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Abstract

In languages where the compiler performs no static typekshec
many programs never go wrong, but the intended use of furtio
and component interfaces is often undocumented or appebss o
in the form of comments which cannot always be trusted. This o
ten makes program maintenance problematic. We show that it i

and relatively uneventful activity, at least initially. &loccasional
frustrations of having to convince the type system that @adly
knows what she is doing are avoided. Also, since type declara
tions and annotations need not be typed (in), program dernedat
can progress more rapidly. Unfortunately, this freedomxpuires-
sion comes with a price. Significantly less typos and othehsu

possible to reconstruct a significant portion of the typerinfa-
tion which is implicit in a program, automatically annotdtac-
tion interfaces, and detect definite type clashi#gBoutfundamental
changes to the philosophy of the language or imposing a type s
tem which unnecessarily rejects perfectly reasonablerpmg. To
do so, we introduce the notion sficcess typingsf functions. Un-
like most static type systems, success typings incorpstete/ping
and never disallow a use of a function that will not result ityge
clash during runtime. Unlike most soft typing systems thateh
previously been proposed, success typings allow for coitipaal,
bottom-up type inference which appears to scale well intjmac
Moreover, by taking control-flow into account and explaitiprop-
erties of the language such as its module system, succasgsyp

can be refined and become accurate and precise. We demenstrat

the power and practicality of the approach by applying it t@ig.
We report on our experiences from employing the type infegen
algorithm, without any guidance, on programs of significsiné.
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1. Introduction

For programmers already experienced in developing progiiam
dynamically typed functional languages, programming igaduil
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mundane programming errors are caught by the compiler. More
importantly, the freedom afiot stating one’s intentions explicitly,
considerably obstructs program maintenance. In many cases
extremely difficult to recall or decipher how a particulaegé of
code — often written by some other programmer years ago — can
be used. Comments are unreliable, often cryptic and carguand
more often than not rotten. The programmer is much betteif off
aided by techniques and tools that can help in such situation

Over the years, many researchers have tried to addressssuch i
sues. Some have tried to impose and/or tailor a static typeisy
to dynamically typed languages. Despite the technicaltdapt
level of sophistication in many of the proposals, it is farday
that so far static type systems in dynamically typed langadmave
enjoyed only limited success in practice. It seems that Bimgpa
static type discipline on a language which was originallgigeed
without one in mind is a Sisyphean task. Other researchems ha
taken a more low-profile approach and have built useful aee su
cessful type inference tools for different programmingglaage
paradigms. Among these, we mention soft typing systemsdia]
the DrScheme [8] development environment for Scheme, the Ci
Prolog system [9], and systems developed in the context of Co
straint Logic Programming languages [7] which infer typesié-
tect errors and aid the programmer in debugging.

Unfortunately, the technology developed in the contexhebe
systems is often very tightly coupled to the operational asins
and characteristics of the language and/or environmenaaisdch
not generally applicable. However, ideas in them provideigla
inspiration for our work. In particular, from the work on sbtfping
systems we adopt the idea that the type system should nat reje
programs and from the work on (constraint) logic prograngmin
languages we get inspiration from the work on how to syn#eesi
the call-success semantics of a program. Still, our worloigedn
the context of a functional language where the basic omerasi
pattern matching and information only flows in one direction

More specifically, in this paper we present a method to obtain
a natural typing of each function in a functional program ethis
both simple and powerful. Our method is simple because we ad-
dress the type inference problem directly using consttaased
type inference techniques and without imposing any regiris on
function uses which are error-free in the operational seiceanf
the language. Our method is also powerful since it is contiposil,
scalable, and is able to automatically infer accurate tjge®cur-
sive, higher-order, dynamically typed functional progsanithout
requiring any type information or guidance by the user.



Our contributions

¢ We introduce the notion ofuccess typingto the functional
world, a natural description of functions’ behavior in a dym
ically typed functional language based on pattern matching

¢ We give a formalization of success typings and describela sca
able constraint-based algorithm to obtain and refine them.

e We compare success typings to typings derived by traditiona
static type systems.

¢ Using success typings we have developed an optional saft typ

system for Erlang that can detect definite type clashes and

provide automatic documentation for large programs.

2. Our Domain and Closely Related Work

Erlang is a strict, dynamically typed functional programmian-
guage that comes with built-in support for message-passing
currency, interprocess communication and distributioh e
Erlang/OTP (Open Telecom Platform) system from Ericssatsis
standard implementation.

It is important to point out that although Erlang is dynantiica
typed, it istype safe Currently, with very few exceptions where
the compiler performs a rather unsophisticated functamal type
inference and safely unboxes values, all values are tagijedheir
type during runtime. This in turn makes it possible to cheok t

solve constraints of the form = (3. Subtyping systems are strictly

more general than type systems built on Hindley-Milner tiypfer-

ence since all types expressed in Hindley-Milner type sgstean

be expressed in subtyping systems, though the conversetisiao
Because of the way Erlang programs are written, a type system

for Erlang needs to be based on (unrestricted) subtypingeXanm-

ple, consider the following Erlang function from the Erla@gP

standard library modulpg that manages process groups.

send(Pg, Mess) when is_atom(Pg) ->
global:send(Pg, {send, self(), Mess});
send(Pg, Mess) when is_pid(Pg) ->
Pg ! {send, self(), Mess}.

This is a function with two argumentBg andMess, consisting of
two guarded clauses. The first clause handles the case wékg th
argument is an atom; the second clause wieis a process identi-
fier (an Erlang pid). WheRg is an atom, it denotes a globally reg-
istered process and the library functighobal:send/2 is used.
When it is a pid, the Erlang built-in send function (denoted is
used to send the message (a 3-tuple).

A constructor-based type system such as Hindley-Milner can
not type this function. First there needs to be some apmtapri
declaration that describes the type of the first argumenhisrtype
declaration the primitive types ‘atom’ and ‘pid’ need to beapped

type of each value before its use as an argument to a functionin appropriate constructors which play the role of runtitags.

or a built-in operation and throw an exception if a type clash
occurs. In addition to such runtime type tests, the progranuan
make explicit control flow choices based on types by usintepat
matching and explicit type tests in guards.

Among functional languages, Erlang is probably the one with
most commercial applications. The Erlang/OTP system is ac-
tively used to write large-scale, fault-tolerant softwapplications
mainly in the telecommunications industry. Many of thespliap
cations have been developed over long time periods, typibsl
large groups of programmers who do not necessarily all viollo
some specific style of programming. In particular, many prots
are written without adhering to any (implicit) static typiedpline.
Nevertheless, a large portion of them never goes wrong.

Moreover, these constructors need to be exclusive; thayotdre
used in any other type. The function would then need to bettenr
to explicitly match on these constructors instead of penfog
type checks using guards. In short, imposing a Hindley-ftiln
type system on Erlang requires modifications to existingecand
amounts to starting to program in a different language,mBtiang
as we currently know it. For a language with existing appiores
often consisting of more than one million lines of code, thisot
a viable option.

