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Abstract
In languages where the compiler performs no static type checks,
many programs never go wrong, but the intended use of functions
and component interfaces is often undocumented or appears only
in the form of comments which cannot always be trusted. This of-
ten makes program maintenance problematic. We show that it is
possible to reconstruct a significant portion of the type informa-
tion which is implicit in a program, automatically annotatefunc-
tion interfaces, and detect definite type clasheswithoutfundamental
changes to the philosophy of the language or imposing a type sys-
tem which unnecessarily rejects perfectly reasonable programs. To
do so, we introduce the notion ofsuccess typingsof functions. Un-
like most static type systems, success typings incorporatesubtyping
and never disallow a use of a function that will not result in atype
clash during runtime. Unlike most soft typing systems that have
previously been proposed, success typings allow for compositional,
bottom-up type inference which appears to scale well in practice.
Moreover, by taking control-flow into account and exploiting prop-
erties of the language such as its module system, success typings
can be refined and become accurate and precise. We demonstrate
the power and practicality of the approach by applying it to Erlang.
We report on our experiences from employing the type inference
algorithm, without any guidance, on programs of significantsize.

Tried to make it little by little,
tried to make it bit by bit on my own. . .

Dressed for Success — Roxette

Categories and Subject DescriptorsF.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Type struc-
ture; D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Documentation

General Terms Algorithms, Languages, Theory

Keywords Constraint-based type inference, success typings, sub-
typing, Erlang

1. Introduction
For programmers already experienced in developing programs in
dynamically typed functional languages, programming is a tranquil
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and relatively uneventful activity, at least initially. The occasional
frustrations of having to convince the type system that one really
knows what she is doing are avoided. Also, since type declara-
tions and annotations need not be typed (in), program development
can progress more rapidly. Unfortunately, this freedom of expres-
sion comes with a price. Significantly less typos and other such
mundane programming errors are caught by the compiler. More
importantly, the freedom ofnot stating one’s intentions explicitly,
considerably obstructs program maintenance. In many cases, it is
extremely difficult to recall or decipher how a particular piece of
code — often written by some other programmer years ago — can
be used. Comments are unreliable, often cryptic and confusing, and
more often than not rotten. The programmer is much better offif
aided by techniques and tools that can help in such situations.

Over the years, many researchers have tried to address such is-
sues. Some have tried to impose and/or tailor a static type system
to dynamically typed languages. Despite the technical depth and
level of sophistication in many of the proposals, it is fair to say
that so far static type systems in dynamically typed languages have
enjoyed only limited success in practice. It seems that imposing a
static type discipline on a language which was originally designed
without one in mind is a Sisyphean task. Other researchers have
taken a more low-profile approach and have built useful and suc-
cessful type inference tools for different programming language
paradigms. Among these, we mention soft typing systems [13]and
the DrScheme [8] development environment for Scheme, the Ciao
Prolog system [9], and systems developed in the context of Con-
straint Logic Programming languages [7] which infer types to de-
tect errors and aid the programmer in debugging.

Unfortunately, the technology developed in the context of these
systems is often very tightly coupled to the operational semantics
and characteristics of the language and/or environment andas such
not generally applicable. However, ideas in them provide partial
inspiration for our work. In particular, from the work on soft typing
systems we adopt the idea that the type system should not reject
programs and from the work on (constraint) logic programming
languages we get inspiration from the work on how to synthesize
the call-success semantics of a program. Still, our work is done in
the context of a functional language where the basic operation is
pattern matching and information only flows in one direction.

More specifically, in this paper we present a method to obtain
a natural typing of each function in a functional program which is
both simple and powerful. Our method is simple because we ad-
dress the type inference problem directly using constraint-based
type inference techniques and without imposing any restrictions on
function uses which are error-free in the operational semantics of
the language. Our method is also powerful since it is compositional,
scalable, and is able to automatically infer accurate typesfor recur-
sive, higher-order, dynamically typed functional programs without
requiring any type information or guidance by the user.



Our contributions

• We introduce the notion ofsuccess typingsto the functional
world, a natural description of functions’ behavior in a dynam-
ically typed functional language based on pattern matching.

• We give a formalization of success typings and describe a scal-
able constraint-based algorithm to obtain and refine them.

• We compare success typings to typings derived by traditional
static type systems.

• Using success typings we have developed an optional soft type
system for Erlang that can detect definite type clashes and
provide automatic documentation for large programs.

2. Our Domain and Closely Related Work
Erlang is a strict, dynamically typed functional programming lan-
guage that comes with built-in support for message-passingcon-
currency, interprocess communication and distribution [3]. The
Erlang/OTP (Open Telecom Platform) system from Ericsson isits
standard implementation.

It is important to point out that although Erlang is dynamically
typed, it is type safe. Currently, with very few exceptions where
the compiler performs a rather unsophisticated function-local type
inference and safely unboxes values, all values are tagged with their
type during runtime. This in turn makes it possible to check the
type of each value before its use as an argument to a function
or a built-in operation and throw an exception if a type clash
occurs. In addition to such runtime type tests, the programmer can
make explicit control flow choices based on types by using pattern
matching and explicit type tests in guards.

Among functional languages, Erlang is probably the one with
most commercial applications. The Erlang/OTP system is ac-
tively used to write large-scale, fault-tolerant softwareapplications
mainly in the telecommunications industry. Many of these appli-
cations have been developed over long time periods, typically by
large groups of programmers who do not necessarily all follow
some specific style of programming. In particular, many programs
are written without adhering to any (implicit) static type discipline.
Nevertheless, a large portion of them never goes wrong.

Regardless of programming language and style, maintaining
large applications, correcting (even simple) bugs, and understand-
ing code written years ago by someone else is not an easy task.
Previously, we have developed the Dialyzer [10], alint-like tool
that extracts some limited form of implicit type information from
Erlang code in order to statically find obvious type clashes and re-
port them to the user in the form of warnings. Our experienceswith
Dialyzer and its current uses show that it is possible to infer vari-
ous forms of non-trivial type information for Erlang programs in a
completely automatic and scalable way.

Inspired by the success of Dialyzer in the Erlang user commu-
nity, our next goal was to design a tool that can automatically un-
cover the implicit type information in Erlang programs and explic-
itly annotate them with it. For such a tool to be successful, it is
imperative that its underlying type system is tailored to theexisting
language and its current practice. Also, that the types which are in-
ferred are understandable to programmers. This in turn implies that
the type system — at least initially — has to favor simplicityover
expressive power.

There has been much work in inferring type information in the
context of dynamically typed languages. Next, we review thepart
of this work which is closely related to Erlang.

2.1 Subtyping systems and the need for subtyping in Erlang

Type systems based on subtyping try to solve sets of constraints of
the formα ⊆ β (whereα andβ represent types) while unification
based type systems in the tradition of Hindley and Milner tryto

solve constraints of the formα = β. Subtyping systems are strictly
more general than type systems built on Hindley-Milner typeinfer-
ence since all types expressed in Hindley-Milner type systems can
be expressed in subtyping systems, though the converse is not true.

Because of the way Erlang programs are written, a type system
for Erlang needs to be based on (unrestricted) subtyping. For exam-
ple, consider the following Erlang function from the Erlang/OTP
standard library modulepg that manages process groups.

send(Pg, Mess) when is atom(Pg) ->
global:send(Pg, {send, self(), Mess});

send(Pg, Mess) when is pid(Pg) ->
Pg ! {send, self(), Mess}.

