
Assessing security threats of looping constructs

Pasquale Malacaria
Dept of Computer Science

Queen Mary, University of London

pm@dcs.qmul.ac.uk

ABSTRACT
There is a clear intuitive connection between the notion of
leakage of information in a program and concepts from in-
formation theory. This intuition has not been satisfactorily
pinned down, until now. In particular, previous information-
theoretic models of programs are imprecise, due to their
overly conservative treatment of looping constructs. In this
paper we provide the first precise information-theoretic se-
mantics of looping constructs. Our semantics describes both
the amount and rate of leakage; if either is small enough,
then a program might be deemed “secure”. Using the se-
mantics we provide an investigation and classification of
bounded and unbounded covert channels.

1. INTRODUCTION
There is a basic conceptual issue that lies at the heart of

the foundations of security: The problem is that “secure”
programs do leak small amounts of information. An example
is a password checking program

if (l == h) access else deny

where an attacker will gain some information by observing
what the output is (by observing deny he will learn that
his guess l was wrong). This makes non-interference1 [10]
based models of security[23, 6] problematic; they judge far
too many programs to be “insecure”. As elegantly put in
[21]

In most non-interference models, a single bit of
compromised information is flagged as a secu-
rity violation, even if one bit is all that is lost.
To be taken seriously, a non-interference viola-
tion should imply a more significant loss. Even
. . . where timings are not available, and a bit per
millisecond is not distinguishable from a bit per

1Intuitively interference from x to y means changes in x
affect the state of y. Non-iterference is the lack of intererence

fortnight . . . a channel that compromises an un-
bounded amount of information is substantially
different from one that cannot.

Of course, using declassification it is still possible to use a
non-interference model to limit, rather than eliminate, the
areas in a program where information will be leaked. But,
non-interference does not itself help us in deciding whether
to declassify. Again, [21] raises the question: how we decide
that a region is safe to declassify?

To illustrate, consider the following program containing a
secure variable h and a public variable l:

l=20; while ( h < l) {l=l-1}

The program performs a bounded search for the value of the
secret h. Is it safe to declassify that program? One could
argue that the decision should depend on the size of the se-
cret; the larger the secret the more declassifiable it becomes.
How to give a precise meaning to this argument? Is the pre-
vious program secure if h is a 10-bit variable?
Is it secure if h is a 16-bit variable? And shouldn’t the
answer depend also on the attacker’s knowledge of the dis-
tribution of inputs e.g. if she/he knew that 0 is a much more
likely value for h than any other value?

The main objective of the present work is to develop a
theory where this kind of questions can be mathematically
addressed. To this aim we will develop an information the-
oretical semantics of looping commands. The semantics is
quantitative: outcomes are real numbers measuring security
properties of programs.

The appeal of Shannon’s information theory [22] in this
context is that it combines the probability of an event with
the damage the happening of that event would cause. In
this sense information theory provides a risk assessment
analysis of language based security. Consider again the
password checking program and suppose l, h are 2-bit vari-
ables and the distribution of values of h is uniform (all
values are equally likely). We identify the damage asso-
ciate to an event with the difference between the size of
the search space for the secret before and after the event
has happened. The more is revealed by an event-the larger
the difference-the bigger the damage. The damage for the
event observe access happening will be gaining informa-
tion of the whole secret 2 = log(4) bits2 while the damage
for observe deny will be gaining information of one possi-
bility being eliminated. Formally:

1. observe access:

2In the paper log stands for base 2 logarithm.



• probability = 1
4
,

• damage = log(4)− log(1) = log( 4
1
) = 2

2. observe deny:

• probability = 3
4
,

• damage = log(4)− log(3) = log( 4
3
)

Combining damages with probabilities we get
1
4
log( 4

1
) + 3

4
log( 4

3
)

an instance of
P

pilog(
1
pi

), Shannon’s entropy formula.

This paper introduces tools to compute the leakage in
loops; first information theoretical formulas characterizing
leakage are extracted by the denotational semantics of loops:
these formulas are the basis for defining:

1. channel capacity: the maximum amount of leakage of
a loop as a function of the attacker’s knowledge of the
input.

2. rate of leakage: the amount of information leaked as a
function of the number of iterations of the loop.

These definitions are then used in a classification of loops.
This is an attempt to answer questions like:

1. is the amount of leakage of the loop unbounded as a
function of the size of the secret?

2. How does the rate change when the size of the secret
changes?

Notice that in sequential programs there are no natural
cases of unbounded covert channels unless loops are present;
for this reason we claim that a major achievement of this
work is the identification of and mathematical reasoning
about unbounded covert channels [21]

Characterization of unbounded channels is sug-
gested as the kind of goal that would advance the
study of this subject, and some creative thought
could no doubt suggest others.

To motivate the relevance of this paper in the above contexts
some case studies are presented. We hope that by seeing the
definitions at work in these cases the reader will be satisfied
that the semantics is:

1. natural: i.e. in most cases agrees with our intuition
about what the leakage should be and when it doesn’t
it provides new insights.

2. helpful: i.e. it provides clear answers for situations
where the intuition doesn’t provide answers.

3. general: although some ingenuity is required case by
case, the setting is not ad hoc.

4. innovative: it provides a fresh outlook on reasoning
about covert channels in programs in terms of quanti-
tative reasoning.

To complete the work we also address the following ba-
sic question: what is the meaning of information theoretical
measures in the context of programming language interfer-
ence? For example what does it mean that the above pro-
gram “leaks 2.6 bits for a 10-bit variables under uniform
distribution”? Based on recent work by Massey [14], Mal-
one and Sullivan[9] it will be argued that this quantity is a
lower bound on the attacker effort to guess the secret using
a binary search or a dictionary attack.

1.1 Contribution and related work
Pioneering work by Denning [7, 8] shows the relevance of

information theory to the analysis of flow of information in
programs. She worked out semantics for assignments and
conditionals, and gave persuasive arguments and examples.
However, she did not show how to do a semantics of a full,
turing-complete programming language, with loops. As a
consequence, some of the examples we consider involving
unbounded channels are beyond the theory there.

Further seminal work relating information theory and non-
interference in computational systems was done by Millen,
McLean, Gray [15, 24, 16]; none of this work however con-
centrate on programming languages constructs.

In the context of programming languages the relations
between information theory and non-interference [10, 20]
relevant to the present work have been studied in a series
of papers by Clark, Hunt, Malacaria [2, 1, 3], where the
background for the present work is introduced: the main
ingredients are an interpretation of programs and program
variables in terms of random variables and a definition of
leakage in terms of conditional mutual information.

Other quantitative approaches to non-intereference have
also recently been studied; Lowe [13] defines channel capac-
ity in the context of CSP. DiPierro, Hankin, Wiklicky pro-
pose a probabilistic approach to approximate non-interference
in a declarative setting[17] and more recently in distributed
systems [18]. A probabilistic beliefs-based approach to non-
interference has been suggested by Clarkson, Myers, Schnei-
der [4].

