
http://ramirose.wix.com/ramirosen 1

Linux Containers and the Future
Cloud

Rami Rosen
ramirose@gmail.com

mailto:ramirose@gmail.com

http://ramirose.wix.com/ramirosen 2

About me

● Bio: Rami Rosen, a Linux kernel expert, author
of a recently published book, “Linux Kernel
Networking - Implementation and Theory”, 648
pages, Apress, 2014.

http://ramirose.wix.com/ramirosen 3

Table of Contents

Namespaces

– Namespaces implementation

– UTS namespace

– Network Namespaces

– PID namespaces

Cgroups

– cgroups and kernel namespaces

– cgroups VFS

– devices cgroup controller

Linux containers

– LXC management

Docker

– Dockerfile

CRIU

http://ramirose.wix.com/ramirosen 4

General

● Lightweight process virtualization is not new.
– Solaris Zones.

– BSD jails.

– AIX WPARs (Workload Partitions).

– Linux-based containers projects.

● Why now ?
– Primarily because kernel support is now available

(namespaces and cgroups).
● Kernel 3.8 (released in February 2013).

http://ramirose.wix.com/ramirosen 5

Scope and Agenda

● This lecture is a sequel to a lecture given in May 2013 in Haifux:

“Resource Management in Linux”, http://www.haifux.org/lectures/299/

Agenda:

● Namespaces and cgroups – the Linux container building blocks.

● Linux-based containers (focusing on the LXC Open Source project,
implementation and some hands-on examples).

● Docker – an engine for creating and deploying containers.

● CRIU (Checkpoint/restore in userspace)

Scope:

– We will not deal in depth with security aspects of containers.

– We will not deal with containers in Android.

http://www.haifux.org/lectures/299/

http://ramirose.wix.com/ramirosen 6

Namespaces

There are currently 6 namespaces:
● mnt (mount points, filesystems)
● pid (processes)
● net (network stack)
● ipc (System V IPC)
● uts (hostname)
● user (UIDs)

– Eric Biederman talked about 10 namespaces in OLS 2006.
● security namespace and security keys namespace will probably not be developed

(replaced by user namespaces)
● time namespace.
● RFC for device namespaces was recently sent (Android; Cellrox).

http://ramirose.wix.com/ramirosen 7

6 New CLONE Flags

6 new flags to the clone() system call:
CLONE_NEWNS 2.4.19 CAP_SYS_ADMIN

CLONE_NEWUTS 2.6.19 CAP_SYS_ADMIN

CLONE_NEWIPC 2.6.19 CAP_SYS_ADMIN

CLONE_NEWPID 2.6.24 CAP_SYS_ADMIN

CLONE_NEWNET 2.6.29 CAP_SYS_ADMIN

CLONE_NEWUSER 3.8 No capability is required

http://ramirose.wix.com/ramirosen 8

3 System calls for handling
namespaces

● Three system calls are used for namespaces:
● clone() - creates a new process and a new namespace; the process is

attached to the new namespace.
– Process creation and process termination methods, fork() and exit()

methods, were patched to handle the new namespace CLONE_NEW*
flags.

● unshare() - does not create a new process; creates a new namespace
and attaches the current process to it.
– The unshare() system call was added in 2005:
– see “new system call, unshare” : http://lwn.net/Articles/135266/

● setns(int fd, int nstype) - a new system call was added, for joining an
existing namespace. Available only from kernel 3.0 – see man 2 setns.

http://lwn.net/Articles/135266/

http://ramirose.wix.com/ramirosen 9

● Namespaces do *not* have names in the
kernel.
– With ip netns sub command, we can assign names

to network namespaces, but these are kept in
userspace and not in the kernel.

● An inode is created when the namespace is
created, for each namespace.

● ls -al /proc/<pid>/ns

http://ramirose.wix.com/ramirosen 10

Namespaces implementation

A member named nsproxy was added to the process descriptor
, struct task_struct.

● nsproxy includes 5 inner namespaces:
– uts_ns, ipc_ns, mnt_ns, pid_ns, net_ns.

● Notice that user ns (user namespace) is missing in this list.
 it is a member of the credentials object (struct cred) which is a member of
the process descriptor, task_struct.

● It is better, in terms of performance, than having an object to each
namespace, and incrementing the reference counter of each when forking.

● A method named task_nsproxy(struct task_struct *tsk), to access the
nsproxy of a specified process. (include/linux/nsproxy.h)

● There is an initial, default namespace for each of the 6 namespaces.

http://ramirose.wix.com/ramirosen 11

Userspace additions

Userspace additions to support namespaces:
● IPROUTE package

– some additions like ip netns add/ip netns del, ip link set ...
netns, and more (will be discussed in later slides).

● util-linux package

– unshare util with support for all the 6 namespaces.

– nsenter – a wrapper around setns().
● shadow/shadow-utils (for supporting user namespaces)

– Still not integrated in all distros.

http://ramirose.wix.com/ramirosen 12

UTS namespace

● UTS (Unix timesharing) namesapce

– Very simple to implement.

 A member named uts_ns was added (uts_namespace object) to the
nsproxy structure. The uts_ns object includes a new_utsname object,
which includes these members:

● sysname
● nodename
● release
● version
● machine
● domainname

http://ramirose.wix.com/ramirosen 13

UTS namespace -contd.
● A method called utsname() was added to fetch the new_utsname object of the uts namespace associated with
the current process:
static inline struct new_utsname *utsname(void)
{
 return ¤t->nsproxy->uts_ns->name;
}

● The new implementation of gethostname():
SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
{
 struct new_utsname *u;
 ...
 u = utsname();
 if (copy_to_user(name, u->nodename, i))
 errno = -EFAULT;
 ...
}
Similar approach was taken in the uname() and the sethostname() system calls.

