Doc No: N2461=07-0331

Date: 2007-10-22

Reply to: Pete Becker
Roundhouse Consulting, Ltd.
pete @versatilecoding.com

Working Draft, Standard for Programming
Language C++

Note: this is an early draft. It’s known to be incomplet and incorrekt, and it has lots of bad fomatting,

ii

Draft

Contents

1 General
1.1 Scope e
1.2 Normative references o v v it e e e e e e e e e e e e e e e
1.3 Definitions o v e e e e e e e e e e
1.4 TImplementation compliance v v it e e e e e e e e e e e
1.5 Structure of this International Standard L
1.6 Syntax notation L. e e
1.7 The C++memory model L
1.8 The C++objectmodel e
1.9 Program eXeCUtion it e e e e e e e e e e e e e
1.10 Multi-threaded executions and dataraces L e
1.11 Acknowledgments e e e e e

2 Lexical conventions
2.1 Phases of translation L e e e
2.2 CharaCter SBS v v i e i e e e e e e e e e e e e e e e
2.3 Trigraph SEqUENCES o i e e e e e
2.4 Preprocessing tokens e e e
2.5 Alternative toKenS e e e e e e e e e e e e e e
2.6 TOKens e e e e
2.7 COMMENLS . . . v v v o v e e e e e e e e e e e e e e e e e e e
2.8 Headernames L e e e
2.9 Preprocessing numbers L. L e e
2.10 Identifiers e e e e e e e e e e e e e
201 Keywords o o o e e e e e e e e e e e
2.12 Operators and punctuators oL e e e e e
213 Literals e e e e e e e e e e

3 Basic concepts
3.1 Declarations and definitions e e e e e
3.2 Onedefinitionrule e e e e e e
3.3 Declarative regions and SCOPES oL it e e e
34 Namelookup e e e e e
3.5 Programand linkage e e e e

._.
W= QAN AN = =

[

15
16
17
18
18
19
19
19
20
20
21
21
22

CONTENTS CONTENTS iv

3.6 Startand termination e e e e 58
3.7 Storageduration e e 60
3.8 ObjectLifetime e e e e e e 63
3.9 TYPES . . o e e e e e 67
3.10 Lvaluesand rvalues L L e e e e e 72
301 Alignment Lo L e e e 74
4 Standard conversions 75
4.1 Lvalue-to-rvalue COnversion it e e e e e e e e e e e 76
4.2 Array-to-pointer CONVEIrSION« v v v v vt e et e e e e e e 76
4.3 Function-to-pointer CONVEISION v v v v v v vt ittt e e e e e 76
4.4 Qualification CONVETSIONS v v v i e e e e e e e e e e e e e e e e e e e 76
4.5 Integral promotions e e e e e e e e e e e 78
4.6 Floating point promotion 78
4.7 Integral cONVErsions it i e e e 78
4.8 Floating point CONVEISIONS v vt vttt e e ettt e e e e e 78
4.9 Floating-integral CONVErSIONS v v v v v e e e e e e e e e e e e e e e e e e e 79
4.10 Pointer CONVETSIONS o v v v v ittt e e e e e e e e e e e e e 79
4.11 Pointer to member CONVETSIONS v v vt v it e b e e e e e e e e e e e e 79
4.12 Boolean CONVerSionS v vttt e e e e e e e 80
4.13 Integer conversion rankol e e 80
5 Expressions 81
5.1 Primary eXpressions i . e e e e e e 83
5.2 PoOStiX EXPressions o vttt e e e e e e e e 85
5.3 Unary eXpressions oo i i e e e e e e e e e e e e e e e 96
5.4 Explicit type conversion (cast NOtAtion) L.t e e e e e e e e e e 104
5.5 Pointer-to-member Operatorso e e e e 105
5.6 Multiplicative Operators e e e e e e e e e 106
5.7 Additive Operators e e e e e e e 106
5.8 Shiftoperators e 107
5.9 Relational Operators e e e e e e e e e e e 108
5.10 Equality Operators e e e e e e e 109
5.11 Bitwise AND operator e 110
5.12 Bitwise exclusive OR operator 110
5.13 Bitwise inclusive OR operator e e 110
5.14 Logical AND OPErator v v i it i e e e e e e e e e e e e e e e e 110
5.15 Logical OR 0perator i i it e e e e e e e e e e e e e e 111
5.16 Conditional Operator e e e e 111
5.17 Assignment and compound assignment OPeratorsot e e e e e 112
5.18 Comma OPerator i e e e e e e e e e e e e 113
5.19 Constant eXpressions v v v v vt e 114
6 Statements 117
6.1 Labeledstatement e e e e 117
6.2 EXpression statement it e 117

v CONTENTS CONTENTS

10

11

6.3 Compound statementorblock L 117
6.4 Selection StatemMeNts i e e e e e e e e e e e e e e e 118
6.5 Iteration StatemMents v i e e e e e e e e e e e e e e e e 120
6.6 Jump Statements L e 122
6.7 Declaration statement e e e e e e e e e e e e 123
6.8 Ambiguity resolution e 124
Declarations 127
7.1 Specifiers L e 128
7.2 Enumeration declarations L. e e e e e e 143
7.3 NAMESPACES .« « « o v v v e e e e e e e e e e e e e 146
7.4 Theasmdeclaration e e e e e e e e e 160
7.5 Linkage specifications e e e e e e e e 160
Declarators 165
8.1 TYPenames e e e e e e e e e e e e 166
8.2 Ambiguity resolution L e e e 167
8.3 Meaning of declarators 168
8.4 Functiondefinitions e 181
8.5 Initializers e e e 183
Classes 195
9.1 ClassNames v i v i e e e e e e e e 197
9.2 Classmembers e e e e e e e e e e e 199
9.3 Member functions e e e e e e e e e e e e e e 201
9.4 Staticmembers e e e e e e e e e e e e e e 205
9.5 UnIONS e e 207
9.6 Bitfields e 208
9.7 Nested class declarations e e e e e e 209
9.8 Localclassdeclarations e e e e e e e e e e 210
9.9 Nested type Names o i e e e e e e e e e e e e e e 211
Derived classes 213
10.1 Multiple base classes o e e e e e e e e e 214
10.2 Member name lookup L e e 216
10.3 Virtual functions L e e e e e 220
10.4 Abstract classes e e e e 224
Member access control 227
11.1 Access Specifiers e e e 229
11.2 Accessibility of base classes and base class members oL 230
11.3 Accessdeclarations i e e e e e e e e e e e e e 232
11.4 Friends e e 234
11.5 Protected member access e e e e e e e e e e e e e e e 237
11.6 Accesstovirtual functions e e e e e e e e 238
11.7 Multiple access o o i e e e e e e e 239

Draft

CONTENTS

CONTENTS vi

11.8

Nestedclasses o e

12 Special member functions

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8

ConstrucCtors v v i e e e e e e e e e e
Temporary objects
ConversionS e e e e e e e e e e e e e
Destructors e
Freestoreo

13 Overloading

13.1
13.2
13.3
13.4
13.5
13.6

Overloadable declarations
Declaration matching L
Overload resolution,
Address of overloaded function
Overloaded operators
Built-in operators

14 Templates

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8

Template parameterso
Names of template specializations
Template arguments
Typeequivalence
Template declarations
Nameresolution L
Template instantiation and specialization
Function template specializations

15 Exception handling

15.1
15.2
15.3
15.4
15.5
15.6

Throwing an exception o
Constructors and destructors
Handling anexception
Exception specifications L L
Special functions Lo
Exceptionsandaccess

16 Preprocessing directives

16.1
16.2
16.3
16.4
16.5
16.6
16.7

Conditional inclusion,
Source fileinclusion
Macro replacemento Lo
Linecontrol
Errordirective e
Pragmadirective
Null directive e

Draft

vii CONTENTS CONTENTS
16.8 Predefined macronames e e e e e e e e 402
169 Pragma operator e e e e e 403

17 Library introduction 405
17.1 Definitions o o e e e e e e e 405
17.2 Additional definitions e e e e e e e e 408
17.3 Method of description (Informative) e 408
17.4 Library-wide requirements e e e e e e 415

18 Language support library 425
I8.1 TYPES . v o o o o e e e e e e e 425
18.2 Implementation properties e e e e 426
183 INteger types o v o o e e e e e e e e e e e 436
18.4 Start and termination L. L. e e e e e e e e e e e e e 438
18.5 Dynamic memory managementot a e et e e e e e e e e e e e e e 439
18.6 Typeidentification e e e e e e e 444
18.7 Exceptionhandling e 447
18.8 Other runtime SUPPOrt o o i e e e e e e e e 451

19 Diagnostics library 455
19.1 Exception Classes oo i e e e 455
19.2 ASSEItionS v i e e e e e e e e e e e 460
193 Errornumbers e e e e e e e e e e e 460
19.4 System error SUPPOIt o o v v e e e e e e e e e e e e e e 461

20 General utilities library 477
20.1 Requirements i e e e e 4717
20.2 Utility COMPONENLS v v v v v v o e 482
203 Tuples e e e e e e e e e 488
20.4 Metaprogramming and type traitS oL 495
20.5 Function objects L e 507
20.6 MEMOTIY o ottt e e 529
20.7 Dateand timeo e e e e e 561

21 Strings library 563
21.1 Character traitS o i it e e e e e e e e e e 563
21.2 String Classes e e 569
21.3 Class template basic_string i e 573
21.4 Numeric CONVETSIONS v v v v e 601
21.5 Null-terminated sequence utilities 603

22 Localization library 607
22.1 Locales e e e e 607
22.2 Standard locale CateOIIS v v v v it e e e e e e e e e e e e e e e 622
22.3 Standard code conversion facets Lo e e 666
224 CLibrary Locales e e e e e 667

Draft

CONTENTS

CONTENTS viii

23 Containers library 669
23.1 Container reqUIreMeNts v v v v vttt e e e e e e e e e e e e e 669
23.2 Sequence CONLAINETS v v v v v e i e 686
23.3 AsSociative CONtAINETS v v vt ettt e e e e e e e e e e e 719
23.4 Unordered associative CONtAINETS v v v v i e e et et e e e e e e e e 746

24 Tterators library 761
24.1 Tterator reQUIrEMENtS bt i e e e e e e e e e e 761
24.2 Header <iterator> SYNOPSIS v v v v vt i it e e e e e e e e e e e 766
24.3 Tterator primitiveso e e e e e e e e e e 769
24.4 Predefined iterators e e e e e e 773
24.5 Stream iteratorS e e e e e e e e e e e e e e e e e e 789

25 Algorithms library 799
25.1 Non-modifying sequence operations v v vttt e e e e 809
25.2 Mutating sequence Operations i e e e e e e e e e e e e e e e e e 813
25.3 Sorting and related operations Lo e e 822
25.4 Clibrary algorithms o e e e e 836

26 Numerics library 837
26.1 Numeric type requirements ittt e e e e e e e e 837
26.2 The floating-point environMentttt e e e 838
26.3 Complex nUMDEIS L e e e 839
26.4 Random number generationl e e e 849
26.5 NUMETIC AITAYS . .« . v v v v v e i e 896
26.6 Generalized nUMETIC OPETAtIONS+ v v v v vt e it e e e e e e e e e e e e 917
26.7 CLIbrary o 921

27 Input/output library 927
27.1 Tostreams reqUITEMENES 0 v v v v et e e e e e e e e e e e e e e e e e e e 927
27.2 Forward declarations e 928
27.3 Standard iostream Objects L. L e 930
274 Tostreams base classes L. e e 932
27.5 Streambuffers L 951
27.6 Formatting and manipulators L. e e e e e e e e e e e 962
27.7 String-based streams e e e e 993
27.8 File-based streams L. e e 1006

28 Regular expressions library 1023
28.1 Definitions e e 1023
28.2 Requirements i e e e e e e e 1024
28.3 Regular eXpressions SUMMATY o v v v v v i v v v e e e e e e e e e e e 1026
28.4 Header <regex> SYNOPSIS . « ¢ v v v v v v i e e e e e e e e e e e e e 1026
28.5 Namespace std::regex_constants 1032
28.6 ClasS TegeX_EXTOT v v it e ittt e e e e e 1036
28.7 Class template regex_traits o o it e e 1037

Draft

ix CONTENTS CONTENTS
28.8 Class template basic_Tegex v v v v vt ittt e e e e e e 1039
28.9 Class template sub_match e 1044
28.10Class template match_results o vttt e e e e e e e e 1050
28.11Regular expression algorithms L 1055
28.12Regular expression Iteratorso e 1059
28.13Modified ECMAScript regular expression rammar o .t et 1065

29 Atomic operations library 1069
29.1 Order and ConSiStenCy ittt e e e e e 1071
29.2 Lock-free Property e 1073
29.3 Flag Type and Operations vt i i ittt e e e e 1073
29.4 Other Types and Operations v v v v v v e e i e e e e e e e e e e e e 1075

30 Thread support library 1085

A Grammar summary 1087
Al Keywords L 1087
A2 Lexical cONVENtiONS o it e 1087
A3 BaSiCCONCEPLS . . . v v o o e et e e e e e e e e e e e e e e e e e 1092
A4 EXPressions v i it e e e e e e e e e e e 1092
AS Statements L. e e e e e e e e e 1095
A6 Declarations e 1096
AT Declarators e e e 1099
A8 Classes 1101
A9 Derived classes e e 1102
A.10 Special member functions L 1102
A1l Overloading o e 1103
Ad2 Templates L. e 1103
A.13 Exceptionhandling 1104
A.14 Preprocessing dir€Ctives L e e e e e e e 1104

B Implementation quantities 1107

C Compatibility 1109
C.l C++andISOC 1109
C.2 Standard CLibrary 1119

D Compatibility features 1125
D.1 Increment operator with booloperand 1125
D.2 statickeyword 1125
D3 Accessdeclarations L. 1125
D.4 Implicit conversion from const Strings e 1125
D.5 Standard Clibrary headers e 1125
D.6 Oldiostreams Members ot i i e e e e e e e 1126
D7 char*streams. o o e e e e e e e e e 1128
D.8 Binders e e 1138
DO auto_ptr e e 1139

CONTENTS CONTENTS x

E Universal-character-names 1143

F Cross references 1145

Draft

List of Tables

~N NN kWD

10
11

12
13
14
15

16
17
18
19
20
21
22
23
24
25
26

27
28

trigraph SEqUENCES L e e e e e e e 17
alternative tokens L L L e e 19
keywords e 21
alternative representationso iu e e e e e e e e e e e e e 21
Types of Integer Constants 0 i i e e e e e e e e e e e e 23
€SCAPE SEQUETICES . . « v v v v e v e 25
string literal concatenations L. Lo e e e e 28
relations on const and volatileo 72
simple-type-specifier s and the types they specify L o 139
relationship between operator and function call notation, 278
COMVETSIONS .« « & v v v v vt et e et e e e e e e e e e e e e e e 286
Library Categories L e 409
C++ Library Headers 416
C++ Headers for C Library Facilities o e 416
C++ Headers for Freestanding Implementations 417
Language support library summary L. e 425
Header <cstddef> Synopsis e 426
Header <c1imits> Synopsis« o o ot e e e 436
Header <cf1oat> SYNOPSIS o o v v v v it e e e e e e e e e e e e e e 436
Header <cstdlib> Synopsis o v v i it i e e e e 438
Header <cstdarg> Synopsis o oo e e 452
Header <csetjmp> SYNOpsiS o o o it e e e e 452
Header <ctime> SYnopSiS i e e e e e e e 452
Header <csignal> Synopsis o o i ittt e e e e e e 452
Header <cstdlib> Synopsis« . . . oL e e 452
Header <cstdbool> Synopsis o v v vt e e e e e e e e e 452
Diagnostics library summaryo e e e e e e 455

Header <cassert> Synopsis o i i e e e 460

LIST OF TABLES LIST OF TABLES xii

29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

Header <cerrno> SYNopsis o v o ittt e e e e e e e e 461
General utilities library summaryo 477
EqualityComparable reqUirements v o v v v v v i e e e e e e e e 478
LessThanComparable reqUiremMents v v v v v v v v v e e e et e 478
MoveConstructible reqUIrEMents v v v v v e et e e e e e e e e e e e e 478
CopyConstructible requirements oo i v v vttt e 478
MoveAssignable reqUir€ments 478
CopyAssignable reqUIremMents o v v v v v v i it e e e e e e e e e e e 479
Swappable reqUirementsot e e e e e e e e e e 479
Destructible requUirementsttt e e e e e e e 479
Descriptive variable definitions L e 479
Allocator reqUITEMENES v v ot e 481
Primary Type Category Predicates 498
Composite Type Category Predicates 499
Type Property Predicates e 500
Type Property QUeTies o i e e e e e e e e e e e 502
Type Relationship Predicates e 503
Const-volatile modifications L e 504
Reference modifications L 504
Sign modifications e e e 505
Array modifications L e e e e e e e e 505
Pointer modifications 506
Other transformations L e 506
Header <cstdlib> Synopsis o o v it i e e e e e e 560
Header <cstring> Synopsis o ot e e e e 561
Header <ctime> Synopsis o i it e e 561
Strings library SUmmary e e e e e e 563
Traits reqUIreMents o oot e e e e e e e e e e e e e e e e e e 564
basic_string(const Allocator&) effects. o 579
basic_string(const basic_string&) effects. oo L. 579
basic_string(const basic_string&, size_type, size_type, const Allocator&) effects. 579
basic_string(const charT*, size_type, const Allocator&) effects 580
basic_string(const charT*, const Allocator&)effects 580
basic_string(size_t, charT, const Allocator&) effects 580
operator=(const basic_string<charT, traits, Allocator>&) effects 581
operator=(const basic_string<charT, traits, Allocator>&&)effects 581
compare () results L L e e 594
Header <cctype> SYNOPSIS o v vttt i e e e e e e e 604
Header <cwctype> Synopsis« oo it e e e 605
Header <cstring> Synopsis oo e 605
Header <cwchar> Synopsis o o i e e 605
Header <cstdlib> SYNopsiS o v v i v it e e e e e e e e e 606
Header <cuchar> Synopsis o . o e e 606

Draft

xiii LIST OF TABLES LIST OF TABLES

72
73
74
75
76
77
78
79
80
81
82
83
84
85

86
87
88
89
90
91
92
93

94
95
96
97
98
99
100

101
102

103
104
105
106
107
108
109

110
111
112

Localization library summary e e e e e e 607
Locale Category Facets e 611
Required Specializations e e e e 612
do_in/do_outresultvalues 632
do_unshiftresult values L e 633
Integer CONVErsions ottt e e e e 637
Length Modifier e 637
Integer CONVETSIONS v vt vt e e e e e e e e e e e e e e e e e e e 641
Floating-point CONversions o v v it it e e e e e e e e e e 642
Length Modifier e 642
NUMETIC CONVEISIONS o o v i e it it e e e e e e e e e e e e e e 642
Fill padding o . o e e e 643
do_get_dateeffects L 651
Header <clocale> SYNopsis v v v v v i i v e e e e e e e e e e e 668
Containers library summary e e 669
Container reqUITEMENtS v v v v vt e 670
Reversible container requirements L. oL e e e e e e e 672
Sequence container requirements (in addition to container) L. 674
Optional sequence container OPerations v v vt e e e 676
Associative container requirements (in addition to container) 677
Container requirements that are not required for unordered associative containers 680
Unordered associative container requirements (in addition to container) 681
Iterators library summary oL e e e e e 761
Relations among iterator Categories oo e e e e e e e e e e e e 761
Input iterator reqUIrEmMents L. L e e e e e e e e 763
Output iterator reqUITEMENTS v v v v vt e 763
Forward iterator requirements L. e e e e 764
Bidirectional iterator requirements (in addition to forward iterator) 765
Random access iterator requirements (in addition to bidirectional iterator) 766
Algorithms library summary e e e e e e e 799
Header <cstdlib> Synopsis o o ittt e e e e 836
Numerics library summary oL e e e e e e e e 837
Uniform random number generator requirements e e 850
Random number engine reqUiremMentst u e e e e e e e e 851
Random number engine adaptor requirements e e 853
Random number distribution requirements L. .o Lo e 855
Header <cmath> Synopsis o o i i e e e 921
Header <cstdlib> Synopsis v v v vt e e e e 922
Input/output library summary L. e 927
fmtflagseffects L e 937
fmtflags constants L L L e e e e e e e e 937

Draft

LIST OF TABLES LIST OF TABLES xiv

113
114
115
116
117
118
119
120
121
122
123

124
126

125
127
128
129
130

131
132
133
134
135

136
137
138
139
140

141
142
143
144
145
146

iostateeffects e e e e 938
openmode effects 938
seekdireffects L. L 938
Position type requirements oL e e e e e e e e e e e e e e e 943
basic_ios::initQ effects e 945
seekoff POSILIONING 998
newoff values L e 998
Fileopenmodes L e e e e e e e 1010
seekoff effects e 1013
Header <cstdio> Synopsis o o i e e e 1022
Header <cinttypes> SYNOPSIS v v v v it e e e e e e 1022
regular expression traits class requirements L. Lo oLl d e e e e 1024
regex_constants: :match_flag_type effects when obtaining a match against a character container
sequence [first,last). e e 1033
syntax_option_typeeffects 1035
error_type valuesinthe Clocale 1036
match_results assignment operator effects oL oL Lo 1052
Effects of regex_matchalgorithmo oo o 1055
Effects of regex_searchalgorithm 1057
Atomics library summaryo Ll e e 1069
memory_order effects e 1071
Atomics for builtin types L e 1077
Atomics for standard typedef types L L. 1078
Atomic arithmetic computations oL e e e 1083
Standard MacroS e e e e e e e e e e e e e e 1119
Standard Values L 1120
Standard TYPES o o e e e e e e e e 1120
Standard Structs L e e 1120
Standard Functions e e e e e 1121
CHeaders e e 1125
strstreambuf (streamsize) effects 1129
strstreambuf (void* (*) (size_t), void (*)(void#*))effects 1130
strstreambuf (charT*, streamsize, charT*) effects. 1130
seekoff poSItiONING e e e e 1133
newoff values L. e 1133

Draft

Chapter 1 General [intro]

1.1 Scope [intro.scope]

This International Standard specifies requirements for implementations of the C++ programming language. The first
such requirement is that they implement the language, and so this International Standard also defines C++. Other
requirements and relaxations of the first requirement appear at various places within this International Standard.