In this situation, subtyping comes to the rescue. If we adopt
subtyping system that allows for disjoint union types we siamply
describe the first argument as a union containing atoms atsd pi
This indicates that the function can be called with any Spbtyf

Regardless of programming language and style, maintaining thjs union, i.e., with any specific atom or pid. In such a schgtine

large applications, correcting (even simple) bugs, andetstdnd-

second argument can then have the type which denotes thé set o

ing code written years ago by someone else is not an easy taskg|| terms.

Previously, we have developed the Dialyzer [10},iat-like tool
that extracts some limited form of implicit type informatiérom
Erlang code in order to statically find obvious type clashes re-
port them to the user in the form of warnings. Our experiemdds
Dialyzer and its current uses show that it is possible toriuei-
ous forms of non-trivial type information for Erlang prograin a
completely automatic and scalable way.

Inspired by the success of Dialyzer in the Erlang user commu-
nity, our next goal was to design a tool that can automatiaatt
cover the implicit type information in Erlang programs anxgblec-
itly annotate them with it. For such a tool to be successtuls i
imperative that its underlying type system is tailored t®ehkisting
language and its current practice. Also, that the typeshvhie in-
ferred are understandable to programmers. This in turniés phat
the type system — at least initially — has to favor simpliatyer
expressive power.

There has been much work in inferring type information in the
context of dynamically typed languages. Next, we reviewpae
of this work which is closely related to Erlang.

2.1 Subtyping systems and the need for subtyping in Erlang

Type systems based on subtyping try to solve sets of contstraii
the forma C 3 (wherea and 3 represent types) while unification
based type systems in the tradition of Hindley and Milnerttry

The idea of adopting a subtyping system for inferring types i
dynamically typed languages is not new, not even in the gbnte
of Erlang. In 1997, Marlow and Wadler [11] proposed a sulbstgpi
system partly based on the work of Aiken and Wimmers [1]. Thei
approach generates a system of constraints from the codiemd
tries to prove that the system is solvable by reducing itl itntein
be showed to be consistent. Marlow and Wadler successfplly a
plied their type system to a portion of the Erlang/OTP stathdia
brary of that time. However, to their credit, they also repdrsome
problems with their approach. For example, pattern matcbom-
pilation causes their type system to infer wrong types facfions
in certain cases where the code includes the “don’t cardépat
(represented by."). The following implementation of the Boolean
and function is taken from their paper [11, Section 9.3].

and(true, true) -> true;
and(false, _) -> false;
and(_, false) -> false.

Let us denote the set of all Erlang termsdyy (). Also, letbool()
denote the uniorrue U false. Hindley-Milner type inference
will derive the type (bool(), bool()) — bool() for this function.
This type is correct given the definition ®bol() and under the
constraint that these atoms are not part of any other type.



Notice however that there is nothing in this code fragmeat th
constrains the domain of this function &oo!l(). Indeed, in Erlang
the function calland (false,42) evaluates tcfalse. In fact, no
call to this function with the atonfalse in either the first or
the second argument will ever raise an exception duringmant
independently of what type the value of its other argumest ha

Contrary to the operational semantics of Erlang prograhes, t
type inference algorithm of Marlow and Wadler, which allosusb-
typing, infers the type = (any(), false) — bool() for this func-
tion. Looking at the code, the first clause alone provideBcient
evidence that this type is a bit counterintuitive. More imtpatly,
the inferred type is unexpected in the sense that the typeeder
by Hindley-Milner is not an instance af. Besides oddities such
as this, there are additional open issues of more practadaire
in the Marlow and Wadler proposal that were never adequaidly
dressed. For example, the type system often demands tiygapre
are rewritten to explicitly handle failing pattern matahicases and
to contain type definitions. As a result, although their jpsad has
significantly raised the level of type awareness among Brian-
grammers, their actual type system never caught on in tren&rl
community.

2.2 Soft type systems

Systems based on soft typing were first proposed by Carttvrigh
and Fagan [6]. The aim of soft typing is to type check dynattjica
typed functional languages, report possible type clagirebsinsert
dynamic type checks at appropriate places in order to make th
programs well-typed. One important property of a soft tyystem

is that no program is ever rejected by the type checker.

Over the years, several soft type systems have been pro-

posed for different dynamically typed languages, most bigta
for Scheme [13]. We also note the work of Aiken, Wimmers, and

Lakshman [2] who describe a soft type system based on subtyp-

ing. The type system includes intersection, union, and itiomel
types. Conditional types in particular, are introducedetitect the
fact that in case expressions certain clauses can be uatdaand
should not contribute to the type of the case expressionhib t
way, control flowcan affect the inferred types. The type system of
Aiken et al. chooses accuracy over readability; the intetggpes
end up being complex type expressions which include cdnstra
Although in our work we do adopt the idea that case clauseshwhi
are unreachable should not influence the type of case eigmess
we aim for readability and simplicity in the types we infarsiead
of maximum expressive power. As mentioned, our goal is to in-
fer typings that describe the behavior of functions in a wat ts
intuitively clear to Erlang programmers.

In the context of Erlang, a proposal for a soft type system has
been made by Nystrom [12]. Its type inference algorithmasdal
on a dataflow analysis which is guided by optional user arioois

lies on the type system having complete knowledge about @ fun
tion’s intended usage. Thus, the method is not modular. Mane
Nystrom’s system cannot be used for automatically proxgjaioc-
umentation for library modules, which is one of our goals.

2.3 Our Goals

Our main goal is to make uncover the implicit type informatio
in Erlang code and make it explicitly available in prograrBe-
cause of the sizes of typical Erlang applications, the tyferénce
should becompletely automatiand faithfully respect the opera-
tional semantics of the language. Moreover, it should irepus
code rewriteof any kind. The reason for this is simple. Rewriting,
often safety critical, applications consisting of hundrexd thou-
sand lines of code just to satisfy a type inferencer is not@n o
tion which will enjoy much success. However, large softwaipe
plications have to be maintained, and often not by theirioaig
authors. By automatically revealing the type informatibattis al-
ready present, we provide automatic documentation thatealne
together with the program and will not rot. We also think thas$
important to achieve a balance between precision and riiglab
Last but not least, the inferred typings shonkler be wrong

During development, the type information can be used tdyeri
the intentions of programmers and help them discover bugs at
early stage. The type inference should be able to infer redde
typings even when some part of the codent available for
example if some parts have not been written yet. Of coursenwh
the code becomes available the type information can be taken
account and the inferred typings can become more precise.

In order to meet these goals, we build our type inferenceratou
the notion ofsuccess typinghat we define in Section 4.

3. Language and Types
3.1 Programming language

A compact description of a mini-Erlang programming langriég
shown in Figure 1(a). For simplicity we only deal with a suxsfe
Core Erlang [4] here. However, it is easy to extend our aiglys
handle all of Core Erlany.The Core Erlang language constructs
that we omit are thery-catch andreceive expressions, which
can be handled as relatively minor variationsate expressions,
and sequence operators, which can be treatada®xpressions
where the variable is never used.