● Question: What is missing in UTS implementation shown above?

http://ramirose.wix.com/ramirosen 14

UTS namespace -contd.

● Answer: UTS procfs entries, like:
– /proc/sys/kernel/hostname

– /proc/sys/kernel/domainname

● With IPC namespace, the principle is the same;
it is simply a bigger namespace.

http://ramirose.wix.com/ramirosen 15

Network Namespaces

● A network namespace is logically another copy of the network stack,

 with its own routes, firewall rules, and network interfaces.

● The network namespace is represented by struct net (defined in
include/net/net_namespace.h).

Struct net includes all network stack ingredients, like:

– The loopback device.

– SNMP stats. (netns_mib)

– All network tables:routing, neighboring, etc.

– All sockets

– /proc and /sys entries.

http://ramirose.wix.com/ramirosen 16

Network Namespaces
implementation

A network interface belongs to exactly one network namespace.

● This addition was made to the net_device structure:

– struct net *nd_net;

for the Network namespace this network device is inside.

● A method was added: dev_net(const struct net_device *dev)

to access the nd_net namespace associated with the specified network device.

A socket belongs to exactly one network namespace.

● Added sk_net to struct sock (also a pointer to struct net), for the Network
namespace this socket is inside.

● Added sock_net() and sock_net_set() methods (get/set network
namespace of a socket)

http://ramirose.wix.com/ramirosen 17

Network Namespaces – example:

● Create two namespaces, called "myns1" and "myns2":

● ip netns add myns1
● ip netns add myns2

– Implementation: see netns_add() in ipnetns.c (iproute2)
● Delete “myns1” network namespace is done by:

● ip netns del myns1

Notice that after deleting a namespace, all its migratable network
devices are moved to the default network namespace.

● You can monitor addition/removal of network namespaces by:

– ip netns monitor

- prints one line for each addition/removal event which occurs.

http://ramirose.wix.com/ramirosen 18

● You list the network namespaces (which were added via “ ip
netns add”) by:

● ip netns list
– this simply reads the namespaces under:

/var/run/netns

● You can find the pid (or list of pids) in a specified network
namespace by:
– ip netns pids namespaceName

● You can find the network namespace of a specified pid by:
– ip netns identify #pid

http://ramirose.wix.com/ramirosen 19

● You can move the eth0 network interface to myns1
network namespace by:
– ip link set eth0 netns myns1

– This triggers changing the network namespace of the net_device to “myns1”.

– It is handled by the dev_change_net_namespace() method, net/core/dev.c.

● You can start a shell in the new namespace by:

– ip netns exec myns1 bash

– Running now ifconfig -a in myns1 will show eth0 and the loopback device.

http://ramirose.wix.com/ramirosen 20

● You can move a network device to the default, initial namespace by:

 ip link set eth0 netns 1

● In a network namespace, which was created by “ip netns add”, network
applications which look for files under /etc, will first look in /etc/netns/myns1/,
and then in /etc.

● For example, if we will add the following entry
"192.168.2.111 www.dummy.com"

● in /etc/netns/myns1/hosts, and run:
● ping www.dummy.com

– we will see that we are pinging 192.168.2.111.

http://ramirose.wix.com/ramirosen 21

PID namespaces

● Added a member named pid_ns (pid_namespace object) to the
nsproxy object.

● Processes in different PID namespaces can have the same process ID.
● When creating the first process in a new namespace, its PID is 1.
● Behavior like the “init” process:

– When a process dies, all its orphaned children will now have the
process with PID 1 as their parent (child reaping).

– Sending SIGKILL signal does not kill process 1, regardless of
which namespace the command was issued from (initial
namespace or other PID namespace).

http://ramirose.wix.com/ramirosen 22

PID namespaces – contd.

● pid namespaces can be nested, up to 32
nesting levels. (MAX_PID_NS_LEVEL).

● See: multi_pidns.c, Michael Kerrisk, from
http://lwn.net/Articles/532745/.

http://lwn.net/Articles/532745/

http://ramirose.wix.com/ramirosen 23

Cgroups (Control Groups)
● cgroups (control groups) subsystem is a Resource Management solution providing a generic process-

grouping framework.
● This work was started by developers from Google (primarily Paul Menage and Rohit Seth) in 2006

under the name "process containers”; in 2007, renamed to “Control Groups”.
● Maintainers: Li Zefan (Huawei) and Tejun Heo.
● The memory controller (memcg), which is probably it is the most complex, is maintained separately

(4 maintainers)
– Namespaces provide a per process resource isolation solution.
– Cgroups, on the other hand, provides resource management solution (handling groups).

