 2008. Retrieved on April 20, 2008, 18:09
PST. <http://www.us-cert.gov/cas/techalerts/TA08-
100A.html>

[Chiasson 2006] Sonia Chiasson, P. C. van Oorschot, and Robert
Biddle. "A Usability Study and Critique of Two Password
Managers." In Proceedings of the 15th USENIX Security
Symposium. August 2006.

 [Balfanz 1999] Balfanz, D. and Felten, E. W. 1999. "Hand-held
computers can be better smart cards." In Proceedings of the
8th Conference on USENIX Security Symposium. August
1999.

[Kingpin 2001] Kingpin, K. and Mudge, M. 2001. Security analy-
sis of the palm operating system and its weaknesses against
malicious code threats. In Proceedings of the 10th Confer-
ence on USENIX Security Symposium. August 2001.

[Langweg 2004] Langweg, H. "Building a Trusted Path for Appli-
cations Using COTS Components." NATO Research and
Technology Symposium IST-041/RSY-013 "Adaptive Defense
in Unclassified Networks", 19 April, 2004.

[Mannan 2007] Mohammad Mannan, P. C. van Oorschot. "Secu-
rity and Usability: The Gap in Real-World Online Banking."
In Proceedings of the 2007 New Security Paradigms Work-
shop. September 2007.

[Miller] M. Miller; "Lambda for Humans – The Pet Name Markup
Language"; http://www.erights.org/elib/capability/pnml.html.

[Mori 2003] Mori, G., Jitendra Malik, J. "Recognizing Objects in
Adversarial Clutter: Breaking a Visual CAPTCHA." In Pro-
ceedings of the IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, June 2003.

[Protalinsk 2008] Protalinski, E. "Gone in 60 seconds: Spambot
cracks Live Hotmail CAPTCHA." Ars Technica, April 15,
2008 - 09:13AM CT, Retrieved on April 20, 2008, 16:03
PST. <http://arstechnica.com/news.ars/post/20080415-gone-
in-60-seconds-spambot-cracks-livehotmail-captcha.html>

[Schneier 2005] Schneier, B. "Two-factor authentication: too
little, too late." Communications of the ACM, Volume 48, Is-
sue 4. April 2005.

 [Scooby 1969] multiple episodes. Scooby Doo, Where Are You.
CBS Television, 1969-1972.

 [Singer 2005] Singer, A. "Tempting Fate," ;login:, Volume 30,
#1, Usenix Association, November 2005.

[Spalka 2001] Spalka, A., Cremers, A.B., Langweg, H.: "The
fairy tale of what you see is what you sign: Trojan horse at-
tacks on software for digital signature." Proceedings of the
IFIPWG9.6/11.7 Working Conference, Security and Control
of IT in Society-II (SCITS-II). 2001.

[STTNG 1990] "The Best of Both Worlds, Part I." Star Trek: The
Next Generation. Paramount Television. June 16, 1990.

[Whitten 1999] Whitten, A., Tygar, J. D. "Why Johnny Can't En-
crypt: A Usability Evaluation of PGP 5.0." In Proceedings of
the 8th USENIX Security Symposium, August 1999.

[Wikipedia 2008] "List of ships in the Matrix series." Wikipedia,
The Free Encyclopedia. April 15, 2008, 22:29 UTC. Wiki-
media Foundation, Inc. Retrieved on April 20 2008.
<http://en.wikipedia.org/w/index.php?title=List_of_ships_in
_the_Matrix_series&oldid=205892592>.

[Ye 2002] Ye, Z., Yuan, Y., and Smith, S. "Web Spoofing Revis-
ited: SSL and Beyond." Department of Computer Science
Technical Report TR2002-417. Dartmouth College. 2002.