Most of the language of Figure 1(a) is fairly standard, but we
comment on some issues. Evaluation is strict. Functionsatreur-
ried but explicitly take zero or more input arguments. Theglaage
is higher order: functions can be used as arguments anadheetass
results. Pattern matching is generalized4dee statements. A term
t matches a patterp if the variables inp can be bound so that

The main idea of the type system is that the user should supply represents a term syntactically identicakte\ clause is chosen if

annotations at all interface points. Then the dataflow aishyill
report inconsistencies in these annotations and will waougall
program points where type clashes can possibly occur. Beaafu
the inherently dynamically-typed programming style piced by
many Erlang programmers, the warnings are plentiful, aapgdf
no type annotations are provided.

We take the completely opposite approach. To eliminateenois
and all false warnings, we optimistically assume that anyres-
sion will evaluate successfully if we cannot prove that itl weé-
sult in some type clash. Besides differences in the philogad
the approach, there are also technical differences. Fangea
since Nystrom’s dataflow analysis only propagates infdionegor-
ward in the control flow, the only type information that it cem
fer at function entry points is information about how thedtion
is currently used. This is useful information to derive, bute-

the patterns in its head match and the constraints in thedgarar
satisfied. Variables in patterns of a clause head are freshytthe
use of equality constraints in clause guards they can be rtade
refer to bound variables. If a clause does not contain anjicixp
guards, its Core Erlang translation hasie as its guard. Guards
are restricted to be conjunctions of simple constraintsasiables
and constants. Core Erlang allows for some other guard mamst
but the type information in these can be expressed in thabth)i
more restricted form.

We show an example of Erlang to mini-Erlang translation. The
functionand from Section 2.1 has the following translation:

1Core Erlang is the intermediate language that all Erlangamos are
translated to by the Erlang/OTP compiler.



ven) ||

.y Tn = fnine |

X | cleiy..., en) | erez,...
let z =e; ines |
letrec 1 = fi,..

case e of (p1 — b1);...; (pn — bn) end
S = fun(z1,...,%n) — € T
D = p vwheng
pou= x| el pn) 1%
g = giandgs | 1 = z2 | true | is_atom(z) | P
is_integer(x) | ... C

(a) The mini-Erlang programming language

= none() | any() | V | e(Th,...,T,) |
Ti,....,T,) =T | 'UT, | T whenC | P
a, B,

integer() | float() | atom() | pid() | 42 | foo | ...
(Tl QTQ) |(C1/\/\Cn) | (C1\/...\/Cn)
(b) Type expressions

Figure 1. A description of the programming language and type expoassi

let And = fun(X, Y) ->
case <X, Y> of
<true, true> when true -> true;
<false, _> when true -> false;
<_, false> when true -> false;
end

where the<...> denotes the product constructor that exists in
Core Erlang but not in Erlang.

3.2 Types

Types represent sets of values and are denoted by type sigmes

If a valuew is in the set represented by a typewe say that the
value has this type and write € 7. Subtyping is expressed as set
inclusion and denoted as C 7.

Figure 1(b) shows the syntax of type expressions. Following
the notation of theedoc? tool, types are written with parentheses
to distinguish them from Erlang atoms. Primitive types dre t
expected ones in Erlang, such @seger(), float(), atom(), and
pid() (denoting process identifiers). There is a largest type,(),
representing all values and a smallest typene(), representing
the empty set. Type variables are represented by the Greeksle
«, 8 and 7. We use the notatior as a shorthand fotiy, ..., an
and writev € & wheneven; € a;,1 < i < n. Structured types,
denotedc(71,...,Tn) in the figure, are tuples and cons cells.
To simplify the handling of pattern matching, we also coesid
products as structured terms. Also, to gain better pratisiaur
analysis, we allow for singleton types such as the intdgear the
atomfoo. This does not cause any extra complexity since our type
system is based on subtyping anyway.

Union types are expressed with thesymbol. We allow for any
disjoint union, including unions of singleton types suchlas 2.
Since these unions can become large or even infinite, in @lysia
we impose a fixed size limit after which the union is widened to
supertype. For example, if the union limit is three the urtigme
1 U 2 U 3 U4 will be widened tointeger().

Since functions are not curried, function types explicéthow
the number of arguments. For example, a function with twai-arg
ments is represented I§§7, 7>) — T3. During type inference it is
useful to bind constraints to a function type and achieverant
of bounded quantification. For this, we use constrainedstgb¢he
form T when C, whereC'is a set consisting of nested conjunctions
(n) and disjunctions\() of subtype constraints. Constrained types
should be interpreted as:

Sol(T)
none()

if Sol is a solution taC'

T when C == { if C has no solution

Sol is a mapping from type expressions and type variables to
concrete types. Concrete types include all type expressitith the
exception of constrained types and type variables. Ourt@ned

2 A documentation tool for Erlang in the spirit givadoc.

types are similar to conditional types [2] but where we ctiadithe
type over a constraint set, conditional types use inteimetypes

as in the following:
_ when(BNT) £
a?(Bnr) = { when(BNT)=10

While the ability to handle conditional types constitutgsoasible
extension of our work, we do not include such types. In thekvedr
Aiken and Wimmers [2] conditional types are used to capthee t
control flow in case statements, but we use a different approa
This is described in more detail in Section 5.

none()

4. Success Typings
4.1 Basicidea

Assume that a functionf is described by the type signature
(@) — (B in some system of types. In a statically typed language,
the standard interpretation of this signature is thavided that

P € &, the function applicatiorf (p) can evaluate to a valuee 3
without type errors (which are expressible in this type eyst In
other wordsg is the largest type (if the type signature iprnci-

pal typg for which the type system can prove type safety without
dynamic type tests. Because of the requiremeptdgetype safety
statically, sometimes the domain of the function is unnemely
restricted to a smaller set of values than the function caa@t@nd
evaluate without type errors during runtime. Also, note thale-
pends ory, so if @ has been constrained expresses the restricted
range of the function under the restricted type domain.

Unlike statically typed languages, we are not concernetl wit
proving type safety — this is already provided by the undedy
implementation. Also, we will not try to use the inferred &gpofor
removing dynamic type tests — at least not in this work. We are
instead interested in capturing the biggest set of termsvfoch
we can be sure that type clashes will definitely occur. Imstafa
keeping track of this set, we will design an algorithm thdeia
its complement, a function’success typingA success typing is
a type signature that over-approximates the set of typewlicch
the function can evaluate to a value. The domain of the sigeat
includes all possible values that the function could acesppa-
rameters, and its range includes all possible return vdhrethis
domain.

DEFINITION 1 (Success TypingsA success typing of a function
f is a type signature(a) — 3, such that whenever an application
f(p) reduces to a value, thenv € g andp € a.

Note that there is a fundamental difference between sutgess
ings and type signatures of a static type system. The diféerés
that success typings capture all possible intended usedwfca
tion and then some. In particular, success typings captomees
uses that might result in a type clash and some type-corsest u
which never evaluate to a value (either due to non-ternonatr



because of throwing an exception). However weak this migéirs
to aficionados of static typing, success typings have thpertp
that they capture the fact that if the function is used in a waly
allowed by its success typing (e.g., by applying the funrctigth

parameterg ¢ &) this application willdefinitelyfail. This is pre-
cisely the property that a defect detection tool which néeees

wolf” needs. Also, success typings can be used for autorpatic
gram documentation because they will never fail to captoraes
possible — no matter how unintended — use of a function.