● Systemd is a replacement for SysV init scripts. It uses aggressive parallelization capabilities in order to start
services. It was integrated into Fedora since Fedora 15. It is based on DBUS messages.
– Fedora systemd uses cgroups.
– Ubuntu does not have systemd yet, but will have it in the future as it was decided that Debian will use systemd.
– RHEL 7 will use systemd. (RHEL 7 is to be be released during 2014; it is based on Fedora 19).
– Systemd-nspawn: uses namesapces/cgroups to create containers (A tool for testing/debugging of systemd that

should run inside a container; no need for config files, easy to use; not meant to compete with LXC or Libvirt
LXC or Docker)

http://ramirose.wix.com/ramirosen 24

Cgroups implementation

● The implementation of cgroups requires a few, simple hooks
into the rest of the kernel, none in performance-critical paths:
– In boot phase (init/main.c) to preform various initializations.
– In process creation and destroy methods, fork() and exit().
– A new file system of type "cgroup" (VFS)
– Process descriptor additions (struct task_struct)
– Addition of procfs entries:

● For each process: /proc/pid/cgroup.
● System-wide: /proc/cgroups

http://ramirose.wix.com/ramirosen 25

cgroups and kernel namespaces

Note that the cgroups is not dependent upon namespaces; you can build cgroups
without namespaces kernel support, and vice versa.

There was an attempt in the past to add "ns" subsystem (ns_cgroup, namespace
cgroup subsystem); with this, you could mount a namespace subsystem by:

mount -t cgroup -ons.

This code was removed in 2011 (by a patch by Daniel Lezcano), in favor of
using user namespaces instead.

See:

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=a7
7aea92010acf54ad785047234418d5d68772e2

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=a77aea92010acf54ad785047234418d5d68772e2
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=a77aea92010acf54ad785047234418d5d68772e2

http://ramirose.wix.com/ramirosen 26

cgroups VFS

● Cgroups uses a Virtual File System

– All entries created in it are not persistent and deleted after reboot.

● All cgroups actions are performed via filesystem actions
(create/remove directory, reading/writing to files in it, mounting/mount
options).

● Usually, cgroups are mounted on /sys/fs/cgroup (for example, by
systemd)

– This is not mandatory; mounting cgroups can be done also on
every path in the filesystem.

http://ramirose.wix.com/ramirosen 27

In order to use a cgroups filesystem (browse it/attach tasks to cgroups, etc) it must be mounted.

The control group can be mounted anywhere on the filesystem. Systemd uses /sys/fs/cgroup.

When mounting, we can specify with mount options (-o) which subsystems we want to use.

There are 11 cgroup subsystems (controllers) (kernel 3.9.0-rc4 , April 2013); two can be built as modules.
(All subsystems are instances of cgroup_subsys struct)
cpuset_subsys - defined in kernel/cpuset.c.

freezer_subsys - defined in kernel/cgroup_freezer.c.

mem_cgroup_subsys - defined in mm/memcontrol.c; Aka memcg - memory control groups.

blkio_subsys - defined in block/blk-cgroup.c.

net_cls_subsys - defined in net/sched/cls_cgroup.c (can be built as a kernel module)

net_prio_subsys - defined in net/core/netprio_cgroup.c (can be built as a kernel module)

devices_subsys - defined in security/device_cgroup.c.

perf_subsys (perf_event) - defined in kernel/events/core.c

hugetlb_subsys - defined in mm/hugetlb_cgroup.c.

cpu_cgroup_subsys - defined in kernel/sched/core.c

cpuacct_subsys - defined in kernel/sched/core.c

http://ramirose.wix.com/ramirosen 28

devices cgroup controller

● Also referred to as :devcg (devices control group)
● devices cgroup provides enforcing restrictions on opening and mknod operations on

device files.
● 3 files: devices.allow, devices.deny, devices.list.

– devices.allow can be considered as devices whitelist
– devices.deny can be considered as devices blacklist.
– devices.list available devices.

● Each entry is 4 fields:

– Type: can be a (all), c (char device), or b (block device).
● All means all types of devices, and all major and minor numbers.

– Major number.
– Minor number.
– Access: composition of 'r' (read), 'w' (write) and 'm' (mknod).

http://ramirose.wix.com/ramirosen 29

devices - example

/dev/null major number is 1 and minor number is 3 (You can fetch the major/minor number from
Documentation/devices.txt)

mkdir /sys/fs/cgroup/devices/0

By default, for a new group, you have full permissions:

cat /sys/fs/cgroup/devices/0/devices.list

a *:* rwm

echo “a *:* rmw” > /sys/fs/cgroup/devices/0/devices.deny

This denies rmw access from all devices.

echo $$ > /sys/fs/cgroup/devices/0/tasks

echo "test" > /dev/null

bash: /dev/null: Operation not permitted

echo “a *.* rwm” > /sys/fs/cgroup/devices/0/devices.allow

This adds the 'a *:* rwm' entry to the whitelist.

echo "test" > /dev/null

Now there is no error.

http://ramirose.wix.com/ramirosen 30

What will be the future cloud
infrastructure?

● Two types of virtualization:
– Running VMs: (Xen, Kvm) another OS instance by Hardware Virtualization/Para Virtualization solutions
– Lightweight Process level (Containers) (Aka Virtual Environment (VE) and Virtual Private Server (VPS).

● Will VMs disappear from clouds infrastructure ? Probably not.
– With VMs, you can run different kernels on different guests; with containers you must use the same kernel.
– VM may support non-Linux OSs such as Microsoft Windows, etc. You cannot run Windows in a container.
– Security.

● OpenVZ: security audit, performed by Solar Designer in 2005 (http://openvz.org/Security)

● Containers advantages:
– Nesting in containers is supported out of the box, though it was not tested thoroughly.
– Start-up and Shut-down time: With process-level virtualization, starting and shutting down a container is
faster than with VMs like Xen/KVM.
– Test: starting 4 Fedora containers as daemons in less then half a second on a laptop.
– Density - you can deploy more containers on a host then VMs (see next in the density slides).