Quantitative approaches to covert channel analysis in some-
what different contexts have been proposed by Gray and
Syverson [11], Weber [25] and Wittbold [26].

To the best of our knowledge no work so far has pro-
vided a reasonable quantitative analysis of loops in imper-
ative languages; the bounds in [2, 1, 3] are over pessimistic
(if any leakage is possible in a loop, the loop leaks every-
thing). Hence the analysis here presented is original, and
because of the relationship between unbounded covert chan-
nels and loops this paper provides an original quantitative
analysis for covert channels in the context of programming
languages.

1.2 Structure of the work
The article is structured as follows:

• Section 2 reviews some basic definitions from informa-
tion theory and presents an interpretation of program
variables and commands in terms of random variables.

• Section 3 define an information theoretical formula for
the leakage of the command while e M. From the leak-
age formula some definitions are derived, like rate of
leakage, channel capacity, secureness, ratio of leakage.

• Based on these definitions section 3.3 classifies loops
according to their leakage and rate of leakage.

• Section 4 provides case studies justifying the usefulness
of these notions.

• Section 5 provides a justification of the information
theoretical measures in this work. This justification is
based on bounds on a dictionary attack scenario.

2. PRELIMINARIES



2.1 Entropy, interaction, interference
We begin by reviewing some basic concepts of informa-

tion theory relevant to this work; additional background is
readily available both in textbooks [5] and on the web (e.g.
the wikipedia entry for Entropy).

Given a space of events with probabilities P = (pi)i∈N (N
a set of indices) the Shannon’s entropy is defined as
H(P) = −Σi∈Npilog(pi).
It is usually said that this number measure the average

uncertainty of the set of events: if there is an event with
probability 1 then the entropy will be 0 and if the distribu-
tion is uniform i.e. no event is more likely than any other
the entropy is maximal, i.e. log(|N |). The entropy of a
random variable is the entropy of its distribution.

An important property of entropy which we will use says
that if we take a partition of the events in a probability
space, the entropy of the space can be computed by summing
the entropy of the partition with the weighted entropies of
the partition sets. We call this the partition property; for-
mally: given a distribution µ over a set S = {s1,1, . . . , sn,m}
and a partition of S in sets (Si)1≤i≤n, Si = {si,1, . . . , si,m}:

H(µ(s1,1), . . . , µ(sn,m)) = H(µ(S1), . . . , µ(Sn))+Pn

i=1 µ(Si)H(
µ(si,1)

µ(Si)
, . . . ,

µ(si,m)

µ(Si)
)

where µ(Si) =
P

1≤j≤m µ(si,j)
Given two random variables X, Y the conditional entropy

H(X|Y) is the average of all entropies of X conditioned to a
given value for Y, Y = y, i.e.

ΣY=yµ(Y = y)H(X|Y = y)

where H(X|Y = y) = −ΣX=xµ(X = x|Y = y)log(µ(X = x|Y = y))
The higher H(X|Y) is the lower is the correlation between X

and Y. It is easy to see that if X is a function of Y, H(X|Y) = 0

and if X and Y are independent H(X|Y) = H(X).
Mutual information is defined as

I(X; Y) = H(X)− H(X|Y) = H(Y)− H(Y|X)

This quantity measures the correlation between X and Y.
This follows from what we saw about conditional entropy:
if X is a function of Y, I(X; Y) = H(X)− H(X|Y) = H(X)− 0 and
if X and Y are independent I(X; Y) = H(X)− H(X) = 0.

Mutual information is a measure of binary interaction. In
fact so far we have only defined unary or binary concepts.

As we will see conditional mutual information, a form
of ternary interaction will be used to quantify interference.
Conditional mutual information measures the interference
of a random variable on a binary interaction, i.e.

I(X; Y|Z) = H(X|Z)− H(X|Y, Z) = H(Y|Z)− H(Y|X, Z)

Conditional mutual information is always non negative; how-
ever it can affect interaction in a positive or negative way as
these examples show:

I(X; Y|X ⊕ Y) = H(Y|X ⊕ Y)− H(Y|X ⊕ Y, X) =
1 − 0 > 0 =
I(X; Y)

I(X; X ∧ Y|X) = H(X|X)− H(X|X, X ∧ Y) =
0 − 0 < 0.32 =
I(X; X ∧ Y)

where X, Y are independent random variables taking boolean
values and ∧,⊕ are boolean conjunction and exclusive or.

A positive interference I(X; Y|Z) means Z increase the in-
teraction between X and Y by contributing new relevant in-
formation, whereas negative interference means Z removes

information which was present in the interaction.
In the previous example X ⊕ Y contributes to the interac-

tion of two independent random variables X, Y by bringing
the information if they have the same value or not, whereas
X doesn’t bring any new information to the interaction be-
tween X and X ∧ Y; in fact knowledge of X is detrimental to
the interaction between X and X ∧ Y because that knowledge
is removed from the interaction.

2.2 Random variables and programs
The language we are considering is a simple imperative

language with assignments, sequencing, conditionals and loops.
Further in the paper we will add to this language a proba-
bilistic choice operator. Syntax and semantics for the lan-
guage are standard and so we omit them.

Following denotational semantics commands are state trans-
formers, informally maps which change the values of vari-
ables in the memory and expressions are maps from the
memory to values. We assume there are two input variables
H, L, the high (confidential) and low (public) input, and we
assume that inputs are equipped with a probability distribu-
tion, so we can consider them as random variables (the input
is the joint random variable (H, L)). A deterministic program
M can hence be seen as a random variable itself, the output
random variable where the probability on an output value of
the program is the sum of probabilities of all inputs evaluat-
ing via M to that value µ(M = o) = Σ{µ(h, l)|[[M]](h, l) = o)}.

More formally

1. Our probability space is (Ω, A, µ) where

Ω = Σ = {σ|σ : {H, L} → N}

A = P(Ω) and µ a probability distribution over Ω.

An element σ ∈ Ω is a memory state (environment),
i.e. a map from names of variables to values.

A state σ is naturally extended to a map from arith-
metic expressions to N by

σ(e(x1, . . . , xn)) = e(σ(x1), . . . , σ(xn))

i.e. the σ evaluation of an expression is the value ob-
tained by evaluating all variables in the expression ac-
cording to σ.

2. A random variable M is a partition(an equivalence re-
lation) over Ω3. For a command M the equivalence
relation would identify all σ which have the same ob-
servable output state for the command; i.e. σ ≡M τ
iff M(σ) �Ob= M(τ) �Ob. Here we will take as observable
output states low output values, i.e. Ob = L ; for ex-
ample if M is the command L = H that would be the
equivalence relation σ ≡ τ iff σ[L=[[H]]] �Ob= τ[L=[[H]]] �Ob
iff σ[L=[[H]]] �L= τ[L=[[H]]] �L i.e. any σ, τ which agree (have
the same value) on the variable H.

The probability distribution on a command random
variable M is defined as

µ(M = τ ′) = Στ∈Σ{µ(τ)|M(τ) �Ob= τ ′ �Ob}
3The conventional mathematical definition of a random vari-
able is of a map from a probability space to a measurable
space. In those terms we are considering the kernel of such
a map.