C++ is a general purpose programming language based on the C programming language as described in ISO/IEC
9899:1990 Programming languages — C (1.2). In addition to the facilities provided by C, C++ provides additional
data types, classes, templates, exceptions, namespaces, inline functions, operator overloading, function name overload-
ing, references, free store management operators, and additional library facilities.

1.2 Normative references [intro.refs]

The following standards contain provisions which, through reference in this text, constitute provisions of this Interna-
tional Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and
parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the
most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid
International Standards.

— Ecma International, ECMAScript Language Specification, Standard Ecma-262, third edition, 1999.
— ISO/IEC 2382 (all parts), Information technology — Vocabulary

— ISO/IEC 9899:1990, Programming languages — C

— ISO/IEC 9899/Amd.1:1995, Programming languages — C, AMENDMENT 1: C Integrity

— ISO/IEC 9899:1999, Programming languages — C

— ISO/IEC 9899:1999/Cor.1:2001, Programming languages — C

— ISO/IEC 9899:1999/Cor.2:2004, Programming languages — C

— ISO/IEC 9945:2003, Information Technology — Portable Operating System Interface (POSIX)

— ISO/IEC 10646-1:1993, Information technology — Universal Multiple-Octet Coded Character Set (UCS) — Part
1: Architecture and Basic Multilingual Plane

— ISO/IEC TR 19769:2004, Information technology — Programming languages, their environments and system
software interfaces — Extensions for the progrmming language C to support new character data types

1.3 Definitions General 2

The library described in clause 7 of ISO/IEC 9899:1990 and clause 7 of ISO/IEC 9899/Amd.1:1995 is hereinafter called
the Standard C Library."

The library described in clause 7 of ISO/IEC 9899:1999 and clause 7 of ISO/IEC 9899:1999/Cor.1:2001 and clause 7 of
ISO/TEC 9899:1999/Cor.2:2003 is hereinafter called the Standard C99 Library.

The library described in ISO/IEC TR 19769:2004 is hereinafter called the C Unicode TR.
The operating system interface described in ISO/IEC 9945:2003 is hereinafter called POSIX.
The ECMAScript Language Specification described in Standard Ecma-262 is hereinafter called ECMA-262.

1.3 Definitions [intro.defs]

For the purposes of this International Standard, the definitions given in ISO/IEC 2382 and the following definitions
apply. 17.1 defines additional terms that are used only in clauses 17 through 27 and Annex D.

Terms that are used only in a small portion of this International Standard are defined where they are used and italicized
where they are defined.

1.3.1 [defns.argument]
argument

an expression in the comma-separated list bounded by the parentheses in a function call expression; a sequence of
preprocessing tokens in the comma-separated list bounded by the parentheses in a function-like macro invocation; the
operand of throw; or an expression, type-id or template-name in the comma-separated list bounded by the angle brackets
in a template instantiation. Also known as an actual argument or actual parameter.

1.3.2 [defns.cond.supp]
conditionally-supported

a program construct that an implementation is not required to support. [Note: Each implementation documents all
conditionally-supported constructs that it does not support. — end note |

1.3.3 [defns.diagnostic]
diagnostic message
a message belonging to an implementation-defined subset of the implementation’s output messages.

1.34 [defns.dynamic.type]
dynamic type

the type of the most derived object (1.8) to which the lvalue denoted by an Ivalue expression refers. [Example: if a
pointer (8.3.1) p whose static type is “pointer to class B” is pointing to an object of class D, derived from B (clause 10),
the dynamic type of the expression *p is “D.” References (8.3.2) are treated similarly. — end example] The dynamic
type of an rvalue expression is its static type.

1.3.5 [defns.ill.formed]

1) With the qualifications noted in clauses 17 through 27, and in C.2, the Standard C library is a subset of the Standard C++ library.

Draft

3 General 1.3 Definitions

ill-formed program
input to a C++ implementation that is not a well-formed program.

1.3.6 [defns.impl.defined]
implementation-defined behavior

behavior, for a well-formed program construct and correct data, that depends on the implementation and that each
implementation documents.

1.3.7 [defns.impl.limits]
implementation limits
restrictions imposed upon programs by the implementation.

1.3.8 [defns.locale.specific]
locale-specific behavior
behavior that depends on local conventions of nationality, culture, and language that each implementation documents.

1.3.9 [defns.multibyte]
multibyte character

a sequence of one or more bytes representing a member of the extended character set of either the source or the execution
environment. The extended character set is a superset of the basic character set (2.2).

1.3.10 [defns.parameter]
parameter

an object or reference declared as part of a function declaration or definition, or in the catch clause of an exception
handler, that acquires a value on entry to the function or handler; an identifier from the comma-separated list bounded
by the parentheses immediately following the macro name in a function-like macro definition; or a template-parameter.
Parameters are also known as formal arguments or formal parameters.

1.3.11 [defns.signature]
signature

the name and the parameter-type-list (8.3.5) of a function, as well as the class or namespace of which it is a member.
If a function or function template is a class member its signature additionally includes the cv-qualifiers (if any) and
the ref-qualifier (if any) on the function or function template itself. The signature of a function template additionally
includes its return type and its template parameter list. The signature of a function template specialization includes
the signature of the template of which it is a specialization and its template arguments (whether explicitly specified or
deduced). [Note: Signatures are used as a basis for name mangling and linking. — end note]

1.3.12 [defns.static.type]
static type
the type of an expression (3.9), which type results from analysis of the program without considering execution semantics.

Draft

1.4 Implementation compliance General 4

The static type of an expression depends only on the form of the program in which the expression appears, and does not
change while the program is executing.

1.3.13 [defns.undefined]
undefined behavior

behavior, such as might arise upon use of an erroneous program construct or erroneous data, imposes no requirements.
Undefined behavior may also be expected when this International Standard omits the description of any explicit def-
inition of behavior. [Note: permissible undefined behavior ranges from ignoring the situation completely with un-
predictable results, to behaving during translation or program execution in a documented manner characteristic of the
environment (with or without the issuance of a diagnostic message), to terminating a translation or execution (with the
issuance of a diagnostic message). Many erroneous program constructs do not engender undefined behavior; they are
required to be diagnosed. — end note]

1.3.14 [defns.unspecified]
unspecified behavior

behavior, for a well-formed program construct and correct data, that depends on the implementation. The implementa-
tion is not required to document which behavior occurs. [Note: usually, the range of possible behaviors is delineated by
this International Standard. — end note |

1.3.15 [defns.well.formed]
well-formed program
a C++ program constructed according to the syntax rules, diagnosable semantic rules, and the One Definition Rule (3.2).

1.4 Implementation compliance [intro.compliance]

1 The set of diagnosable rules consists of all syntactic and semantic rules in this International Standard except for those
rules containing an explicit notation that “no diagnostic is required” or which are described as resulting in “undefined
behavior.”

2 Although this International Standard states only requirements on C++ implementations, those requirements are often
easier to understand if they are phrased as requirements on programs, parts of programs, or execution of programs. Such
requirements have the following meaning:

— If a program contains no violations of the rules in this International Standard, a conforming implementation shall,
within its resource limits, accept and correctly execute? that program.

— If a program contains a violation of any diagnosable rule or an occurrence of a construct described in this Standard
as “conditionally-supported” when the implementation does not support that construct, a conforming implemen-
tation shall issue at least one diagnostic message, except that

— If a program contains a violation of a rule for which no diagnostic is required, this International Standard places
no requirement on implementations with respect to that program.

3 For classes and class templates, the library clauses specify partial definitions. Private members (clause 11) are not
specified, but each implementation shall supply them to complete the definitions according to the description in the
library clauses.

2) “Correct execution” can include undefined behavior, depending on the data being processed; see 1.3 and 1.9.

Draft

5 General 1.5 Structure of this International Standard

For functions, function templates, objects, and values, the library clauses specify declarations. Implementations shall
supply definitions consistent with the descriptions in the library clauses.

The names defined in the library have namespace scope (7.3). A C++ translation unit (2.1) obtains access to these names
by including the appropriate standard library header (16.2).

The templates, classes, functions, and objects in the library have external linkage (3.5). The implementation provides
definitions for standard library entities, as necessary, while combining translation units to form a complete C++ pro-
gram (2.1).

Two kinds of implementations are defined: hosted and freestanding. For a hosted implementation, this International
Standard defines the set of available libraries. A freestanding implementation is one in which execution may take place
without the benefit of an operating system, and has an implementation-defined set of libraries that includes certain
language-support libraries (17.4.1.3).

A conforming implementation may have extensions (including additional library functions), provided they do not alter
the behavior of any well-formed program. Implementations are required to diagnose programs that use such extensions
that are ill-formed according to this International Standard. Having done so, however, they can compile and execute
such programs.

Each implementation shall include documentation that identifies all conditionally-supported constructs that it does not
support and defines all locale-specific characteristics.”

1.5 Structure of this International Standard [intro.structure]

Clauses 2 through 16 describe the C++ programming language. That description includes detailed syntactic specifica-
tions in a form described in 1.6. For convenience, Annex A repeats all such syntactic specifications.

Clauses 17 through 27 and Annex D (the library clauses) describe the Standard C++ library, which provides definitions
for the following kinds of entities: macros (16.3), values (clause 3), types (8.1, 8.3), templates (clause 14), classes (clause
9), functions (8.3.5), and objects (clause 7).

Annex B recommends lower bounds on the capacity of conforming implementations.

Annex C summarizes the evolution of C++ since its first published description, and explains in detail the differences
between C++ and C. Certain features of C++ exist solely for compatibility purposes; Annex D describes those features.

Finally, Annex E says what characters are valid in universal-character names in C++ identifiers (2.10).

Throughout this International Standard, each example is introduced by “[Example:” and terminated by ““ — end exam-
ple]”. Each note is introduced by “[Note:” and terminated by “ — end note]”. Examples and notes may be nested.
1.6 Syntax notation [syntax]

In the syntax notation used in this International Standard, syntactic categories are indicated by italic type, and literal
words and characters in constant width type. Alternatives are listed on separate lines except in a few cases where a
long set of alternatives is presented on one line, marked by the phrase “one of.” An optional terminal or nonterminal
symbol is indicated by the subscript “,; 7, s0

{ expressiongp }

3This documentation also defines implementation-defined behavior; see 1.9.

Draft

1.7 The C++ memory model General 6

2 Names for syntactic categories have generally been chosen according to the following rules:
— X-name is a use of an identifier in a context that determines its meaning (e.g. class-name, typedef-name).
— X-id is an identifier with no context-dependent meaning (e.g. qualified-id).
— X-seq is one or more X’s without intervening delimiters (e.g. declaration-seq is a sequence of declarations).

— X-list is one or more X’s separated by intervening commas (e.g. expression-list is a sequence of expressions
separated by commas).

1.7 The C++ memory model [intro.memory]

1 The fundamental storage unit in the C++ memory model is the byfe. A byte is at least large enough to contain any
member of the basic execution character set and the eight-bit code units of the Unicode UTF-8 encoding form and is
composed of a contiguous sequence of bits, the number of which is implementation-defined. The least significant bit is
called the low-order bit; the most significant bit is called the high-order bit. The memory available to a C++ program
consists of one or more sequences of contiguous bytes. Every byte has a unique address.

2 [Note: the representation of types is described in 3.9. — end note]

3 A memory location is either an object of scalar type or a maximal sequence of adjacent bit-fields all having non-zero
width. [Note: Various features of the language, such as references and virtual functions, might involve additional mem-
ory locations that are not accessible to programs but are managed by the implementation. — end note] Two threads of
execution can update and access separate memory locations without interfering with each other.

4 [Note: Thus a bit-field and an adjacent non-bit-field are in separate memory locations, and therefore can be concurrently
updated by two threads of execution without interference. The same applies to two bit-fields, if one is declared inside a
nested struct declaration and the other is not, or if the two are separated by a zero-length bit-field declaration, or if they
are separated by a non-bit-field declaration. It is not safe to concurrently update two bit-fields in the same struct if all
fields between them are also bit-fields, no matter what the sizes of those intervening bit-fields happen to be. — end note]

5 [Example: A structure declared as

struct {
char a;
int b:5,
c:11,
:0,
d:8;
struct {int ee:8;} e;

contains four separate memory locations: The field a and bit-fields d and e.ee are each separate memory locations,
and can be modified concurrently without interfering with each other. The bit-fields b and c together constitute the
fourth memory location. The bit-fields b and ¢ cannot be concurrently modified, but b and a, for example, can be.
— end example |

1.8 The C++ object model [intro.object]

1 The constructs in a C++ program create, destroy, refer to, access, and manipulate objects. An object is a region of
storage. [Note: A function is not an object, regardless of whether or not it occupies storage in the way that objects do.

Draft

7 General 1.9 Program execution

— end note] An object is created by a definition (3.1), by a new-expression (5.3.4) or by the implementation (12.2) when
needed. The properties of an object are determined when the object is created. An object can have a name (clause 3). An
object has a storage duration (3.7) which influences its lifetime (3.8). An object has a type (3.9). The term object type
refers to the type with which the object is created. Some objects are polymorphic (10.3); the implementation generates
information associated with each such object that makes it possible to determine that object’s type during program
execution. For other objects, the interpretation of the values found therein is determined by the type of the expression s
(clause 5) used to access them.

Objects can contain other objects, called subobjects. A subobject can be a member subobject (9.2), a base class subobject
(clause 10), or an array element. An object that is not a subobject of any other object is called a complete object.

For every object x, there is some object called the complete object of x, determined as follows:
— If x is a complete object, then x is the complete object of x.
— Otherwise, the complete object of x is the complete object of the (unique) object that contains x.

If a complete object, a data member (9.2), or an array element is of class type, its type is considered the most derived
class, to distinguish it from the class type of any base class subobject; an object of a most derived class type or of a
non-class type is called a most derived object.

Unless it is a bit-field (9.6), a most derived object shall have a non-zero size and shall occupy one or more bytes of
storage. Base class subobjects may have zero size. An object of trivial or standard-layout type (3.9) shall occupy
contiguous bytes of storage.

[Note: C++ provides a variety of built-in types and several ways of composing new types from existing types (3.9).
—end note |

1.9 Program execution [intro.execution]

The semantic descriptions in this International Standard define a parameterized nondeterministic abstract machine. This
International Standard places no requirement on the structure of conforming implementations. In particular, they need
not copy or emulate the structure of the abstract machine. Rather, conforming implementations are required to emulate
(only) the observable behavior of the abstract machine as explained below.*)

Certain aspects and operations of the abstract machine are described in this International Standard as implementation-
defined (for example, sizeof (int)). These constitute the parameters of the abstract machine. Each implementation
shall include documentation describing its characteristics and behavior in these respects.” Such documentation shall
define the instance of the abstract machine that corresponds to that implementation (referred to as the “corresponding
instance” below).

Certain other aspects and operations of the abstract machine are described in this International Standard as unspecified
(for example, order of evaluation of arguments to a function). Where possible, this International Standard defines a set
of allowable behaviors. These define the nondeterministic aspects of the abstract machine. An instance of the abstract
machine can thus have more than one possible execution sequence for a given program and a given input.

4 This provision is sometimes called the “as-if” rule, because an implementation is free to disregard any requirement of this International Standard
as long as the result is as if the requirement had been obeyed, as far as can be determined from the observable behavior of the program. For instance,
an actual implementation need not evaluate part of an expression if it can deduce that its value is not used and that no side effects affecting the
observable behavior of the program are produced.

>)This documentation also includes conditonally-supported constructs and locale-specific behavior. See 1.4.

Draft

10

1.9 Program execution General 8

Certain other operations are described in this International Standard as undefined (for example, the effect of derefer-
encing the null pointer). [Note: this International Standard imposes no requirements on the behavior of programs that
contain undefined behavior. — end note |

A conforming implementation executing a well-formed program shall produce the same observable behavior as one
of the possible execution sequences of the corresponding instance of the abstract machine with the same program and
the same input. However, if any such execution sequence contains an undefined operation, this International Standard
places no requirement on the implementation executing that program with that input (not even with regard to operations
preceding the first undefined operation).

The observable behavior of the abstract machine is its sequence of reads and writes to volatile data and calls to library
I/0 functions.®

When the processing of the abstract machine is interrupted by receipt of a signal, the values of objects with type other
than volatile std::sig_atomic_t are unspecified, and the value of any object not of type volatile std::sig_-
atomic_t that is modified by the handler becomes undefined.

An instance of each object with automatic storage duration (3.7.2) is associated with each entry into its block. Such an
object exists and retains its last-stored value during the execution of the block and while the block is suspended (by a
call of a function or receipt of a signal).

The least requirements on a conforming implementation are:
— Access to volatile objects are evaluated strictly according to the rules of the abstract machine.

— At program termination, all data written into files shall be identical to one of the possible results that execution of
the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place in such a fashion that prompting messages
actually appear prior to a program waiting for input. What constitutes an interactive device is implementation-
defined.

[Note: more stringent correspondences between abstract and actual semantics may be defined by each implementation.
—end note |

[Note: operators can be regrouped according to the usual mathematical rules only where the operators really are asso-
ciative or commutative.” For example, in the following fragment

int a, b;
V4
a =a + 32760 + b + 5;
the expression statement behaves exactly the same as

a = (((a + 32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of the sum (a + 32760) is next added to b,
and that result is then added to 5 which results in the value assigned to a. On a machine in which overflows produce an

% An implementation can offer additional library I/O functions as an extension. Implementations that do so should treat calls to those functions as
“observable behavior” as well.
7 Overloaded operators are never assumed to be associative or commutative.

Draft

11

12

9 General 1.9 Program execution

exception and in which the range of values representable by an int is [-32768,+32767], the implementation cannot
rewrite this expression as

a = ((a + b) + 32765);
since if the values for a and b were, respectively, -32754 and -15, the sum a + b would produce an exception while the
original expression would not; nor can the expression be rewritten either as

((a + 32765) + b);

a

or

)
]

(a + (b + 32765));

since the values for a and b might have been, respectively, 4 and -8 or -17 and 12. However on a machine in which over-
flows do not produce an exception and in which the results of overflows are reversible, the above expression statement
can be rewritten by the implementation in any of the above ways because the same result will occur. — end note |

A full-expression is an expression that is not a subexpression of another expression. If a language construct is defined to
produce an implicit call of a function, a use of the language construct is considered to be an expression for the purposes
of this definition. A call to a destructor generated at the end of the lifetime of an object other than a temporary object is
an implicit full-expression. Conversions applied to the result of an expression in order to satisfy the requirements of the
language construct in which the expression appears are also considered to be part of the full-expression.