● Take into account that twice the numbers of containers on a host leads to a higher overall profit.
● “The hypervisor is here to stay”:
– http://mailman.cs.huji.ac.il/pipermail/linux-il/2013-September/010663.html

http://mailman.cs.huji.ac.il/pipermail/linux-il/2013-September/010663.html

● LXCBENCH: http://projects.genivi.org/lxcbench
– Based on Phoronix Test Suite (PTS), see: http://www.phoronix-test-suite.com.

- GENIVI Alliance organization project.

● You can have more containers on a host then kvm/xen Vms.
● “Lightweight Virtualization with Linux Containers (LXC)” - Jérôme Petazzoni

– The 5th China Cloud Computing Conference, June 2013
– ● 10-100 virtual machines
– ● 100-1000 container
– http://www.ciecloud.org/2013/subject/07-track06-Jerome%20Petazzoni.pdf

● “Containers and The Cloud: Do you need another virtual environment”, a lecture given in Enterprise
End User Summit, May 2013, by James Bottomley, CTO, Server Virtualization for Parallels.

● Thanks fto James Bottomley from Parallels for giving an explicit permission to show the following chart
from his lecture slides:

● http://events.linuxfoundation.org/sites/events/files/eeus13_bottomley.pdf

● The benchmarks were performed on a Xeon server.

http://projects.genivi.org/lxcbench
http://www.ciecloud.org/2013/subject/07-track06-Jerome%20Petazzoni.pdf
http://events.linuxfoundation.org/sites/events/files/eeus13_bottomley.pdf

7 7

Chart of Densities

http://ramirose.wix.com/ramirosen 31

Containerization is the new
virtualization

Containers are in use by many PaaS (Platform as a Service)
companies; to mention a few -

● dotCloud (which changed later its name to docker):
https://www.dotcloud.com/

● Parallels - http://www.parallels.com

● Heroku - https://www.heroku.com/

● Pantheon - https://www.getpantheon.com/

● OpenShift of Red Hat: https://www.openshift.com/

● more.

https://www.dotcloud.com/
http://www.parallels.com/
https://www.heroku.com/
https://www.getpantheon.com/
https://www.openshift.com/

http://ramirose.wix.com/ramirosen 32

What is a container?

● There is no spec specifying what a container should
implement.

● There are several Linux-based Containers projects:
● The Google containers (still in Beta phase):

– https://github.com/google/lmctfy

– Based on cgroups.

– It is being considered to add namespaces usage in the future.

● Vserver:http://linux-vserver.org/
– There are no plans to upstream it.

– Some of the interfaces were defined more than ten years ago.

https://github.com/google/lmctfy
http://linux-vserver.org/

http://ramirose.wix.com/ramirosen 33

The OpenVZ project

● OpenVZ (based on modified kernel):
● Origins: a company called SWsoft, which was Founded in 1997

– 2001 - Virtuozzo was released (a proprietary virtualization product)
– 2005 – OpenVZ (Open Virtuozzo) released (Linux only)
– 2008 – SWsoft merged into parallels.

– OpenVZ uses cgroups (originally it used a different resource management
mechanism called bean counters).

● Using ulimt is not enough.

– OpenVZ is sponsored by a hosting and cloud services company named Parallels (
http://www.parallels.com)

– vzctl user space tool.
– In production

– Features which are not in mainline yet like vSwap or ploop (it is not upstream)

http://www.parallels.com/

http://ramirose.wix.com/ramirosen 34

The OpenVZ project

● OpenVZ (with the modified kernel) uses 5 namespaces out
of the 6. User namespace is not yet used in it.

● Cgroups are not used yet.
– There is an effort to move to cgroups in the upcoming OpenVZ

kernel (which will be RHEL7-based).

● The following plot was contributed by Kir Kolyshkin, and it
was plotted using a script from OpenVZ wiki, using gnuplot:
https://wiki.openvz.org/File:Kernel_patches_stats.png

● For comparison, for kernel 3.14 there are 1233 patches
from Intel (http://lwn.net/Articles/589728/).

https://wiki.openvz.org/File:Kernel_patches_stats.png

http://ramirose.wix.com/ramirosen 35

OpenVZ team kernel contribution
stats

http://ramirose.wix.com/ramirosen 36

LXC containers

● LXC containers:
● Website: http://linuxcontainers.org/
● Background – a french company called Meiosys which developed an HPC product called “MetaCluster” with

checkpoint/restore bought by IBM in 2005. Originally based on a kernel patch which was not merged, so rewritten
from scratch in LTC.

● Their CKRM solution (resource management) was rejected.
● An Open Source project; over 60 contributors. Maintainers: Serge Hallyn(Ubuntu), Stéphane Graber(Ubuntu)
● Only on Linux, but can run on many platforms.
● Why now ?

– User namespaces were integrated into mainline since 3.8 kernel (February 2013).

– CRIU 1.0 version was released only recently.

● In the past, several projects refrained from using LXC since it was immature (for example, NOVA of OpenStack:
– “Using OpenVZ to build a PaaS with Openstack's Nova”, Daniel Salinas, Rackspace, LPC 2013. This might change now.

● Lxc-libvirt
● not a single line of code in common between LXC and libvirt lxc.

– virsh – command line tool

 Maintained by Daniel P. Berrange, RedHat.

http://linuxcontainers.org/

http://ramirose.wix.com/ramirosen 37

LXC containers – contd.

● There is no data structure in the kernel representing a container. A
container is a userspace construct (lxc_container struct)

● There are several patches in the kernel to support checkpoint/restore of
processes in general (though these processes can be also containers).