This is a function with two arguments,Pg andMess, consisting of
two guarded clauses. The first clause handles the case when thePg
argument is an atom; the second clause whenPg is a process identi-
fier (an Erlang pid). WhenPg is an atom, it denotes a globally reg-
istered process and the library functionglobal:send/2 is used.
When it is a pid, the Erlang built-in send function (denoted ’!’) is
used to send the message (a 3-tuple).

A constructor-based type system such as Hindley-Milner can
not type this function. First there needs to be some appropriate
declaration that describes the type of the first argument. Inthis type
declaration the primitive types ‘atom’ and ‘pid’ need to be wrapped
in appropriate constructors which play the rôle of runtimetags.
Moreover, these constructors need to be exclusive; they cannot be
used in any other type. The function would then need to be rewritten
to explicitly match on these constructors instead of performing
type checks using guards. In short, imposing a Hindley-Milner
type system on Erlang requires modifications to existing code and
amounts to starting to program in a different language, not in Erlang
as we currently know it. For a language with existing applications
often consisting of more than one million lines of code, thisis not
a viable option.

In this situation, subtyping comes to the rescue. If we adopta
subtyping system that allows for disjoint union types we cansimply
describe the first argument as a union containing atoms and pids.
This indicates that the function can be called with any subtype of
this union, i.e., with any specific atom or pid. In such a scheme, the
second argument can then have the type which denotes the set of
all terms.

The idea of adopting a subtyping system for inferring types in
dynamically typed languages is not new, not even in the context
of Erlang. In 1997, Marlow and Wadler [11] proposed a subtyping
system partly based on the work of Aiken and Wimmers [1]. Their
approach generates a system of constraints from the code andthen
tries to prove that the system is solvable by reducing it until it can
be showed to be consistent. Marlow and Wadler successfully ap-
plied their type system to a portion of the Erlang/OTP standard li-
brary of that time. However, to their credit, they also reported some
problems with their approach. For example, pattern matching com-
pilation causes their type system to infer wrong types for functions
in certain cases where the code includes the “don’t care” pattern
(represented by ’’). The following implementation of the Boolean
and function is taken from their paper [11, Section 9.3].

and(true, true) -> true;
and(false, ) -> false;
and( , false) -> false.

Let us denote the set of all Erlang terms byany(). Also, letbool()
denote the uniontrue ∪ false. Hindley-Milner type inference
will derive the type(bool(), bool()) →bool() for this function.
This type is correct given the definition ofbool() and under the
constraint that these atoms are not part of any other type.



Notice however that there is nothing in this code fragment that
constrains the domain of this function tobool(). Indeed, in Erlang
the function calland(false,42) evaluates tofalse. In fact, no
call to this function with the atomfalse in either the first or
the second argument will ever raise an exception during runtime;
independently of what type the value of its other argument has.

Contrary to the operational semantics of Erlang programs, the
type inference algorithm of Marlow and Wadler, which allowssub-
typing, infers the typeτ = (any(),false) →bool() for this func-
tion. Looking at the code, the first clause alone provides sufficient
evidence that this type is a bit counterintuitive. More importantly,
the inferred type is unexpected in the sense that the type derived
by Hindley-Milner is not an instance ofτ . Besides oddities such
as this, there are additional open issues of more practical nature
in the Marlow and Wadler proposal that were never adequatelyad-
dressed. For example, the type system often demands that programs
are rewritten to explicitly handle failing pattern matching cases and
to contain type definitions. As a result, although their proposal has
significantly raised the level of type awareness among Erlang pro-
grammers, their actual type system never caught on in the Erlang
community.

2.2 Soft type systems

Systems based on soft typing were first proposed by Cartwright
and Fagan [6]. The aim of soft typing is to type check dynamically
typed functional languages, report possible type clashes,and insert
dynamic type checks at appropriate places in order to make the
programs well-typed. One important property of a soft type system
is that no program is ever rejected by the type checker.

Over the years, several soft type systems have been pro-
posed for different dynamically typed languages, most notably
for Scheme [13]. We also note the work of Aiken, Wimmers, and
Lakshman [2] who describe a soft type system based on subtyp-
ing. The type system includes intersection, union, and conditional
types. Conditional types in particular, are introduced to reflect the
fact that in case expressions certain clauses can be unreachable and
should not contribute to the type of the case expression. In this
way, control flowcanaffect the inferred types. The type system of
Aiken et al. chooses accuracy over readability; the inferred types
end up being complex type expressions which include constraints.
Although in our work we do adopt the idea that case clauses which
are unreachable should not influence the type of case expressions,
we aim for readability and simplicity in the types we infer, instead
of maximum expressive power. As mentioned, our goal is to in-
fer typings that describe the behavior of functions in a way that is
intuitively clear to Erlang programmers.

In the context of Erlang, a proposal for a soft type system has
been made by Nyström [12]. Its type inference algorithm is based
on a dataflow analysis which is guided by optional user annotations.
The main idea of the type system is that the user should supply
annotations at all interface points. Then the dataflow analysis will
report inconsistencies in these annotations and will warn about all
program points where type clashes can possibly occur. Because of
the inherently dynamically-typed programming style practiced by
many Erlang programmers, the warnings are plentiful, especially if
no type annotations are provided.

We take the completely opposite approach. To eliminate noise
and all false warnings, we optimistically assume that any expres-
sion will evaluate successfully if we cannot prove that it will re-
sult in some type clash. Besides differences in the philosophy of
the approach, there are also technical differences. For example,
since Nyström’s dataflow analysis only propagates information for-
ward in the control flow, the only type information that it canin-
fer at function entry points is information about how the function
is currently used. This is useful information to derive, butit re-

lies on the type system having complete knowledge about a func-
tion’s intended usage. Thus, the method is not modular. Moreover,
Nyström’s system cannot be used for automatically providing doc-
umentation for library modules, which is one of our goals.

2.3 Our Goals

Our main goal is to make uncover the implicit type information
in Erlang code and make it explicitly available in programs.Be-
cause of the sizes of typical Erlang applications, the type inference
should becompletely automaticand faithfully respect the opera-
tional semantics of the language. Moreover, it should impose no
code rewritesof any kind. The reason for this is simple. Rewriting,
often safety critical, applications consisting of hundreds of thou-
sand lines of code just to satisfy a type inferencer is not an op-
tion which will enjoy much success. However, large softwareap-
plications have to be maintained, and often not by their original
authors. By automatically revealing the type information that is al-
ready present, we provide automatic documentation that canevolve
together with the program and will not rot. We also think thatit is
important to achieve a balance between precision and readability.
Last but not least, the inferred typings shouldnever be wrong.

During development, the type information can be used to verify
the intentions of programmers and help them discover bugs atan
early stage. The type inference should be able to infer reasonable
typings even when some part of the code isnot available, for
example if some parts have not been written yet. Of course, when
the code becomes available the type information can be takeninto
account and the inferred typings can become more precise.

In order to meet these goals, we build our type inference around
the notion ofsuccess typingsthat we define in Section 4.

3. Language and Types
3.1 Programming language

A compact description of a mini-Erlang programming language is
shown in Figure 1(a). For simplicity we only deal with a subset of
Core Erlang [4] here. However, it is easy to extend our analysis to
handle all of Core Erlang.1 The Core Erlang language constructs
that we omit are thetry-catch andreceive expressions, which
can be handled as relatively minor variations ofcase expressions,
and sequence operators, which can be treated aslet expressions
where the variable is never used.