4.2 Examples
Let us revisit the Booleaand function we saw in Section 2.1.

and(true, true) -> true;
and(false, _) -> false;
and(_, false) -> false.

Assume thabool() = true U false.
A static type system based on Hindley-Milner constructasdd
type inference has no choice but to derive the typing

(bool (), bool()) — bool().

Notice that, at least in the eyes of programmers used to antlyna
ically typed language, this typing unnecessarily resritie do-
main of this function. Indeed, there is nothing that can {ibgs
“go wrong” here if the function is called as e4nd (42,false).
Since some programmers value freedom of expression mone tha
obtaining type safety guarantees at compile time, it mightk-
tremely difficult to convince them to adopt such a system.

A static type system based on subtyping, such as the one by

Marlow and Wadler, might derive the typing
(any(),false) — bool()

for this function. Notice that although counter-intuititbis typing

is correct from a static type system’s point of view. Thisiigp
allows complete freedom in the value of the first argumentipliex
that the second argument is the vali:d se. Once again, what's
happening here is that callers of this function are cormstichito a
smaller domain than what the function is prepared to acGdps

is a general phenomenon. In some way or another, all staie ty
systems ar@essimistic

handles floats as well as integers, needs to be instantiated-f
tegers. Our type inferencer has hard-coded knowledge afibut
Erlang built-ins, represented in a restricted form of deleen
types. Finally, for the following function

add2(X) when is_atom(X) -> X + 2.

our type inferencing algorithm will detect a type violatjamhich
is expressed by assigning a typing sucli@asy()) — none() to it.
In such cases, we say that no success typing can be inferrétefo
function.

Afinal note Note that since the type signatuieny()) — any()

is a success typing, the analysis is free to use this signatura|f
functions which are unknown; because e.g. their code isvait-a
able. Besides making the analysis modular, it allows forestype
clashes to be discovered early in the development process, e
during rapid prototyping and random experimentation. Tz
cal benefits of this property should not be dismissed or waudier
mated.

5. Inferring Success Typings

The algorithm for inferring success typings has two phages.
the first, the code is traversed and constraints are gedenateg
derivation rules. In the second, we try to find a solution ®dbn-
straints and this solution constitutes the success typileglescribe
the process in more detail by explaining constraint gef@réSec-
tion 5.1), constraint solving (Section 5.2), and finally &hgorithm
that ties them together (Section 5.3).

5.1 Constraint generation

Figure 2 shows the rules for constraint generation. In thesru

A represents an environment with bindings of variables of the
form {...,z — 7,...} and C represents nested conjunctions
and disjunctions of subtype constraints in the same fornm disei
constrained types in Section 3.2:

C:ZZ(T1QT2) |(Cl/\.../\C7L) |(Cl\/\/0n)

We will use equality constraintsl;
(Ty CT) A (T CT1). The judgmentd - e :

T>, as shorthands for
7, C should be

Success typings aim to avoid such situations. To do so, they read as “given the environmedtthe expression has typeSol(r)

adopt aroptimisticattitude and approximate types in the opposite
direction. For example, a success typing for this function i

(any(), any()) — any()

which trivially satisfies the condition of Definition 1. Naally, we
are interested in inferring success typings with more tyfjerma-
tion than what the typing shown above contains. Indeed ubesss
typing that the algorithm we present in the next section inflr is

(any(), any()) — bool().

It is easy to see that this typing describes all intended obése
and function.

In the example above, the success typing we infer is quite
weak in the sense that it will not catch any type error in calls
to the and function. For example, it cannot capture that the call
and (42, gazonk) will throw a runtime exception. Notice however
that itwill catch type clashes in matching a value other thate or
false against the result of this function. As we will see next, éher
are many situations where the inferred success typingsetadet!
and precisely capture the intended uses of functions. Fample,
the success typing inferred for the following function

add1(X) when is_integer(X) -> X + 1.

is (integer()) — integer(). Note that to derive this typing the
built-in function for addition, which in Erlang is overload and

wheneverSol is a solution to the constraints @f”.

The VAR, STRUCT and LET rules are standard. Constants can
be typed by the S8RucTrule by viewing primitive types as nullary
constructors. The Bs rule binds the constraints from the function
body to its type, but exports no constraints. In this way et
of a function can be influenced by outer constraints on the fre
variables, but the constraints from the function body camffect
the types of the free variables outside the function body.

A letrec statement binds a number of function declarations to
recursion variablesThe scope of the recursion variables includes
both the function declarations and the body of therec state-
ment. The IETRECrule assigns fresh type variables to the recur-
sion variables and then adds equality constraints on thetim
types and the types of the recursion variables.

The BT rule slightly abuses notation. As described in Sec-
tion 3.1 the guards in a pattern can be expressed as a caojunct
of simple type constraints on variables suchiasinteger(x),
is_atom(z), etc. and by using equality constraints on variables.
The translation of these into constraints on types and tgpiables
is straightforward and omitted for brevity. The rule statest the
guard must evaluate tarue under the translated constraints which
is equivalent to stating that the constraints must haveudisal

In case expressions, it is enough that one clause can be taken
in order for the whole expression to have a success typinig.i¥h
captured by introducing a disjunction of constraints in @wsE
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whereC; = (3= 6:) A (1i = ;) ACP ACP)

Figure 2. Derivation rules

rule. Each disjunct contains the constraints that need satisfied

for the corresponding clause to contribute to the succqasgy
Intuitively, if a clause is taken at runtime, the type of eaoming
argument and the corresponding pattern must be equal, &d th
constraints from the clause guard must be satisfied. The dfpe
the whole case expression equals the type of the clause body.
Note that by introducing a disjunction we separate the caimgs
from different clauses. At the time we solve the constraivéscan
choose how to interpret the disjunctions, and thus choaséettel

of abstraction atase expressions. We elaborate more on this point
in Section 5.2.

Finally, note that our &P rule is quite unorthodox. In tradi-
tional subtyping systems the type of an application is doanos
bounded by the type of the function’s range. This ensures tha
all possible return values are handled, possibly by insgntiar-
rowers to make it a smaller type. As mentioned, we are not con-
cerned with type safety, but with avoiding false alarms. Waré-
fore let the range of the function type constitute an uppembo
of the type of the application in order to avoid unnecesganiler-
approximations. Intuitively, if an application succeeks teturned
value must be a subtype of the range of the function typeelfythe
of an application is later constrained to be a smaller typecan
optimistically assume that this is true since it is necesgareval-
uation and also possible based on the available informaiiaut
the function.

5.2 Constraint solving

Disjunctions can only be introduced by th@ €k rule, where each
disjunct corresponds to a clause in these expression. A disjunc-
tive normal form of constraints is a constraint set consistf a

top-level disjunction where all the parts consist of coojions.