A container is a Linux userspace process.
● Created by the clone() system call.
● When a new container is created, it is always with these two namespaces:

– PID namespace (CLONE_NEWPID flag is set).
– MNT namespace (CLONE_NEWNS flag is set).
If lxc.network.type = none in the container config file, then CLONE_NEWNET is
not set in the flags which are passed to clone().

● In such a case, we will have the same network namespace as the host, and see the same network
interfaces as the host that created it.

http://ramirose.wix.com/ramirosen 38

Templates

There are templates for creating a container
(under /usr/share/lxc/templates in Fedora).
These templates are shell scripts.

● In LXC 1.0 there are 14 templates, and in LXC 0.9, there are 11 templates.

● The simplest container is lxc-busybox.

● Fedora templates - Michael H. Warfield,
Stéphane Graber, Serge Hallyn, others.

● Oracle template - Dwight Engen, others.

http://ramirose.wix.com/ramirosen 39

Templates glitches and quirks

● With busybox containers, you must use the -k (send SIGKILL) in
order to terminate the container, or use busybox from git, where a
patch to enable getting SIGPWR was applied.

● With Fedora, lxc-stop takes a lot of time. Adding -k will make it
quicker (but terminate ungracefully).

● In the past, creating Fedora containers prior to Fedora 15 (with the
-r flag) had some issues.

● The name of the bridge interfaces are different for fedora (virbr0)
and Ubuntu (lxcbr0).

● Setting lxc.stopsignal to SIGKILL (or some other signal) in a Fedora
container config file does not work.

http://ramirose.wix.com/ramirosen 40

Creating and Destroying a
Container

● Examples for creating a container:

lxc-create -t fedora -n myFedoraCT

 => The container will be created under /var/lib/lxc/myFedoraCT

(This is true when using a distro package like with yum install lxc or
apt-get install lxc. When building from source, when using –
prefix=/usr, the container will also be created in that path).

You can also create containers of older Fedora distros, with the -r
flag. For example, create fedora 18 distro with:

lxc-create -t fedora -n fedora18 -- -R 18

http://ramirose.wix.com/ramirosen 41

Creating and Destroying a
Container – contd.

Or creating Ubuntu release:

lxc-create -t fedora -n ubuntuCT -- -r raring

lxc-create -t busybox -n myBusyboxCT

● Example of removing a container:
lxc-destroy -n busyboxCT

 => /var/lib/lxc/myFedoraCT will be removed.

http://ramirose.wix.com/ramirosen 42

Example: host and containers

http://ramirose.wix.com/ramirosen 43

Unix sockets Commands

● There are 7 commands which can be sent by Unix
domain sockets from a host to a container (but not vice
verse):

● LXC_CMD_CONSOLE (console)

● LXC_CMD_STOP (stop)

● LXC_CMD_GET_STATE (get_state)

● LXC_CMD_GET_INIT_PID (get_init_pid)

● LXC_CMD_GET_CLONE_FLAGS (get_clone_flags)

● LXC_CMD_GET_CGROUP (get_cgroup)

● LXC_CMD_GET_CONFIG_ITEM (get_config_item)

http://ramirose.wix.com/ramirosen 44

LXC management
● Running a container named busyboxCT:
lxc-start -n busyboxCT

● This in fact creates with clone() a new process (with at least a new PID and MNT namespace)
, and subsequently calls execvp() with /sbin/init of the busybox container

● A python3 short script to start a container named fedoraNew:

#!/usr/bin/python3

import lxc

container = lxc.Container("fedoraNew")
container.start()

Stopping a container named busyboxCT:
● lxc-stop -n busyboxCT
–This sends a SIGPWR signal.
–You can also perform a non-graceful shutdown with SIGKILL by:
lxc-stop -n busyboxCT -k

http://ramirose.wix.com/ramirosen 45

● lxc-start -n <containerName> -l INFO -o /dev/stdout
– For showing log messages with logpriority of INFO.

● lxc-start is for system containers.
● lxc-execute is for application containers.
● Monitoring a container:

lxc-monitor -n busyboxCT

'busyboxCT' changed state to [STOPPING]

'busyboxCT' changed state to [STOPPED]
● lxc-ls --active

Shows all running containers.

http://ramirose.wix.com/ramirosen 46

● lxc-clone – for copy on write.
● lxc-snapshot.

http://ramirose.wix.com/ramirosen 47

Freezing a container

● lxc-freeze -n <containerName>

● Will write “frozen” to
/sys/fs/cgroup/freezer/lxc/<containerName>/freezer.state

● lxc-unfreeze -n <containerName>

● Will write “THAWED” to
/sys/fs/cgroup/freezer/lxc/<containerName>/freezer.state

http://ramirose.wix.com/ramirosen 48

● Displaying info about a container is done with

lxc-info -n bbCT:
 Name: bbCT

 State: RUNNING

 PID: 415

 IP: 192.168.122.85

. . .

● The pid is the process ID as seen from the host.

http://ramirose.wix.com/ramirosen 49

LXC releases

● LXC 1.0 was released in February (20.2.2014).
– Available in: http://linuxcontainers.org/downloads/

● About 10 months after LXC-0.9.0 was released,
in April 2013.