Most of the language of Figure 1(a) is fairly standard, but we
comment on some issues. Evaluation is strict. Functions arenot cur-
ried but explicitly take zero or more input arguments. The language
is higher order: functions can be used as arguments and returned as
results. Pattern matching is generalized tocase statements. A term
t matches a patternp if the variables inp can be bound so thatp
represents a term syntactically identical tot. A clause is chosen if
the patterns in its head match and the constraints in the guard are
satisfied. Variables in patterns of a clause head are fresh, but by the
use of equality constraints in clause guards they can be madeto
refer to bound variables. If a clause does not contain any explicit
guards, its Core Erlang translation hastrue as its guard. Guards
are restricted to be conjunctions of simple constraints on variables
and constants. Core Erlang allows for some other guard constructs,
but the type information in these can be expressed in this slightly
more restricted form.

We show an example of Erlang to mini-Erlang translation. The
functionand from Section 2.1 has the following translation:

1 Core Erlang is the intermediate language that all Erlang programs are
translated to by the Erlang/OTP compiler.



e ::= X | c(ei, . . . , en) | e1(e2, . . . , en) | f |
let x = e1 in e2 |
letrec x1 = f1, . . . , xn = fn in e |
case e of (p1 → b1); . . . ; (pn → bn) end

f ::= fun(x1, . . . , xn) → e
p ::= p′ when g
p′ ::= x | c(p′

1, . . . , p
′

n)
g ::= g1 and g2 | x1 = x2 | true | is atom(x) |

is integer(x) | . . .
(a) The mini-Erlang programming language

T ::= none() | any() | V | c(T1, . . . , Tn) |
(T1, . . . , Tn) → T ′ | T1 ∪ T2 | T when C | P

V ::= α, β, τ
P ::= integer() | float() | atom() | pid() | 42 | foo | . . .
C ::= (T1 ⊆ T2) | (C1 ∧ . . . ∧ Cn) | (C1 ∨ . . . ∨ Cn)

(b) Type expressions

Figure 1. A description of the programming language and type expressions.

let And = fun(X, Y) ->
case <X, Y> of

<true, true> when true -> true;
<false, > when true -> false;
< , false> when true -> false;

end

where the<...> denotes the product constructor that exists in
Core Erlang but not in Erlang.

3.2 Types

Types represent sets of values and are denoted by type expressions.
If a valuev is in the set represented by a typeτ , we say that the
value has this type and writev ∈ τ . Subtyping is expressed as set
inclusion and denoted asτ1 ⊆ τ2.

Figure 1(b) shows the syntax of type expressions. Following
the notation of theedoc2 tool, types are written with parentheses
to distinguish them from Erlang atoms. Primitive types are the
expected ones in Erlang, such asinteger(), float(), atom(), and
pid() (denoting process identifiers). There is a largest type,any(),
representing all values and a smallest type,none(), representing
the empty set. Type variables are represented by the Greek letters
α, β andτ . We use the notation̄α as a shorthand forα1, . . . , αn

and writev̄ ∈ ᾱ whenevervi ∈ αi, 1 ≤ i ≤ n. Structured types,
denotedc(T1, . . . , Tn) in the figure, are tuples and cons cells.
To simplify the handling of pattern matching, we also consider
products as structured terms. Also, to gain better precision in our
analysis, we allow for singleton types such as the integer42 or the
atomfoo. This does not cause any extra complexity since our type
system is based on subtyping anyway.

Union types are expressed with the∪ symbol. We allow for any
disjoint union, including unions of singleton types such as1 ∪ 2.
Since these unions can become large or even infinite, in our analysis
we impose a fixed size limit after which the union is widened toa
supertype. For example, if the union limit is three the uniontype
1 ∪ 2 ∪ 3 ∪ 4 will be widened tointeger().

Since functions are not curried, function types explicitlyshow
the number of arguments. For example, a function with two argu-
ments is represented by(T1, T2) →T3. During type inference it is
useful to bind constraints to a function type and achieve a variant
of bounded quantification. For this, we use constrained types of the
form T when C, whereC is a set consisting of nested conjunctions
(∧) and disjunctions (∨) of subtype constraints. Constrained types
should be interpreted as:

T when C ::=



Sol(T ) if Sol is a solution toC
none() if C has no solution

Sol is a mapping from type expressions and type variables to
concrete types. Concrete types include all type expressions with the
exception of constrained types and type variables. Our constrained

2 A documentation tool for Erlang in the spirit ofjavadoc.

types are similar to conditional types [2] but where we condition the
type over a constraint set, conditional types use intersection types
as in the following:

α?(β ∩ τ ) =



α when(β ∩ τ ) 6= ∅
none() when(β ∩ τ ) = ∅

While the ability to handle conditional types constitutes apossible
extension of our work, we do not include such types. In the work of
Aiken and Wimmers [2] conditional types are used to capture the
control flow in case statements, but we use a different approach.
This is described in more detail in Section 5.

4. Success Typings
4.1 Basic idea

Assume that a functionf is described by the type signature
(ᾱ) →β in some system of types. In a statically typed language,
the standard interpretation of this signature is thatprovided that
p̄ ∈ ᾱ, the function applicationf(p̄) can evaluate to a valuev ∈ β
without type errors (which are expressible in this type system). In
other words,̄α is the largest type (if the type signature is aprinci-
pal type) for which the type system can prove type safety without
dynamic type tests. Because of the requirement toprovetype safety
statically, sometimes the domain of the function is unnecessarily
restricted to a smaller set of values than the function can accept and
evaluate without type errors during runtime. Also, note that β de-
pends on̄α, so if ᾱ has been constrained,β expresses the restricted
range of the function under the restricted type domain.

Unlike statically typed languages, we are not concerned with
proving type safety — this is already provided by the underlying
implementation. Also, we will not try to use the inferred types for
removing dynamic type tests — at least not in this work. We are
instead interested in capturing the biggest set of terms forwhich
we can be sure that type clashes will definitely occur. Instead of
keeping track of this set, we will design an algorithm that infers
its complement, a function’ssuccess typing. A success typing is
a type signature that over-approximates the set of types forwhich
the function can evaluate to a value. The domain of the signature
includes all possible values that the function could acceptas pa-
rameters, and its range includes all possible return valuesfor this
domain.

DEFINITION 1 (Success Typings).A success typing of a function
f is a type signature,(ᾱ) →β, such that whenever an application
f(p̄) reduces to a valuev, thenv ∈ β and p̄ ∈ ᾱ.

Note that there is a fundamental difference between successtyp-
ings and type signatures of a static type system. The difference is
that success typings capture all possible intended uses of afunc-
tion and then some. In particular, success typings capture some
uses that might result in a type clash and some type-correct uses
which never evaluate to a value (either due to non-termination or



because of throwing an exception). However weak this might seem
to aficionados of static typing, success typings have the property
that they capture the fact that if the function is used in a waynot
allowed by its success typing (e.g., by applying the function with
parameters̄p /∈ ᾱ) this application willdefinitelyfail. This is pre-
cisely the property that a defect detection tool which never“cries
wolf” needs. Also, success typings can be used for automaticpro-
gram documentation because they will never fail to capture some
possible — no matter how unintended — use of a function.

4.2 Examples

Let us revisit the Booleanand function we saw in Section 2.1.
and(true, true) -> true;
and(false, ) -> false;
and( , false) -> false.

Assume thatbool() = true ∪ false.
A static type system based on Hindley-Milner constructor-based

type inference has no choice but to derive the typing

(bool(), bool()) →bool().