If the constraints would be transformed into disjunctivernal

form, each conjunction would correspond to a program traaeh

a transformation would cause the number of constraintsptodgr

in the presence of severakse expressions. To avoid this explo-

sion, we keep the constraints in the generated form, keepiag

one to one correspondence between disjunctions and casesla
Let Sol be a mapping from type expressions and type variables

to concrete types. Concrete types include all type expessiith

the exception of constraints and type variables. We say3bhis

a solution to a constraint sét, and writeSol = C, if:

Sol =Ty CT> <= none() C Sol(T1) C Sol(Tz)
Sol 'I C1 NCy < Sol ': C1, Sol ': Co

Soly 01,5012 027
Sol = C1V G2 = { Sol :':SOh LJ SolL:
where Sol; LI Sol> denotes the point-wise least upper bound of
the solutions. In words: a solution satisfies a subtype cain$t
if the mapping satisfies the subtype constraint and neithéso
constituents isione(). A solution of a conjunction of constraints
must satisfy all conjunctive parts and a solution to a disjiom of
constraints is the point-wise least upper bound of the swistof
all disjuncts. Furthermore, if a constraint set has no gmiut can
be assigned the solutiah which represents a solution that maps
all type expressions taone(). Note that L LI Sol = Sol. So, as
long as the set of constraints from one clause éage expression
has a solution other thah, the constraints from the wholese
expression also have a solution other than
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solve(Sol, Disj) T

solve_conj(Ll,_)
solve_conj(Sol,Cy A
solve_conj(Sol, C)
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solve(Sol, C)

L] Sol" when Sol’ # 0
when Sol’ =

solve_conj(solve(Sol,C1),Co A ... A

when Sol(a) C Sol(f)

when T = Sol(a) M Sol(B) # none()
when T = Sol(a) M Sol(B) = none()
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l j)) # Sol

when solve_conj(solve(Sol, Conj
when Sol’ = solve_conj(solve(Sol,

where {

Con

Sol' = {S|S € PS,S # 1}

0 PS = {solve(Sol,C)|C € Disj}

Cn)

Figure 3. Algorithm for solving constraints

5.3 Algorithm
We have described the two phases of the inference algorkibim,

there are some issues that need to be described in more. detail

While applying the derivation rules of Figure 2 we store s@de
ditional information. For example, when applying thegvrule, we
store the constraints corresponding to the function foy easess.
Similarly, in letrec expressions, the binding between recursion
variables and function types is recorded so that recursivetions
receive a special treatment.

For efficiency reasons, the analysis first constructs thbaglo
function call graph, which describes the dependencies dmtw
functions. The call graph is a directed graph with functiassodes
and an edgéf, g) wheneverf calls g. Mutually dependent func-
tions form cycles, and the call graph is condensed to itsigtyo
connected components (SCCs). In this way, we end up with a di-
rected acyclic graph (DAG). This DAG is sorted topologigahd
the analysis infers success typings for the functions byyaima
its nodes (i.e., the SCCs of the function call graph) in admottp
fashion.

The constraint solver is written in Erlang. Type constrsiate
generated and solved at the granularity of a single functmord-
ing to the algorithm in Figure 3. The basic idea is to itergisolve
all constraints in a conjunction until either a fixpoint isched or
the algorithm encounters some type clash and fails by assjdine
type none() to a type expression. The starting point few! is a
mapping where all type expressions are mappethig), with the
exception for the types of all recursion variables that aepped
to none(). The following example shows how this gives us a pos-
sibility to handle self-recursive calls.

Consider the following implementation of a function that re
moves all elements in odd-numbered positions from a list.

letrec DropOdd =
fun(L) ->
case L of
[] when true -> [];
[.] when true -> [];
[.,HIT] when true -> [H|Drop0dd(T)];
end
in

Assume that the type of the recursion variabtep0dd has the
type 7p, and the other type variables are subscripted with their
original variable names. We will not give the complete datitvn of

the constraints, but we will concentrate on the recursiytiegtion

in the third clause.

A+ Drop0dd(T) : 3, C’l

The function body is acase expression, so by the ASE rule it
will yield a disjunction of the constraints from the threeucses.
In the first iteration of the constraint solving algorithnettype of
the recursion variablerop0dd is 7p +— none(). This will make
the constraintp = (a1) — « fail. Let the solutions for theth
disjunction be denoted byol;, the solution for the whole case
statement beSol, and the output of the case statementrbeWe
then have

Soly = {1 — [1,7.— [1}

Soly = {11, — list(),7c — [1}
SOlg =1
— Sol = Sol1 U Sols L Sols

= {7 list(), 7e — [1}

where we usedist() as a shorthand for the typest(any()). 3
The recursion variable then gets assigned the current tiypieeo
function.

D — (1) — T = (list()) — []

The solution algorithm iterates once again since the typigiasd
to 7p has changed. This time the constraints from the recursive
application in the third clause have a solution.

{ Jr

so the solution of the constraint disjunction is

™ = (1) —a
AB C )
/\(TT - a1)

7o — (list()) — [1, a1 > list(),
a— [1,8— [1,7r — lst()}

Soly = {1 — [1,7.— [1}

Soly = {11 > list(),7e — [1}

Solz = {11 +— list(), 7c — list()}
= Sol = {7 — list(), e — list()}

3The list type is the only recursive type in the language apdiameterized

by its contents such thétst(T") = cons(T,list(T)) U nil. However, the
parametefl” is some concrete type. For example, if nothing is known about
the contents of some list, this list is representedias(any()). If it is
subsequently determined that the elements of this list imistubtypes of
integers, this list is representediast (integer()).



and the new type of the function becomes
0 — (list()) — list()

which makes the solution algorithm reach a fixpoint, so weehav
found the success typing for the function. The iterative asolv-

ing constraints for self-recursive functions easily egtetn SCCs
of mutually dependent functions by iterating over the fiord of
each SCC until a fixpoint is reached.

By induction on the structure of the constraints no outplutsm
can be more general than the input solutian.

PrRoOPOSITION2 (Termination).Given an initial solution where
all variables are mapped taeny(), the algorithm terminates and
produces a solution to the set of constraints.

PrROOF The only place the algorithm loops is when faced with a
conjunction of constraints, where it loops until a fixpomtéached.

Note that in the example above, we reach a fixpoint since the By proposition 1 none of the partial solutions in the conjiorccan
recursive typelist() is collapsed at the recursive call. The reason he more general than the input solution. The k-depth atiirac
why we treat lists in a special way is that it is the by far most guarantees that a solution cannot become more preciseriitelifi

common recursive type in Erlang. However, other recursipes

Thus, a fixpoint must eventually be reached, and the algorith

such as for example trees are also common. The typical way to terminates.o

build these structures in Erlang is to use nested tuplessiGen
the functiontree_to_list which transforms a binary tree to a list
using inorder traversal.

tree_to_list(nil) ->
[1;

tree_to_list({Left, Data, Right}) ->
tree_to_list(Left) ++ [Datal|tree_to_list(Right)].