If M is a non terminating program the definition of
random variable as an equivalence relation still holds;
now we will have an additional class which is all states
which will be non terminating; For the probability
distribution we extend the above definition with the
clause:

µ(M =⊥) = Στ∈Σ{µ(τ)|M(τ) =⊥}

Instantiating the above definition we get the following
random variables associated to particular commands:

• M is the command x = e: this is the equivalence
relation σ ≡x=e τ iff σx=[[e]] �Ob= τx=[[e]] �Ob4.

• M is if e c else c’: then σ ≡if e c else c′ τ iff if
σ(e) = tt 6= ff = τ(e) then [[c]](σ) �Ob= [[c′]](τ) �Ob
and σ(e) = τ(e) and τ(e) = tt implies σ ≡c τ and
τ(e) = ff implies σ ≡c′ τ .

• σ ≡c;c′ τ iff σ 6≡c τ implies [[c]](σ) ≡c′ [[c]](τ).

Given a command M we will use the random variable
Mn ≡ M; . . . ; M, the n-th iteration of M. This is a gener-
alization of the sequential composition. For example
σ ≡(x=x+1)5 τ iff σ ≡x=x+5 τ and

µ((x = x + 1)5 = σ) = Σ{µ(τ)|(x = x + 5)(τ) �Ob= σ �Ob}

3. Similarly we will have random variables corresponding
to boolean expressions (we take as boolean values the
integers 0, 1); again an equivalence class is the set of
states evaluated to the same (boolean) value:

σ ≡e τ ⇔ σ(e) = τ(e)

µ(e = tt) = Στ∈Σ{µ(τ) | τ(e) = tt}

for example for e1 == e2

σ ≡e1==e2 τ ⇔ σ(e1) = σ(e2) = τ(e1) = τ(e2)

µ((e1 == e2) = tt) = Στ∈Σ{µ(τ)|τ(e1) = τ(e2)}

Given an expression e guarding a command M we define
the random variable en as e where the variables in e are
evaluated following n− 1 iterations of M. For example
if e is x > 0, M is x = x + 1 then e3 is x + 2 > 0. e is
hence an abbreviation for e1.

Following [2] and inspired by works by Dennings, McLean,
Gray, Millen [7, 8, 15, 24, 16], interference (or leakage of
confidential information) in a program M is defined as

I(O; H|L)

i.e. the conditional mutual information between the output
and the high input of the program given knowledge of the
low input. Notice that O is just another name for the random
variable corresponding to the program seen as a command,
i.e. O = M.

4That is σ where x is evaluated to [[e]] is equal to τ where x
is evaluated to [[e]]

Notice this is a input-output model i.e. it doesn’t model
an attacker who could have knowledge of some intermediate
state of the program. One implication of this model is that
only global timing attacks can in principle be analyzed.

Notice that for deterministic programs we have
I(O; H|L) = H(O|L)− H(O|H, L)

= H(O|L)− H([[M]](H, L)|H, L)
= H(O|L)

i.e. interference becomes the uncertainty in the output of
M given knowledge of the low input.

A motivating result for this definition of leakage is that
for deterministic programs I(O; H|L) = 0 iff the program is
non-interfering [3].

To see why H(O|L) is not enough for measuring leakage
in non-deterministic setting, consider the following simple
program: l = random(0, 1) i.e. the output is 0 or equally
likely 1. Since the output is independent from the inputs
H(O|L) = H(O) and H(O) = 1. So we would conclude that there
is 1 bit of leakage. This is clearly false as there is no secret
information in the program. However
I(O; H|L) = H(O|L)− H(O|H, L) = H(O)− H(O) = 1− 1 = 0

Let’s now investigate the quantity H(O|L).
Consider for example the program
M ≡ l = 3; if (l == 5) l = h else l = 0

Here H(M|l) = H(M) because l is initialized in the program,
hence there is no dependency from low inputs outside the
program. Also, because the above program is equivalent to
l = 0 there is no leakage of information, i.e. H(M) = 0.

Consider now the program where l is not initialized, i.e.
M ≡ if (l == 5) l = h else l = 0

Then H(M|l) will be the weighted sum of H(M|l = 5) and
H(M|l 6= 5); formally

H(M|l) =
µ(l = 5)H(if (l == 5) l = h else l = 0|l = 5) +
µ(l 6= 5)H(if (l == 5) l = h else l = 0|l 6= 5) =
µ(l = 5)H(h) + 0

However if the attacker were to choose the input l = 5

M ≡ l = h and so H(M) = H(h).
Hence by considering the non conditional entropy
maxv∈ωH(O|L = v)
we will get an upper bound on H(O|L). This will provide

the leakage of the attack where the attacker can choose the
inputs (to maximize his gain). The other extreme is
minv∈ωH(O|L = v)
The case of the least devastating attack.
Hence instead to compute H(O|L) we will compute a non

conditional entropy H(Ml=v) where v is a defined value for
l. According to the cases such v will be calibrated to the
power of the attacker. As no confusion arises we will drop
the subscript and just write H(M).

Finally notice that we do not model an attacker able to
choose high inputs, i.e. we are not modeling a spy trying to
communicate with an external accomplice but an intruder
(e.g. a trojan horse or a dictionary attack on passwords).

3. ANALYSIS OF LOOPS

3.1 Loops as disjoint union of functions

3.1.1 Entropy of disjoint union of functions
This subsection contains the technical backbone of the

main definitions of the paper.



Consider a function f : X→ Y, which is the union of a
family of functions (fi)i∈Iwith disjoint domains (δfi)i∈I,
i.e. for each i, δfi ⊆ X is the domain of fi and (δfi)i∈I is a
partition of X.

Define {[y] = f−1(y)|y ∈ Y}; clearly this is also a partition
of X. Define the entropy of f as the entropy of its inverse
images, i.e. H(µ([y1]), . . . , µ([yn])). The aim now is to char-
acterize the entropy of f.

Assume that f is collision free i.e. the family (fi)i∈I has
also disjoint codomains. In that case (δfi)i∈I can also be
seen as a partition on the partition [y] = f−1(y): δfi is
the set of all [y] for y in the codomain of fi. Let’s write
[y1]

j, . . . , [ym]
j for the classes in δfj

From now on to ease the notation we will often use events
instead of their probability when no confusion arise, for ex-
ample in a computation [y] will stand for µ[y] the prob-
ability of the event [y], i.e.