Notice that, at least in the eyes of programmers used to a dynam-
ically typed language, this typing unnecessarily restricts the do-
main of this function. Indeed, there is nothing that can possibly
“go wrong” here if the function is called as e.g.and(42,false).
Since some programmers value freedom of expression more than
obtaining type safety guarantees at compile time, it might be ex-
tremely difficult to convince them to adopt such a system.

A static type system based on subtyping, such as the one by
Marlow and Wadler, might derive the typing

(any(), false) →bool()

for this function. Notice that although counter-intuitive, this typing
is correct from a static type system’s point of view. This typing
allows complete freedom in the value of the first argument provided
that the second argument is the valuefalse. Once again, what’s
happening here is that callers of this function are constrained to a
smaller domain than what the function is prepared to accept.This
is a general phenomenon. In some way or another, all static type
systems arepessimistic.

Success typings aim to avoid such situations. To do so, they
adopt anoptimisticattitude and approximate types in the opposite
direction. For example, a success typing for this function is

(any(), any()) →any()

which trivially satisfies the condition of Definition 1. Naturally, we
are interested in inferring success typings with more type informa-
tion than what the typing shown above contains. Indeed, the success
typing that the algorithm we present in the next section willinfer is

(any(), any()) →bool().

It is easy to see that this typing describes all intended usesof the
and function.

In the example above, the success typing we infer is quite
weak in the sense that it will not catch any type error in calls
to theand function. For example, it cannot capture that the call
and(42,gazonk) will throw a runtime exception. Notice however
that itwill catch type clashes in matching a value other thantrue or
false against the result of this function. As we will see next, there
are many situations where the inferred success typings are detailed
and precisely capture the intended uses of functions. For example,
the success typing inferred for the following function

add1(X) when is integer(X) -> X + 1.

is (integer()) → integer(). Note that to derive this typing the
built-in function for addition, which in Erlang is overloaded and

handles floats as well as integers, needs to be instantiated for in-
tegers. Our type inferencer has hard-coded knowledge aboutall
Erlang built-ins, represented in a restricted form of dependent
types. Finally, for the following function

add2(X) when is atom(X) -> X + 2.

our type inferencing algorithm will detect a type violation, which
is expressed by assigning a typing such as(any()) →none() to it.
In such cases, we say that no success typing can be inferred for the
function.

A final note Note that since the type signature(any()) →any()
is a success typing, the analysis is free to use this signature for all
functions which are unknown; because e.g. their code is not avail-
able. Besides making the analysis modular, it allows for some type
clashes to be discovered early in the development process, even
during rapid prototyping and random experimentation. The practi-
cal benefits of this property should not be dismissed or underesti-
mated.

5. Inferring Success Typings
The algorithm for inferring success typings has two phases.In
the first, the code is traversed and constraints are generated using
derivation rules. In the second, we try to find a solution to the con-
straints and this solution constitutes the success typing.We describe
the process in more detail by explaining constraint generation (Sec-
tion 5.1), constraint solving (Section 5.2), and finally thealgorithm
that ties them together (Section 5.3).

5.1 Constraint generation

Figure 2 shows the rules for constraint generation. In the rules,
A represents an environment with bindings of variables of the
form {. . . , x 7→ τx, . . .} and C represents nested conjunctions
and disjunctions of subtype constraints in the same form as in the
constrained types in Section 3.2:

C ::= (T1 ⊆ T2) | (C1 ∧ . . . ∧ Cn) | (C1 ∨ . . . ∨ Cn)

We will use equality constraints,T1 = T2, as shorthands for
(T1 ⊆ T2) ∧ (T2 ⊆ T1). The judgmentA ⊢ e : τ, C should be
read as “given the environmentA the expressione has typeSol(τ )
wheneverSol is a solution to the constraints inC”.

The VAR, STRUCT and LET rules are standard. Constants can
be typed by the STRUCT rule by viewing primitive types as nullary
constructors. The ABS rule binds the constraints from the function
body to its type, but exports no constraints. In this way the type
of a function can be influenced by outer constraints on the free
variables, but the constraints from the function body cannot affect
the types of the free variables outside the function body.

A letrec statement binds a number of function declarations to
recursion variables. The scope of the recursion variables includes
both the function declarations and the body of theletrec state-
ment. The LETREC rule assigns fresh type variables to the recur-
sion variables and then adds equality constraints on the function
types and the types of the recursion variables.

The PAT rule slightly abuses notation. As described in Sec-
tion 3.1 the guards in a pattern can be expressed as a conjunction
of simple type constraints on variables such asis integer(x),
is atom(x), etc. and by using equality constraints on variables.
The translation of these into constraints on types and type variables
is straightforward and omitted for brevity. The rule statesthat the
guard must evaluate totrue under the translated constraints which
is equivalent to stating that the constraints must have a solution.

In case expressions, it is enough that one clause can be taken
in order for the whole expression to have a success typing. This is
captured by introducing a disjunction of constraints in theCASE



A ∪ {x 7→ τ} ⊢ x : τ, ∅
[VAR]

A ⊢ e1 : τ1, C1 . . . en : τn, Cn

A ⊢ c(e1, . . . , en) : c(τi, . . . , τn), C1 ∧ . . . ∧ Cn
[STRUCT]

A ⊢ e1 : τ1, C1 A ∪ {x 7→ τ1} ⊢ e : τ2, C2

A ⊢ let x = e1 in e2 : τ2, C1 ∧ C2

[L ET]

A ∪ {xi 7→ τi} ⊢ f1 : τ ′

1, C1 . . . fn : τ ′

n, Cn e : τ, C

A ⊢ letrec x1 = f1, . . . , xn = fn in e : τ, C1 ∧ . . . Cn ∧ C ∧ (τ ′

1 = τ1) ∧ . . . ∧ (τ ′

n = τn)
[L ETREC]

A ∪ {x1 7→ τ1, . . . , xn 7→ τn} ⊢ e : τe, C
A ⊢ fun(x1, . . . , xn) → e : τ, (τ = ((τ1, . . . , τn) →τe when C))

[A BS]

A ⊢ e1 : τ1, C1 . . . en : τn, Cn

A ⊢ e1(e2, . . . , en) : β, (τ1 = (α2, . . . , αn) →α) ∧ (β ⊆ α)∧
(τ2 ⊆ α2) ∧ . . . ∧ (τn ⊆ αn) ∧ C1 ∧ . . . ∧ Cn

[A PP]

A ⊢ p : τ, Cp A ⊢ g : true, Cg

A ⊢ p when g : τ, Cp ∧ Cg
[PAT ]

A ∪ {v 7→ τv|v ∈ V ar(p1)} ⊢ p1 : α1, Cp
1
, b1 : β1, Cb

1

...
A ⊢ e : τ, Ce A ∪ {v 7→ τv|v ∈ V ar(pn)} ⊢ pn : αn, Cp

n, bn : βn, Cb
n

A ⊢ case e of p1 → b1; . . . pn → bn end : β, Ce ∧ (C1 ∨ . . . ∨ Cn)
whereCi = ((β = βi) ∧ (τi = αi) ∧ Cp

i ∧ Cb
i )

[CASE]

Figure 2. Derivation rules

rule. Each disjunct contains the constraints that need to besatisfied
for the corresponding clause to contribute to the success typing.
Intuitively, if a clause is taken at runtime, the type of eachincoming
argument and the corresponding pattern must be equal, and the
constraints from the clause guard must be satisfied. The typeof
the wholecase expression equals the type of the clause body.
Note that by introducing a disjunction we separate the constraints
from different clauses. At the time we solve the constraintswe can
choose how to interpret the disjunctions, and thus choose the level
of abstraction atcase expressions. We elaborate more on this point
in Section 5.2.