[Example:

struct S {
S(int i): I(i) { }
int& v() { return I; }

private:
int I;
};
S s1(1); // full-expression is call of S::S(int)
S s2 = 2; // full-expression is call of S::S(int)
void £ {
if (S(3).v(Q)) // full-expression includes lvalue-to-rvalue and
// int to bool conversions, performed before
// temporary is deleted at end of full-expression
{72
}

— end example |

[Note: the evaluation of a full-expression can include the evaluation of subexpressions that are not lexically part of the
full-expression. For example, subexpressions involved in evaluating default argument expressions (8.3.6) are considered
to be created in the expression that calls the function, not the expression that defines the default argument. — end note |

Accessing an object designated by a volatile Ivalue (3.10), modifying an object, calling a library I/O function, or
calling a function that does any of those operations are all side effects, which are changes in the state of the execution

Draft

14

16

1.9 Program execution General 10

environment. Evaluation of an expression (or a sub-expression) in general includes both value computations (including
determining the identity of an object for lvalue evaluation and fetching a value previously assigned to an object for
rvalue evaluation) and initiation of side effects. When a call to a library I/O function returns or an access to a volatile
object is evaluated the side effect is considered complete, even though some external actions implied by the call (such
as the I/0 itself) or by the volatile access may not have completed yet.

Sequenced before is an asymmetric, transitive, pair-wise relation between evaluations executed by a single thread, which
induces a partial order among those evaluations. Given any two evaluations A and B, if A is sequenced before B, then the
execution of A shall precede the execution of B. If A is not sequenced before B and B is not sequenced before A, then A
and B are unsequenced. [Note: The execution of unsequenced evaluations can overlap. — end note | Evaluations A and
B are indeterminately sequenced when either A is sequenced before B or B is sequenced before A, but it is unspecified
which. [Note: Indeterminately sequenced evaluations cannot overlap, but either could be executed first. — end note |

Every value computation and side effect associated with a full-expression is sequenced before every value computation
and side effect associated with the next full-expression to be evaluated.®.

Except where noted, evaluations of operands of individual operators and of subexpressions of individual expressions are
unsequenced. [Note: In an expression that is evaluated more than once during the execution of a program, unsequenced
and indeterminately sequenced evaluations of its subexpressions need not be performed consistently in different evalua-
tions. — end note | The value computations of the operands of an operator are sequenced before the value computation
of the result of the operator. If a side effect on a scalar object is unsequenced relative to either a different side effect on
the same scalar object or a value computation using the value of the same scalar object, the behavior is undefined.

[Example:
i = v[i++]; // the behavior is undefined
i=7, it+, i++; // i becomes 9
i=++i + 1; // the behavior is undefined
i=1i+1; // the value of 1 is incremented

— end example |

When calling a function (whether or not the function is inline), every value computation and side effect associated with
any argument expression, or with the postfix expression designating the called function, is sequenced before execution of
every expression or statement in the body of the called function. [Note: Value computations and side effects associated
with different argument expressions are unsequenced. — end note] Every evaluation in the calling function (including
other function calls) that is not otherwise specifically sequenced before or after the execution of the body of the called
function is indeterminately sequenced with respect to the execution of the called function.” Several contexts in C++
cause evaluation of a function call, even though no corresponding function call syntax appears in the translation unit.
[Example: Evaluation of a new expression invokes one or more allocation and constructor functions; see 5.3.4. For
another example, invocation of a conversion function (12.3.2) can arise in contexts in which no function call syntax
appears. — end example] The sequencing constraints on the execution of the called function (as described above) are
features of the function calls as evaluated, whatever the syntax of the expression that calls the function might be.

8) As specified in 12.2, after a full-expression is evaluated, a sequence of zero or more invocations of destructor functions for temporary objects
takes place, usually in reverse order of the construction of each temporary object.
91n other words, function executions do not interleave with each other.

Draft

11 General 1.10 Multi-threaded executions and data races

1.10 Multi-threaded executions and data races [intro.multithread]

Under a hosted implementation, a C++ program can have more than one thread of execution (a.k.a. thread) running con-
currently. The execution of each thread proceeds as defined by the remainder of this standard. The execution of the entire
program consists of an execution of all of its threads. [Note: Usually the execution can be viewed as an interleaving of
all its threads. However, some kinds of atomic operations, for example, allow executions inconsistent with a simple in-
terleaving, as described below. — end note | Under a freestanding implementation, it is implementation-defined whether
a program can have more than one thread of execution.

The value of an object visible to a thread T at a particular point might be the initial value of the object, a value assigned
to the object by 7', or a value assigned to the object by another thread, according to the rules below. [Note: In some cases,
there may instead be undefined behavior. Much of this section is motivated by the desire to support atomic operations
with explicit and detailed visibility constraints. However, it also implicitly supports a simpler view for more restricted
programs. — end note |

Two expression evaluations conflict if one of them modifies a memory location and the other one accesses or modifies
the same memory location.

The library defines a number of atomic operations (clause 29) and operations on locks (clause 30) that are specially
identified as synchronization operations. These operations play a special role in making assignments in one thread vis-
ible to another. A synchronization operation is either an acquire operation or a release operation, or both, on one or
more memory locations; the semantics of these are described below. In addition, there are relaxed atomic operations,
which are not synchronization operations, and atomic read-modify-write operations, which have special characteristics,
also described below. [Note: For example, a call that acquires a lock will perform an acquire operation on the locations
comprising the lock. Correspondingly, a call that releases the same lock will perform a release operation on those same
locations. Informally, performing a release operation on A forces prior side effects on other memory locations to become
visible to other threads that later perform an acquire operation on A. We do not include “relaxed” atomic operations as
synchronization operations although, like synchronization operations, they cannot contribute to data races. — end note]

All modifications to a particular atomic object M occur in some particular total order, called the modification order of
M. If A and B are modifications of an atomic object M, and A happens before B, then A shall precede B in the modifi-
cation order of M, which is defined below. [Note: This states that the modification orders must respect happens before.
—end note] [Note: There is a separate order for each scalar object. There is no requirement that these can be com-
bined into a single total order for all objects. In general this will be impossible since different threads may observe
modifications to different variables in inconsistent orders. — end note]

A release sequence on an atomic object M is a maximal contiguous sub-sequence of side effects in the modification
order of M, where the first operation is a release, and every subsequent operation

— is performed by the same thread that performed the release, or

— is a non-relaxed atomic read-modify-write operation.

An evaluation A that performs a release operation on an object M synchronizes with an evaluation B that performs an
acquire operation on M and reads a value written by any side effect in the release sequence headed by A. [Note: Except
in the specified cases, reading a later value does not necessarily ensure visibility as described below. Such a requirement
would sometimes interfere with efficient implementation. — end note | [Note: The specifications of the synchronization
operations define when one reads the value written by another. For atomic variables, the definition is clear. All operations
on a given lock occur in a single total order. Each lock acquisition “reads the value written” by the last lock release.
—end note |

Draft

10

11

12

1.10 Multi-threaded executions and data races General 12

An evaluation A happens before an evaluation B if:

— A is sequenced before B, or

— A synchronizes with B, or

— for some evaluation X, A happens before X and X happens before B.

A visible side effect A on an object M with respect to a value computation B of M satisfies the conditions:

— A happens before B, and

— there is no other side effect X to M such that A happens before X and X happens before B.

The value of a non-atomic scalar object M, as determined by evaluation B, shall be the value stored by the visible side

effect A. [Note: If there is ambiguity about which side effect to a non-atomic object is visible, then there is a data

race, and the behavior is undefined. — end note | [Note: This states that operations on ordinary variables are not visibly

reordered. This is not actually detectable without data races, but it is necessary to ensure that data races, as defined

here, and with suitable restrictions on the use of atomics, correspond to data races in a simple interleaved (sequentially

consistent) execution. — end note |

The visible sequence of side effects on an atomic object M, with respect to a value computation B of M, is a maximal

contiguous sub-sequence of side effects in the modification order of M, where the first side effect is visible with respect

to B, and for every subsequent side effect, it is not the case that B happens before it. The value of an atomic object M, as

determined by evaluation B, shall be the value stored by some operation in the visible sequence of M with respect to B.

Furthermore, if a value computation A of an atomic object M happens before a value computation B of M, and the value

computed by A corresponds to the value stored by side effect X, then the value computed by B shall either equal the value

computed by A, or be the value stored by side effect ¥, where Y follows X in the modification order of M. [Note: This

effectively disallows compiler reordering of atomic operations to a single object, even if both operations are “relaxed”

loads. By doing so, we effectively make the “cache coherence” guarantee provided by most hardware available to C++

atomic operations. — end note] [Note: The visible sequence depends on the happens before relation, which depends on

the values observed by loads of atomics, which we are restricting here. The intended reading is that there must exist an

association of atomic loads with modifications they observe that, together with suitably chosen modification orders and

the happens before relation derived as described above, satisfy the resulting constraints as imposed here. — end note |

The execution of a program contains a data race if it contains two conflicting actions in different threads, at least one of

which is not atomic, and neither happens before the other. Any such data race results in undefined behavior. [Note: It can

be shown that programs that correctly use simple locks to prevent all data races, and use no other synchronization oper-

ations, behave as though the executions of their constituent threads were simply interleaved, with each observed value

of an object being the last value assigned in that interleaving. This is normally referred to as “sequential consistency”.

However, this applies only to race-free programs, and race-free programs cannot observe most program transformations

that do not change single-threaded program semantics. In fact, most single-threaded program transformations continue

to be allowed, since any program that behaves differently as a result must perform an undefined operation. — end note |

[Note: Compiler transformations that introduce assignments to a potentially shared memory location that would not be

modified by the abstract machine are generally precluded by this standard, since such an assignment might overwrite

another assignment by a different thread in cases in which an abstract machine execution would not have encountered

a data race. This includes implementations of data member assignment that overwrite adjacent members in separate

memory locations. We also generally preclude reordering of atomic loads in cases in which the atomics in question may

alias, since this may violate the “visible sequence” rules. — end note |

Draft

13

13 General 1.11 Acknowledgments

[Note: Transformations that introduce a speculative read of a potentially shared memory location may not preserve the

semantics of the C++ program as defined in this standard, since they potentially introduce a data race. However, they

are typically valid in the context of an optimizing compiler that targets a specific machine with well-defined semantics

for data races. They would be invalid for a hypothetical machine that is not tolerant of races or provides hardware race

detection. — end note |

1.11 Acknowledgments [intro.ack]

The C++ programming language as described in this International Standard is based on the language as described
in Chapter R (Reference Manual) of Stroustrup: The C++ Programming Language (second edition, Addison-Wesley
Publishing Company, ISBN 0-201-53992-6, copyright ©)1991 AT&T). That, in turn, is based on the C programming
language as described in Appendix A of Kernighan and Ritchie: The C Programming Language (Prentice-Hall, 1978,
ISBN 0-13-110163-3, copyright ©)1978 AT&T).

Portions of the library clauses of this International Standard are based on work by P.J. Plauger, which was published as
The Draft Standard C++ Library (Prentice-Hall, ISBN 0-13-117003-1, copyright (©)1995 P.J. Plauger).

All rights in these originals are reserved.

Draft

1.11 Acknowledgments General 14

Draft

1

Chapter 2 Lexical conventions [lex]

The text of the program is kept in units called source files in this International Standard. A source file together with all
the headers (17.4.1.2) and source files included (16.2) via the preprocessing directive #include, less any source lines
skipped by any of the conditional inclusion (16.1) preprocessing directives, is called a translation unit. [Note: a C++
program need not all be translated at the same time. — end note |

[Note: previously translated translation units and instantiation units can be preserved individually or in libraries. The
separate translation units of a program communicate (3.5) by (for example) calls to functions whose identifiers have ex-
ternal linkage, manipulation of objects whose identifiers have external linkage, or manipulation of data files. Translation
units can be separately translated and then later linked to produce an executable program (3.5). — end note]

2.1 Phases of translation [lex.phases]

The precedence among the syntax rules of translation is specified by the following phases.'”

1. Physical source file characters are mapped, in an implementation-defined manner, to the basic source character
set (introducing new-line characters for end-of-line indicators) if necessary. The set of physical source file charac-
ters accepted is implementation-defined. Trigraph sequences (2.3) are replaced by corresponding single-character
internal representations. Any source file character not in the basic source character set (2.2) is replaced by the
universal-character-name that designates that character. (An implementation may use any internal encoding, so
long as an actual extended character encountered in the source file, and the same extended character expressed in
the source file as a universal-character-name (i.e. using the \uXXXX notation), are handled equivalently.)

2. Each instance of a backslash character (\) immediately followed by a new-line character is deleted, splicing phys-
ical source lines to form logical source lines. Only the last backslash on any physical source line shall be eligible
for being part of such a splice. If, as a result, a character sequence that matches the syntax of a universal-character-
name is produced, the behavior is undefined. If a source file that is not empty does not end in a new-line character,
or ends in a new-line character immediately preceded by a backslash character before any such splicing takes
place, the behavior is undefined.

3. The source file is decomposed into preprocessing tokens (2.4) and sequences of white-space characters (including
comments). A source file shall not end in a partial preprocessing token or in a partial comment.'") Each comment
is replaced by one space character. New-line characters are retained. Whether each nonempty sequence of white-
space characters other than new-line is retained or replaced by one space character is implementation-defined.

10) Implementations must behave as if these separate phases occur, although in practice different phases might be folded together.

D" A partial preprocessing token would arise from a source file ending in the first portion of a multi-character token that requires a terminating
sequence of characters, such as a header-name that is missing the closing " or >. A partial comment would arise from a source file ending with an
unclosed /* comment.

2.2

Character sets Lexical conventions 16

2.2

The process of dividing a source file’s characters into preprocessing tokens is context-dependent. [Example: see
the handling of < within a #include preprocessing directive. — end example |

. Preprocessing directives are executed, macro invocations are expanded, and _Pragma unary operator expressions

are executed. If a character sequence that matches the syntax of a universal-character-name is produced by token
concatenation (16.3.3), the behavior is undefined. A #include preprocessing directive causes the named header
or source file to be processed from phase 1 through phase 4, recursively. All preprocessing directives are then
deleted.

. Each source character set member;-eseape-sequenece,—or and universal-character-name in charactertiterals—and

stringtiterals a character literal or a string literal, as well as each escape sequence in a character literal or a non-
raw string literal, is converted to the corresponding member of the execution character set (2.13.2, 2.13.4); if there
is no corresponding member, it is converted to an implementation-defined member other than the null (wide)
character.'?

. Adjacent literal tokens are concatenated.

. White-space characters separating tokens are no longer significant. Each preprocessing token is converted into a

token. (2.6). The resulting tokens are syntactically and semantically analyzed and translated as a translation unit.
[Note: The process of analyzing and translating the tokens may occasionally result in one token being replaced
by a sequence of other tokens (14.2). — end note] [Note: Source files, translation units and translated translation
units need not necessarily be stored as files, nor need there be any one-to-one correspondence between these
entities and any external representation. The description is conceptual only, and does not specify any particular
implementation. — end note]

. Translated translation units and instantiation units are combined as follows: [Note: some or all of these may be

supplied from a library. — end note] Each translated translation unit is examined to produce a list of required
instantiations. [Nofe: this may include instantiations which have been explicitly requested (14.7.2). —end
note] The definitions of the required templates are located. It is implementation-defined whether the source of
the translation units containing these definitions is required to be available. [Note: an implementation could
encode sufficient information into the translated translation unit so as to ensure the source is not required here.
— end note] All the required instantiations are performed to produce instantiation units. [Note: these are similar
to translated translation units, but contain no references to uninstantiated templates and no template definitions.
— end note] The program is ill-formed if any instantiation fails.

. All external object and function references are resolved. Library components are linked to satisfy external refer-

ences to functions and objects not defined in the current translation. All such translator output is collected into a
program image which contains information needed for execution in its execution environment.

Character sets [lex.charset]

The basic source character set consists of 96 characters: the space character, the control characters representing hori-

zontal tab, vertical tab, form feed, and new-line, plus the following 91 graphical characters:

13)

12) An implementation need not convert all non-corresponding source characters to the same execution character.

13)The glyphs for the members of the basic source character set are intended to identify characters from the subset of ISO/IEC 10646 which
corresponds to the ASCII character set. However, because the mapping from source file characters to the source character set (described in translation
phase 1) is specified as implementation-defined, an implementation is required to document how the basic source characters are represented in source

files.

Draft

2

2

17 Lexical conventions 2.3 Trigraph sequences

abcdefghijklmnopgrstuvwzxyz
ABCDEFGHIJKLMNOPQRSTUVWIXYZ
0123456789

SAYII#) <>Y s s 2 x+ -/ T~ =N

The universal-character-name construct provides a way to name other characters.

hex-quad.:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

universal-character-name:

\u hex-quad
\U hex-quad hex-quad

The character designated by the universal-character-name \UNNNNNNNN is that character whose character short name in
ISO/IEC 10646 is NNNNNNNN; the character designated by the universal-character-name \uNNNN is that character whose
character short name in ISO/IEC 10646 is O000ONNNN. If the hexadecimal value for a universal-character-name corre-
sponds to a surrogate code point (in the range 0xD800-0xDFFF, inclusive), the program is ill-formed. Additionally, if
the hexadecimal value for a universal-character-name outside a character or string literal isless-than-0x20-orin-the range
OxFE-0x9E-Ginelusive); corresponds to a control character (in either of the ranges 0x00—0x 1F or 0x7F-0x9F, both inclu-
sive) or-if-the-universal-charactername-designates or to a character in the basic source character set, then the program

is ill-formed.

The basic execution character set and the basic execution wide-character set shall each contain all the members of the
basic source character set, plus control characters representing alert, backspace, and carriage return, plus a null character
(respectively, null wide character), whose representation has all zero bits. For each basic execution character set, the
values of the members shall be non-negative and distinct from one another. In both the source and execution basic
character sets, the value of each character after O in the above list of decimal digits shall be one greater than the value
of the previous. The execution character set and the execution wide-character set are supersets of the basic execution
character set and the basic execution wide-character set, respectively. The values of the members of the execution
character sets are implementation-defined, and any additional members are locale-specific.

2.3 Trigraph sequences [lex.trigraph]

Before any other processing takes place, each occurrence of one of the following sequences of three characters (“trigraph
sequences’) is replaced by the single character indicated in Table 1.

Table 1: trigraph sequences
] trigraph replacement \ trigraph replacement \ trigraph replacement \

7= # ?77([77< {
??/ \ ?7)] 7> }
7 - 77! | - ~

[Example:

Draft

2.4 Preprocessing tokens Lexical conventions 18

becomes

#define arraycheck(a,b) a[b] || blal

—end example |

No other trigraph sequence exists. Each 7 that does not begin one of the trigraphs listed above is not changed.

2.4 Preprocessing tokens [lex.pptoken]

preprocessing-token:
header-name
identifier
pp-number
character-literal
string-literal
preprocessing-op-or-punc
each non-white-space character that cannot be one of the above
Each preprocessing token that is converted to a token (2.6) shall have the lexical form of a keyword, an identifier, a
literal, an operator, or a punctuator.

A preprocessing token is the minimal lexical element of the language in translation phases 3 through 6. The cate-
gories of preprocessing token are: header names, identifiers, preprocessing numbers, character literals, string literals,
preprocessing-op-or-punc, and single non-white-space characters that do not lexically match the other preprocessing
token categories. If a > or a " character matches the last category, the behavior is undefined. Preprocessing tokens can
be separated by white space; this consists of comments (2.7), or white-space characters (space, horizontal tab, new-line,
vertical tab, and form-feed), or both. As described in clause 16, in certain circumstances during translation phase 4,
white space (or the absence thereof) serves as more than preprocessing token separation. White space can appear within
a preprocessing token only as part of a header name or between the quotation characters in a character literal or string
literal.

If the input stream has been parsed into preprocessing tokens up to a given character, the next preprocessing token is
the longest sequence of characters that could constitute a preprocessing token, even if that would cause further lexical
analysis to fail.

[Example: The program fragment 1Ex is parsed as a preprocessing number token (one that is not a valid floating or
integer literal token), even though a parse as the pair of preprocessing tokens 1 and Ex might produce a valid expression
(for example, if Ex were a macro defined as +1). Similarly, the program fragment 1E1 is parsed as a preprocessing
number (one that is a valid floating literal token), whether or not E is a macro name. — end example |

[Example: The program fragment x+++++y is parsed as x ++ ++ + y, which, if x and y are of built-in types, violates

a constraint on increment operators, even though the parse x ++ + ++ y might yield a correct expression. — end
example]
2.5 Alternative tokens [lex.digraph]

Alternative token representations are provided for some operators and punctuators.'®

19 These include “digraphs” and additional reserved words. The term “digraph” (token consisting of two characters) is not perfectly descriptive,
since one of the alternative preprocessing-tokens is %:%: and of course several primary tokens contain two characters. Nonetheless, those alternative
tokens that aren’t lexical keywords are colloquially known as “digraphs”.