P
{µ(x)|x ∈ [y]}. Similarly

H([y1], . . . , [yn]) will stand for H(µ[y1], . . . , µ[yn]) etc.
By using the partition property from section 2.1 we have:

Proposition 1. For a collision free function f:

H([y1], . . . , [yn]) = H(δf1, . . . , δfn) +
X
j∈I

δfjH(
[y1]

j

δfj
, . . . ,

[ym]
j

δfj
)

Let’s now consider the case where f has collisions. Re-
member a collision is a y ∈ Y in the image of two different
functions, i.e. [y] ∩ δfj 6= ∅ 6= [y] ∩ δfi for i 6= j. In this
case let’s define Y′ as Y extended with enough new elements
to eliminate collisions and let f′ : X→ Y′ the derived func-
tion with no collisions, so f′ is the union of the family of
funtions (δf′i)i∈I with disjoint domain and codomain. f′i is
defined as

f
′
i(x) =

8<: fi(x), if ∀j 6= i fi(x) 6= fj(x)

(fi(x), i) otherwise

(So (fi(x), i) are the new elements added to Y)
Let’s define Cf(Y) as the set of collisions of f in Y, and

write x
y
1, . . . , x

y
m for the elements of [y]. By using again the

partition property we have:

Proposition 2.

H([y1], . . . , [yn]) = H([y′1], . . . , [y
′
n′ ])−

X
y∈Cf(Y)

[y]H(
x
y
1

[y]
, . . . ,

x
y
m

[y]
)

This means that the entropy of a function defined as an
union of functions with disjoint domains is given by the en-
tropy of the derived function with no collisions minus the
weighted sum of the entropies of the collisions. To ease the
notation we can rewrite Proposition 2 as.
H(f) = H(f′)−

P
H(Cf(Y))

Let’s call disambiguation of f the function f′.
Notice that Proposition 2 implies that the the entropy of

f is a lower bound on the entropy of the disambiguation of
f.

As an example let’s consider the function f = f1 ⊕ f2 ⊕ f3
defined by
f1(x1) = y1, f1(x2) = y2 = f2(x3), f2(x4) = y4,
f3(x5) = y5 = f3(x6)

and assume uniform distribution on the inputs. f has one
collision y2 so to compute H(f) we first extend the codomain
with a new element y′2 so to have f′1(x2) = y2, f

′
2(x3) = y′2

Computing H(f) using proposition 2 gives:
H(f) = H(f′)−

P
H(Cf(Y))

= H( 1
3
, 1
3
, 1
3
) + 2 1

3
H( 1

2
, 1
2
) + 1

3
H(1, 0)− 1

3
H( 1

2
, 1
2
)

= 1.585 + 2
3

+ 0− 1
3

= 1.918

3.1.2 Entropy of loops
Let while e M be a terminating loop. From a denota-

tional point of view we can see it as a map

F = Σ1≤i≤nFi

where n is an upper bound on the number of iteration of
the loop and all Fi have disjoint domain: each Fi is the
map which iterates M i times under the condition that the
guard has been true up to that moment and it will be false
after the i− th iteration of M. The domain of Fi is hence
given by all states σ such that Fj(σ)(e) = tt, 0 ≤ j ≤ i and
Fi+1(σ)(e) = ff.

Formally

while e M = Σ0≤i≤n(M
i|e<i>)

where

e
<i> =

8<: e = ff, if i = 0

e = tt ∧ e2 = ff, if i = 1

e = tt, . . . , ei = tt ∧ ei+1 = ff, if i > 1

and M0 = skip. Notice

1. e<i> are events and not random variables

2. the assumption that n is an upper bound on the num-
ber of iterations of the loop implies

Σ0≤i≤n µ(e<i>) = 1

3. the events e<0>, . . . , e<n> constitute a partition of the
set of states: given any initial state σ the loop will ter-
minate in < n iterations; exactly one of the e<i> must
be true for σ i.e. σ ∈ e<i>, e.g. for i > 1

σ(e) = tt ∧ · · · ∧ Mi(σ)(e) = tt ∧ Mi+1(σ)(e) = ff

To prove that this is a partition suppose it isn’t, i.e.
σ ∈ e<i> ∩ e<i+j> then Mi+1σ(e) = ff because of e<i>

and Mi+1σ(e) = tt because of e<i+j>: a contradiction,
hence the e<i> are disjoint sets, i.e. a partition.

By applying proposition 1,2 for a while we have:

Proposition 3. For a collision free loop while e M bounded
by n iterations

H(while e M) = H(µ(e<0>), . . . , µ(e<n>))+
Σ1≤i≤nµ(e<i>)H(Mi|e<i>)

In the case of a loop with collisions, following proposition
2 equality is achieved as follows:

H(while e M) = H(µ(e′<0>), . . . , µ(e′<n>))+
Σ1≤i≤nµ(e′<i>)H(M′i|e′<i>)−P

σ∈Cwhile e M(Σ)
[σ]H(

τσ
1

[σ]
, . . . ,

τσ
m

[σ]
)

Notice that the disambiguation of a collisions free loops is
the loop itself. This entails:

Proposition 4. For a command while e M bounded by n

iterations
H(while e M) ≤ H(µ(e′<0>), . . . , µ(e′<n>))+

Σ1≤i≤nµ(e′<i>)H(M′i|e′<i>)
with equality iff the loop is collision free.



Collisions do not present a conceptual change in the frame-
work but add some computational burden; also collisions are
not very frequent in loops; for a collision in a loop to arise
two different iteration of the loop should give the same val-
ues for all read and written low variables in the loop and
the guard should be false on these values. For example all
loops using a counter, a variable taking a different value at
each iteration don’t contain collisions.

For these reason from now on we will concentrate on col-
lision free loops.

3.2 Basic definitions
Define
W(e, M)n = H(µ(e<0>), . . . , µ(e<n>), 1− Σ0≤i≤nµ(e<i>))+P

1≤i≤n µ(e<i>)H(Mi|e<i>)
as the leakage of while e M up to n iterations.

Proposition 5. ∀n ≥ 0, W(e, M)n ≤ W(e, M)n+1

Proof. we only need to prove
H(µ(e<0>), . . . , µ(e<n>), 1− Σ0≤i≤nµ(e<i>))≤
H(µ(e<0>), . . . , µ(e<n>), µ(e<n+1>), 1− Σ0≤i≤n+1µ(e<i>))

which can be rewritten as

H(p1, . . . , pn, qn+1 + pn+1) ≤ H(p1, . . . , pn, pn+1, qn+1)

the inequality then follows from
H(p1, . . . , pn, pn+1, qn+1) =
H(p1, . . . , pn, pn+1 + qn+1)+
(pn+1 + qn+1)H(

pn+1

pn+1+qn+1
,

qn+1

pn+1+qn+1
)

The leakage of while e M is defined as

limn→∞W(e, M)n (1)

In the case of a loop with collisions the definition is mod-
ified in the obvious way:

limn→∞W
′(e, M)n −

X
H(C(W′(e, M))) (2)

i.e. we first compute the leakage in the disambiguation of
the loop and then we subtract the weighted entropies of the
collisions

The rate of leakage is

limn→∞,µ(e<n>) 6=0

W(e, M)n
n

Hence in the case of terminating loops the rate will be the
total leakage divided by the number of iterations. This can
be considered a rough measure of rate: for example if the
first iteration were to leak all secret and the following billion
nothing the rate would still be one billionth of the secret
size. However as in our model the attacker can only perform
observations on the output and not on intermediate states of
the program the chosen definition of rate will give indication
of the timing behavior of the channel in that context.