● LXC is included in Ubuntu 14.04 (Trusty Tahr)
LTS (Long Term Support):

● Ubuntu 14.04 comes with 5 years of security
and bug fixes updates: end of life in April 2019.

http://linuxcontainers.org/downloads/

http://ramirose.wix.com/ramirosen 50

LXC Templates

These are the 14 shell templates available in LXC 1.0 (there were 11 in LXC 0.9.0).

lxc-busybox – only 376 lines.

lxc-centos

lxc-cirros

lxc-debian

lxc-download

lxc-fedora – 1400 lines

lxc-gentoo

lxc-openmandriva

lxc-opensuse

lxc-oracle

lxc-plamo

lxc-sshd

lxc-ubuntu

lxc-ubuntu-cloud

http://ramirose.wix.com/ramirosen 51

Containers configuration

● If lxc.utsname is not specified in the configuration file, the
hostname will be the same as of the host that created the
container.

When starting the container with the following entries:

lxc.network.type = phys

lxc.network.link = em1

lxc.network.name = eth3

The em1 network interface, which was in the host, will be moved to
the new container, and will be named eth3. You will no longer see it
in the host. After stopping the container, it will return to the host.

http://ramirose.wix.com/ramirosen 52

Setting Container Memory by
cgroups

Setting cgroups entries can be done from the host by one of three ways.

For example, for setting the container memory, we can use:

1) In the container configuration file:

lxc.cgroup.memory.limit_in_bytes = 512M

● Then:

cat /sys/fs/cgroup/memory/lxc/fedoraCT/memory.limit_in_bytes

536870912

(instead of the default, which is 18446744073709551615 bytes)

2) lxc-cgroup -n fedoraCT memory.limit_in_bytes 512M

3) echo 512M > /sys/fs/cgroup/memory/lxc/fedoraCT/memory.limit_in_bytes

http://ramirose.wix.com/ramirosen 53

● lxc-cgroup -n fedora devices.list
– displays the allowed devices to be used on a container called “fedora”:

c *:* m

b *:* m

c 1:3 rwm

c 1:5 rwm

c 1:7 rwm

c 5:0 rwm

c 1:8 rwm

c 1:9 rwm

c 136:* rwm

c 5:2 rwm

http://ramirose.wix.com/ramirosen 54

Disabling the out of memory killer

● You can disable the out of memory killer with memcg:

● echo 1 > /sys/fs/cgroup/memory/0/memory.oom_control

● This disables the oom killer.

● cat /sys/fs/cgroup/memory/0/memory.oom_control

– oom_kill_disable 1

– under_oom 0

http://ramirose.wix.com/ramirosen 55

Security

● Anatomy of a user namespaces vulnerability (March 2013)
http://lwn.net/Articles/543273/

– CVE 2013-1858

– It occurred when calling clone() with both CLONE_FS and
CLONE_NEWUSER. The fix was to disable such mask.

– See: https://www.mail-archive.com/stable@vger.kernel.org/msg34470.html

● RHEL 6 and 5 disabled user namespaces (CONFIG_USER_NS):

https://bugzilla.redhat.com/show_bug.cgi?id=921448#c1

● RHEL 7: user namespaces are enabled in the kernel (for ABI comparability) but disabled in userspace.

● In Fedora 20 it is disabled, will probably be enabled in Fedora 21.

Daniel J Walsh (SELinux expert), Red Hat.
– Linux Security Summit (LSS), 2012: http://lwn.net/Articles/515034

– Libvirt-sandbox (libvirt-lxc is too complex).
● “LXC is not yet secure. If I want real security I will use KVM”.

● Daniel P. Berrangé, September 2011, https://www.berrange.com/tags/containers/

http://lwn.net/Articles/543273/
https://www.mail-archive.com/stable@vger.kernel.org/msg34470.html
https://bugzilla.redhat.com/show_bug.cgi?id=921448#c1
http://lwn.net/Articles/515034

http://ramirose.wix.com/ramirosen 56

Security – contd

● seccomp (secure computing mode)
– The seccomp kernel layer was developed by Andrea Arcangeli

– By setting lxc.seccomp to a path for a seccomp policy file, you can define
seccomp policy (which means to specify the numbers of the system calls which
are allowed).

– seccomp2: specifying the system calls by name.

● capabilities
– You can disable capability in a container by setting lxc.cap.drop in the container.

– For example:

lxc.cap.drop=sys_module

– disables CAP_SYS_MODULE, so insmod from within a container will fail.

– See man 7 capabilities

http://ramirose.wix.com/ramirosen 57

Security – contd

– Config entries:
– For example, by default, /proc is mounted as rw, so the following sequence will reboot the host:

echo 1 > /proc/sys/kernel/sysrq

echo b > /proc/sysrq-trigger
– Setting lxc.mount.auto = proc:mixed in the config file will mount /proc as read-write, but

remount /proc/sys and /proc/sysrq-trigger as read-only.
– You can also use lxc.mount.auto = sys:ro to mount /sys as read only.
– There are other options.

● unprivileged containers are containers which are created by a non-root user.
– requires kernel 3.13 or higher.
– User namespaces should be enabled in the kernel.
– A lot of work was done in order to provide support for unprivileged containers.
– /etc/subuid
– /etc/subgid

http://ramirose.wix.com/ramirosen 58

Unprivileged containers

● links:
– Introduction to unprivileged containers,

– post 7 out of 10 in the LXC 1.0 blog post series by
Stéphane Graber:
https://www.stgraber.org/2014/01/17/lxc-1-0-unprivileged-containers/

– Semi-Unprivileged Linux Containers (LXC) on
Debian 7 Stable, Assaf Gordon:
http://crashcourse.housegordon.org/LXC-semi-unprivileged-containers.html

https://www.stgraber.org/2014/01/17/lxc-1-0-unprivileged-containers/
http://crashcourse.housegordon.org/LXC-semi-unprivileged-containers.html

http://ramirose.wix.com/ramirosen 59

Cgmanager – The cgroup manager

● A daemon which is started early and opens a UNIX domain
socket on /sys/fs/cgroup/cgmanager/sock; developed by Serge
Hallyn.