The type of such a tree could succinctly be expressed inreithe
the following ways

-type tree() = nil U {tree(), any(), tree()}.
-type tree(X) = nil U {tree(X), X, tree(X)}.

but since currently there is no mechanism to declare udarede
types, recursive or otherwise, uses of such recursive yiags can-
not be recognized. With the algorithm we have describedngur
type inference, constraint solving would expand this typaefi-
nitely. To ensure termination we use depth-k abstractionefi\the
depth of a compound term grows larger than a lilnive abstract
that subterm to the typeny(). This, together with the union limit
described in Section 3.2, gives us a way to limit the size pé$yso
that they cannot grow indefinitel§.

DEFINITION 2. A solutionSol is more general than a solutiasbl’
iff for some type variable we haveSol’(t) C Sol(7).

Note that the solution for failing constraintsis not more general
than any other solution since all variables are mappetbtee().

PropPosITION1 (Monotonicity). In all steps in the algorithm, the
output solution, if any, cannot be more general than the igey
input solution.

PrROOF Note that we can view the constraints as a tree where the

leaves are simple subtype constraints and the inner nodesther
conjunctions or disjunctions. Assume that the output smiurom
a child node cannot become more general than the input goluti
to the child node. At the leaves, the right hand side of theygmgb
constraint does not change, and the left hand side can ootz
more specific. Thus the assumption holds at the base case.

For the inner nodes, we have two cases:

1. The solution of a conjunction is a fixpoint of all partialiso
tions. By the assumption, the partial solutions cannot beemo
general than the input solution. So if a fixpoint is reachéd, i
cannot be more general than the input solution.

2. Fordisjunctions the output solution is the point-wissstaupper
bound of all partial solution. By the assumption, the péartia

solutions cannot be more general than the input solution, so

neither can the least upper bound.

4The depth of the recursiviést type is defined based on the content of the
list rather than on its length. For example, the tyjae(bool()) has depth 2.

5.4 Some examples of inferred success typings

We show examples of success typings on some Erlang code. We do

S0, to discuss pros and cons of the type expressions we tyrren
employ. In all examples, we show the success typing as andgrla
comment directly above the function’s code. With the exicepof
using | rather thany, this is precisely how our analysis annotates
programs. First, let us consider the function

Wh (integer() U list()) — integer() U atom()
foo(X) when is_integer(X) -> X + 1.
foo(X) -> list_to_atom(X).

Its success typing tells us thédo can be called with both integers
and lists and will return either an integer or an atom. No& the
function will indeed fail if called with anything outside etstated
domain. This is obvious in the first clause since it is guandet
an explicit type test. In the second clause, the call to thk-iou
functionlist_to_atom will fail if its argument is not a list.

Note that the success typings we currently maintain, sutheas
above, do not keep track of dependencies between the ingthan
output type. In other words, at call sitesfafo we cannot say that
the input typeinteger () will result in aninteger() as output. This
could be captured by conditional types and intersectiopgyjg].
A typing of this function would look something along the linef

Vo.(a) — (integer()?(a N integer()))
U (atom()? (N list()))
where{«a C integer() U list()}

This is undeniably a more descriptive type since it expreshe
correspondence between input and output types, but itéscals-
siderably less readable. In short, we currently sacrifiggessive-
ness for simplicity and readability.

The next example includes a function call to the functdad1
which was defined in Section 4.2. Recall thati1 has the success
typing (integer()) — integer().

%h (integer()) — okl

bar(X) ->
case add1(X) of
42 -> okil;
gazonk -> ok2
end.

The success typing of this function reflects that the secas# ¢
clause can never match since the range of the funetidi only
includes integers. Finally, consider the following fulctiwhich
uses the functioioo given above.

%% (integer()) — okl U ok2
baz(X) when is_integer(X) ->
case foo(X) of

42 -> okl;
gazonk -> ok2
end.



Atype signature fofoo that kept track of input-output type depen-
dencies would make it possible to detect that the secondelasu
unreachable. Note that even though the type signature e igf
an over-approximation, it is a correct success typing.

6. Practical Aspects of Success Typings

Our definition of success typings is a solid framework foratlibs

ing succinctly the most general way that functions can bd.ueis
description is ‘most general’ in the sense that it allowsousfison
about open programs, i.e., programs for which we do not hawe ¢
plete information about all calls to their functions. We dalready
argued why, in the context of a dynamically typed languagghsu
as Erlang, this is the appropriate thing to do from a pratsitzand-
point. However, sometimes the success typings are so dénara
function’sintendeduse is lost in abstraction. For example, consider
the following function which naively calculates the leimgff a list.

%h (list()) — integer()
length_1([1) -> 0;
length 1([_IT])-> 1 + length_1(T).

The success typing of this function, shown above its dedinjti
captures the intention of the programmer quite precisetyvéver,

if we decide to do a simple program transformation and maise th
function tail-recursive, which is a common practice in ftiocal
languages, we end up with the following two functions.

%h (list()) — any()
length 2(List) -> length_3(List, 0).

W (list(), any()) — any()
length 3([], N) -> N;
length 3([_IT], N) -> length 3(T, N+1).

At first, it might seem surprising that the return typelehgth_3

is now any() rather thaninteger(). One might even jump to the
conclusion that success typings are unnecessarily geaedl
as such, quite useless. However, notice that this success ty
ing succinctly captures all possible applications Iafngth 3
which will not result in a type error. Among them is the call
length 3([a,b,c], 3.14) which will returné6. 14, and the call
length 3([], gazonk) which will return gazonk. One might
argue this is not what the programmer had in mind when the-func
tion was written, but as explained before our intention isi¢ger

try to outsmart the programmer. Still, we also find the sitrat
sub-optimal and we will improve on it as explained below.

6.1 Refined success typings

Assume that the two calls tbength_3 in the example above are
the only calls to this function. It is then easy to see thaicei
the self-recursive loop is started with the integein the second
argument, the second argument will be a subtyp@tdger() in all
subsequent self-recursive calls. Since the loop can tatmionly
by entering the leaf clause, the type fimustbe integer() for
the function to return a value. Also, the return type of thection
cannot be anything buinteger(). By reasoning about the input
types oflength_3 this way, we can say something more refined
about the programmer’s intentions. In order to capturelthésof
reasoning, we introduce the notionrefined success typings

DEeFINITION 3 (Refined Success Typingd)et f be a function
with success typinga) — 3. A refined success typing fgris a
typing of the form(a’) — 3’ such that

1.a&’ Caandp C 3, and
2. forall p € &' for which the applicatiory (p) reduces to a value,

fp) ep.

In other words, a refined success typing is a success typidgrun
some additional constraints. More specifically, a refineccess
typing is a success typing where the domain is restrictednoes
subtype of the success typing’s domain. Since the set oflgess
inputs to the function gets restricted, the set of its pdesitputs
may also get restricted.

We recapitulate: the success typing of a function captinessit
of all its possible useBy reducing its domain as much as possible
by taking information from all call sites into account, wengafer
arestricted set of usewhich reflects how the function is actually
used in a program.