Finally, note that our APP rule is quite unorthodox. In tradi-
tional subtyping systems the type of an application is downwards
bounded by the type of the function’s range. This ensures that
all possible return values are handled, possibly by inserting nar-
rowers to make it a smaller type. As mentioned, we are not con-
cerned with type safety, but with avoiding false alarms. We there-
fore let the range of the function type constitute an upper bound
of the type of the application in order to avoid unnecessarily over-
approximations. Intuitively, if an application succeeds the returned
value must be a subtype of the range of the function type. If the type
of an application is later constrained to be a smaller type, we can
optimistically assume that this is true since it is necessary for eval-
uation and also possible based on the available informationabout
the function.

5.2 Constraint solving

Disjunctions can only be introduced by the CASE rule, where each
disjunct corresponds to a clause in thecase expression. A disjunc-
tive normal form of constraints is a constraint set consisting of a

top-level disjunction where all the parts consist of conjunctions.
If the constraints would be transformed into disjunctive normal
form, each conjunction would correspond to a program trace.Such
a transformation would cause the number of constraints to explode
in the presence of severalcase expressions. To avoid this explo-
sion, we keep the constraints in the generated form, keepingthe
one to one correspondence between disjunctions and case clauses.

Let Sol be a mapping from type expressions and type variables
to concrete types. Concrete types include all type expressions with
the exception of constraints and type variables. We say thatSol is
a solution to a constraint setC, and writeSol |= C, if:

Sol |= T1 ⊆ T2 ⇐⇒ none() ⊂ Sol(T1) ⊆ Sol(T2)

Sol |= C1 ∧ C2 ⇐⇒ Sol |= C1,Sol |= C2

Sol |= C1 ∨ C2 ⇐⇒



Sol1 |= C1,Sol2 |= C2,
Sol = Sol1 ⊔Sol2

whereSol1 ⊔Sol2 denotes the point-wise least upper bound of
the solutions. In words: a solution satisfies a subtype constraint
if the mapping satisfies the subtype constraint and neither of its
constituents isnone(). A solution of a conjunction of constraints
must satisfy all conjunctive parts and a solution to a disjunction of
constraints is the point-wise least upper bound of the solutions of
all disjuncts. Furthermore, if a constraint set has no solution it can
be assigned the solution⊥ which represents a solution that maps
all type expressions tonone(). Note that⊥ ⊔ Sol = Sol . So, as
long as the set of constraints from one clause in acase expression
has a solution other than⊥, the constraints from the wholecase
expression also have a solution other than⊥.



solve(⊥, ) = ⊥

solve(Sol , α ⊆ β) =

8

<

:

Sol when Sol(α) ⊆ Sol(β)
Sol [α 7→ T ] when T = Sol(α) ⊓ Sol(β) 6= none()
⊥ when T = Sol(α) ⊓ Sol(β) = none()

solve(Sol ,Conj ) =



Sol when solve conj(solve(Sol ,Conj )) = Sol
solve(Sol ′,Conj ) when Sol ′ = solve conj(solve(Sol ,Conj )) 6= Sol

solve(Sol ,Disj ) =


F

Sol ′ when Sol ′ 6= ∅
⊥ when Sol ′ = ∅

where



Sol ′ = {S|S ∈ PS , S 6= ⊥}
PS = {solve(Sol , C)|C ∈ Disj}

solve conj(⊥, ) = ⊥
solve conj(Sol , C1 ∧ . . . ∧ Cn) = solve conj(solve(Sol , C1), C2 ∧ . . . ∧ Cn)
solve conj(Sol , C) = solve(Sol , C)

Figure 3. Algorithm for solving constraints

5.3 Algorithm

We have described the two phases of the inference algorithm,but
there are some issues that need to be described in more detail.
While applying the derivation rules of Figure 2 we store somead-
ditional information. For example, when applying the ABS rule, we
store the constraints corresponding to the function for easy access.
Similarly, in letrec expressions, the binding between recursion
variables and function types is recorded so that recursive functions
receive a special treatment.

For efficiency reasons, the analysis first constructs the global
function call graph, which describes the dependencies between
functions. The call graph is a directed graph with functionsas nodes
and an edge(f, g) wheneverf callsg. Mutually dependent func-
tions form cycles, and the call graph is condensed to its strongly
connected components (SCCs). In this way, we end up with a di-
rected acyclic graph (DAG). This DAG is sorted topologically and
the analysis infers success typings for the functions by analyzing
its nodes (i.e., the SCCs of the function call graph) in a bottom-up
fashion.

The constraint solver is written in Erlang. Type constraints are
generated and solved at the granularity of a single functionaccord-
ing to the algorithm in Figure 3. The basic idea is to iteratively solve
all constraints in a conjunction until either a fixpoint is reached or
the algorithm encounters some type clash and fails by assigning the
type none() to a type expression. The starting point forSol is a
mapping where all type expressions are mapped toany(), with the
exception for the types of all recursion variables that are mapped
to none(). The following example shows how this gives us a pos-
sibility to handle self-recursive calls.

Consider the following implementation of a function that re-
moves all elements in odd-numbered positions from a list.

letrec DropOdd =
fun(L) ->

case L of
[] when true -> [];
[ ] when true -> [];
[ ,H|T] when true -> [H|DropOdd(T)];

end
in
...

Assume that the type of the recursion variableDropOdd has the
type τD, and the other type variables are subscripted with their
original variable names. We will not give the complete derivation of
the constraints, but we will concentrate on the recursive application
in the third clause.

...
A ⊢ DropOdd(T) : β, C1 = ((τD = (α1) →α)

∧(β ⊆ α) ∧ (τT ⊆ α1))

[A PP]

The function body is acase expression, so by the CASE rule it
will yield a disjunction of the constraints from the three clauses.
In the first iteration of the constraint solving algorithm the type of
the recursion variableDropOdd is τD 7→ none(). This will make
the constraintτD = (α1) →α fail. Let the solutions for theith
disjunction be denoted bySol i, the solution for the whole case
statement beSol , and the output of the case statement beτc. We
then have

Sol1 = {τL 7→ [], τc 7→ []}

Sol1 = {τL 7→ list(), τc 7→ []}

Sol3 = ⊥

=⇒ Sol = Sol1 ⊔Sol2 ⊔Sol3

= {τL 7→ list(), τc 7→ []}

where we usedlist() as a shorthand for the typelist(any()). 3

The recursion variable then gets assigned the current type of the
function.

τD 7→ (τL) →τc = (list()) →[]

The solution algorithm iterates once again since the type assigned
to τD has changed. This time the constraints from the recursive
application in the third clause have a solution.