A fundamental concept in information theory is channel
capacity, i.e. the maximum amount of leakage over all pos-
sible input distributions, i.e.

maxµ limn→∞W(e, M)n (3)

In our setting we will look for the distribution which will
maximize leakage. Informally such a distribution will pro-
vide the setting for the most devastating attack: we will
refer to this as the channel distribution.

Also we will use the term channel rate for the rate of
leakage of the channel distribution. Again this should be
thought as the average maximal amount of leakage per iter-
ation.

To define rate and channel capacity on the case of colli-
sions the above definitions should be applied on the defini-
tion of leakage for loops with collisions.

3.2.1 Leakage vs secureness
Consider a simple assignment l = h where the variables

are k-bit variables. We know that the assignment trans-
fer all information from h to l, so we would be tempted to
say that the leakage is k. That is not correct. Suppose h

is a 3-bit variable (so possible values are 0 . . . 7 ) and sup-
pose the attacker knows h is even (so the possible values are
0, 2, 4, 6). The uncertainty on h before executing l = h is
hence H( 1

4
, 1
4
, 1
4
, 1
4
) = 2. The leakage is not 3 but

H(l = h) = H(
1

4
,
1

4
,
1

4
,
1

4
) = 2

i.e. the information of h. The secureness of the program is
the difference between the uncertainty before execution and
the leakage (the uncertainty after execution). Hence secure-
ness of the previous example of l = h is 2-2=0. Notice that
when the program reveal everything this notion is invariant
w.r.t. the chosen distribution, i.e. while the leakage of l = h

will depend on the distribution, its secureness will always be
0, all that can be revealed is revealed.

Formally secureness is defined [2] as

Sec(O) = H(H|L)− H(O|L) = H(H|L, O)

The last equality is proven as follows:
H(H|L, O) = H(H, L, O)− H(L, O) =
H(H, L)− H(L, O) = H(H, L)− H(L)− H(L, O) + H(L) =
H(H|L)− H(O|L)

Using arguments similar to the ones presented at the end
of section 2.2 most of the times we will consider the sim-
plified version where there are no dependencies on L, i.e.
H(H)− H(O). In fact H(H|L) can be reduced to H(H) when (as
it is normally the case) the secret is independent of the pub-
lic input.

Another notion we will use is the leakage ratio i.e. H(O|L)
H(H|L)

the amount leaked divided by the maximum amount leak-
able. This is a number in the interval [0, 1] which measures
the percentage of the secret leaked by the program, so the
ratio has minimum 0 iff the leakage is 0 and maximum 1 iff
all the secret is revealed by the program.

3.3 Classification of looping channels
The following classification combines the previous defini-

tions with variations in the size of the secret. For example a
bounded loop is one where even if we were able to increase
arbitrarily the size of the secret we would not be able to
increase arbitrarily the amount leaked.

For the purposes of this investigation loops are classified
as:

a C-bounded if the leakage is upper bounded by a constant
C.

b Bounded if the leakage is C-bounded independently of the
size (i.e. number of bits) of the secret. It is unbounded
otherwise.



b Stationary or constant rate if the rate is asymptotically
constant in the size of the high input.

c Increasing (resp decreasing) if the rate is asymptotically
increasing (resp decreasing) as a function of the size of
the high input.

d Mixed if the rate is not stationary, decreasing or increas-
ing.

Clearly all loops are C-bounded by the size of the secret
and by the channel capacity; the interesting thing is to de-
termine better bounds. For example if we are studying a
loop where we know the input distribution has a specific
property we may found better bounds than the size of the
secret.

From a security analysis point of view the most interesting
case is the one of unbounded covert channels, i.e. loops
releasing all secret by indirect flows. Notice that a guard
cannot leak more than 1 bit so the rate of a covert channel
cannot exceed the number of guards in the command.

Notice also that the rate of leakage is loosely related to
timing behaviour. In loops with decreasing rate if the size of
the secret is doubled each iteration will (on average) reveal
less information than each iteration with the original size.
We will spell out the timing content of rates in some of the
case studies.

4. CASE STUDIES
We will now use the previous definition. The aim is to

show that the definitions make sense and the derived classi-
fication of channels helps in deciding when a loop is a threat
to the security of a program and when is not.

The programs studied are simple examples of common
loops: linear, bounded and bitwise search, parity check etc.

Most of the arguments will use a separation property of
the definition of leakage: in fact Definition 2 neatly separates
the information flows in the guard and body of a loop, so if
there is no leakage in the body (e.g. no high variable appears
in the body of the loop) (2) becomes

limn→∞{H(µ(e<0>), . . . , µ(e<n>), 1− Σ0≤i≤nµ(e<i>))}
(4)

On the other side if there is no indirect flow from the guard
(e.g. e doesn’t contain any variable affected by high vari-
ables) then (2) becomes

limn→∞Σ1≤i≤nµ(e<i>)H(Mi|e<i>) (5)

Unless otherwise stated we are assuming uniform distri-
bution for all input random variables (i.e. all input values
are equally likely).

Also to simplify notations we will consider that a k-bit
variable assume values 0. . . . , 2k − 1 (i.e. no negative num-
bers).

A summary of this section results is shown in table 15.

4.1 An unbounded covert channel with de-
creasing rate

Consider

l=0;

while (!(l=h)) l=l+1;

5In the Channel leakage ratio row in the table quantities
greater than 1 should be ignored.

Under uniform distribution max W(e, M)n is achieved by

H(µ(e<0>), . . . , µ(e<2k−1>)) +
X

0≤i≤2k−1

µ(e<i>)H(Mi|e<i>)

Notice that no high variable appears in the body, so there
is no leakage in the body, i.eX

0≤i≤2k−1

µ(e<i>)H(Mi|e<i>) = 0

We hence only need to study

H(µ(e<0>), . . . , µ(e<2k−1>))

notice now that

e
<i> =

8<: 0 = h, if i = 0

0 6= h, . . . , i 6= h ∧ i + 1 = h, if i > 0

hence µ(e<i>) = 1
2k

. This means

H(µ(e<0>), . . . , µ(e<2k−1>)) = H(
1

2k
, . . . ,

1

2k
) = log(2k) = k

As expected all k-bit of a variable are leaked in this loop,
for all possible k; however to reveal k bits 2k iterations are
required. We conclude that this is an unbounded covert
channel with decreasing rate k

2k
. To attach a concrete timing

meaning to this rate let t1, t2 be the time (in milliseconds)
taken by the system to evaluate the expression !(l = h) and
to execute the command l = l + 1 respectively. Then the
above program leaks k

2k
bits per t1 + t2 milliseconds.

Notice that uniform distribution maximizes leakage, i.e.
it achieves channel capacity.

Consider for example the following input distribution for
a 3-bit variable:

µ(0) =
7

8
, µ(1) = µ(2) · · · = µ(7) =

1

56

In this case the attacker knows, before the run of the
program, that 0 is much more likely than any other number
to be the secret, so the amount of information revealed by
running the program is below 3 bits (below capacity). In
fact we have

H(
7

8
,
1

56
, . . . ,

1

56
) = 0.8944838

Notice however that whatever the distribution the secure-
ness of this program is 0 and leakage ratio 1.