Draft

19 Lexical conventions 2.6 Tokens

In all respects of the language, each alternative token behaves the same, respectively, as its primary token, except for its
spelling.!> The set of alternative tokens is defined in Table 2.

Table 2: alternative tokens
] alternative primary \ alternative primary \ alternative primary ‘

<% { and && and_eq &=
%> } bitor | or_eq |=
<: [or |l xor_eq ~=
1>] xor - not !
VR # compl ~ not_eq I=
Hoith: ## bitand &
2.6 Tokens [lex.token]
token:

identifier

keyword

literal

()pemt()r

punctuator

There are five kinds of tokens: identifiers, keywords, literals, ' operators, and other separators. Blanks, horizontal and
vertical tabs, newlines, formfeeds, and comments (collectively, “white space”), as described below, are ignored except as
they serve to separate tokens. [Nofe: Some white space is required to separate otherwise adjacent identifiers, keywords,
numeric literals, and alternative tokens containing alphabetic characters. — end note]

2.7 Comments [lex.comment]

The characters /* start a comment, which terminates with the characters */. These comments do not nest. The characters
// start a comment, which terminates with the next new-line character. If there is a form-feed or a vertical-tab character
in such a comment, only white-space characters shall appear between it and the new-line that terminates the comment;
no diagnostic is required. [Note: The comment characters //, /*, and */ have no special meaning within a // comment
and are treated just like other characters. Similarly, the comment characters // and /* have no special meaning within
a /* comment. — end note |

2.8 Header names [lex.header]

header-name:
< h-char-sequence >
" g-char-sequence "
h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except new-line and >

15 Thus the “stringized” values (16.3.2) of [and <: will be different, maintaining the source spelling, but the tokens can otherwise be freely
interchanged.
16) Literals include strings and character and numeric literals.

Draft

2.9 Preprocessing numbers Lexical conventions 20

q-char-sequence:
g-char
q-char-sequence g-char

q-char:
any member of the source character set except new-line and "

Header name preprocessing tokens shall only appear within a #include preprocessing directive (16.2). The sequences
in both forms of header-name s are mapped in an implementation-defined manner to headers or to external source file
names as specified in 16.2.

If either of the characters ’ or \, or either of the character sequences /* or // appears in a g-char-sequence or a

h-char-sequence, or the character " appears in a h-char-sequence, the behavior is undefined.!”
2.9 Preprocessing numbers [lex.ppnumber]
pp-number:
digit
. digit

pp-number digit
pp-number nondigit
pp-number e sign
pp-number E sign
pp-number .

Preprocessing number tokens lexically include all integral literal tokens (2.13.1) and all floating literal tokens (2.13.3).

A preprocessing number does not have a type or a value; it acquires both after a successful conversion (as part of
translation phase 7, 2.1) to an integral literal token or a floating literal token.

2.10 Identifiers [lex.name]

identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit

identifier-nondigit:
nondigit
universal-character-name
other implementation-defined characters

nondigit: one of
abcdefghijklm
nopgrstuvwvzxyz
ABCDEFGHIJKLM
NOPQRSTUVWXYZ_
digit: one of
0123456789
An identifier is an arbitrarily long sequence of letters and digits. Each universal-character-name in an identifier shall
designate a character whose encoding in ISO 10646 falls into one of the ranges specified in Annex E. Upper- and

1) Thus, sequences of characters that resemble escape sequences cause undefined behavior.

Draft

21 Lexical conventions 2.11 Keywords

lower-case letters are different. All characters are significant.'®

2 In addition, some identifiers are reserved for use by C++ implementations and standard libraries (17.4.3.1.2) and shall
not be used otherwise; no diagnostic is required.

2.11 Keywords [lex.key]

1 The identifiers shown in Table 3 are reserved for use as keywords (that is, they are unconditionally treated as keywords
in phase 7):

Table 3: keywords

alignas continue friend reinterpret_cast typedef
alignof decltype goto return typeid
asm default if short typename
auto delete inline signed union
bool double int sizeof unsigned
break do long static_assert using
case dynamic_cast mutable static_cast virtual
catch else namespace static void
char enum new struct volatile
charl6_t explicit nullptr switch wchar_t
char32_t export operator template while
class extern private this

const false protected throw

constexpr float public true

const_cast for register try

2 Furthermore, the alternative representations shown in Table 4 for certain operators and punctuators (2.5) are reserved
and shall not be used otherwise:

Table 4: alternative representations

and and_eq bitand bitor compl not
not_eq or or_eq xor xor_eq
2.12 Operators and punctuators [lex.operators]

1 The lexical representation of C++ programs includes a number of preprocessing tokens which are used in the syntax of
the preprocessor or are converted into tokens for operators and punctuators:

18)0n systems in which linkers cannot accept extended characters, an encoding of the universal-character-name may be used in forming valid external
identifiers. For example, some otherwise unused character or sequence of characters may be used to encode the \u in a universal-character-name.
Extended characters may produce a long external identifier, but C++ does not place a translation limit on significant characters for external identifiers.
In C++, upper- and lower-case letters are considered different for all identifiers, including external identifiers.

Draft

2.13 Literals

Lexical conventions 22

preprocessing-op-or-punc: one of

{ } [

<: > <%

new delete ?

+ - *

1 = <

e o= _

<= >= &&

and and_eq bitand
or or_eq Xor

Each preprocessing-op-or-punc is converted to a single token in translation phase 7 (2.1).

2.13 Literals

There are several kinds of literals.'?

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal
pointer-literal

2.13.1 Integer literals

integer-literal:

1
%>
/
>

<<
I

bitor
xor_eq

decimal-literal integer-suffixop

octal-literal integer-suffixop;

hexadecimal-literal integer-suffixop;

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit

hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
123456789

octal-digit: one of
01234567

hexadecimal-digit: one of
0123456789
abcdef
ABCDETF

compl

#i#

not

hoith:

not_eq

—->%

[lex.literal]

[lex.icon]

19) The term “literal” generally designates, in this International Standard, those tokens that are called “constants” in ISO C.

Draft

23 Lexical conventions 2.13 Literals

integer-suffix:
unsigned-suffix long-suffixop
unsigned-suffix long-long-suffixop
long-suffix unsigned-suffixop;
long-long-suffix unsigned-suffixop
unsigned-suffix: one of
ulU
long-suffix: one of
1L
long-long-suffix: one of
11 LL
1 An integer literal is a sequence of digits that has no period or exponent part. An integer literal may have a prefix
that specifies its base and a suffix that specifies its type. The lexically first digit of the sequence of digits is the most
significant. A decimal integer literal (base ten) begins with a digit other than 0 and consists of a sequence of decimal
digits. An octal integer literal (base eight) begins with the digit 0 and consists of a sequence of octal digits.’? A
hexadecimal integer literal (base sixteen) begins with Ox or 0X and consists of a sequence of hexadecimal digits, which
include the decimal digits and the letters a through f and A through F with decimal values ten through fifteen. [Example:
the number twelve can be written 12, 014, or 0XC. — end example |

2 The type of an integer literal is the first of the corresponding list in Table 5 in which its value can be represented.

Table 5: Types of Integer Constants

3

Suffix Decimal Constant Octal or Hexadecimal Constant
none int int
long int unsigned int
long long int long int
unsigned long int
long long int
unsigned long long int
uorU unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int | unsigned long long int
lorL long int long int
long long int unsigned long int
long long int
unsigned long int
BothuorU unsigned long int unsigned long int
andlorL unsigned long long int | unsigned long long int
1llorLL long long int long long int
unsigned long int
BothuorU unsigned long long int | unsigned long long int
and 11 or LL

If an integer literal cannot be represented by any type in its list and an extended integer type can represent its value, it

20) The digits 8 and 9 are not octal digits.

Draft

2.13 Literals Lexical conventions 24

may have that extended integer type. If all of the types in the list for the literal are signed, the extended integer type shall
be signed. If all of the types in the list for the literal are unsigned, the extended integer type shall be unsigned. If the list
contains both signed and unsigned types, the extended integer type may be signed or unsigned. A program is ill-formed
if one of its translation units contains an integer literal that cannot be represented by any of the allowed types.

2.13.2 Character literals [lex.ccon]

character-literal:
’ c-char-sequence ’
u’ c-char-sequence ’
U’ c-char-sequence ’
L’ c-char-sequence °’
c-char-sequence:
c-char
c-char-sequence c-char

c-char:

any member of the source character set except

the single-quote ’, backslash \, or new-line character

escape-sequence

universal-character-name
escape-sequence:

simple-escape-sequence

octal-escape-sequence

hexadecimal-escape-sequence
simple-escape-sequence: one of

VoA N7\

\a \b \f \n \r \t \v
octal-escape-sequence:

\ octal-digit

\ octal-digit octal-digit

\ octal-digit octal-digit octal-digit
hexadecimal-escape-sequence:

\x hexadecimal-digit

hexadecimal-escape-sequence hexadecimal-digit

A character literal is one or more characters enclosed in single quotes, as in >x’, optionally preceded by one of the letters
u,U,orL,asinu’y’,U’z’, or L’x’, respectively. A character literal that does not begin with u, U, or L is an ordinary
character literal, also referred to as a narrow-character literal. An ordinary character literal that contains a single c-char
has type char, with value equal to the numerical value of the encoding of the c-char in the execution character set. An
ordinary character literal that contains more than one c-char is a multicharacter literal. A multicharacter literal has type
int and implementation-defined value.

A character literal that begins with the letter u, such as u’y?’, is a character literal of type char16_t. The value of a
char16_t literal containing a single c-char is equal to its ISO 10646 code point value, provided that the code point
is representable with a single 16-bit code unit. (That is, provided it is a basic multi-lingual plane code point.) If the
value is not representable within 16 bits, the program is ill-formed. A char16_t literal containing multiple c-char s
is ill-formed. A character literal that begins with the letter U, such as U’z’, is a character literal of type char32_t.

Draft

25 Lexical conventions 2.13 Literals

The value of a char32_t literal containing a single c-char is equal to its ISO 10646 code point value. A char32_t
literal containing multiple c-char s is ill-formed. A character literal that begins with the letter L, such as L’x’, is a
wide-character literal. A wide-character literal has type wchar_t.?" The value of a wide-character literal containing a
single c-char has value equal to the numerical value of the encoding of the c-char in the execution wide-character set.
The value of a wide-character literal containing multiple c-char s is implementation-defined.

3 Certain nongraphic characters, the single quote ’, the double quote ", the question mark 7, and the backslash \, can
be represented according to Table 6. The double quote " and the question mark 7, can be represented as themselves or
by the escape sequences \" and \? respectively, but the single quote ’ and the backslash \ shall be represented by the
escape sequences \’ and \\ respectively. Escape sequences in which the character following the backslash is not listed
in Table 6 are conditionally-supported, with implementation-defined semantics. An escape sequence specifies a single
character.

Table 6: escape sequences

new-line NL(LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
alert BEL \a
backslash \ A\
question mark ~ ? \7?
single quote ’ \’
double quote " \"
octal number 000 \ooo
hex number hhh \xhhh

4 The escape \ooo consists of the backslash followed by one, two, or three octal digits that are taken to specify the
value of the desired character. The escape \xhhh consists of the backslash followed by x followed by one or more
hexadecimal digits that are taken to specify the value of the desired character. There is no limit to the number of digits in
a hexadecimal sequence. A sequence of octal or hexadecimal digits is terminated by the first character that is not an octal
digit or a hexadecimal digit, respectively. The value of a character literal is implementation-defined if it falls outside of
the implementation-defined range defined for char (for literals with no prefix), char16_t (for literals prefixed by *u’),
char32_t (for literals prefixed by *U?), or wchar_t (for literals prefixed by ’L?).

5 A universal-character-name is translated to the encoding, in the execution character set, of the character named. If
there is no such encoding, the universal-character-name is translated to an implementation-defined encoding. [Note: in
translation phase 1, a universal-character-name is introduced whenever an actual extended character is encountered in
the source text. Therefore, all extended characters are described in terms of universal-character-names. However, the
actual compiler implementation may use its own native character set, so long as the same results are obtained. — end
note |

2D They are intended for character sets where a character does not fit into a single byte.

Draft

1

2.13 Literals Lexical conventions 26

2.13.3 Floating literals [lex.fcon]

floating-literal:
fractional-constant exponent-part,, floating-suffixop;
digit-sequence exponent-part floating-suffixop;
fractional-constant:
digit-sequencegp, . digit-sequence
digit-sequence .
exponent-part:
e signop; digit-sequence
E signgp, digit-sequence
sign: one of
+ -
digit-sequence:
digit
digit-sequence digit
Sfloating-suffix: one of
f1FL
A floating literal consists of an integer part, a decimal point, a fraction part, an e or E, an optionally signed integer
exponent, and an optional type suffix. The integer and fraction parts both consist of a sequence of decimal (base ten)
digits. Either the integer part or the fraction part (not both) can be omitted; either the decimal point or the letter e (or
E) and the exponent (not both) can be omitted. The integer part, the optional decimal point and the optional fraction
part form the significant part of the floating literal. The exponent, if present, indicates the power of 10 by which the
significant part is to be scaled. If the scaled value is in the range of representable values for its type, the result is
the scaled value if representable, else the larger or smaller representable value nearest the scaled value, chosen in an
implementation-defined manner. The type of a floating literal is double unless explicitly specified by a suffix. The
suffixes f and F specify float, the suffixes 1 and L specify long double. If the scaled value is not in the range of
representable values for its type, the program is ill-formed.

2.13.4 String literals [lex.string]

string-literal:
" s-char-sequenceop, "

us8" .Yf(,'/1(1l‘:\'(%L/ll(’,ll(,‘(1(,1,, "

u" s—char—sequenceo,,t "
g" s-char—sequenceap; "
L" s-char-sequencegp; "
R raw-string

u8R raw-string

uR raw-string

UR raw-string

LR raw-string

s-char-sequence:
s-char
s-char-sequence s-char

Draft

27 Lexical conventions 2.13 Literals

s-char:
any member of the source character set except
the double-quote ", backslash \, or new-line character
escape-sequence
universal-character-name

raw-string:
" d-char-sequenceop; [r-char-sequenceop; 1 d-char-sequenceqp; "

r-char-sequence:
r-char
r-char-sequence r-char

r-char:
any member of the source character set, except
(1), a backslash \ followed by a u or U, or
(2), a right square bracket] followed by the initial d-char-sequence
(which may be empty) followed by a double quote ".
universal-character-name

d-char-sequence:
d-char
d-char-sequence d-char

d-char:
any member of the basic source character set except:
space, the left square bracket [, the right square bracket],
and the control characters representing horizontal tab,
vertical tab, form feed, and newline.

A string literal is a sequence of characters (as defined in 2.13.2) surrounded by double quotes, optionally beginning-with
one-of-the letters prefixed by R, u8, u8R, u, uR, U, UR, oL, or LR, asin "...", R"...", u8"...", uBR"*x*[...]*x",
u". . " uR"k~ []k UL U UR Z22 [L L] zz2" e L L L " or LR [L ..] ", respectively.

A string literal that has an R in the prefix is a raw string literal. The terminating d-char-sequence of a raw-string is the
same sequence of characters as the initial d-char-sequence. A d-char-sequence shall consist of at most 16 characters.

[Note: A source-file new-line in a raw string literal results in a new-line in the resulting execution string-literal, unless
preceded by a backslash. Assuming no whitespace at the beginning of lines in the following example, the assert will
succeed:

const char *p = R"[a\

b

cl";

assert(std::strcmp(p, "ab\nc") == 0);

—end note |

A string literal that does not begin with u8, u, U, or L is an ordinary string literal, and is initialized with the given
characters.

A string literal that begins with u8, such as u8"asdf", is a UTF-8 string literal and is initialized with the given characters
as encoded in UTF-8.

Draft

10

13

2.13 Literals Lexical conventions 28

Ordinary string literals and UTF-8 string literals are also referred to as a narrow string literals. An-erdinary narrow string
literal has type “array of n const char”, where n is the size of the string as defined below:it, and has static storage

duration (3.7)-and is-initialized-with-the given characters.

A string literal that begins with u, such as u"asdf", is a char16_t string literal. A char16_t string literal has type
“array of n const char16_t”, where n is the size of the string as defined below; it has static storage duration and is
initialized with the given characters. A single c-char may produce more than one char16_t character in the form of
surrogate pairs.

A string literal that begins with U, such as U"asdf", is a char32_t string literal. A char32_t string literal has type
“array of n const char32_t”, where n is the size of the string as defined below; it has static storage duration and is
initialized with the given characters.

A string literal that begins with L, such as L"asdf", is a wide string literal. A wide string literal has type “array of n
const wchar_t”, where n is the size of the string as defined belowit has static storage duration and is initialized with
the given characters.

Whether all string literals are distinct (that is, are stored in nonoverlapping objects) is implementation-defined. The
effect of attempting to modify a string literal is undefined.

In translation phase 6 (2.1), adjacent string literals are concatenated. If both string literals have the same prefix, the
resulting concatenated string literal has that prefix. If one string literal has no prefix, it is treated as a string literal of
the same prefix as the other operand. If a UTF-8 string literal token is adjacent to a wide string literal token, the pro-
gram is ill-formed. Any other concatenations are conditionally supported with implementation-defined behavior. [Note:
This concatenation is an interpretation, not a conversion. — end note] [Example: Here are some examples of valid
concatenations:

Table 7: string literal concatenations
source means source means source means
ullall ullbll ullabll Ullall Ullbll Ullabll Lllall Lllbll Lllabll
ullall llbll ulla n Ullall ll'bll Ullabll Lllall ll'bll Lllabll
llall ullbll ulla n llall Ullbll Ullabll llall Lllbll Lllabll

—end example]
Characters in concatenated strings are kept distinct.
[Example:
"\xA" "B"
contains the two characters >\xA’ and ’B’ after concatenation (and not the single hexadecimal character > \xAB?).
— end example |

After any necessary concatenation, in translation phase 7 (2.1), \0? is appended to every string literal so that programs
that scan a string can find its end.

Escape sequences in non-raw string literals and universal-character-names in string literals have the same meaning as
in character literals (2.13.2), except that the single quote ’ is representable either by itself or by the escape sequence
\’, and the double quote " shall be preceded by a \. In a narrow string literal, a universal-character-name may map

Draft

1

29 Lexical conventions 2.13 Literals

to more than one char element due to multibyte encoding. The size of a char32_t or wide string literal is the total
number of escape sequences, universal-character-names, and other characters, plus one for the terminating U’\0’ or
L>\0’. The size of a char16_t string literal is the total number of escape sequences, universal-character-names, and
other characters, plus one for each character requiring a surrogate pair, plus one for the terminating u’\0°’. [Note:
The size of a char16_t string literal is the number of code units, not the number of characters. — end note] Within
char32_t and char16_t literals, any universal-character-names must be within the range 0x0 to O0x10FFFF. The size
of a narrow string literal is the total number of escape sequences and other characters, plus at least one for the multibyte
encoding of each universal-character-name, plus one for the terminating ’>\0’.

2.13.5 Boolean literals [lex.bool]

boolean-literal:
false
true

The Boolean literals are the keywords false and true. Such literals have type bool. They are not lvalues.

2.13.6 Pointer literals [lex.nullptr]

pointer-literal:
nullptr

The pointer literal is the keyword nullptr. It is an rvalue of type std: :nullptr_t.

Draft

2.13 Literals Lexical conventions 30

Draft

Chapter 3 Basic concepts [basic]

[Note: this clause presents the basic concepts of the C++ language. It explains the difference between an object and
a name and how they relate to the notion of an Ivalue. It introduces the concepts of a declaration and a definition
and presents C++’s notion of type, scope, linkage, and storage duration. The mechanisms for starting and terminating
a program are discussed. Finally, this clause presents the fundamental types of the language and lists the ways of
constructing compound types from these. — end note |

[Note: This clause does not cover concepts that affect only a single part of the language. Such concepts are discussed
in the relevant clauses. — end note |

An entity is a value, object, subobject, base class subobject, array element, variable, function, instance of a function,
enumerator, type, class member, template, namespace, or parameter pack.

A name is a use of an identifier (2.10) that denotes an entity or label (6.6.4, 6.1). A variable is introduced by the
declaration of an object. The variable’s name denotes the object.

Every name that denotes an entity is introduced by a declaration. Every name that denotes a label is introduced either
by a goto statement (6.6.4) or a labeled-statement (6.1).

Some names denote types, classes, enumerations, or templates. In general, it is necessary to determine whether or not a
name denotes one of these entities before parsing the program that contains it. The process that determines this is called
name lookup (3.4).