τD 7→ (list()) →[], α1 7→ list(),
α 7→ [], β 7→ [], τT 7→ list()}

ff

|=

0

@

τD = (α1) →α
∧(β ⊆ α)
∧(τT ⊆ α1)

1

A

so the solution of the constraint disjunction is

Sol1 = {τL 7→ [], τc 7→ []}

Sol1 = {τL 7→ list(), τc 7→ []}

Sol3 = {τL 7→ list(), τc 7→ list()}

=⇒ Sol = {τL 7→ list(), τc 7→ list()}

3 The list type is the only recursive type in the language and isparameterized
by its contents such thatlist(T ) = cons(T, list(T )) ∪ nil. However, the
parameterT is some concrete type. For example, if nothing is known about
the contents of some list, this list is represented aslist(any()). If it is
subsequently determined that the elements of this list mustbe subtypes of
integers, this list is represented aslist(integer()).



and the new type of the function becomes

τD 7→ (list()) → list()

which makes the solution algorithm reach a fixpoint, so we have
found the success typing for the function. The iterative wayof solv-
ing constraints for self-recursive functions easily extends to SCCs
of mutually dependent functions by iterating over the functions of
each SCC until a fixpoint is reached.

Note that in the example above, we reach a fixpoint since the
recursive typelist() is collapsed at the recursive call. The reason
why we treat lists in a special way is that it is the by far most
common recursive type in Erlang. However, other recursive types
such as for example trees are also common. The typical way to
build these structures in Erlang is to use nested tuples. Consider
the functiontree to list which transforms a binary tree to a list
using inorder traversal.

tree to list(nil) ->
[];

tree to list({Left, Data, Right}) ->
tree to list(Left) ++ [Data|tree to list(Right)].

The type of such a tree could succinctly be expressed in either of
the following ways

-type tree() = nil ∪ {tree(), any(), tree()}.

-type tree(X ) = nil ∪ {tree(X ), X, tree(X )}.

but since currently there is no mechanism to declare user-defined
types, recursive or otherwise, uses of such recursive data types can-
not be recognized. With the algorithm we have described, during
type inference, constraint solving would expand this type indefi-
nitely. To ensure termination we use depth-k abstraction. When the
depth of a compound term grows larger than a limitk we abstract
that subterm to the typeany(). This, together with the union limit
described in Section 3.2, gives us a way to limit the size of types so
that they cannot grow indefinitely.4

DEFINITION 2. A solutionSol is more general than a solutionSol ′

iff for some type variableτ we haveSol ′(τ ) ⊂ Sol(τ ).

Note that the solution for failing constraints⊥ is not more general
than any other solution since all variables are mapped tonone().

PROPOSITION1 (Monotonicity). In all steps in the algorithm, the
output solution, if any, cannot be more general than the provided
input solution.

PROOF. Note that we can view the constraints as a tree where the
leaves are simple subtype constraints and the inner nodes are either
conjunctions or disjunctions. Assume that the output solution from
a child node cannot become more general than the input solution
to the child node. At the leaves, the right hand side of the subtype
constraint does not change, and the left hand side can only become
more specific. Thus the assumption holds at the base case.

For the inner nodes, we have two cases:

1. The solution of a conjunction is a fixpoint of all partial solu-
tions. By the assumption, the partial solutions cannot be more
general than the input solution. So if a fixpoint is reached, it
cannot be more general than the input solution.

2. For disjunctions the output solution is the point-wise least upper
bound of all partial solution. By the assumption, the partial
solutions cannot be more general than the input solution, so
neither can the least upper bound.

4 The depth of the recursivelist type is defined based on the content of the
list rather than on its length. For example, the typelist(bool()) has depth 2.

By induction on the structure of the constraints no output solution
can be more general than the input solution.

PROPOSITION2 (Termination).Given an initial solution where
all variables are mapped toany(), the algorithm terminates and
produces a solution to the set of constraints.

PROOF. The only place the algorithm loops is when faced with a
conjunction of constraints, where it loops until a fixpoint is reached.
By Proposition 1 none of the partial solutions in the conjunction can
be more general than the input solution. The k-depth abstraction
guarantees that a solution cannot become more precise indefinitely.
Thus, a fixpoint must eventually be reached, and the algorithm
terminates.

5.4 Some examples of inferred success typings

We show examples of success typings on some Erlang code. We do
so, to discuss pros and cons of the type expressions we currently
employ. In all examples, we show the success typing as an Erlang
comment directly above the function’s code. With the exception of
using| rather than∪, this is precisely how our analysis annotates
programs. First, let us consider the function

%% (integer() ∪ list()) → integer() ∪ atom()
foo(X) when is integer(X) -> X + 1.
foo(X) -> list to atom(X).

Its success typing tells us thatfoo can be called with both integers
and lists and will return either an integer or an atom. Note that the
function will indeed fail if called with anything outside the stated
domain. This is obvious in the first clause since it is guardedwith
an explicit type test. In the second clause, the call to the built-in
functionlist to atom will fail if its argument is not a list.

Note that the success typings we currently maintain, such asthe
above, do not keep track of dependencies between the input and the
output type. In other words, at call sites offoo we cannot say that
the input typeinteger() will result in aninteger() as output. This
could be captured by conditional types and intersection types [2].
A typing of this function would look something along the lines of

∀α.(α) → (integer()?(α ∩ integer()))
∪ (atom()?(α ∩ list()))

where{α ⊆ integer() ∪ list()}

This is undeniably a more descriptive type since it expresses the
correspondence between input and output types, but it is also con-
siderably less readable. In short, we currently sacrifice expressive-
ness for simplicity and readability.

The next example includes a function call to the functionadd1
which was defined in Section 4.2. Recall thatadd1 has the success
typing (integer()) → integer().

%% (integer()) →ok1
bar(X) ->

case add1(X) of
42 -> ok1;
gazonk -> ok2

end.

The success typing of this function reflects that the second case
clause can never match since the range of the functionadd1 only
includes integers. Finally, consider the following function which
uses the functionfoo given above.

%% (integer()) →ok1 ∪ ok2
baz(X) when is integer(X) ->

case foo(X) of
42 -> ok1;
gazonk -> ok2

end.



A type signature forfoo that kept track of input-output type depen-
dencies would make it possible to detect that the second clause is
unreachable. Note that even though the type signature we infer is
an over-approximation, it is a correct success typing.

6. Practical Aspects of Success Typings
Our definition of success typings is a solid framework for describ-
ing succinctly the most general way that functions can be used. This
description is ‘most general’ in the sense that it allows us to reason
about open programs, i.e., programs for which we do not have com-
plete information about all calls to their functions. We have already
argued why, in the context of a dynamically typed language such
as Erlang, this is the appropriate thing to do from a practical stand-
point. However, sometimes the success typings are so general that a
function’sintendeduse is lost in abstraction. For example, consider
the following function which naı̈vely calculates the length of a list.

%% (list()) → integer()
length 1([]) -> 0;
length 1([ |T])-> 1 + length 1(T).

The success typing of this function, shown above its definition,
captures the intention of the programmer quite precisely. However,
if we decide to do a simple program transformation and make this
function tail-recursive, which is a common practice in functional
languages, we end up with the following two functions.

%% (list()) →any()
length 2(List) -> length 3(List, 0).

%% (list(), any()) →any()
length 3([], N) -> N;
length 3([ |T], N) -> length 3(T, N+1).

At first, it might seem surprising that the return type oflength 3
is now any() rather thaninteger(). One might even jump to the
conclusion that success typings are unnecessarily generaland,
as such, quite useless. However, notice that this success typ-
ing succinctly captures all possible applications oflength 3
which will not result in a type error. Among them is the call
length 3([a,b,c], 3.14) which will return6.14, and the call
length 3([], gazonk) which will return gazonk. One might
argue this is not what the programmer had in mind when the func-
tion was written, but as explained before our intention is tonever
try to outsmart the programmer. Still, we also find the situation
sub-optimal and we will improve on it as explained below.