4.2 A bounded covert channel with constant
rate

l = 20; while(h < l){l = l− 1}

After executing the program l will be 20 if h ≥ 20 and
will be h if 0 ≤ h < 20 i.e. h will be revealed if it is in the
interval 0..19.

The random variables of interest are:

M
n ≡ l = 20− n

The events associated to the guard are:



Table 1: Summary of analysis for loops; loop i is the loop presented in section 4.i of the paper
loop 1 loop 2 loop 3 loop 4 loop 4a loop 5 loop 6 loop 7

Bound ∞ 4.3219 1 16 ∞ 0 log(C) ∞
Channel Rate ↓ = = = = = ↓ =
Capacity k 4.3219 1 16 k 0 log(C) k

2

Channel leakage ratio 1 ≤ 4.3219
k

≤ 1
k

≤ 16
k

1 0 ≤ log(C)
k

≤ 1
2

Figure 1: leakage in l=20; while ( h < l) {l=l-1}

e
<n> =

8>><>>:
h < 20− n ∧ h ≥ 20− (n + 1) ≡
h = 20-(n+1), n>0

h ≥ 20, n=0

and

µ(e<n>) =

8>>>><>>>>:
2k−20
2k

if n = 0

1
2k

if 0 < n ≤ 20

0 if n > 20

Again since the body of the loop doesn’t contain any high
variable

Σ1≤i≤nµ(e<i>)H(Mi|e<i>) = 0

The leakage is hence given by

H(µ(e<1>), . . . , µ(e<n>)) =

H( 2k−20
2k

, 1
2k

, . . . , 1
2k

, 0, . . . , 0) =

− 2k−20
2k

log( 2k−20
2k

)− 20( 1
2k
log( 1

2k
))

This function is plotted in figure 1 for k = 6 . . . 16. The
interesting thing in the graph is how it shows that for k

around 6 bits the program is unsafe (more than 2.2 bits of
leakage) whereas for k from 14 upwards the program is safe
(around 0 bits of leakage).

We conclude that this is a bounded covert channel with
decreasing rate.

However uniform distribution is not the channel distri-
bution. The capacity of this channel is 4.321928 and is
achieved by the distribution where the only values with non

zero probability for h are in the range 0 . . . 19 and have uni-
form distribution6.

Notice that the channel distribution ignores values of h

higher than 20, so the channel rate is constant 4.321928
20

= 0.2160.

4.3 A 1-bounded channel with constant rate
Consider the following program

h=BigFile

i=0;

l=0;

while (i<N)

{

l= Xor(h[i],l);

i=i+1;

}

This program take a large confidential file and performs a
parity check, i.e. write in l the Xor of the first N bits of the
file. The n-ary Xor function returns 1 if its argument has an
odd number of 1s and 0 otherwise. This is a yes/no answer
so its entropy has maximum 1 which is achieved by uniform
distribution. Hence

H(Mn|e<n>) = H(h[0] ⊕ . . . ⊕ h[n− 1]) = 1

Notice that

e
<n> ≡ n < N ∧ n + 1 ≥ N

henceforth

µ(e<i>) = 0 if i 6= N− 1 and µ(e<N−1>) = 1

We deduce the leakage is:
H(µ(e<0>), . . . , µ(e<n>)) + Σ1≤i≤nµ(e<i>)H(Mi|e<i>) =
0 + µ(e<N>)H(MN|e<N>) =1

This is a 1-bounded channel with constant rate and capac-
ity 1. Notice however that if the number of iterations were
a function of the secret size, for example by inserting in
the second line of the program the assignment N = size(h),
(where size(h) = k the size of the secret) then it becomes a
1 bounded channel with decreasing rate 1

k
and capacity 1.

Again there are distributions which do not achieve channel
capacity, for example one where values of h with odd number
of bits equal to 1 are less likely than other values.

4.4 A 16-bounded stationary channel
Consider the program

int c = 16, low = 0;

while (c >= 0) {

6We are ignoring the case where k < 5 where the capacity
is less than 4.321928



int m = (int)Math.pow(2,c);

if (high >= m) {

low = low + m;

high = high - m;

}

c = c - 1;

}

System.out.println(low);

Here the guard of the loop doesn’t contain variables af-
fected by high, hence we only need to use formula 5 where
M is

int m = (int)Math.pow(2,c);

if (high >= m) {

low = low + m;

high = high - m;

}

c = c - 1;

To compute H(Mn) notice that the n-th iteration of M test
the n-th bit of high, i.e. high >= m is true at the n-th
iteration iff the n-th bit of high is 17 and copies that bit
into low

The variables of interests are:

M
n ≡ low = nBits(high)

e
<n> = 16− n ≥ 0 ∧ 16− (n + 1) < 0

µ(e<n>) =

8<: 1 if n = 16

0 otherwise

Because of this the leakage of the guard is 0 and for the
total leakage we only need to compute H(M16|e<16>) = 16.
This mean that the rate is 1.

This is hence an example of a 16-bounded stationary chan-
nel. However if we were to replace the first assignment int

c = 16 with c = size(l) i.e.

int c = size(l), low = 0;

while (c >= 0) {

int m = (int)Math.pow(2,c);

if (high >= m) {

low = low + m;

high = high - m;

}

c = c - 1;

}

System.out.println(low);

then we would have an unbounded stationary channel (as-
suming that h,l be of the same size) with constant channel
rate 1.

Again channel capacity is achieved by uniform distribu-
tion. For example a distribution where we already know few
bits of high will not achieve channel capacity,
7This is because m = 216−n

4.5 A never terminating loop

while (0== 0)

low = high;

Here µ(e<i>) = 0 for all i, hence for all n the formula
W(e, M)n = H(µ(e<0>), . . . , µ(e<n>), 1− Σ0≤i≤nµ(e<i>))+

Σ1≤i≤nµ(e<i>)H(Mi|e<i>)
becomes

H(0, . . . , 0, 1) + Σ1≤i≤n 0 H(Mi|e<i>) = 0

from which we conclude that the leakage, rate and capacity
are all 0.

The reason the program is secure even if the whole secret
is assigned to a low variable is that only observations on
final states of the command are allowed (none in this case
because of non termination); again this is feature of our
model where the observer cannot see intermediate values
of the computation, in which case this program would leak
everything.

4.6 A may terminating loop

l=0;

flag=tt;

while (flag or l<h)

{

if (h<= C) flag=ff;

l=l+1;

}

This loop will terminate if h ≤ C and in that case l = h.
The event e<i> corresponds to i = h ∧ h ≤ C, hence

µ(e<i>) =
1

C

C

2k
=

1

2k
if i ≤ C

Notice that as the information h ≤ C is known by knowing
e<i> we conclude that for all i, H(Mi|e<i>) = 0.