Two names are the same if
— they are identifiers composed of the same character sequence; or
— they are the names of overloaded operator functions formed with the same operator; or
— they are the names of user-defined conversion functions formed with the same type.

An identifier used in more than one translation unit can potentially refer to the same entity in these translation units
depending on the linkage (3.5) of the identifier specified in each translation unit.

3.1 Declarations and definitions [basic.def]

A declaration (clause 7) introduces names into a translation unit or redeclares names introduced by previous declarations.
A declaration specifies the interpretation and attributes of these names.

A declaration is a definition unless it declares a function without specifying the function’s body (8.4), it contains the

3.1 Declarations and definitions Basic concepts 32

extern specifier (7.1.1) or a linkage-specification®® (7.5) and neither an initializer nor a function-body, it declares a
static data member in a class definition (9.4), it is a class name declaration (9.1), or it is a typedef declaration (7.1.3),
a using-directive using-declaration (7.3.3), or a (7.3.4).

[Example: all but one of the following are definitions:

int a; // defines a
extern const int c = 1; // defines c
int f(int x) { return x+a; } // defines £ and defines x
struct S { int a; int b; }; // defines S, S: :a, and S: :b
struct X { // defines X
int x; // defines non-static data member x
static int y; // declares static data member y
XO: x(0) {1} // defines a constructor of X
};
int X::y = 1; // defines X: :y
enum { up, down }; // defines up and down
namespace N { int d; } // defines N and N: :d
namespace N1 = N; // defines N1
X anX; // defines anX

whereas these are just declarations:

extern int a; // declares a

extern const int c; // declares c

int f(int); // declares £

struct S; // declares S
typedef int Int; // declares Int
extern X anotherX; // declares anotherX
using N::d; // declares N: :d

— end example |

3 [Note: in some circumstances, C++ implementations implicitly define the default constructor (12.1), copy construc-
tor (12.8), assignment operator (12.8), or destructor (12.4) member functions. [Example: given

#include <string>

struct C {
std::string s; // std: :string is the standard library class (clause 21)
I
int main()
{
C a;
Cb=a;
b = a;
}

the implementation will implicitly define functions to make the definition of C equivalent to

22) Appearing inside the braced-enclosed declaration-seq in a linkage-specification does not affect whether a declaration is a definition.

Draft

33 Basic concepts 3.2 One definition rule

struct C {
std::string s;
cO: sO {3}

C(const C& x): s(x.s) { }
C& operator=(const C& x) { s = x.s; return *this; }
cO {1}

};

—end example] — end note |
[Note: a class name can also be implicitly declared by an elaborated-type-specifier (7.1.6.3). — end note |
A program is ill-formed if the definition of any object gives the object an incomplete type (3.9).

3.2 One definition rule [basic.def.odr]

No translation unit shall contain more than one definition of any variable, function, class type, enumeration type or
template.

An expression is potentially evaluated unless it is an unevaluated operand (clause 5) or a subexpression thereof. An
object or non-overloaded function whose name appears as a potentially-evaluated expression is used unless it is an object
that satisfies the requirements for appearing in a constant expression (5.19) and the Ivalue-to-rvalue conversion (4.1) is
immediately applied. A virtual member function is used if it is not pure. An overloaded function is used if it is selected
by overload resolution when referred to from a potentially-evaluated expression. [Note: this covers calls to named
functions (5.2.2), operator overloading (clause 13), user-defined conversions (12.3.2), allocation function for placement
new (5.3.4), as well as non-default initialization (8.5). A copy constructor is used even if the call is actually elided by the
implementation. — end note | An allocation or deallocation function for a class is used by a new expression appearing in
a potentially-evaluated expression as specified in!5.3.4 and 12.5. A deallocation function for a class is used by a delete
expression appearing in a potentially-evaluated expression as specified in 5.3.5 and 12.5. A non-placement allocation
or deallocation function for a class is used by the definition of a constructor of that class. A non-placement deallocation
function for a class is used by the definition of the destructor of that class, or by being selected by the lookup at the point
of definition of a virtual destructor (12.4).>® A copy-assignment function for a class is used by an implicitly-defined
copy-assignment function for another class as specified in 12.8. A default constructor for a class is used by default
initialization or value initialization as specified in 8.5. A constructor for a class is used as specified in 8.5. A destructor
for a class is used as specified in 12.4.

Every program shall contain exactly one definition of every non-inline function or object that is used in that program; no
diagnostic required. The definition can appear explicitly in the program, it can be found in the standard or a user-defined
library, or (when appropriate) it is implicitly defined (see 12.1, 12.4 and 12.8). An inline function shall be defined in
every translation unit in which it is used.

Exactly one definition of a class is required in a translation unit if the class is used in a way that requires the class type
to be complete. [Example: the following complete translation unit is well-formed, even though it never defines X:

struct X; // declare X as a struct type
struct Xx x1; // use X in pointer formation
X* x2; // use X in pointer formation

23) An implementation is not required to call allocation and deallocation functions from constructors or destructors; however, this is a permissible
implementation technique.

Draft

3.2 One definition rule Basic concepts 34

— end example] [Note: the rules for declarations and expressions describe in which contexts complete class types are
required. A class type T must be complete if:

an object of type T is defined (3.1), or

a non-static class data member of type T is declared (9.2), or

T is used as the object type or array element type in a new-expression (5.3.4), or

an lvalue-to-rvalue conversion is applied to an Ivalue referring to an object of type T (4.1), or

an expression is converted (either implicitly or explicitly) to type T (clause 4, 5.2.3, 5.2.7,5.2.9, 5.4), or

an expression that is not a null pointer constant, and has type other than void *, is converted to the type pointer
to T or reference to T using an implicit conversion (clause 4), a dynamic_cast (5.2.7) or a static_cast (5.2.9),
or

a class member access operator is applied to an expression of type T (5.2.5), or

the typeid operator (5.2.8) or the sizeof operator (5.3.3) is applied to an operand of type T, or
a function with a return type or argument type of type T is defined (3.1) or called (5.2.2), or

a class with a base class of type T is defined (10), or

an lvalue of type T is assigned to (5.17), or

the type T is the subject of an alignof expression (5.3.6) or an alignas specifier (7.1.7).

—end note |

There can be more than one definition of a class type (clause 9), enumeration type (7.2), inline function with external
linkage (7.1.2), class template (clause 14), non-static function template (14.5.6), static data member of a class tem-
plate (14.5.1.3), member function of a class template (14.5.1.1), or template specialization for which some template
parameters are not specified (14.7, 14.5.5) in a program provided that each definition appears in a different translation
unit, and provided the definitions satisfy the following requirements. Given such an entity named D defined in more than
one translation unit, then

each definition of D shall consist of the same sequence of tokens; and

in each definition of D, corresponding names, looked up according to 3.4, shall refer to an entity defined within
the definition of D, or shall refer to the same entity, after overload resolution (13.3) and after matching of partial
template specialization (14.8.3), except that a name can refer to a const object with internal or no linkage if the
object has the same literal type in all definitions of D, and the object is initialized with a constant expression (5.19),
and the value (but not the address) of the object is used, and the object has the same value in all definitions of D;
and

in each definition of D, the overloaded operators referred to, the implicit calls to conversion functions, constructors,
operator new functions and operator delete functions, shall refer to the same function, or to a function defined
within the definition of D; and

in each definition of D, a default argument used by an (implicit or explicit) function call is treated as if its token
sequence were present in the definition of Dj; that is, the default argument is subject to the three requirements

Draft

35 Basic concepts 3.3 Declarative regions and scopes

described above (and, if the default argument has sub-expressions with default arguments, this requirement applies
recursively).”?

— if D is a class with an implicitly-declared constructor (12.1), it is as if the constructor was implicitly defined in
every translation unit where it is used, and the implicit definition in every translation unit shall call the same
constructor for a base class or a class member of D. [Example:

// translation unit 1:

struct X {
X(int);
X(int, int);
};

X::X(int = 0) { }
class D: public X { };
D d2; //X(int) called by D()

// translation unit 2:

struct X {
X(int);
X(int, int);

};

X::X(int = 0, int

class D: public X

]
o
~

{1}

-~
[}

/X(int, int) called byD();
//D(Q)’s implicit definition
// violates the ODR

—end example] If D is a template, and is defined in more than one translation unit, then the last four require-
ments from the list above shall apply to names from the template’s enclosing scope used in the template defini-
tion (14.6.3), and also to dependent names at the point of instantiation (14.6.2). If the definitions of D satisfy all
these requirements, then the program shall behave as if there were a single definition of D. If the definitions of D
do not satisfy these requirements, then the behavior is undefined.

3.3 Declarative regions and scopes [basic.scope]

1 Every name is introduced in some portion of program text called a declarative region, which is the largest part of the
program in which that name is valid, that is, in which that name may be used as an unqualified name to refer to the
same entity. In general, each particular name is valid only within some possibly discontiguous portion of program text
called its scope. To determine the scope of a declaration, it is sometimes convenient to refer to the potential scope of
a declaration. The scope of a declaration is the same as its potential scope unless the potential scope contains another
declaration of the same name. In that case, the potential scope of the declaration in the inner (contained) declarative
region is excluded from the scope of the declaration in the outer (containing) declarative region.

2 [Example: in

int j = 24;
int main()
{

int i = j, j;

248.3.6 describes how default argument names are looked up.

Draft

3.3 Declarative regions and scopes Basic concepts 36

the identifier j is declared twice as a name (and used twice). The declarative region of the first j includes the entire
example. The potential scope of the first j begins immediately after that j and extends to the end of the program, but
its (actual) scope excludes the text between the , and the }. The declarative region of the second declaration of j (the j
immediately before the semicolon) includes all the text between { and }, but its potential scope excludes the declaration
of i. The scope of the second declaration of j is the same as its potential scope. — end example]

The names declared by a declaration are introduced into the scope in which the declaration occurs, except that the
presence of a friend specifier (11.4), certain uses of the elaborated-type-specifier (7.1.6.3), and using-directive s (7.3.4)
alter this general behavior.

Given a set of declarations in a single declarative region, each of which specifies the same unqualified name,
— they shall all refer to the same entity, or all refer to functions and function templates; or

— exactly one declaration shall declare a class name or enumeration name that is not a typedef name and the other
declarations shall all refer to the same object or enumerator, or all refer to functions and function templates; in
this case the class name or enumeration name is hidden (3.3.8). [Nofe: a namespace name or a class template
name must be unique in its declarative region (7.3.2, clause 14). — end note |

[Note: these restrictions apply to the declarative region into which a name is introduced, which is not necessarily
the same as the region in which the declaration occurs. In particular, elaborated-type-specifier s (7.1.6.3) and friend
declarations (11.4) may introduce a (possibly not visible) name into an enclosing namespace; these restrictions apply
to that region. Local extern declarations (3.5) may introduce a name into the declarative region where the declaration
appears and also introduce a (possibly not visible) name into an enclosing namespace; these restrictions apply to both
regions. — end note |

[Note: the name lookup rules are summarized in 3.4. — end note]

3.3.1 Point of declaration [basic.scope.pdecl]

The point of declaration for a name is immediately after its complete declarator (clause 8) and before its initializer (if
any), except as noted below. [Example:

int x = 12;
{ int x = x; }
Here the second x is initialized with its own (indeterminate) value. — end example]
[Note: a nonlocal name remains visible up to the point of declaration of the local name that hides it.[Example:
const int i = 2;
{ int il[il; }
declares a local array of two integers. — end example] — end note]

The point of declaration for a class first declared by a class-specifier is immediately after the identifier or simple-
template-id (if any) in its class-head (clause 9). The point of declaration for an enumeration is immediately after the

Draft

10

37 Basic concepts 3.3 Declarative regions and scopes

identifier (if any) in its enum-specifier (7.2). The point of declaration of a template alias immediately follows the
identifier for the alias being declared.

The point of declaration for an enumerator is immediately after its enumerator-definition.[Example:
const int x = 12;
{enum {x=x13} 1}

Here, the enumerator x is initialized with the value of the constant x, namely 12. — end example |

After the point of declaration of a class member, the member name can be looked up in the scope of its class. [Note:
this is true even if the class is an incomplete class. For example,

struct X {
enum E { z = 16 };
int b[X::z]; // OK
};
—end note |

The point of declaration of a class first declared in an elaborated-type-specifier is as follows:
— for a declaraton of the form
class-key identifier ;
the identifier is declared to be a class-name in the scope that contains the declaration, otherwise
— for an elaborated-type-specifier of the form
class-key identifier

if the elaborated-type-specifier is used in the decl-specifier-seq or parameter-declaration-clause of a function
defined in namespace scope, the identifier is declared as a class-name in the namespace that contains the decla-
ration; otherwise, except as a friend declaration, the identifier is declared in the smallest non-class, non-function-
prototype scope that contains the declaration. [Note: These rules also apply within templates. — end note]
[Note: Other forms of elaborated-type-specifier do not declare a new name, and therefore must refer to an exist-
ing type-name. See 3.4.4 and 7.1.6.3. — end note]

The point of declaration for an injected-class-name (9) is immediately following the opening brace of the class definition.

The point of declaration for a function-local predefined variable (8.4) is immediately before the function-body of a
function definition.

[Note: friend declarations refer to functions or classes that are members of the nearest enclosing namespace, but they
do not introduce new names into that namespace (7.3.1.2). Function declarations at block scope and object declarations
with the extern specifier at block scope refer to delarations that are members of an enclosing namespace, but they do
not introduce new names into that scope. — end note |

[Note: For point of instantiation of a template, see 14.6.4.1. — end note]

Draft

3.3 Declarative regions and scopes Basic concepts 38

3.3.2 Local scope [basic.scope.local]

A name declared in a block (6.3) is local to that block. Its potential scope begins at its point of declaration (3.3.1) and
ends at the end of its declarative region.

The potential scope of a function parameter name or of a function-local predefined variable in a function definition (8.4)
begins at its point of declaration. If the function has a function-try-block the potential scope of a parameter or of a
function-local predefined variable ends at the end of the last associated handler, otherwise it ends at the end of the
outermost block of the function definition. A parameter name shall not be redeclared in the outermost block of the
function definition nor in the outermost block of any handler associated with a function-try-block.

The name in a catch exception-declaration is local to the handler and shall not be redeclared in the outermost block of
the handler.

Names declared in the for-init-statement, and in the condition of if, while, for, and switch statements are local to the
if, while, for, or switch statement (including the controlled statement), and shall not be redeclared in a subsequent
condition of that statement nor in the outermost block (or, for the if statement, any of the outermost blocks) of the
controlled statement; see 6.4.

3.3.3 Function prototype scope [basic.scope.proto]

In a function declaration, or in any function declarator except the declarator of a function definition (8.4), names of
parameters (if supplied) have function prototype scope, which terminates at the end of the nearest enclosing function
declarator.

3.3.4 Function scope [basic.funscope]

Labels (6.1) have function scope and may be used anywhere in the function in which they are declared. Only labels have
function scope.

3.3.5 Namespace scope [basic.scope.namespace]

The declarative region of a namespace-definition is its namespace-body. The potential scope denoted by an original-
namespace-name is the concatenation of the declarative regions established by each of the namespace-definitions in
the same declarative region with that original-namespace-name. Entities declared in a namespace-body are said to be
members of the namespace, and names introduced by these declarations into the declarative region of the namespace
are said to be member names of the namespace. A namespace member name has namespace scope. Its potential scope
includes its namespace from the name’s point of declaration (3.3.1) onwards; and for each using-directive (7.3.4) that
nominates the member’s namespace, the member’s potential scope includes that portion of the potential scope of the
using-directive that follows the member’s point of declaration. [Example:

namespace N {
int i;
int g(int a) { return a; }
int jO;
void q();
}
namespace { int 1=1; }
// the potential scope of 1 is from its point of declaration
// to the end of the translation unit

namespace N {

Draft

39 Basic concepts 3.3 Declarative regions and scopes

int g(char a) // overloads N: :g(int)
{

return l+a; // 1 is from unnamed namespace
}
int 1; // error: duplicate definition
int jO; // OK: duplicate function declaration
int jO) // OK: definition of N: :j ()
{

return g(i); //callsN: :g(int)
}
int qQ); // error: different return type

—end example |

A namespace member can also be referred to after the : : scope resolution operator (5.1) applied to the name of its
namespace or the name of a namespace which nominates the member’s namespace in a using-directive; see 3.4.3.2.

The outermost declarative region of a translation unit is also a namespace, called the global namespace. A name declared
in the global namespace has global namespace scope (also called global scope). The potential scope of such a name
begins at its point of declaration (3.3.1) and ends at the end of the translation unit that is its declarative region. Names
with global namespace scope are said to be global.

3.3.6

Class scope [basic.scope.class]

The following rules describe the scope of names declared in classes.

1Y)

2)

3)

4)

5)

The potential scope of a name declared in a class consists not only of the declarative region following the name’s
point of declaration, but also of all function bodies and default arguments in that class (including such things in
nested classes).

A name N used in a class S shall refer to the same declaration in its context and when re-evaluated in the completed
scope of S. No diagnostic is required for a violation of this rule.

If reordering member declarations in a class yields an alternate valid program under (1) and (2), the program is
ill-formed, no diagnostic is required.

A name declared within a member function hides a declaration of the same name whose scope extends to or past
the end of the member function’s class.

The potential scope of a declaration that extends to or past the end of a class definition also extends to the regions
defined by its member definitions, even if the members are defined lexically outside the class (this includes static
data member definitions, nested class definitions, member function definitions (including the member function
body and any portion of the declarator part of such definitions which follows the identifier, including a parameter-
declaration-clause and any default arguments (8.3.6).[Example:

typedef int c;
enum { i =1 };

class X {

Draft

3.3 Declarative regions and scopes Basic concepts 40

char vl[il; // error: i refersto ::i
// but when reevaluated is X: : i
int f() { return sizeof(c); } /OK:X::c
char c;
enum { i = 2 };

};

typedef char* T;
struct Y {
T a; // error: T refers to : : T
// but when reevaluated is Y: : T
typedef long T;
T b;
};

typedef int I;
class D {
typedef I I; // error, even though no reordering involved
};
— end example |
2 The name of a class member shall only be used as follows:
— in the scope of its class (as described above) or a class derived (clause 10) from its class,
— after the . operator applied to an expression of the type of its class (5.2.5) or a class derived from its class,

— after the —> operator applied to a pointer to an object of its class (5.2.5) or a class derived from its class,

— after the : : scope resolution operator (5.1) applied to the name of its class or a class derived from its class.

3.3.7 Enumeration scope [basic.scope.enum]

1 The name of a scoped enumerator (7.2) has enumeration scope. Its potential scope begins at its point of declaration and
terminates at the end of the enum-specifier.

3.3.8 Name hiding [basic.scope.hiding]
1 A name can be hidden by an explicit declaration of that same name in a nested declarative region or derived class (10.2).

2 A class name (9.1) or enumeration name (7.2) can be hidden by the name of an object, function, or enumerator declared
in the same scope. If a class or enumeration name and an object, function, or enumerator are declared in the same scope
(in any order) with the same name, the class or enumeration name is hidden wherever the object, function, or enumerator
name is visible.

3 In a member function definition, the declaration of a local name hides the declaration of a member of the class with the
same name; see 3.3.6. The declaration of a member in a derived class (clause 10) hides the declaration of a member of
a base class of the same name; see 10.2.

Draft

41 Basic concepts 3.4 Name lookup

During the lookup of a name qualified by a namespace name, declarations that would otherwise be made visible by
a using-directive can be hidden by declarations with the same name in the namespace containing the using-directive;
see (3.4.3.2).

If a name is in scope and is not hidden it is said to be visible.
3.4 Name lookup [basic.lookup]

The name lookup rules apply uniformly to all names (including typedef-names (7.1.3), namespace-names (7.3) and
class-names (9.1)) wherever the grammar allows such names in the context discussed by a particular rule. Name lookup
associates the use of a name with a declaration (3.1) of that name. Name lookup shall find an unambiguous declaration
for the name (see 10.2). Name lookup may associate more than one declaration with a name if it finds the name to be a
function name; the declarations are said to form a set of overloaded functions (13.1). Overload resolution (13.3) takes
place after name lookup has succeeded. The access rules (clause 11) are considered only once name lookup and function
overload resolution (if applicable) have succeeded. Only after name lookup, function overload resolution (if applicable)
and access checking have succeeded are the attributes introduced by the name’s declaration used further in expression
processing (clause 5).

A name “looked up in the context of an expression” is looked up as an unqualified name in the scope where the expression
is found.