6.1 Refined success typings

Assume that the two calls tolength 3 in the example above are
the only calls to this function. It is then easy to see that, since
the self-recursive loop is started with the integer0 in the second
argument, the second argument will be a subtype ofinteger() in all
subsequent self-recursive calls. Since the loop can terminate only
by entering the leaf clause, the type ofN must be integer() for
the function to return a value. Also, the return type of the function
cannot be anything butinteger(). By reasoning about the input
types oflength 3 this way, we can say something more refined
about the programmer’s intentions. In order to capture thisline of
reasoning, we introduce the notion ofrefined success typings.

DEFINITION 3 (Refined Success Typings).Let f be a function
with success typing(ᾱ) →β. A refined success typing forf is a
typing of the form(ᾱ′) →β′ such that

1. ᾱ′ ⊆ ᾱ andβ′ ⊆ β, and
2. for all p̄ ∈ ᾱ′ for which the applicationf(p̄) reduces to a value,

f(p̄) ∈ β′.

In other words, a refined success typing is a success typing under
some additional constraints. More specifically, a refined success
typing is a success typing where the domain is restricted to some
subtype of the success typing’s domain. Since the set of possible
inputs to the function gets restricted, the set of its possible outputs
may also get restricted.

We recapitulate: the success typing of a function captures theset
of all its possible uses. By reducing its domain as much as possible
by taking information from all call sites into account, we can infer
a restricted set of useswhich reflects how the function is actually
used in a program.

6.2 Module system to the rescue

In Erlang, unlike in e.g. Prolog, the module system cannot beby-
passed; all functions have to be part of some module. This pro-
vides a way of encapsulating and protecting functions from arbi-
trary uses. An Erlang module is aletrec-style declaration with
some additional information. Part of this information is the mod-
ule’s interface: a declaration of functions that areexported. The ex-
ported functions can be called from any other module, but thenon-
exported ones can only be called from inside the module. However,
since Erlang has higher order functions, non-exported functions can
be exposed to the outer world as higher order functions in theform
of closures. If a closure is returned by an exported functionor if it is
passed as an argument to a function in another module, we say that
the function represented by the closureescapesthe module. All ex-
ported functions trivially escape since they are exposed tothe outer
world through the module’s interface. Functions that do notescape
are calledinternal (or module-local) functions. Escaping functions
are identified using the escape analysis of Carlsson et al. [5].

In Figure 4 the functions from the example in the beginning
of this section are declared in a module, calledmy list utils.
This module has one escaping function,length 2, and one inter-
nal function,length 3. Sincelength 2 escapes, we can make
no assumptions about what types it is called with other than what
is reflected by its success typing. However, notice that since we
know all call sites for the internal functionlength 3, we have
the opportunity to refine its domain. By applying the algorithm
of Section 5 we find that the success typing oflength 3 is
(list(), any()) →any(). This tells us that the first argument in
all calls must be a subtype oflist() but the second argument can be
anything. The partial solutions in the constraint solving phase cor-
respond to type environments of clauses in the original program.
For example, we can find the partial solution that corresponds to
the second clause oflength 3, and from this we find the types of
the parameters. The first type islist() because of the function call
itself, and the second type isnumber() since it is the result of an
addition. From the call inlength 2 we once again findlist() for
the first argument, and since the second argument is a constant, we
find the singleton type0. Since the refined domain of a function
must include all possible calls, we take the union of the types at
the call sites. We can now conclude that the domain oflength 3
can be refined tolist() ∪ list() = list() in the first argument, and
0 ∪ number() = number() in the second argument. This infor-
mation would indeed make it possible to refine the success typing,
but as we will see below, it can be refined even more.

6.3 Refining success typings using dataflow analysis

As described in Section 5.3, the inference of success typings works
in a bottom-up fashion over the function call graph, propagating
information from callees to callers. Since we are now interested in
the information flow from caller to callee, it is suitable to use an
analysis that propagates information forward in the control flow.
We will not describe this analysis in detail, but we will try to give
an intuition of how it works.



-module(my list utils).
-export([length 2/1]).

length 2(List) -> length 3(List, 0).

length 3([], N) -> N;
length 3([ |T], N) -> length 3(T, N+1).

Figure 4. The modulemy list utils

Recall that a success typing states that for a call to succeed, the
arguments must be in the expressed domain or the call will surely
fail. The dataflow analysis uses this fact to exclude calls that will
surely fail from the analysis. For example, assume a function foo
with success typing(integer()) → integer(), and we find a call

..., X = foo(Y), ...

somewhere in the program. If the type ofY is atom() we know
for sure that this call will fail and we can stop the analysis of this
program trace. If the type ofY is 1∪2∪atom(), then we know that
after the call tofoo, the type ofY must be1 ∪ 2 or the call would
have failed. This is also the type that gets propagated to theentry
point of foo since we already know that a call withatom() will
surely fail. Iffoo has already been analyzed for this input type, we
get the corresponding return type which is then assigned as the type
of X. Otherwise, we add the function to the worklist and suspend the
analysis of the current trace until we have analyzedfoo.

The dataflow analysis starts at the entry point of all escaping
functions. We can jump-start the analysis by assigning to the ar-
guments of the escaping functions the domain types of the success
typings. This is safe since we know that these include all possible
inputs for which the functions can return. The information is then
propagated forwards in the control flow. At local function calls,
the parameter types are propagated in the manner described in the
example above. The dataflow analysis ispath independentinside
function bodies, e.g., the type ofcase expressions is collapsed to
the union of the clauses. For function calls we have a limitedpath
dependency. We analyze functions for the exact call types upto
a limited number of distinct call types. When the number of call
types reaches a limit, we widen the call type to the union of all call
types. For example, assume that the functionfoo above has three
call sites and the argument types are1 ∪ 2, 3 ∪ 4, andinteger()
respectively. If we allow for three distinct call types,foo will be an-
alyzed for each of the input types, yielding possibly different output
types. If we allow only for two call types, the input type offoo will
be widened tointeger() and the return type will be taken from this
input type.

Let us revisit the modulemy list utils in Figure 4. The
dataflow analysis starts with functionlength 2, which is the only
escaping function. Since its success typing is(list()) →any(), the
type of the variableList is list(). At the function call we propagate
the argument typeslist() and0 tolength 3 and since this call pat-
tern has not yet been analyzed, we add it to the worklist and suspend
this analysis path. The analysis moves on tolength 3 and assigns
the propagated types to arguments at the entry point. Let us first fo-
cus on the second clause. The variableT is assigned the typelist()
since taking the tail of a list produces another list. The variableN
gets assigned the type0. At the recursive call the argument types
list() and1 are discovered. Since the function has not yet been ana-
lyzed for these input types, this call is added to the worklist and this
analysis path is temporarily suspended. The analysis then iterates
over length 3 in this manner until the input type of the second
argument reaches the union limit and gets widened tointeger().
There the widening ends since from now on the function can only

be called with subtypes ofinteger() in the second argument. By
analyzing the function using this input type, the return type is
found to beinteger(). Finally, the return types are propagated and
the refined success typings are(list(), integer()) → integer() for
length 3 and(list()) → integer() for length 2. Note that even
though the functionlength 2 is escaping and we could not refine
the domain of its success typing, its range was refined since the
refined success typing oflength 3 has a more refined range.