The leakage of this channel (under uniform distribution)
is hence
H( 1

2k
, . . . , 1

2k
, 2k−C

2k
) = Ck

2k
− 2k−C

2k
log( 2k−C

2k
)

This function is similar to the one from section 4.2. Again
channel capacity is achieved not by the uniform distribution
but from the one where the first C values have probability
1
C
: in that case the program reveal all the secret.
Figure 2 shows the leakage for k between 10 and 20 and C

between 400 and 500 under uniform distribution.

4.7 Probabilistic operators
When defining leakage in section 2.2 it was shown that

the conditional entropy H(O|L) would overestimate leakage
for a program like

l = random(0, 1)

where random(0, 1) a probabilistic operator returning 0 with
probability p and 1 with probability 1− p.

However we could interpret l = random(0, 1) as the pro-
gram l = x where x is an “unknown input” variable tak-
ing value 0 with probability p and 1 with probability 1− p.
Then computing H(O|L, X) gives H(O|L, X) = H(O|X) = 0, all
uncertainty in the output comes from “the random”x so it
can be eliminated by conditioning on it.



Figure 2: leakage for program in section 4.6

This suggests that an analysis of probabilistic programs
can be developed by introducing a new random variable to
cater for the probabilistic operator; the leakage formula be-
comes H(O|L, X); the effect of this formula is to subtract from
the uncertainty in the output the uncertainty coming from
the low input and from the probabilistic operator; i.e. the
uncertainty in H(O|L, X) comes from the secret. As usual we
can simplify the formula to H(O|X) by hardwiring the low in-
puts into the probability distribution as shown at the end
of Section 2.2.

In the cases of loops using a probabilistic operator we take
X as a stream of bits; the i-th bit in the stream is the i-th
outcome of the operator.

We can compute the leakage of probabilistic programs by
using the definition of conditional entropy

H(O|X) =
X

µ(X = xi)H(O|X = xi)

As an example consider the program P

int i=0; low = 0;

while (i< size(high)) {

if (Coin[i]==0 )

low[i] = high[i];

i=i+1;

}

System.out.println(low);

where Coin is a stream of unknown bits such that Coin[i] = 0

with probability pi. Then at the end of the program the
i− th bit of high will be copied in low with probability pi.

To compute the leakage of the program , i.e. H(P|Coin)
we proceed as follow:

1. Compute, using formula 2, the entropies H(Ps1), . . . , H(Psn)
where H(Psi) is the above program where the vector
Coin is instanciated to a specific sequence si.

2. Compute
P

µ(si)H(Psi) = H(P|Coin).

Given a stream si and high a k-bit variable, the bits of
high copied in low are those corresponding to the positions
in s1 with value 0. For example if high is a 4-bit variable
and si = 1001 . . . then low will be the sequence 0h[1]h[2]0.
The leakage of H(Psi) = number of 0s in si

For example if we assume high, Coin are uniformly dis-
tributed, i.e. any bit in high, Coin has 1/2 chance of being
0 or 1 and high is a 4-bit variable then there will be 4 se-
quences with 1 zero, 6 with 2 zeros, 4 with 3 zeros and 1
with 4 zeros (the general formula is k!

(k−i)!i!
where i is the

number of zeros) . The leakage will hence be

4

16
+

6

16
2 +

4

16
3 +

1

16
4 =

1

2
+

3

2
= 2

the general formula being

X
1≤i≤k

k!

(k− i)!i!
i
1

2k
=

X
1≤i≤k

k!

(k− i)!i!
i
1

2i
1

2k−i
=

k

2

This is hence an unbounded channel leaking k
2

bits with rate
1
2
.
Notice that in the presence of probabilistic operators all

definitions introduced, leakage, rate, channel, leakage ratio
have an additional parameter, i.e. the distribution on this
unknown input. The leakage for the above program given
Coin[i] = 0 with probability p is pk. This is obtained by the
expected value of the binomial distribution:X

1≤i≤k

k!

(k− i)!i!
i p

i(1− p)k−i = pk

For example by changing the distribution in Coin such
that for all i, Coin[i] = 0 with probability 1 the above pro-
gram become the unbounded stationary channel studied in
section 4.4 whereas if for all i, Coin[i] = 0 with probability
0 the above program become secure.

The analysis of probabilistic programs should hence re-
turn a number if the probabilities of the probabilistic opera-
tor are known and a distribution when the probabilities are
unknown.

5. JUSTIFYING ENTROPY AS A MEASURE
OF LEAKAGE

We now address the questions: “how is leakage as defined
in this work related to computer security?”

A basic result proved in [3] is that for a terminating deter-
ministic program the leakage is 0 if and only if the program is
non interfering. Similar results had been previously proved
in different contexts by Millen[16] and Gray [24]. The idea
is to see a non interfering program as a function F(h, l) (its
denotational semantics) which is constant on the h compo-
nent, i.e. for all h 6= h′, F(h, l) = F(h′, l). Let’s now consider
H(F|l): because F is constant on the h component there will
be no uncertainty on F if we know l, hence H(F|l) = 0; on
the other side any denotation of a program which satisfy
H(F|l) = 0 has to be constant on the h component so has to
denote a non interfering program.

Let’s now address the remaining part of this section’s
question: if the leakage is n > 0 what does that mean?

The idea here is that n is a lower bound on the effort of
the attacker in guessing the secret given observations on the
output of the program. In the following we will use work
from Massey [14], Malone and Sullivan[9]. The following
argument extends one from [2].

Suppose the attacker has available a distribution p = (pi)i∈I
for the secret. He can then mount a dictionary attack i.e.
he will try to guess the secret starting from the most likely



guess and so on. The expected number of guesses is then
G(p) =

P
i ipi. In case of the uniform distribution G(p) = n+1

2
.

This inspires the information theoretic definition

HG(p) = 2H(p)+1
2

In the setting of the present work, p is the distribution
after observing the program, and so H(p) is the uncertainty
of the secret after running the program, i.e. Sec(M), the
secureness of the program as defined in section 3.2.1.

Massey has shown that 0.7HG(p) ≤ G(p) (his precise bound
is G(p)/HG(p) ≤ 2/e). This supports the view that secureness
provides a lower bound on the average effort required to
guess the secret using a dictionary attack. Another possible
yet less realistic scenario of attack is where the attacker may
guess sets of values and been told if the secret is in that set.
In this case the connection with entropy is even stronger as
the average number of guesses becomes H(p) (again this is
Sec(M)).

In the case of the dictionary attack, how good is the lower
bound 0.7HG(p) ≤ G(p)? In an experimental study [9] one
million random distributions for a set between 2 and 20
values were generated. These experiments show that the
following relation holds:
0.7HG(p) ≤ G(p) ≤ HG(p)
This suggest that in normal situations the bound is very

tight.
Massey however has shown that there are distributions for

which the inequality G(p) ≤ HG(p) doesn’t hold; an example
is the distribution p1 = 1− b/n, p2 = · · · = pn = b/(n2 − n).
For n→∞ we have G(p) tends to 1 + b/2 while H(p) tends
to 1. Because b is arbitrary we conclude that G(p) can be
arbitrary larger than H(p).