6.2 Module system to the rescue

In Erlang, unlike in e.g. Prolog, the module system canndbyse
passed; all functions have to be part of some module. This pro
vides a way of encapsulating and protecting functions frobi-a
trary uses. An Erlang module islatrec-style declaration with
some additional information. Part of this information i thnod-
ule’s interface: a declaration of functions that erported The ex-
ported functions can be called from any other module, buhtre
exported ones can only be called from inside the module. Kexye
since Erlang has higher order functions, non-exportedtioms can
be exposed to the outer world as higher order functions ificitme
of closures. If a closure is returned by an exported funaidifit is
passed as an argument to a function in another module, waaty t
the function represented by the closeseapeshe module. All ex-
ported functions trivially escape since they are exposédeauter
world through the module’s interface. Functions that doesmape
are callednternal (or module-loca) functions. Escaping functions
are identified using the escape analysis of Carlsson et]al. [5

In Figure 4 the functions from the example in the beginning
of this section are declared in a module, caligdlist utils.
This module has one escaping functidength_2, and one inter-
nal function,length_3. Sincelength 2 escapes, we can make
no assumptions about what types it is called with other thaatw
is reflected by its success typing. However, notice thatesine
know all call sites for the internal functiobength_3, we have
the opportunity to refine its domain. By applying the aldurit
of Section 5 we find that the success typing Iagfngth_3 is
(list(), any()) — any(). This tells us that the first argument in
all calls must be a subtype &%t () but the second argument can be
anything. The partial solutions in the constraint solvitigge cor-
respond to type environments of clauses in the original namg
For example, we can find the partial solution that correspdnd
the second clause akngth_3, and from this we find the types of
the parameters. The first typelist() because of the function call
itself, and the second type igumber() since it is the result of an
addition. From the call inength_2 we once again findist() for
the first argument, and since the second argument is a constan
find the singleton typ®. Since the refined domain of a function
must include all possible calls, we take the union of the syae
the call sites. We can now conclude that the domaibeafgth_3
can be refined tdist() U list() = list() in the first argument, and
0 U number() = number() in the second argument. This infor-
mation would indeed make it possible to refine the successgyp
but as we will see below, it can be refined even more.

6.3 Refining success typings using dataflow analysis

As described in Section 5.3, the inference of success tgpirogks
in a bottom-up fashion over the function call graph, propaga
information from callees to callers. Since we are now irgere in
the information flow from caller to callee, it is suitable teeuan
analysis that propagates information forward in the cdrftoov.
We will not describe this analysis in detail, but we will ty give
an intuition of how it works.



-module(my_list_utils).
-export([length 2/1]).

length 2(List) -> length_3(List, 0).

length 3([], N) -> N;
length 3([_|T], N) -> length 3(T, N+1).

Figure 4. The moduleny_list_utils

Recall that a success typing states that for a call to sucteed
arguments must be in the expressed domain or the call wilsur
fail. The dataflow analysis uses this fact to exclude calis wtill
surely fail from the analysis. For example, assume a functi®
with success typing@integer()) — integer(), and we find a call

.., X = foo(Y),

somewhere in the program. If the type vfis atom() we know

for sure that this call will fail and we can stop the analydishis
program trace. If the type afis 1U2U atom(), then we know that
after the call taf oo, the type ofy must bel U 2 or the call would
have failed. This is also the type that gets propagated tertry
point of foo since we already know that a call witltom () will
surely fail. If foo has already been analyzed for this input type, we
get the corresponding return type which is then assigndueatype

of X. Otherwise, we add the function to the worklist and suspkad t
analysis of the current trace until we have analyzed

The dataflow analysis starts at the entry point of all es@apin
functions. We can jump-start the analysis by assigning ¢oath
guments of the escaping functions the domain types of theessc
typings. This is safe since we know that these include al$ibtes
inputs for which the functions can return. The informatisrthen
propagated forwards in the control flow. At local functiorllga
the parameter types are propagated in the manner descnillee i
example above. The dataflow analysigp#th independeninside
function bodies, e.g., the type o&se expressions is collapsed to
the union of the clauses. For function calls we have a limitatth
dependency. We analyze functions for the exact call typetwup
a limited number of distinct call types. When the number df ca
types reaches a limit, we widen the call type to the union lafall
types. For example, assume that the functiea above has three
call sites and the argument types arel 2, 3 U 4, andinteger()
respectively. If we allow for three distinct call typetso will be an-
alyzed for each of the input types, yielding possibly diferoutput
types. If we allow only for two call types, the input typefafo will
be widened tanteger() and the return type will be taken from this
input type.

Let us revisit the moduleny_1ist_utils in Figure 4. The
dataflow analysis starts with functidrength_2, which is the only
escaping function. Since its success typinglist()) — any(), the
type of the variabl@ist is list(). At the function call we propagate
the argument typels¢() ando to length_3 and since this call pat-
tern has not yet been analyzed, we add it to the worklist asiged
this analysis path. The analysis moves oadagth_3 and assigns
the propagated types to arguments at the entry point. Letst$d
cus on the second clause. The variable assigned the typist ()
since taking the tail of a list produces another list. Theakde N
gets assigned the typge At the recursive call the argument types
list() and1 are discovered. Since the function has not yet been ana-
lyzed for these input types, this call is added to the worklil this
analysis path is temporarily suspended. The analysis teeatés
over length_3 in this manner until the input type of the second
argument reaches the union limit and gets wideneéhteger().
There the widening ends since from now on the function can onl

be called with subtypes afiteger() in the second argument. By
analyzing the function using this input type, the returnetyip
found to beinteger(). Finally, the return types are propagated and
the refined success typings &iést(), integer()) — integer() for
length_3 and(list()) — integer() for length_2. Note that even
though the functioriength_2 is escaping and we could not refine
the domain of its success typing, its range was refined simee t
refined success typing aéngth_3 has a more refined range.

In effect, what the refinement of the success typings does is a
type specializationf all non-escaping functions based on informa-
tion which manifests their intended uses: the types of airttalls.
Rather than performing function cloning though, at the ehthe
refinement process, the refined success types for all ca#rpat
are unioned. This can clearly be seen in the following exanife
success typing of the function gets refined to reflect its intended
uses, which all are of typfoat() in this module. Fon a similar
process does not occur since this function is called both inte-
gers and floats. Notice however that the range ottthenction has
been refined and accurately reflects the type of its result.

-module (arith). _
- Success typings
export ([t/1]). T Tranbe (1) number(]
t(N) -> n :: (number()) — number()
X = £(3.14) + n, | £ 2t (number()) — number()
n(a2) + a0 Refined success typings
N) -=> N + 1. t :: (number()) — float()
D > n :: (number()) — number()
f(N) -> N + 2. £ :: (float()) — float()

6.4 Current experiences

A significantly weaker and much more ad hoc static analysis th
the one we describe in this paper has been used in the publicly
available Dialyzer [10] defect detection tool for a periddnwore
than two years now. That analysis, based on a forward dataflow
analysis similar to the one of the previous section, hastifie
literally hundreds of bugs in well-tested, commercial &zilons
of sizes ranging from several thousands to more than a miiles
of code.