In effect, what the refinement of the success typings does is a
type specializationof all non-escaping functions based on informa-
tion which manifests their intended uses: the types of all their calls.
Rather than performing function cloning though, at the end of the
refinement process, the refined success types for all call patterns
are unioned. This can clearly be seen in the following example. The
success typing of thef function gets refined to reflect its intended
uses, which all are of typefloat() in this module. Forn a similar
process does not occur since this function is called both with inte-
gers and floats. Notice however that the range of thet function has
been refined and accurately reflects the type of its result.

-module(arith).
-export([t/1]).

t(N) ->
X = f(3.14) + N,
n(42) + n(X).

n(N) -> N + 1.

f(N) -> N + 2.

Success typings
t :: (number()) →number()
n :: (number()) →number()
f :: (number()) →number()

Refined success typings
t :: (number()) →float()
n :: (number()) →number()
f :: (float()) →float()

6.4 Current experiences

A significantly weaker and much more ad hoc static analysis than
the one we describe in this paper has been used in the publicly
available Dialyzer [10] defect detection tool for a period of more
than two years now. That analysis, based on a forward dataflow
analysis similar to the one of the previous section, has identified
literally hundreds of bugs in well-tested, commercial applications
of sizes ranging from several thousands to more than a million lines
of code.

The current analysis, planned to be integrated into Dialyzer, has
so far been used to analyze the Erlang/OTP system and its standard
libraries. Besides finding bugs, we intend to automaticallyannotate
all functions of standard libraries with their refined success typings.
A separate tool for this task, called TypEr, currently exists in its
beta version and can be obtained from the authors. The analysis
used in TypEr is the one described in this paper. The analysisis
scalable and reasonably fast. On the four-year old laptop ofone of
the authors, the complete set of the Erlang/OTP standard libraries
(amounting to about 700,000 lines of code) is analyzed in half an
hour. For comparison, on the same laptop, the BEAM bytecode
compiler needs roughly twelve minutes to compile all these files
to bytecode and the HiPE native code compiler needs roughly half
an hour to compile this bytecode to native code.

7. Concluding Remarks
Changing the philosophy of a programming language, especially
one with existing applications of considerable size, is nota task
with a high likelihood of success. In this paper, rather thanstarting
from a static type system and trying to squeeze Erlang into it, we
followed a different approach. We introduced the concept ofsuc-
cess typings into the functional world. Success typings provide an
optimistic and totally liberal way of looking at type inference and
allow us to uncover the implicit type information which exists in



programs, automatically document function interfaces, and detect
definite type clashes in a flexible and scalable way. Flexible, be-
cause success typings allow derivation of type informationwithout
type declarations and even in the absence of certain programcom-
ponents. Scalable, because the inference of success typings follows
a compositional, bottom-up algorithm which is modular and ap-
pears to scale well in practice.

As mentioned, success typings will never miss a function’s in-
tended use or report a type violation which only reflects a weakness
of the type system. On the other hand, no matter how true, thisstate-
ment is relatively weak because it is trivially satisfied by success
typings which contain no type information. We have shown that by
employing constraint-based type inference and by taking advantage
of the module system of the language, the success typings getnat-
urally refined, often become quite precise and accurately describe
a function’s intended use. All this is donewithoutsacrificing read-
ability of the typings which are inferred. The practical benefits of
doing so should not be underestimated.

Although success typings form a solid basis for capturing the
implicit type information in programs written in any dynamically
typed functional language, many directions for improvement still
exist. Chief among them is the ability to declare and automatically
infer recursive types other than lists, the incorporation of (bounded)
quantification into the framework, and the ability to maintain de-
pendencies between the types in the domain and the range of a
function. We intend to explore some of these issues.
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A. Some Additional Experiences
We provide some additional information to show how inferring
success typings can help a programmer to understand better the
properties of code that she writes.

A.1 Splitting a list

Consider thesplit function of the Erlang/OTP standard library
lists. Its implementation is shown in Figure 5. It is slightly
obfuscated by the fact that it has to throw a’badarg’ rather
than a’badmatch’ exception when its arguments do not have the
appropriate types. Its online documentation till recentlyread:

split(N, List1) -> {List2, List3}
Types:
N = 1..length(List1)
List1 = List2 = List3 = [term()]

Splits List1 into List2 andList3. List2 contains
the firstN elements andList3 the rest of the elements.

There is an obvious discrepancy between the function’s codeand
its documentation:N should start from0 rather than1.5 The slightly
more subtle discrepancy is that this function also accepts improper
(i.e., not[]-terminated) lists as its second argument. The refined
success typing forsplit/2 that our analysis discovers reads:

(integer(), possibly improper list()) →{[any()], any()}

This typing is correct. Indeed, the calllists:split(2,[a,b|c])
returns{[a,b],c} in Erlang. For some, it may not be easy to com-
prehend this success typing and see how it is related tosplit’s
documentation. The documentation is confusing because of its
“length(List1)” part: in Erlang thelength function only works
for proper lists. Staring at the code of thesplit function does not
help too much either, especially if one is not aware — or has suc-
ceeded in forgetting — that, for efficiency, theis list guard of
Erlang does not check that its argument is a list, but insteadchecks
whether its top-level constructor is a cons cell or[].

Besides showing the intricacies of inferring success typings in
Erlang, this example shows that

1. it is very dangerous to automatically generate type signatures
from comments or documentation

2. it is very difficult to impose a static type system that makes
assumptions such that e.g. all lists are proper, which are invalid
in current Erlang practice.

A.2 Compiling stuff

The HiPE compiler can either compile the bytecode of a whole
module or a single function to native code. In Erlang functions
are commonly known as MFAs. These are triples which consist
of a module name, function name and arity fields. For example,the
function of Figure 5(a) is denoted as{lists,split,2}.

5 This typo was fixed in March 2006.



split(N, List) when is integer(N), N >= 0, is list(List) ->
case split(N, List, []) of

Fault when is atom(Fault) ->
erlang:error(Fault, [N,List]);

Result ->
Result

end;
split(N, List) -> erlang:error(badarg, [N,List]).

(a) Thesplit/2 function

split(0, L, R) ->
{lists:reverse(R, []), L};

split(N, [H|T], R) ->
split(N-1, T, [H|R]);

split( , [], ) ->
badarg.

(b) A non-escaping function thatsplit/2 uses

Figure 5. A code fragment of the Erlang/OTPlists standard module.

One function of the HiPE compiler, which tries to locate the file
containing the bytecode to be compiled, reads as shown below.

beam file({M,F,A}) ->
beam file(M);

beam file(Module) when is atom(Module) ->
case code:which(Module) of
non existing ->
exit({no file,Module});

File ->
File

end.

Obviously, the programmer tried to benefit from some code reuse
here. The success typing we infer for this function is the following:

atom() ∪
{atom(), , } ∪

{{atom(), , }, , } ∪
{{{ , , }, , }, , } → atom()

where with ’ ’ we denote theany() type. Clearly, this is not what
the programmer intended. Note that the code is actually correct, but
allows for more general uses than it was envisioned for.

The point of this example is that success typings uncover inter-
esting properties of programs and present this informationto the
programmer in a relatively comprehensive way without rejecting
programs unnecessarily. In this particular case, if the programmer
wants to statically detect unintended uses of this functionor pro-
hibit them during runtime, she can rewrite the code or add some
appropriate type guards in the first clause and make its head look
either as follows:

beam file({M,F,A}) when is atom(M) ->

or as follows:

beam file({M,F,A}) when is atom(M),
is atom(F),
is integer(A) ->

in which case the intended success typing

(atom() ∪ {atom(), atom(), integer()}) →atom()

will be inferred by the success typing algorithm.