The injected-class-name of a class (clause 9) is also considered to be a member of that class for the purposes of name
hiding and lookup.

[Note: 3.5 discusses linkage issues. The notions of scope, point of declaration and name hiding are discussed in 3.3.
—end note |

3.4.1 Ungqualified name lookup [basic.lookup.unqual]

In all the cases listed in 3.4.1, the scopes are searched for a declaration in the order listed in each of the respective
categories; name lookup ends as soon as a declaration is found for the name. If no declaration is found, the program is
ill-formed.

The declarations from the namespace nominated by a using-directive become visible in a namespace enclosing the
using-directive; see 7.3.4. For the purpose of the unqualified name lookup rules described in 3.4.1, the declarations from
the namespace nominated by the using-directive are considered members of that enclosing namespace.

The lookup for an unqualified name used as the postfix-expression of a function call is described in 3.4.2. [Note: for
purposes of determining (during parsing) whether an expression is a postfix-expression for a function call, the usual
name lookup rules apply. The rules in 3.4.2 have no effect on the syntactic interpretation of an expression. For example,

typedef int f;
namespace N {
struct A {
friend void f(A &);
operator int();
void g(A a) {
int i = f(a); // £ is the typedef, not the friend
// function: equivalent to int (a)

Draft

3.4 Name lookup Basic concepts 42

Because the expression is not a function call, the argument-dependent name lookup (3.4.2) does not apply and the friend
function £ is not found. — end note |

4 A name used in global scope, outside of any function, class or user-declared namespace, shall be declared before its use
in global scope.

5 A name used in a user-declared namespace outside of the definition of any function or class shall be declared before its
use in that namespace or before its use in a namespace enclosing its namespace.

6 A name used in the definition of a function following the function’s declarator-id®> that is a member of namespace N
(where, only for the purpose of exposition, N could represent the global scope) shall be declared before its use in the
block in which it is used or in one of its enclosing blocks (6.3) or, shall be declared before its use in namespace N or, if
N is a nested namespace, shall be declared before its use in one of N ’s enclosing namespaces. [Example:

namespace A {
namespace N {
void £(Q);
}
}
void A::N::f() {
i = b5;
// The following scopes are searched for a declaration of 1i:
// 1) outermost block scope of A: :N: : £, before the use of i
// 2) scope of namespace N
// 3) scope of namespace A
// 4) global scope, before the definition of A: :N: :

—end example |

7 A name used in the definition of a class X outside of a member function body or nested class definition?® shall be
declared in one of the following ways:

— before its use in class X or be a member of a base class of X (10.2), or

— if X is a nested class of class Y (9.7), before the definition of X in Y, or shall be a member of a base class of Y (this
lookup applies in turn to Y ’s enclosing classes, starting with the innermost enclosing class),>” or

— if X is a local class (9.8) or is a nested class of a local class, before the definition of class X in a block enclosing
the definition of class X, or

— if X is a member of namespace N, or is a nested class of a class that is a member of N, or is a local class or a nested
class within a local class of a function that is a member of N, before the definition of class X in namespace N or in
one of N ’s enclosing namespaces.

[Example:

25)This refers to unqualified names that occur, for instance, in a type or default argument expression in the parameter-declaration-clause or used in
the function body.

26) This refers to unqualified names following the class name; such a name may be used in the base-clause or may be used in the class definition.

21 This lookup applies whether the definition of X is nested within Y ’s definition or whether X ’s definition appears in a namespace scope enclosing
Y ’s definition (9.7).

Draft

43 Basic concepts 3.4 Name lookup

namespace M {

}

class B { };

namespace N {

}

class Y : public M::B {
class X {
int alil;
};
};

// The following scopes are searched for a declaration of 1i:
// 1) scope of class N: :Y: : X, before the use of i

// 2) scope of class N: :Y, before the definition of N: :Y: :X
// 3) scope of N: :Y’s base class M: :B

// 4) scope of namespace N, before the definition of N: :Y
//'5) global scope, before the definition of N

— end example] [Note: when looking for a prior declaration of a class or function introduced by a friend declaration,
scopes outside of the innermost enclosing namespace scope are not considered; see 7.3.1.2. — end note] [Note: 3.3.6
further describes the restrictions on the use of names in a class definition. 9.7 further describes the restrictions on the use
of names in nested class definitions. 9.8 further describes the restrictions on the use of names in local class definitions.
—end note]

A name used in the definition of a member function (9.3) of class X following the function’s declarator-id *® shall be
declared in one of the following ways:

before its use in the block in which it is used or in an enclosing block (6.3), or
shall be a member of class X or be a member of a base class of X (10.2), or

if X is a nested class of class Y (9.7), shall be a member of Y, or shall be a member of a base class of Y (this lookup
applies in turn to Y’s enclosing classes, starting with the innermost enclosing class),”” or

if X is a local class (9.8) or is a nested class of a local class, before the definition of class X in a block enclosing
the definition of class X, or

if X is a member of namespace N, or is a nested class of a class that is a member of N, or is a local class or a nested
class within a local class of a function that is a member of N, before the member function definition, in namespace
N or in one of N ’s enclosing namespaces.

[Example:

class B { };
namespace M {

namespace N {

28) That is, an unqualified name that occurs, for instance, in a type or default argument expression in the parameter-declaration-clause or in the
function body.

29 This lookup applies whether the member function is defined within the definition of class X or whether the member function is defined in a
namespace scope enclosing X’s definition.

Draft

10

11

3.4 Name lookup Basic concepts 44

class X : public B {

void £();
};
}
}
void M::N::X::f() {
i = 16;
}

// The following scopes are searched for a declaration of i:

// 1) outermost block scope of M: :N: :X: : £, before the use of i
// 2) scope of class M: :N: : X

// 3) scope of M: :N: :X’s base class B

// 4) scope of namespace M: :N

//'5) scope of namespace M

// 6) global scope, before the definition of M: :N: :X::f

— end example | [Note: 9.3 and 9.4 further describe the restrictions on the use of names in member function definitions.
9.7 further describes the restrictions on the use of names in the scope of nested classes. 9.8 further describes the
restrictions on the use of names in local class definitions. — end note]

Name lookup for a name used in the definition of a friend function (11.4) defined inline in the class granting friendship
shall proceed as described for lookup in member function definitions. If the friend function is not defined in the class
granting friendship, name lookup in the friend function definition shall proceed as described for lookup in namespace
member function definitions.

In a friend declaration naming a member function, a name used in the function declarator and not part of a femplate-
argument in a template-id is first looked up in the scope of the member function’s class. If it is not found, or if the name
is part of a remplate-argument in a template-id, the look up is as described for unqualified names in the definition of the
class granting friendship. [Example:

struct A {
typedef int AT;
void f1(AT);
void f2(float);

3
struct B {
typedef float BT;
friend void A::f1(AT); // parameter type is A: : AT
friend void A::f2(BT); // parameter type is B: :BT
};

—end example |

During the lookup for a name used as a default argument (8.3.6) in a function parameter-declaration-clause or used
in the expression of a mem-initializer for a constructor (12.6.2), the function parameter names are visible and hide the
names of entities declared in the block, class or namespace scopes containing the function declaration. [Note: 8.3.6
further describes the restrictions on the use of names in default arguments. 12.6.2 further describes the restrictions on
the use of names in a ctor-initializer. — end note |

Draft

12

13

15

16

45 Basic concepts 3.4 Name lookup

During the lookup of a name used in the constant-expression of an enumerator-definition, previously declared enumer-
ators of the enumeration are visible and hide the names of entities declared in the block, class, or namespace scopes
containing the enum-specifier.

A name used in the definition of a static data member of class X (9.4.2) (after the qualified-id of the static member) is
looked up as if the name was used in a member function of X. [Note: 9.4.2 further describes the restrictions on the use
of names in the definition of a static data member. — end note |

If a variable member of a namespace is defined outside of the scope of its namespace then any name used in the definition
of the variable member (after the declarator-id) is looked up as if the definition of the variable member occurred in its
namespace. [Example:

namespace N {
int i = 4;
extern int j;

}
int i = 2;
int N::j = i; //N::j ==

— end example |

A name used in the handler for a function-try-block (clause 15) is looked up as if the name was used in the outermost
block of the function definition. In particular, the function parameter names shall not be redeclared in the exception-
declaration nor in the outermost block of a handler for the function-try-block. Names declared in the outermost block
of the function definition are not found when looked up in the scope of a handler for the function-try-block. [Note: but
function parameter names are found. — end note |

[Note: the rules for name lookup in template definitions are described in 14.6. — end note]

3.4.2 Argument-dependent name lookup [basic.lookup.argdep]

When an unqualified name is used as the postfix-expression in a function call (5.2.2), other namespaces not considered
during the usual unqualified lookup (3.4.1) may be searched, and in those namespaces, namespace-scope friend function
declarations (11.4) not otherwise visible may be found. These modifications to the search depend on the types of the
arguments (and for template template arguments, the namespace of the template argument).

For each argument type T in the function call, there is a set of zero or more associated namespaces and a set of zero or
more associated classes to be considered. The sets of namespaces and classes is determined entirely by the types of the
function arguments (and the namespace of any template template argument). Typedef names and using-declaration s
used to specify the types do not contribute to this set. The sets of namespaces and classes are determined in the following
way:

— If T is a fundamental type, its associated sets of namespaces and classes are both empty.

— If Tis aclass type (including unions), its associated classes are: the class itself; the class of which it is a member, if
any; and its direct and indirect base classes. Its associated namespaces are the namespaces of which its associated
classes are members. Furthermore, if T is a class template specialization, its associated namespaces and classes

Draft

3.4 Name lookup Basic concepts 46

also include: the namespaces and classes associated with the types of the template arguments provided for tem-
plate type parameters (excluding template template parameters); the namespaces of which any template template
arguments are members; and the classes of which any member templates used as template template arguments
are members. [Note: Non-type template arguments do not contribute to the set of associated namespaces. — end
note |

— If T is an enumeration type, its associated namespace is the namespace in which it is defined. If it is class member,
its associated class is the member’s class; else it has no associated class.

— If T is a pointer to U or an array of U, its associated namespaces and classes are those associated with U.

— If T is a function type, its associated namespaces and classes are those associated with the function parameter
types and those associated with the return type.

— If T is a pointer to a member function of a class X, its associated namespaces and classes are those associated with
the function parameter types and return type, together with those associated with X.

— If T is a pointer to a data member of class X, its associated namespaces and classes are those associated with the
member type together with those associated with X.

In addition, if the argument is the name or address of a set of overloaded functions and/or function templates, its
associated classes and namespaces are the union of those associated with each of the members of the set: the namespace
in which the function or function template is defined and the classes and namespaces associated with its (non-dependent)
parameter types and return type.

Let X be the lookup set produced by unqualified lookup (3.4.1) and let Y be the lookup set produced by argument
dependent lookup (defined as follows). If X contains

— adeclaration of a class member, or
— a block-scope function declaration that is not a using-declaration, or
— adeclaration that is neither a function or a function template

then Y is empty. Otherwise Y is the set of declarations found in the namespaces associated with the argument types as
described below. The set of declarations found by the lookup of the name is the union of X and Y. [Note: the namespaces
and classes associated with the argument types can include namespaces and classes already considered by the ordinary
unqualified lookup. — end note] [Example:

namespace NS {

class T { };
void £(T);
void g(T, int);
}
NS::T parm;

void g(NS::T, float);
int main() {

f (parm) ; // OK: calls NS: : £
extern void g(NS::T, float);
g(parm, 1); // OK: calls g(NS: :T, float)

— end example]

Draft

47 Basic concepts 3.4 Name lookup

4 When considering an associated namespace, the lookup is the same as the lookup performed when the associated name-
space is used as a qualifier (3.4.3.2) except that:

— Any using-directive s in the associated namespace are ignored.

— Any namespace-scope friend functions or friend function templates declared in associated classes are visible
within their respective namespaces even if they are not visible during an ordinary lookup (11.4).

— All names except those of (possibly overloaded) functions and function templates are ignored.

3.4.3 Qualified name lookup [basic.lookup.qual]

1 The name of a class or namespace member or enumerator can be referred to after the : : scope resolution operator (5.1)
applied to a nested-name-specifier that nominates its class, namespace, or enumeration. During the lookup for a name
preceding the : : scope resolution operator, object, function, and enumerator names are ignored. If the name found does
not designate a namespace or a class, enumeration, or dependent type, the program is ill-formed.[Example:

class A {
public:
static int n;
};
int main()
{
int A;
A::n = 42; // OK
A b; // ill-formed: A does not name a type
}

— end example |

2 [Note: Multiply qualified names, such as N1: :N2: :N3: :n, can be used to refer to members of nested classes (9.7) or
members of nested namespaces. — end note |

3 Inadeclaration in which the declarator-id is a qualified-id, names used before the qualified-id being declared are looked
up in the defining namespace scope; names following the qualified-id are looked up in the scope of the member’s class
or namespace. [Example:

class X { };
class C {
class X { };
static const int number = 50;
static X arr[number];
};
X C::arr[number]; // ill-formed:
// equivalent to: ::X C::arr[C: :number] ;
//notto: C::XC::arr[C: :number] ;

— end example]

4 A name prefixed by the unary scope operator : : (5.1) is looked up in global scope, in the translation unit where it is
used. The name shall be declared in global namespace scope or shall be a name whose declaration is visible in global

Draft

3.4 Name lookup Basic concepts 48

scope because of a using-directive (3.4.3.2). The use of :: allows a global name to be referred to even if its identifier
has been hidden (3.3.8).

A name prefixed by a nested-name-specifier that nominates an enumeration type shall represent an enumerator of that
enumeration.

If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier, the type-name s are looked up as types in the
scope designated by the nested-name-specifier. Similarly, in a qualified-id of the form:

1 1 opt Nested-name-specifieryp, class-name : : ~ class-name
the second class-name is looked up in the same scope as the first. [Example:

struct C {
typedef int I;
};
typedef int I1, I2;
extern intx* p;
extern int* q;
p—>C::I1::7I10); // L is looked up in the scope of C
q->I1::7120); // 12 is looked up in the scope of
// the postfix-expression

struct A {
“AQ;

};

typedef A AB;

int main()

{
AB xp;
p->AB::"ABQ); // explicitly calls the destructor for A

— end example] [Note: 3.4.5 describes how name lookup proceeds after the . and -> operators. — end note]
3.4.3.1 Class members [class.qual]

If the nested-name-specifier of a qualified-id nominates a class, the name specified after the nested-name-specifier is
looked up in the scope of the class (10.2), except for the cases listed below. The name shall represent one or more
members of that class or of one of its base classes (clause 10). [Note: a class member can be referred to using a
qualified-id at any point in its potential scope (3.3.6). — end note] The exceptions to the name lookup rule above are
the following:

— adestructor name is looked up as specified in 3.4.3;

— a conversion-type-id of an operator-function-id is looked up both in the scope of the class and in the context in
which the entire postfix-expression occurs and shall refer to the same type in both contexts;

— the names in a template-argument of a template-id are looked up in the context in which the entire postfix-
expression Occurs.

— the lookup for a name specified in a using-declaration (7.3.3) also finds class or enumeration names hidden within
the same scope (3.3.8).

Draft

49 Basic concepts 3.4 Name lookup

In a lookup in which the constructor is an acceptable lookup result, if the nested-name-specifier nominates a class C, and
the name specified after the nested-name-specifier, when looked up in C, is the injected-class-name of C (clause 9), the
name is instead considered to name the constructor of class C. [Note: For example, the constructor is not an acceptable
lookup result in an elaborated-type-specifier so the constructor would not be used in place of the injected-class-name.
— end note] Such a constructor name shall be used only in the declarator-id of a declaration that names a constructor.
[Example:

struct A { AQ; };
struct B: public A { BO); };

A::a0 {}

B::BO { }

B::A ba; // object of type A

A::A a; // error, A: :A is not a type name
struct A::A a2; // object of type A

— end example |

A class member name hidden by a name in a nested declarative region or by the name of a derived class member can
still be found if qualified by the name of its class followed by the : : operator.

3.4.3.2 Namespace members [namespace.qual]

If the nested-name-specifier of a qualified-id nominates a namespace, the name specified after the nested-name-specifier
is looked up in the scope of the namespace, except that the names in a template-argument of a template-id are looked
up in the context in which the entire postfix-expression occurs.

Given X: :m (where X is a user-declared namespace), or given : :m (where X is the global namespace), let S be the set of
all declarations of m in X and in the transitive closure of all namespaces nominated by using-directive s in X and its used
namespaces, except that using-directive s are ignored in any namespace, including X, directly containing one or more
declarations of m. No namespace is searched more than once in the lookup of a name. If S is the empty set, the program
is ill-formed. Otherwise, if S has exactly one member, or if the context of the reference is a using-declaration (7.3.3), S
is the required set of declarations of m. Otherwise if the use of m is not one that allows a unique declaration to be chosen
from S, the program is ill-formed. [Example:

int x;

namespace Y {
void f(float);
void h(int);

}

namespace Z {
void h(double);
}

namespace A {
using namespace Y;
void f(int);

Draft

3

3.4 Name lookup

Basic concepts

50

void g(int);
int i;

}

namespace B {
using namespace Z;
void f(char);
int i;

}

namespace AB {
using namespace A;
using namespace B;

void g();

}

void h()

{
AB::g();
AB::f(1);
AB::f(’c’);
AB: :x++;
AB: :i++;
AB::h(16.8);

}

namespace A {
int a;

}

namespace B {

// g is declared directly in AB,

// therefore S is { AB: :g() } and AB: : g () is chosen
// £ is not declared directly in AB so the rules are

// applied recursively to A and B;

// namespace Y is not searched and Y : : f (float)

// is not considered;

//Sis{A::f(int), B: :f(char) } and overload
// resolution chooses A: : f (int)
// as above but resolution chooses B: : f (char)

// x is not declared directly in AB, and

//is not declared in A or B, so the rules are

// applied recursively to Y and Z,

//Sis { } so the program is ill-formed

// 1 is not declared directly in AB so the rules are
// applied recursively to A and B,
//Sis{A::i,B::1} sothe use is ambiguous
// and the program is ill-formed

//his not declared directly in AB and

// not declared directly in A or B so the rules are
// applied recursively to Y and Z,
//Sis{Y::h(int), Z: :h(double) } and overload
// resolution chooses Z: :h(double)

Draft

The same declaration found more than once is not an ambiguity (because it is still a unique declaration). For example:

51 Basic concepts 3.4 Name lookup

using namespace A;

namespace C {
using namespace A;

}

namespace BC {
using namespace B;
using namespace C;

}
void £()
{
BC::a++; /OK:Sis{A::a A::a}
}

namespace D {
using A::a;

}

namespace BD {
using namespace B;
using namespace D;

}
void g()
{
BD::a++; /OK:Sis{ A::a, A::a}
}

4 Because each referenced namespace is searched at most once, the following is well-defined:

namespace B {
int b;
}

namespace A {
using namespace B;
int a;

}

namespace B {
using namespace A;

}

void f()

{
A:at+; // OK: a declared directly in A, Sis {A: :a}
B::a++; // OK: both A and B searched (once), S is {A: :a}

Draft

3.4 Name lookup Basic concepts 52

A::b++; // OK: both A and B searched (once), S is {B: :b}
B::b++; // OK: b declared directly in B, S is {B: :b}

—end example]

During the lookup of a qualified namespace member name, if the lookup finds more than one declaration of the member,
and if one declaration introduces a class name or enumeration name and the other declarations either introduce the same
object, the same enumerator or a set of functions, the non-type name hides the class or enumeration name if and only if
the declarations are from the same namespace; otherwise (the declarations are from different namespaces), the program

is ill-formed. [Example:

namespace A {
struct x { };
int x;
int y;

}

namespace B {
struct y {};
}

namespace C {
using namespace A;

using namespace B;
int i = C::x; // OK, A: :x (of type int)
int j = C::y; // ambiguous, A: :y or B: :y

— end example |
In a declaration for a namespace member in which the declarator-id is a qualified-id, given that the qualified-id for the

namespace member has the form
nested-name-specifier unqualified-id

the unqualified-id shall name a member of the namespace designated by the nested-name-specifier. [Example:

namespace A {
namespace B {
void f1(int);
}
using namespace B;

}
void A::f1(int) { } // ill-formed, £1 is not a member of A

—end example] However, in such namespace member declarations, the nested-name-specifier may rely on using-
directive s to implicitly provide the initial part of the nested-name-specifier. [Example:

namespace A {
namespace B {
void f1(int);

Draft

53 Basic concepts 3.4 Name lookup

}

namespace C {
namespace D {
void f1(int);
}
}

using namespace A;

using namespace C::D;

void B::f1(int){} // OK, defines A: :B::£1(int)
— end example |

3.4.4 Elaborated type specifiers [basic.lookup.elab]

An elaborated-type-specifier (7.1.6.3) may be used to refer to a previously declared class-name or enum-name even
though the name has been hidden by a non-type declaration (3.3.8).