● In order to create cgroups, DBUS messages (DBUS method
calls) are sent over this socket.

● Will Systemd use the cgmanager ?

http://ramirose.wix.com/ramirosen 60

Cgmanger – Diagram

http://ramirose.wix.com/ramirosen 61

Cgmamanger – Example

● Example (based on lxc/src/tests/lxc-test-unpriv)

cat /proc/cgroups

#subsys_namehierarchy num_cgroups enabled

cpuset 3 2 1

cpu 4 5 1

cpuacct 5 2 1

memory 6 2 1

devices 7 5 1

freezer 8 2 1

net_cls 9 2 1

blkio 102 1

perf_event 112 1

hugetlb122 1

http://ramirose.wix.com/ramirosen 62

Create cgroups called “test” with
DBUS messages - example

#!/bin/sh

TUSER="test"

if [-e /sys/fs/cgroup/cgmanager/sock]; then

 for d in $(grep -v ^# /proc/cgroups | awk '{print $1}'); do

 dbus-send \

 --address=unix:path=/sys/fs/cgroup/cgmanager/sock \

 --type=method_call

 /org/linuxcontainers/cgmanager org.linuxcontainers.cgmanager0_0.Create \

 string:$d string:$TUSER

 done

fi

http://ramirose.wix.com/ramirosen 63

Docker

● Docker is a Linux container engine.

● An open Source project; first release: 3/2013, by dotCloud (a
company which later changed its name to Docker Inc). Written first in
Python, and later in a programming language called Go (initially
developed by Google).

● https://www.docker.io/

● git repository: https://github.com/dotcloud/docker.git

https://www.docker.io/
https://github.com/dotcloud/docker.git

http://ramirose.wix.com/ramirosen 64

● Docker 0.8 – release in February 2014 (includes Mac OSX support).
● Docker 0.9 – released in 10.3.14.
– New default driver: libcontainer.
https://github.com/dotcloud/docker/tree/master/pkg/libcontainer
– By default, does not use LXC at all to create containers, but uses
cgroups/namespaces directly.
– Does not support currently user namespaces.
– In order to switch to working with LXC, you should run:
 docker -d -e lxc
– The following diagram is from the Docker website (Thanks to
Jerome Petazzoni from Docker Inc. for giving explicit permission to
show it)

https://github.com/dotcloud/docker/tree/master/pkg/libcontainer

http://ramirose.wix.com/ramirosen 65

http://ramirose.wix.com/ramirosen 66

Docker 1.0

● Docker 1.0 – intended for Q2 of 2014.
– Still probably not production ready.

– Anyhow, according to Solomon Hykes (Docker
CTO), non privileged containers (using user
namespaces) are not a pre-requisite for Docker
(https://groups.google.com/forum/#!topic/docker-
dev/MoIDYDF3suY)

http://ramirose.wix.com/ramirosen 67

Docker and RedHat collaboration

In September 2013, RedHat announced collaboration with
dotCloud. There was a Docker package for Ubuntu, based on LXC.

http://ramirose.wix.com/ramirosen 68

Docker and RedHat collaboration

Initially, the plan was that RedHat will add code to
Docker, for using XML-based libvirt-lxc, which is also used
by RedHat in Xen, KVM and other virtualization solutions.

Dan Walsh recently (Red Hat Czech conference 2014)
suggested to use systemd-nspwan container instead of
Libvirt-LXC / LXC.

Systemd-nspwan is relatively short (3170 lines)
● SELinux support to systemd-nspwan was added by

him.

http://ramirose.wix.com/ramirosen 69

Docker - examples

● On Fedora 20:
– yum install docker-io
– Start the docker daemon: systemctl start docker.sevice

– docker run -i -t ubuntu /bin/bash

– This runs a root Ubuntu container, which was
prepared beforehand by the Docker team. You
cannot modify the root container images in the
docker repository.

http://ramirose.wix.com/ramirosen 70

Docker – examples (contd.)

● docker stop <container ID> – to stop a container. (you can get the container ID by docker ps).

● Run docker help to get the list of available commands.

● Docker has some similarities to git.

– As opposed to git, which is text-based, Dokcer deals with binaries.

– No rebase or merger operations.
● For example, if you will run from inside a container:

touch /x.txt

touch /y.txt

yum install net-tools

and then exit the container and enter again, you will not see these changes (as opposed to
what happens when you work with containers by the lxc-start tool)

● b0814f648e7b is the container ID, which you can get by docker ps

● docker diff <containerID> will show the changes you made.

http://ramirose.wix.com/ramirosen 71

First trial

docker diff shows:
● 'A' -> Add
● 'D' -> Delete
● 'C' -> Change

docker commit b0814f648e7b fedora

docker push fedora
2014/01/25 19:31:04 Impossible to push a "root" repository. Please rename
your repository in <user>/<repo> (ex: <user>/fedora)

http://ramirose.wix.com/ramirosen 72

● docker commit b0814f648e7b rruser/fedora
● You will need to enter credentials:

Please login prior to push:

Login against server at https://index.docker.io/v1/

Username:

● As in git, you can add -m “message text”.
● You can create an account free registration in:

https://index.docker.io/account/signup/
● You use the username/password you get for pushing the image to the docker

repository.
● You can install a private docker registry server.

https://index.docker.io/account/signup/

http://ramirose.wix.com/ramirosen 73

Docker public registry:
https://index.docker.io

http://ramirose.wix.com/ramirosen 74

Dockerfile

● The Dockerfile is composed of a sequence of commands
● It has a simple syntax for automating building images.
● Dockerfile entries start with an uppercase commands.
● The first line in a Dockerfile must start with “FROM”, specifying base image, like Fedora

or Ubuntu.
● Example of a simple Dockerfile:

FROM fedora

MAINTAINER Rami Rosen

RUN yum install net-tools
● We can use the docker build command to create containers according to a specified

Dockerfile:

docker build -t rruser/fedora .

Dockerfile tutorial in :http://www.docker.io/learn/dockerfile/

http://www.docker.io/learn/dockerfile/

http://ramirose.wix.com/ramirosen 75

Docker and LXC

● Docker before 0.9 use LXC to create and manage
containers.
– Docker versions before 0.9 do not use LXC GO bindings.
– Docker 0.9 (3/14) by default does not use LXC at all to create containers, but uses

cgroups/namespaces directly (libcontainer), without using any of the LXC
userspace commands.

– In order to switch to working with LXC, you should run the docker daemon thus:

● docker -d -e lxc

– Using libcontainer: This will remove the burden of
supporting many LXC versions.

– https://github.com/dotcloud/docker/tree/master/pkg/libcontainer

https://github.com/dotcloud/docker/tree/master/pkg/libcontainer

http://ramirose.wix.com/ramirosen 76

● From: http://docs.docker.io/en/latest/

“Please note Docker is currently under heavy
development. It should not be used in production
(yet).”

http://docs.docker.io/en/latest/

http://ramirose.wix.com/ramirosen 77

CRIU
● Checkpoint/Restore for Linux in userspace (Pavel Emalyanov is the team leader.)
● An OpenVZ project; Licensed under GPLv2.
● http://www.criu.org/Main_Page
● Why do we need Checkpoint/Restore? Maintenance:

– Installing a new kernel.

– HW addition/fixes or HW maintenance

– Load Balancing.

– Recovery from disaster by snapshots.

2010: the kernel community rejected Oren Laddan checkpoint/restore kernel patches . There was in fact a joint effort
of OpenVZ, who had their own kernel implementation, IBM, Oren Laddan, and a couple of others; after it was not
accepted, as it was too complicated, Pavel Emalyanov started to push the hybrid approach: C/R mostly in
userspace, with much less code in kernel.

● V19 of the patch included 27,000-line diff from 2.6.33-rc8(
http://lwn.net/Articles/375855/)

● Following this rejection, OpenVZ team decided to stop work on checkpoint/restore
in kernel, and to open the CRIU project, for checkpoint/restore in userspace.

http://www.criu.org/Main_Page
http://lwn.net/Articles/375855/

http://ramirose.wix.com/ramirosen 78

CRIU – contd.

● More than 150 kernel patches (some of them used also outside of CRIU, for example
UNIX sockets and the SS tool).
– Usually wrapped in #ifdef CONFIG_CHECKPOINT_RESTORE blocks.

– See: http://criu.org/Commits

● C/R tool 0.1 - July 2012: the first release of the checkpoint-restore tool:
http://lwn.net/Articles/507796/

● C/R tool 0.2 – September 2012: Support for dump and restore a simple LXC container.

http://lwn.net/Articles/517079/
● C/R tool 1.0 – November 2013.
● C/R tool 1.1 – January 2014.
● C/R tool 1.2 – February 2014.

– p.haul (Process haul) git branch - migration of containers and also arbitrary processes.

- U-Haul is a moving equipment company in the USA...

http://criu.org/Commits
http://lwn.net/Articles/507796/
http://lwn.net/Articles/517079/

http://ramirose.wix.com/ramirosen 79

CRIU-Example

● Checkpointing is done by:

criu dump -t $PID -D images
– -D tells the folder to put the generated image files.

● Restoring is done by:

criu restore -D images $PID

CRIU is intended to support checkpoint/restore of:
● OpenVZ containers
● LXC containers
● Docker containers
● More in the future.

http://ramirose.wix.com/ramirosen 80

CRIU plugins

● Intergrated into CRIU 1.1
– Intended for external dependencies.

● External Unix socket (test/unix-callback/)
● External bind mounts (test/mounts/ext/)
● External files (test/ext-links/)
● More.
● See: http://criu.org/Plugins
● CRIU doesn't support (currently) cgroups, hugetlbfs, fusectl,

configfs, mqueue,debugfs file systems in containers

http://criu.org/Plugins

http://ramirose.wix.com/ramirosen 81

Summary

● We have discussed various ingredients of Linux-
based containers:
– namespaces enable secure/functional separation

– cgroups allow resource usage control

– LXC automates it using config files and userspace
commands.

– The Docker engine simplifies creating and deploying
containers into the cloud.

– CRIU adds the ability to save/restore processes and
containers in particular.

http://ramirose.wix.com/ramirosen 82

Tips

● How can I know that I am inside a containers ?
– Look at cat /proc/1/environ

● With LXC containers, this will show container=lxc

– If it a Fedora container, systemd-detect-virt will
show: lxc.

http://ramirose.wix.com/ramirosen 83

Thank you!