6. CONCLUSION AND FURTHER WORK
This paper has given the first precise, information-theoretic

account of the constructs in a Turing-complete programming
language. The central point is our information theoretical
semantics of leakage in loops. The theory consists of several
notions: absolute leakage, rate of leakage, channel capacity,
and leakage ratio. We have a classification of loops with the
aim to determine which loop presents a security threat, and
then presented several case studies in an attempt to show
that the definitions and classification are useful in individu-
ating security threats and are natural.

We believe that the ideas in this paper could provide a
springboard for further applications of information theory
in security and programming languages. Some immediate
directions for investigation are the following.

1. Static Analysis. This work could pave the way for
more powerful static analyses based on information
theory. As the case studies show the analysis requires
some ingenuity, for example to determine which events
the e<i> represents. This reasoning usually involves
the ability to detect interaction between several ran-
dom variables. It may be possible that by combin-
ing techniques from theorem proving, model checking
and quantitative static analysis like [3, 1] some reason-
able static analysis may be built. The central point,
though, is that with a precise semantics of loops in
place, we have a reference semantics that potential
abstract domains should over-approximate, in which

case loops could be soundly analyzed via fixed-point
iteration.

2. Timing Attacks. As already noted, there is some in-
formation about timing in the notion of rate of leakage,
rate being an indication of the average time needed to
release some information; for example a low rate sug-
gests little amount of secret is released in each itera-
tion, a decreasing rate indicates that the channel take
longer to transmit information as the size of the se-
cret increases. However many timing attacks are not
covered in our current model, for example those whose
study requires intermediate states of execution to be
observable; hence more work is required to address im-
portant issues in timing attacks.

3. Concurrency, non determinism. Integrating this
work with a concurrency framework could open the
way to the analysis of interesting protocols.

4. Separation Logic. O’Hearn, Reynolds and Isthiaq[12,
19] have introduced a logic to reason about heaps based
on some sort of non-interference between different parts
of the code. Quantified interference may suggest a
weaker separation logic which could be interesting to
explore.

6.1 Acknowledgments
I’m very grateful to Fabrizio Smeraldi, Peter O’Hearn and

Sebastian Hunt for very useful comments on this work. This
research was supported by the EPSRC grant EP/C009967/1
Quantitative Information Flow.

7. REFERENCES
[1] D. Clark, S. Hunt, and P. Malacaria. Quantified

interference for a while language. In Electronic Notes
in Theoretical Computer Science 112, pages 149 – 166.
Elsevier, 2005.

[2] David Clark, Sebastian Hunt, and Pasquale
Malacaria. Quantitative analysis of the leakage of
confidential data. Electronic Notes in Theoretical
Computer Science, 59, 2002.

[3] David Clark, Sebastian Hunt, and Pasquale
Malacaria. Quantitative information flow, relations
and polymorphic types. Journal of Logic and
Computation, Special Issue on Lambda-calculus, type
theory and natural language, 18(2):181–199, 2005.

[4] Michael R. Clarkson, Andrew C. Myers, and Fred B.
Schneider. Belief in information flow. In Proc. 18th
IEEE Computer Security Foundations Workshop
(CSFW 18). IEEE Computer Society Press, 2005.

[5] Thomas M. Cover and Joy A. Thomas. Elements of
Information Theory. Wiley Interscience, 1991.

[6] D.Bell and L. LaPadula. Secure computer systems:
Unified exposition and multics interpretation.
Technical Report MTR-2997, MITRE Corp, 1997.

[7] D. E. R. Denning. A lattice model of secure
information flow. Communications of the ACM, 19(5),
May 1976.

[8] D. E. R. Denning. Cryptography and Data Security.
Addison-Wesley, 1982.

[9] D.Malone and W. Sullivan. Guesswork and entropy.
IEEE Transactions on Information Theory, 50(3),
March 2004.



[10] J. Goguen and J. Meseguer. Security policies and
security models. In IEEE Symposium on Security and
Privacy, pages 11–20. IEEE Computer Society Press,
1982.

[11] James W. Gray III and Paul F. Syverson. A logical
approach to multilevel security of probabilistic
systems. Distributed Computing, 11(2):73–90, 1998.

[12] S. Isthiaq and P.W. O’Hearn. BI as an assertion
language for mutable data structures. In 28th POPL,
pages 14–26, London, January 2001.

[13] Gavin Lowe. Quantifying information flow. In
Proceedings of the Workshop on Automated
Verification of Critical Systems, 2001.

[14] James L. Massey. Guessing and entropy. In Proc.
IEEE International Symposium on Information
Theory, Trondheim, Norway, 1994.

[15] John McLean. Security models and information flow.
In Proceedings of the 1990 IEEE Symposium on
Security and Privacy, Oakland, California, May 1990.

[16] Jonathan Millen. Covert channel capacity. In Proc.
1987 IEEE Symposium on Research in Security and
Privacy. IEEE Computer Society Press, 1987.

[17] Alessandra Di Pierro, Chris Hankin, and Herbert
Wiklicky. Probabilistic confinement in a declarative
framework. In Agostino Dovier, Maria Chiara Meo,
and Andrea Omicini, editors, Electronic Notes in
Theoretical Computer Science, volume 48. Elsevier,
2001.

[18] Alessandra Di Pierro, Chris Hankin, and Herbert
Wiklicky. Quantitative static analysis of distributed
systems. Journal of Functional Programming, 2005.

[19] J. Reynolds. Separation logic: a logic for shared
mutable data structures, 2002.

[20] J. C. Reynolds. Syntactic control of interference. In
Conf. Record 5th ACM Symp. on Principles of
Programming Languages, pages 39–46, Tucson,
Arizona, 1978. ACM, New York.

[21] P. Y. A. Ryan, J. McLean, J. Millen, and V. Gilgor.
Non-interference, who needs it? In Proceedings of the
14th IEEE Security Foundations Workshop, Cape
Breton, Nova Scotia, Canada, June 2001. IEEE.

[22] Claude Shannon. A mathematical theory of
communication. The Bell System Technical Journal,
27:379–423 and 623–656, July and October 1948.
Available on-line at http://cm.bell-

labs.com/cm/ms/what/shannonday/paper.html.

[23] Dennis Volpano and Geoffrey Smith. A type-based
approach to program security. In Proceedings of
TAPSOFT ’97 (Colloquium on Formal Approaches in
Software Engineering), number 1214 in Lecture Notes
in Computer Science, pages 607–621, Lille, France,
1997.

[24] James W. Gray, III. Toward a mathematical
foundation for information flow security. In Proc. 1991
IEEE Symposium on Security and Privacy, pages
21–34, Oakland, CA, May 1991.

[25] D. G. Weber. Quantitative hookup security for covert
channel analysis. In Proceedings of the 1988 Workshop
on the Foundations of Computer Security, Fanconia,
New Hampshire, U.S.A., 1988.

[26] T. Wittbold. Network of covert channels. In

Proceedings of the 1990 Workshop on the Foundations
of Computer Security, 1990.