If the elaborated-type-specifier has no nested-name-specifier, and unless the elaborated-type-specifier appears in a dec-
laration with the following form:

class-key identifier ;

the identifier is looked up according to 3.4.1 but ignoring any non-type names that have been declared. If the elaborated-
type-specifier is introduced by the enum keyword and this lookup does not find a previously declared type-name, the
elaborated-type-specifier is ill-formed. If the elaborated-type-specifier is introduced by the class-key and this lookup
does not find a previously declared type-name, or if the elaborated-type-specifier appears in a declaration with the form:

class-key identifier ;
the elaborated-type-specifier is a declaration that introduces the class-name as described in 3.3.1.

If the elaborated-type-specifier has a nested-name-specifier, qualified name lookup is performed, as described in 3.4.3,
but ignoring any non-type names that have been declared. If the name lookup does not find a previously declared
type-name, the elaborated-type-specifier is ill-formed. [Example:

struct Node {

struct Node* Next; // OK: Refers to Node at global scope
struct Data* Data; // OK: Declares type Data
// at global scope and member Data
};
struct Data {
struct Node* Node; // OK: Refers to Node at global scope
friend struct ::Glob; // error: Glob is not declared
// cannot introduce a qualified type (7.1.6.3)
friend struct Glob; // OK: Refers to (as yet) undeclared Glob
// at global scope.
VY4

Draft

3.4 Name lookup Basic concepts 54

struct Base {

struct Data; // OK: Declares nested Data

struct ::Data* thatData;// OK: Refers to : :Data

struct Base::Data* thisData;// OK: Refers to nested Data

friend class ::Data; // OK: global Data is a friend

friend class Data; // OK: nested Data is a friend

struct Data { /x.. %/ }; // Defines nested Data
};
struct Data; // OK: Redeclares Data at global scope
struct ::Data; // error: cannot introduce a qualified type (7.1.6.3)
struct Base: :Data; // error: cannot introduce a qualified type (7.1.6.3)
struct Base::Datum; // error: Datum undefined
struct Base::Data* pBase; // OK: refers to nested Data

— end example |

3.4.5 Class member access [basic.lookup.classref]

In a class member access expression (5.2.5), if the . or -> token is immediately followed by an identifier followed by
a <, the identifier must be looked up to determine whether the < is the beginning of a template argument list (14.2) or
a less-than operator. The identifier is first looked up in the class of the object expression. If the identifier is not found,
it is then looked up in the context of the entire postfix-expression and shall name a class or function template. If the
lookup in the class of the object expression finds a template, the name is also looked up in the context of the entire
postfix-expression and

— if the name is not found, the name found in the class of the object expression is used, otherwise

— if the name is found in the context of the entire postfix-expression and does not name a class template, the name
found in the class of the object expression is used, otherwise

— if the name found is a class template, it must refer to the same entity as the one found in the class of the object
expression, otherwise the program is ill-formed.

If the id-expression in a class member access (5.2.5) is an unqualified-id, and the type of the object expression is of a
class type C, the unqualified-id is looked up in the scope of class C. If the type of the object expression is of pointer to
scalar type, the unqualified-id is looked up in the context of the complete postfix-expression.

If the unqualified-id is ~ type-name, the type-name is looked up in the context of the entire postfix-expression. If the
type T of the object expression is of a class type C, the type-name is also looked up in the scope of class C. At least one
of the lookups shall find a name that refers to (possibly cv-qualified) T.

If the id-expression in a class member access is a qualified-id of the form

the class-name-or-namespace-name following the . or —> operator is looked up both in the context of the entire postfix-
expression and in the scope of the class of the object expression. If the name is found only in the scope of the class
of the object expression, the name shall refer to a class-name. If the name is found only in the context of the entire
postfix-expression, the name shall refer to a class-name or namespace-name. If the name is found in both contexts, the
class-name-or-namespace-name shall refer to the same entity.

Draft

55 Basic concepts 3.5 Program and linkage

5 If the qualified-id has the form

the class-name-or-namespace-name is looked up in global scope as a class-name or namespace-name.

6 If the nested-name-specifier contains a simple-template-id (14.2), the names in its template-argument s are looked up in
the context in which the entire postfix-expression occurs.

7 If the id-expression is a conversion-function-id, its conversion-type-id shall denote the same type in both the context in
which the entire postfix-expression occurs and in the context of the class of the object expression (or the class pointed to
by the pointer expression).

3.4.6 Using-directives and namespace aliases [basic.lookup.udir]

1 When looking up a namespace-name in a using-directive or namespace-alias-definition, only namespace names are
considered.

3.5 Program and linkage [basic.link]

1 A program consists of one or more translation units (clause 2) linked together. A translation unit consists of a sequence
of declarations.

translation-unit:
declaration-seqp;

2 A name is said to have linkage when it might denote the same object, reference, function, type, template, namespace or
value as a name introduced by a declaration in another scope:

— When a name has external linkage, the entity it denotes can be referred to by names from scopes of other transla-
tion units or from other scopes of the same translation unit.

— When a name has infernal linkage, the entity it denotes can be referred to by names from other scopes in the same
translation unit.

— When a name has no linkage, the entity it denotes cannot be referred to by names from other scopes.
3 A name having namespace scope (3.3.5) has internal linkage if it is the name of
— an object, reference, function or function template that is explicitly declared static or,

— an object or reference that is explicitly declared const and neither explicitly declared extern nor previously
declared to have external linkage; or

— adata member of an anonymous union.

4 A name having namespace scope has external linkage if it is the name of
— an object or reference, unless it has internal linkage; or
— a function, unless it has internal linkage; or

— anamed class (clause 9), or an unnamed class defined in a typedef declaration in which the class has the typedef
name for linkage purposes (7.1.3); or

Draft

5

3.5 Program and linkage Basic concepts 56

— anamed enumeration (7.2), or an unnamed enumeration defined in a typedef declaration in which the enumeration
has the typedef name for linkage purposes (7.1.3); or

— an enumerator belonging to an enumeration with external linkage; or
— atemplate, unless it is a function template that has internal linkage (clause 14); or
— anamespace (7.3), unless it is declared within an unnamed namespace.

In addition, a member function, static data member, a named class or enumeration of class scope, or an unnamed class
or enumeration defined in a class-scope typedef declaration such that the class or enumeration has the typedef name for
linkage purposes (7.1.3), has external linkage if the name of the class has external linkage.

The name of a function declared in block scope, and the name of an object declared by a block scope extern declaration,
have linkage. If there is a visible declaration of an entity with linkage having the same name and type, ignoring entities
declared outside the innermost enclosing namespace scope, the block scope declaration declares that same entity and
receives the linkage of the previous declaration. If there is more than one such matching entity, the program is ill-formed.
Otherwise, if no matching entity is found, the block scope entity receives external linkage.[Example:

static void f();

static int i = 0O; /1
void g() {
extern void f(); // internal linkage
int i; // 2: 1 has no linkage
{
extern void £(); // internal linkage
extern int i; // 3: external linkage
}
}

There are three objects named i in this program. The object with internal linkage introduced by the declaration in
global scope (line //1), the object with automatic storage duration and no linkage introduced by the declaration on line
//2, and the object with static storage duration and external linkage introduced by the declaration on line //3. —end
example]

When a block scope declaration of an entity with linkage is not found to refer to some other declaration, then that entity
is a member of the innermost enclosing namespace. However such a declaration does not introduce the member name
in its namespace scope. [Example:

namespace X {

void p()
{
q0); // error: q not yet declared
extern void qQ); // q is a member of namespace X
}
void middle()
{
q0); // error: q not yet declared
}
void qOO { /* ... */} // definition of X: :q

Draft

57

Basic concepts 3.5 Program and linkage

}

void q(O) { /* ... */ %} // some other, unrelated q

— end example]

8 Names not covered by these rules have no linkage. Moreover, except as noted, a name declared in a local scope (3.3.2)
has no linkage. A type is said to have linkage if and only if:

it is a class or enumeration type that is named (or has a name for linkage purposes (7.1.3)) and the name has
linkage; or

it is a specialization of a class template (14)3?; or
it is a fundamental type (3.9.1); or

it is a compound type (3.9.2) other than a class or enumeration, compounded exclusively from types that have
linkage; or

it is a cv-qualified (3.9.3) version of a type that has linkage.

A type without linkage shall not be used as the type of a variable or function with linkage, unless the variable or function
has extern "C" linkage (7.5). [Note: in other words, a type without linkage contains a class or enumeration that cannot
be named outside its translation unit. An entity with external linkage declared using such a type could not correspond to
any other entity in another translation unit of the program and thus is not permitted. Also note that classes with linkage
may contain members whose types do not have linkage, and that typedef names are ignored in the determination of
whether a type has linkage. — end note | [Example:

void £()
{
struct A { int x; }; // no linkage
extern A a; // ill-formed
typedef A B;
extern B b; // ill-formed
}

— end example] This implies that names with no linkage cannot be used as template arguments (14.3).

9 Two names that are the same (clause 3) and that are declared in different scopes shall denote the same object, reference,
function, type, enumerator, template or namespace if

both names have external linkage or else both names have internal linkage and are declared in the same translation
unit; and

both names refer to members of the same namespace or to members, not by inheritance, of the same class; and
when both names denote functions, the parameter-type-lists of the functions (8.3.5) are identical; and

when both names denote function templates, the signatures (14.5.6.1) are the same.

300 A class template always has external linkage, and the requirements of 14.3.1 and 14.3.2 ensure that the template arguments will also have
appropriate linkage.

Draft

10

11

3.6 Start and termination Basic concepts 58

After all adjustments of types (during which typedefs (7.1.3) are replaced by their definitions), the types specified by
all declarations referring to a given object or function shall be identical, except that declarations for an array object can
specify array types that differ by the presence or absence of a major array bound (8.3.4). A violation of this rule on type
identity does not require a diagnostic.

[Note: linkage to non-C++ declarations can be achieved using a linkage-specification (7.5). — end note |
3.6 Start and termination [basic.start]
3.6.1 Main function [basic.start.main]

A program shall contain a global function called main, which is the designated start of the program. It is implementation-
defined whether a program in a freestanding environment is required to define a main function. [Note: in a freestanding
environment, start-up and termination is implementation-defined; start-up contains the execution of constructors for
objects of namespace scope with static storage duration; termination contains the execution of destructors for objects
with static storage duration. — end note]

An implementation shall not predefine the main function. This function shall not be overloaded. It shall have a return
type of type int, but otherwise its type is implementation-defined. All implementations shall allow both of the following
definitions of main:

int main() { /A ... %/ }

and

int main(int argc, char* argv([]) { /A ..*/ }

In the latter form argc shall be the number of arguments passed to the program from the environment in which the
program is run. If argc is nonzero these arguments shall be supplied in argv [0] through argv[argc-1] as pointers to
the initial characters of null-terminated multibyte strings (NTMBS s) (17.3.2.1.3.2) and argv [0] shall be the pointer to
the initial character of a NTMBS that represents the name used to invoke the program or "". The value of argc shall be
nonnegative. The value of argv [argc] shall be 0. [Note: it is recommended that any further (optional) parameters be
added after argv. — end note]

The function main shall not be used (3.2) within a program. The linkage (3.5) of main is implementation-defined. A
program that declares main to be inline or static is ill-formed. The name main is not otherwise reserved. [Example:
member functions, classes, and enumerations can be called main, as can entities in other namespaces. — end example]

Calling the function std: :exit (int) declared in <cstdlib> (18.4) terminates the program without leaving the current
block and hence without destroying any objects with automatic storage duration (12.4). If std: :exit is called to end a
program during the destruction of an object with static storage duration, the program has undefined behavior.

A return statement in main has the effect of leaving the main function (destroying any objects with automatic storage
duration) and calling std: :exit with the return value as the argument. If control reaches the end of main without
encountering a return statement, the effect is that of executing

return O;

3.6.2 [Initialization of non-local objects [basic.start.init]

Objects with static storage duration (3.7.1) shall be zero-initialized (8.5) before any other initialization takes place. A

Draft

59 Basic concepts 3.6 Start and termination

reference with static storage duration and an object of trivial or literal type with static storage duration can be initial-
ized with a constant expression (5.19); this is called constant initialization . Together, zero-initialization and constant
initialization are called static initialization; all other initialization is dynamic initialization. Static initialization shall be
performed before any dynamic initialization takes place. Dynamic initialization of an object is either ordered or un-
ordered. Definitions of explicitly specialized class template static data members have ordered initialization. Other class
template static data members (i.e., implicitly or explicitly instantiated specializations) have unordered initialization.
Other objects defined in namespace scope have ordered initialization. Objects defined within a single translation unit
and with ordered initialization shall be initialized in the order of their definitions in the translation unit. The order of ini-
tialization is unspecified for objects with unordered initialization and for objects defined in different translation units. An
unordered initialization is indeterminately sequenced with respect to every other dynamic initialization. [Note: 8.5.1
describes the order in which aggregate members are initialized. The initialization of local static objects is described
in 6.7. —end note]

An implementation is permitted to perform the initialization of an object of namespace scope with static storage duration
as a static initialization even if such initialization is not required to be done statically, provided that

— the dynamic version of the initialization does not change the value of any other object of namespace scope with
static storage duration prior to its initialization, and

— the static version of the initialization produces the same value in the initialized object as would be produced by
the dynamic initialization if all objects not required to be initialized statically were initialized dynamically.

— [Note: as a consequence, if the initialization of an object obj1 refers to an object obj2 of namespace scope with
static storage duration potentially requiring dynamic initialization and defined later in the same translation unit, it
is unspecified whether the value of obj2 used will be the value of the fully initialized obj2 (because obj2 was
statically initialized) or will be the value of obj2 merely zero-initialized. For example,

inline double fd() { return 1.0; }
extern double di;
double d2 = di; // unspecified:
// may be statically initialized to 0.0 or
// dynamically initialized to 1.0
double d1 = £fd(Q); // may be initialized statically to 1.0

—end note |

It is implementation-defined whether or not the dynamic initialization (8.5, 9.4, 12.1, 12.6.1) of an object of namespace
scope is done before the first statement of main. If the initialization is deferred to some point in time after the first
statement of main, it shall occur before the first use of any function or object defined in the same translation unit as the
object to be initialized.3" [Example:

// - File I -
#include "a.h"
#include "b.h"

B b;
A::AO{

b.Use();
}

31 An object defined in namespace scope having initialization with side-effects must be initialized even if it is not used (3.7.1).

Draft

3.7 Storage duration Basic concepts 60

// - File 2 -
#include "a.h"
A a;

// - File 3 -
#include "a.h"
#include "b.h"
extern A a;
extern B b;

int main() {
a.Use();
b.Use();

It is implementation-defined whether either a or b is initialized before main is entered or whether the initializations are
delayed until a is first used in main. In particular, if a is initialized before main is entered, it is not guaranteed that b
will be initialized before it is used by the initialization of a, that is, before A: : A is called. If, however, a is initialized at
some point after the first statement of main, b will be initialized prior to its use in A: : A. — end example]

If construction or destruction of a non-local static object ends in throwing an uncaught exception, the result is to call
std: :terminate (18.7.3.3).

3.6.3 Termination [basic.start.term]

Destructors (12.4) for initialized objects of static storage duration (declared at block scope or at namespace scope) are
called as a result of returning from main and as a result of calling std: :exit (18.4). These objects are destroyed in the
reverse order of the completion of their constructor or of the completion of their dynamic initialization. If an object is
initialized statically, the object is destroyed in the same order as if the object was dynamically initialized. For an object
of array or class type, all subobjects of that object are destroyed before any local object with static storage duration
initialized during the construction of the subobjects is destroyed.

If a function contains a local object of static storage duration that has been destroyed and the function is called during
the destruction of an object with static storage duration, the program has undefined behavior if the flow of control passes
through the definition of the previously destroyed local object.

If a function is registered with std: :atexit (see <cstdlib>, 18.4) then following the call to std: : exit, any objects
with static storage duration initialized prior to the registration of that function shall not be destroyed until the registered
function is called from the termination process and has completed. For an object with static storage duration constructed
after a function is registered with std: :atexit, then following the call to std: :exit, the registered function is not
called until the execution of the object’s destructor has completed. If std: :atexit is called during the construction of
an object, the complete object to which it belongs shall be destroyed before the registered function is called.

Calling the function std: :abort () declared in <cstd1lib> terminates the program without executing destructors for
objects of automatic or static storage duration and without calling the functions passed to std: :atexit ().

3.7 Storage duration [basic.stc]

Storage duration is the property of an object that defines the minimum potential lifetime of the storage containing the

Draft

61 Basic concepts 3.7 Storage duration

object. The storage duration is determined by the construct used to create the object and is one of the following:
— static storage duration
— automatic storage duration
— dynamic storage duration

Static and automatic storage durations are associated with objects introduced by declarations (3.1) and implicitly cre-
ated by the implementation (12.2). The dynamic storage duration is associated with objects created with operator
new (5.3.4).

The storage class specifiers static and auto are related to storage duration as described below.

The storage duration categories apply to references as well. The lifetime of a reference is its storage duration.

3.7.1 Static storage duration [basic.ste.static]

All objects which neither have dynamic storage duration nor are local have static storage duration. The storage for these
objects shall last for the duration of the program (3.6.2, 3.6.3).

If an object of static storage duration has initialization or a destructor with side effects, it shall not be eliminated even if
it appears to be unused, except that a class object or its copy may be eliminated as specified in 12.8.

The keyword static can be used to declare a local variable with static storage duration. [Note: 6.7 describes the
initialization of local static variables; 3.6.3 describes the destruction of local static variables. — end note |

The keyword static applied to a class data member in a class definition gives the data member static storage duration.
3.7.2 Automatic storage duration [basic.stc.auto]

Local objects explicitly declared auto or register or not explicitly declared static or extern have automatic storage
duration. The storage for these objects lasts until the block in which they are created exits.

[Note: these objects are initialized and destroyed as described in 6.7. — end note]

If a named automatic object has initialization or a destructor with side effects, it shall not be destroyed before the end
of its block, nor shall it be eliminated as an optimization even if it appears to be unused, except that a class object or its
copy may be eliminated as specified in 12.8.

3.7.3 Dynamic storage duration [basic.stc.dynamic]

Objects can be created dynamically during program execution (1.9), using new-expression s (5.3.4), and destroyed
using delete-expression s (5.3.5). A C++ implementation provides access to, and management of, dynamic storage via
the global allocation functions operator new and operator new[] and the global deallocation functions operator
delete and operator deletel[].

The library provides default definitions for the global allocation and deallocation functions. Some global allocation
and deallocation functions are replaceable (18.5.1). A C++ program shall provide at most one definition of a replace-
able allocation or deallocation function. Any such function definition replaces the default version provided in the
library (17.4.3.4). The following allocation and deallocation functions (18.5) are implicitly declared in global scope in
each translation unit of a program.

Draft

3.7 Storage duration Basic concepts 62

void* operator new(std::size_t) throw(std::bad_alloc);
void* operator new[](std::size_t) throw(std::bad_alloc);
void operator delete(void*) throw();

void operator delete[](void*) throw();

These implicit declarations introduce only the function names operator new, operator new[], operator delete,
operator delete[]. [Note: the implicit declarations do not introduce the names std, std: :bad_alloc, and std
::size_t, or any other names that the library uses to declare these names. Thus, a new-expression, delete-expression
or function call that refers to one of these functions without including the header <new> is well-formed. However,
referring to std, std: :bad_alloc, and std: :size_t is ill-formed unless the name has been declared by including
the appropriate header. — end note] Allocation and/or deallocation functions can also be declared and defined for any
class (12.5).

Any allocation and/or deallocation functions defined in a C++ program, including the default versions in the library,
shall conform to the semantics specified in 3.7.3.1 and 3.7.3.2.

3.7.3.1 Allocation functions [basic.stc.dynamic.allocation]

An allocation function shall be a class member function or a global function; a program is ill-formed if an allocation
function is declared in a namespace scope other than global scope or declared static in global scope. The return type shall
be void*. The first parameter shall have type std: :size_t (18.1). The first parameter shall not have an associated
default argument (8.3.6). The value of the first parameter shall be interpreted as the requested size of the allocation.
An allocation function can be a function template. Such a template shall declare its return type and first parameter as
specified above (that is, template parameter types shall not be used in the return type and first parameter type). Template
allocation functions shall have two or more parameters.