The current analysis, planned to be integrated into DiaJymes
so far been used to analyze the Erlang/OTP system and ittasthn
libraries. Besides finding bugs, we intend to automaticatiyotate
all functions of standard libraries with their refined si&xg/pings.
A separate tool for this task, called TypEr, currently exist its
beta version and can be obtained from the authors. The @alys
used in TypEr is the one described in this paper. The anaiysis
scalable and reasonably fast. On the four-year old laptamefof
the authors, the complete set of the Erlang/OTP standanarilds
(amounting to about 700,000 lines of code) is analyzed ihdral
hour. For comparison, on the same laptop, the BEAM bytecode
compiler needs roughly twelve minutes to compile all thekss fi
to bytecode and the HIiPE native code compiler needs rougtify h
an hour to compile this bytecode to native code.

7. Concluding Remarks

Changing the philosophy of a programming language, especia
one with existing applications of considerable size, is adask
with a high likelihood of success. In this paper, rather thmnting
from a static type system and trying to squeeze Erlang intoet
followed a different approach. We introduced the conceptunf
cess typings into the functional world. Success typingsigean
optimistic and totally liberal way of looking at type inferee and
allow us to uncover the implicit type information which etsisn



programs, automatically document function interfaces| @etect
definitetype clashes in a flexible and scalable way. Flexible, be-
cause success typings allow derivation of type informatighout
type declarations and even in the absence of certain progoam
ponents. Scalable, because the inference of successsypitavs

a compositional, bottom-up algorithm which is modular apd a
pears to scale well in practice.

As mentioned, success typings will never miss a functiom's i
tended use or report a type violation which only reflects akwess
of the type system. On the other hand, no matter how truestdis-
ment is relatively weak because it is trivially satisfied lgcess
typings which contain no type information. We have shown Hya
employing constraint-based type inference and by takingratage
of the module system of the language, the success typingsaget
urally refined, often become quite precise and accuratedgridee
a function’s intended use. All this is domgthout sacrificing read-
ability of the typings which are inferred. The practical béts of
doing so should not be underestimated.

Although success typings form a solid basis for capturirg th
implicit type information in programs written in any dynarally
typed functional language, many directions for improvetrsitl
exist. Chief among them is the ability to declare and autaraly

In C. Wei-Ngan, editorProgramming Languages and Systems:
Proceedings of the Second Asian Symposium (APLAS/6)me
3302 ofLNCS pages 91-106. Springer, Nov. 2004.
[11] S. Marlow and P. Wadler. A practical subtyping systemEoang.
In Proceedings of the ACM SIGPLAN International Conference on
Functional Programmingpages 136-149. ACM Press, June 1997.
[12] S.-O. Nystrom. A soft-typing system for Erlang. Bioceedings of
ACM SIGPLAN Erlang Workshopages 56-71. ACM Press, Aug.
2003.

[13] A. Wright and R. Cartwright. A practical soft type systéor Scheme.
ACM Trans. Prog. Lang. Systl9(1):87-152, Jan. 1997.

A. Some Additional Experiences

We provide some additional information to show how infegrin
success typings can help a programmer to understand blegter t
properties of code that she writes.

A.1 Splitting a list
Consider thesplit function of the Erlang/OTP standard library
lists. Its implementation is shown in Figure 5. It is slightly
obfuscated by the fact that it has to throw’Badarg’ rather
infer recursive types other than lists, the incorporatibfbounded) than a’badmatch’ exception when its arguments do not have the
quantification into the framework, and the ability to maintde- appropriate types. Its online documentation till recengigd:
pendencies between the types in the domain and the range of a split(N, Listl) -> {List2, List3}

function. We intend to explore some of these issues. Types:
N =
Listl

1..length(List1)

Acknowledgments = List2 = List3 =

During 2005, this research has been supported in part by VIN-
NOVA through the ASTEC (Advanced Software Technology) com-
petence center as part of a project in cooperation with &oits

[term()]

SplitsList1 into List2 andList3. List2 contains

the firstN elements andlist3 the rest of the elements.
There is an obvious discrepancy between the function’s eode
its documentationy should start frond rather thart.® The slightly
more subtle discrepancy is that this function also accempsaper
(i.e., not [1-terminated) lists as its second argument. The refined
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success typing fosplit/2 that our analysis discovers reads:

(integer(), possibly_improper_list()) — {[any()], any()}

This typing is correct. Indeed, the calists:split(2, [a,blc])
returns{ [a,b],c} in Erlang. For some, it may not be easy to com-
prehend this success typing and see how it is relatetpiat’s
documentation. The documentation is confusing becausesof i
“length(List1)” part: in Erlang thelength function only works
for proper lists. Staring at the code of tgglit function does not
help too much either, especially if one is not aware — or has su
ceeded in forgetting — that, for efficiency, the_1ist guard of
Erlang does not check that its argument is a list, but instbadks
whether its top-level constructor is a cons cellldr.

Besides showing the intricacies of inferring success typiim
Erlang, this example shows that

1. it is very dangerous to automatically generate type sigea
from comments or documentation

2. it is very difficult to impose a static type system that nsake
assumptions such that e.g. all lists are proper, which &edith
in current Erlang practice.

A.2 Compiling stuff

The HIiPE compiler can either compile the bytecode of a whole
module or a single function to native code. In Erlang funwio
are commonly known as MFAs. These are triples which consist
of a module name, function name and arity fields. For exantpe,
function of Figure 5(a) is denoted §3ists,split,2}.

5This typo was fixed in March 2006.



case split(N, List, []) of
Fault when is_atom(Fault) ->
erlang:error(Fault, [N,List]);
Result ->
Result
end;

split(N, List) when is_integer(N), N >= 0, is_list(List) ->

split(N, List) -> erlang:error(badarg, [N,List]).

split(0, L, R) ->
{lists:reverse(R, [1), L};
split(N, [HIT], R) —->
split(N-1, T, [HIR]);
split(., O, ) -
badarg.

(a) Thesplit/2 function

b) A non-escaping function thaplit/2 uses

Figure 5. A code fragment of the Erlang/OTR sts standard module.

One function of the HiPE compiler, which tries to locate the fi
containing the bytecode to be compiled, reads as shown below

beam_file({M,F,A}) ->
beam_file(M);
beam_file(Module) when is_atom(Module) ->
case code:which(Module) of
non_existing ->
exit({no_file,Module});
File ->
File
end.

Obviously, the programmer tried to benefit from some codseeu
here. The success typing we infer for this function is thiofaing:

atom() U

{atom(), -, -} U

{{atom(), -, },-, -} U
oo b} — atom()

where with _” we denote theiny() type. Clearly, this is not what
the programmer intended. Note that the code is actuallgctrbut
allows for more general uses than it was envisioned for.

The point of this example is that success typings uncover-int
esting properties of programs and present this informéatothe
programmer in a relatively comprehensive way without rpec
programs unnecessarily. In this particular case, if thgmmer
wants to statically detect unintended uses of this funotiopro-
hibit them during runtime, she can rewrite the code or addesom
appropriate type guards in the first clause and make its hoesd |
either as follows:

beam_file({M,F,A}) when is_atom(M) ->

or as follows:

beam_file({M,F,A}) when is_atom(M),
is_atom(F),
is_integer(A) ->

in which case the intended success typing
(atom() U {atom(), atom(), integer()}) — atom()
will be inferred by the success typing algorithm.