The allocation function attempts to allocate the requested amount of storage. If it is successful, it shall return the
address of the start of a block of storage whose length in bytes shall be at least as large as the requested size. There are
no constraints on the contents of the allocated storage on return from the allocation function. The order, contiguity, and
initial value of storage allocated by successive calls to an allocation function are unspecified. The pointer returned shall
be suitably aligned so that it can be converted to a pointer of any complete object type with a fundamental alignment
requirement (3.11) and then used to access the object or array in the storage allocated (until the storage is explicitly
deallocated by a call to a corresponding deallocation function). Even if the size of the space requested is zero, the
request can fail. If the request succeeds, the value returned shall be a non-null pointer value (4.10) pO different from
any previously returned value p1, unless that value p1 was subsequently passed to an operator delete. The effect of
dereferencing a pointer returned as a request for zero size is undefined.*?

An allocation function that fails to allocate storage can invoke the currently installed new-handler function (18.5.2.2),
if any. [Note: A program-supplied allocation function can obtain the address of the currently installed new_handler
using the std: :set_new_handler function (18.5.2.3). —end note] If an allocation function declared with an empty
exception-specification (15.4), throw(), fails to allocate storage, it shall return a null pointer. Any other allocation
function that fails to allocate storage shall indicate failure only by throwing an exception of a type that would match a
handler (15.3) of type std: :bad_alloc (18.5.2.1).

A global allocation function is only called as the result of a new expression (5.3.4), or called directly using the function
call syntax (5.2.2), or called indirectly through calls to the functions in the C++ standard library. [Note: in particular, a

32) The intent is to have operator new() implementable by calling std: :malloc() or std: :calloc(), so the rules are substantially the same.
C++ differs from C in requiring a zero request to return a non-null pointer.

Draft

63 Basic concepts 3.8 Object Lifetime

global allocation function is not called to allocate storage for objects with static storage duration (3.7.1), for objects of
type std: :type_info (5.2.8), for the copy of an object thrown by a throw expression (15.1). — end note]

3.7.3.2 Deallocation functions [basic.stc.dynamic.deallocation]

Deallocation functions shall be class member functions or global functions; a program is ill-formed if deallocation
functions are declared in a namespace scope other than global scope or declared static in global scope.

Each deallocation function shall return void and its first parameter shall be void*. A deallocation function can have
more than one parameter. If a class T has a member deallocation function named operator delete with exactly
one parameter, then that function is a usual (non-placement) deallocation function. If class T does not declare such
an operator delete but does declare a member deallocation function named operator delete with exactly two
parameters, the second of which has type std::size_t (18.1), then this function is a usual deallocation function.
Similarly, if a class T has a member deallocation function named operator delete [] with exactly one parameter, then
that function is a usual (non-placement) deallocation function. If class T does not declare such an operator delete[]
but does declare a member deallocation function named operator delete[] with exactly two parameters, the second
of which has type std: :size_t, then this function is a usual deallocation function. A deallocation function can be an
instance of a function template. Neither the first parameter nor the return type shall depend on a template parameter.
[Note: that is, a deallocation function template shall have a first parameter of type void* and a return type of void (as
specified above). — end note] A deallocation function template shall have two or more function parameters. A template
instance is never a usual deallocation function, regardless of its signature.

The value of the first argument supplied to a deallocation functions may be a null pointer value; if so, and if the deallo-
cation function is one supplied in the standard library, the call has no effect. Otherwise, the value supplied to operator
delete(voidx*) in the standard library shall be one of the values returned by a previous invocation of either operator
new(std: :size_t) or operator new(std::size_t, const std::nothrow_t&) in the standard library, and the
value supplied to operator delete[] (void*) in the standard library shall be one of the values returned by a previous
invocation of either operator new[] (std: :size_t) or operator new[] (std::size_t, const std: :nothrow_-
t&) in the standard library.

If the argument given to a deallocation function in the standard library is a pointer that is not the null pointer value (4.10),
the deallocation function shall deallocate the storage referenced by the pointer, rendering invalid all pointers referring
to any part of the deallocated storage. The effect of using an invalid pointer value (including passing it to a deallocation
function) is undefined.??

3.7.4 Duration of subobjects [basic.stc.inherit]

The storage duration of member subobjects, base class subobjects and array elements is that of their complete ob-
ject (1.8).

3.8 Object Lifetime [basic.life]
The lifetime of an object is a runtime property of the object. The lifetime of an object of type T begins when:
— storage with the proper alignment and size for type T is obtained, and

— if T is a class type and the constructor invoked to create the object is non-trivial (12.1), the principal constructor
call (12.6.2) has completed. [Note: the initialization can be performed by a constructor call or, in the case of

33) On some implementations, it causes a system-generated runtime fault.

Draft

3.8 Object Lifetime Basic concepts 64

an aggregate with an implicitly-declared non-trivial default constructor, an aggregate initialization 8.5.1. —end
note |

The lifetime of an object of type T ends when:
— if T is a class type with a non-trivial destructor (12.4), the destructor call starts, or
— the storage which the object occupies is reused or released.

[Note: the lifetime of an array object or of an object of trivial type (3.9) starts as soon as storage with proper size and
alignment is obtained, and its lifetime ends when the storage which the array or object occupies is reused or released.
12.6.2 describes the lifetime of base and member subobjects. — end note |

The properties ascribed to objects throughout this International Standard apply for a given object only during its lifetime.
[Note: in particular, before the lifetime of an object starts and after its lifetime ends there are significant restrictions on
the use of the object, as described below, in 12.6.2 and in 12.7. Also, the behavior of an object under construction and
destruction might not be the same as the behavior of an object whose lifetime has started and not ended. 12.6.2 and 12.7
describe the behavior of objects during the construction and destruction phases. — end note]

A program may end the lifetime of any object by reusing the storage which the object occupies or by explicitly calling
the destructor for an object of a class type with a non-trivial destructor. For an object of a class type with a non-trivial
destructor, the program is not required to call the destructor explicitly before the storage which the object occupies is
reused or released; however, if there is no explicit call to the destructor or if a delete-expression (5.3.5) is not used
to release the storage, the destructor shall not be implicitly called and any program that depends on the side effects
produced by the destructor has undefined behavior.

Before the lifetime of an object has started but after the storage which the object will occupy has been allocated*® or,
after the lifetime of an object has ended and before the storage which the object occupied is reused or released, any
pointer that refers to the storage location where the object will be or was located may be used but only in limited ways.
Such a pointer refers to allocated storage (3.7.3.2), and using the pointer as if the pointer were of type voidx, is well-
defined. Such a pointer may be dereferenced but the resulting lvalue may only be used in limited ways, as described
below. If the object will be or was of a class type with a non-trivial destructor, and the pointer is used as the operand
of a delete-expression, the program has undefined behavior. If the object will be or was of a non-trivial class type, the
program has undefined behavior if:

— the pointer is used to access a non-static data member or call a non-static member function of the object, or
— the pointer is implicitly converted (4.10) to a pointer to a base class type, or

— the pointer is used as the operand of a static_cast (5.2.9) (except when the conversion is to void*, or to void*
and subsequently to char*, or unsigned charx).

— the pointer is used as the operand of a dynamic_cast (5.2.7). [Example:

#include <cstdlib>

struct B {
virtual void f();
void mutate();
virtual “B();

};

34 For example, before the construction of a global object of non-POD class type (12.7).

Draft

6

65 Basic concepts 3.8 Object Lifetime

struct D1 : B { void £Q); };
struct D2 : B { void £(); };

void B::mutate() {

new (this) D2; // reuses storage — ends the lifetime of *this
£0; // undefined behavior
. = this; // OK, this points to valid memory

}
void g() {

void* p = std::malloc(sizeof(D1) + sizeof(D2));

B* pb = new (p) Di;

pb->mutate();

&pb; // OK: pb points to valid memory

void* q = pb; // OK: pb points to valid memory

pb—>fQ0); // undefined behavior, lifetime of *pb has ended
}

— end example |

Similarly, before the lifetime of an object has started but after the storage which the object will occupy has been allocated
or, after the lifetime of an object has ended and before the storage which the object occupied is reused or released, any
Ivalue which refers to the original object may be used but only in limited ways. Such an lvalue refers to allocated
storage (3.7.3.2), and using the properties of the lvalue which do not depend on its value is well-defined. If an lvalue-
to-rvalue conversion (4.1) is applied to such an lvalue, the program has undefined behavior; if the original object will be
or was of a non-trivial class type, the program has undefined behavior if:

— the lvalue is used to access a non-static data member or call a non-static member function of the object, or
— the lvalue is implicitly converted (4.10) to a reference to a base class type, or

— the lvalue is used as the operand of a static_cast (5.2.9) except when the conversion is ultimately to cv char&
or cv unsigned charé&, or

— the lvalue is used as the operand of a dynamic_cast (5.2.7) or as the operand of typeid.

If, after the lifetime of an object has ended and before the storage which the object occupied is reused or released, a new
object is created at the storage location which the original object occupied, a pointer that pointed to the original object, a
reference that referred to the original object, or the name of the original object will automatically refer to the new object
and, once the lifetime of the new object has started, can be used to manipulate the new object, if:

— the storage for the new object exactly overlays the storage location which the original object occupied, and
— the new object is of the same type as the original object (ignoring the top-level cv-qualifiers), and

— the type of the original object is not const-qualified, and, if a class type, does not contain any non-static data
member whose type is const-qualified or a reference type, and

— the original object was a most derived object (1.8) of type T and the new object is a most derived object of type T
(that is, they are not base class subobjects). [Example:

Draft

8

3.8 Object Lifetime Basic concepts 66

struct C {
int i;
void £();
const C& operator=(const C&);
};
const C& C::operator=(const C& other)
{
if (this != &other) {
this->"C(Q); // lifetime of *this ends
new (this) C(other); // new object of type C created
£O; // well-defined
}
return *this;
}
C cil;
C c2;
cl = c2; // well-defined
cl.£0; // well-defined; c1 refers to a new object of type C

—end example |

If a program ends the lifetime of an object of type T with static (3.7.1) or automatic (3.7.2) storage duration and if T
has a non-trivial destructor,> the program must ensure that an object of the original type occupies that same storage
location when the implicit destructor call takes place; otherwise the behavior of the program is undefined. This is true
even if the block is exited with an exception. [Example:

class T { };

struct B {
“BQO;

};

void h() {
B b;
new (&b) T;
} // undefined behavior at block exit

— end example |
Creating a new object at the storage location that a const object with static or automatic storage duration occupies or,
at the storage location that such a const object used to occupy before its lifetime ended results in undefined behavior.

[Example:

struct B {
BO;
“BQO);
};

33)that is, an object for which a destructor will be called implicitly—either either upon exit from the block for an object with automatic storage
duration or upon exit from the program for an object with static storage duration.

Draft

67 Basic concepts 3.9 Types

const B b;

void h() {
b."BQ);
new (&b) const B; // undefined behavior

—end example]
3.9 Types [basic.types]

[Note: 3.9 and the subclauses thereof impose requirements on implementations regarding the representation of types.
There are two kinds of types: fundamental types and compound types. Types describe objects (1.8), references (8.3.2),

or functions (8.3.5). —end note |

For any object (other than a base-class subobject) of trivial type T, whether or not the object holds a valid value of type
T, the underlying bytes (1.7) making up the object can be copied into an array of char or unsigned char.’® If the
content of the array of char or unsigned char is copied back into the object, the object shall subsequently hold its
original value. [Example:

#define N sizeof (T)
char buf[N];

T obj; // obj initialized to its original value
std: :memcpy (buf, &obj, N); // between these two calls to std: :memcpy,
// obj might be modified
std: :memcpy (&obj, buf, N); // at this point, each subobject of obj of scalar type

// holds its original value

— end example]

For any trivial type T, if two pointers to T point to distinct T objects obj1 and obj2, where neither obj1 nor obj2 is
a base-class subobject, if the value of obj1 is copied into obj2, using the std: :memcpy library function, obj2 shall

subsequently hold the same value as obj1. [Example:

T* tip;

T* t2p;
// provided that t2p points to an initialized object ...

std: :memcpy (tlp, t2p, sizeof (T)) ;/ at this point, every subobject of trivial type in *t1p contains
// the same value as the corresponding subobject in *t2p

—end example |

The object representation of an object of type T is the sequence of N unsigned char objects taken up by the object of
type T, where N equals sizeof (T). The value representation of an object is the set of bits that hold the value of type
T. For trivial types, the value representation is a set of bits in the object representation that determines a value, which is
one discrete element of an implementation-defined set of values.>”

36)By using, for example, the library functions (17.4.1.2) std: :memcpy or std: :memmove.
37) The intent is that the memory model of C++ is compatible with that of ISO/IEC 9899 Programming Language C.

Draft

3.9 Types Basic concepts 68

A class that has been declared but not defined, or an array of unknown size or of incomplete element type, is an
incompletely-defined object type.*® Incompletely-defined object types and the void types are incomplete types (3.9.1).
Objects shall not be defined to have an incomplete type.

A class type (such as “class X”) might be incomplete at one point in a translation unit and complete later on; the type
“class X" is the same type at both points. The declared type of an array object might be an array of incomplete class
type and therefore incomplete; if the class type is completed later on in the translation unit, the array type becomes
complete; the array type at those two points is the same type. The declared type of an array object might be an array
of unknown size and therefore be incomplete at one point in a translation unit and complete later on; the array types at
those two points (“array of unknown bound of T” and “array of N T”) are different types. The type of a pointer to array
of unknown size, or of a type defined by a typedef declaration to be an array of unknown size, cannot be completed.
[Example:

class X; // X is an incomplete type

extern X* xp; // xp is a pointer to an incomplete type
extern int arr[]; // the type of arr is incomplete

typedef int UNKA[]; // UNKA is an incomplete type

UNKA* arrp; // arrp is a pointer to an incomplete type

UNKA** arrpp;

void foo()

{
Xpt+; // ill-formed: X is incomplete
arrpt++; // ill-formed: incomplete type
arrpp++; // OK: sizeof UNKAx* is known

}

struct X { int i; }; // now X is a complete type

int arr[10]; // now the type of arr is complete

X x;

void bar()

{
Xp = &x; // OK; type is “pointer to X”
arrp = &arr; // ill-formed: different types
Xp++; // OK: X is complete
arrpt+; // ill-formed: UNKA can’t be completed

}

— end example |

[Note: the rules for declarations and expressions describe in which contexts incomplete types are prohibited. — end
note |

An object type is a (possibly cv-qualified) type that is not a function type, not a reference type, and not a void type.

Arithmetic types (3.9.1), enumeration types, pointer types, and-pointer to member types (3.9.2), and std: :nullptr_t,
and cv-qualified versions of these types (3.9.3) are collectively called scalar types. Scalar types, POD classes (clause 9),
arrays of such types and cv-qualified versions of these types (3.9.3) are collectively called POD types. Scalar types,

3%) The size and layout of an instance of an incompletely-defined object type is unknown.

Draft

10

11

69 Basic concepts 3.9 Types

trivial class types (clause 9), arrays of such types and cv-qualified versions of these types (3.9.3) are collectively called
trivial types. Scalar types, standard-layout class types (clause 9), arrays of such types and cv-qualified versions of these
types (3.9.3) are collectively called standard-layout types.

A type is a literal type if it is:
— ascalar type; or
— aclass type (clause 9) with
— atrivial copy constructor,
— a trivial destructor,
— at least one constexpr constructor other than the copy constructor,
— no virtual base classes, and
— all non-static data members and base classes of literal types; or
— an array of literal type.

If two types T1 and T2 are the same type, then T1 and T2 are layout-compatible types. [Note: Layout-compatible
enumerations are described in 7.2. Layout-compatible standard-layout structs and standard-layout unions are described
in 9.2. —end note |

3.9.1 Fundamental types [basic.fundamental]

Objects declared as characters (char) shall be large enough to store any member of the implementation’s basic character
set. If a character from this set is stored in a character object, the integral value of that character object is equal to the
value of the single character literal form of that character. It is implementation-defined whether a char object can hold
negative values. Characters can be explicitly declared unsigned or signed. Plain char, signed char, and unsigned
char are three distinct types. A char, a signed char, and an unsigned char occupy the same amount of storage
and have the same alignment requirements (3.11); that is, they have the same object representation. For character types,
all bits of the object representation participate in the value representation. For unsigned character types, all possible bit
patterns of the value representation represent numbers. These requirements do not hold for other types. In any particular
implementation, a plain char object can take on either the same values as a signed char or an unsigned char;
which one is implementation-defined.

CLINNT3 9% G

There are five standard signed integer types : “signed char”, “short int”, “int”, “long int”, and “long long
int”. In this list, each type provides at least as much storage as those preceding it in the list. There may also be
implementation-defined extended signed integer types. The standard and extended signed integer types are collectively
called signed integer types. Plain ints have the natural size suggested by the architecture of the execution environ-
ment>; the other signed integer types are provided to meet special needs.

For each of the standard signed integer types, there exists a corresponding (but different) standard unsigned integer

type: “unsigned char”, “unsigned short int”, “unsigned int”, “unsigned long int”, and “unsigned long

long int”, each of which occupies the same amount of storage and has the same alignment requirements (3.11) as

the corresponding signed integer type*”); that is, each signed integer type has the same object representation as its

3) that is, large enough to contain any value in the range of INT_MIN and INT_MAX, as defined in the header <climits>.
40)See 7.1.6.2 regarding the correspondence between types and the sequences of fype-specifier s that designate them.

Draft

10

11

3.9 Types Basic concepts 70

corresponding unsigned integer type. Likewise, for each of the extended signed integer types there exists a corresponding
extended unsigned integer type with the same amount of storage and alignment requirements. The standard and extended
unsigned integer types are collectively called unsigned integer types. The range of nonnegative values of a signed integer
type is a subrange of the corresponding unsigned integer type, and the value representation of each corresponding
signed/unsigned type shall be the same. The standard signed integer types and standard unsigned integer types are
collectively called the standard integer types, and the extended signed integer types and extended unsigned integer types
are collectively called the extended integer types.

Unsigned integers, declared unsigned, shall obey the laws of arithmetic modulo 2" where 7 is the number of bits in the
value representation of that particular size of integer.*!

Type wchar_t is a distinct type whose values can represent distinct codes for all members of the largest extended
character set specified among the supported locales (22.1.1). Type wchar_t shall have the same size, signedness,
and alignment requirements (3.11) as one of the other integral types, called its underlying type. Types charl6_t
and char32_t denote distinct types with the same size, signedness, and alignment as uint_least16_t and uint_-
least32_t, respectively, in <stdint.h>, called the underlying types.

Values of type bool are either true or false.*” [Note: there are no signed, unsigned, short, or long bool types

or values. — end note] Values of type bool participate in integral promotions (4.5).

Types bool, char, char16_t, char32_t, wchar_t, and the signed and unsigned integer types are collectively called
integral types.*> A synonym for integral type is integer type. The representations of integral types shall define values
by use of a pure binary numeration system.**) [Example: this International Standard permits 2’s complement, 1’s
complement and signed magnitude representations for integral types. — end example |

There are three floating point types: float, double, and long double. The type double provides at least as much
precision as float, and the type long double provides at least as much precision as double. The set of values of the
type float is a subset of the set of values of the type double; the set of values of the type double is a subset of the set
of values of the type 1ong double. The value representation of floating-point types is implementation-defined. Integral
and floating types are collectively called arithmetic types. Specializations of the standard template std: :numeric_-
limits (18.2) shall specify the maximum and minimum values of each arithmetic type for an implementation.

The void type has an empty set of values. The void type is an incomplete type that cannot be completed. It is used as the
return type for functions that do not return a value. Any expression can be explicitly converted to type cv void (5.4). An
expression of type void shall be used only as an expression statement (6.2), as an operand of a comma expression (5.18),
as a second or third operand of 7: (5.16), as the operand of typeid, or as the expression in a return statement (6.6.3)
for a function with the return type void.

A value of type std: :nullptr_t is a null pointer constant (4.10). Such values participate in the pointer and the pointer
to member conversions (4.10, 4.11). sizeof (std: :nullptr_t) shall be equal to sizeof (voidx*).

[Note: even if the implementation defines two or more basic types to have the same value representation, they are

4DThis implies that unsigned arithmetic does not overflow because a result that cannot be represented by the resulting unsigned integer type is
reduced modulo the number that is one greater than the largest value that can be represented by the resulting unsigned integer type.

42)Using a bool value in ways described by this International Standard as “undefined,” such as by examining the value of an uninitialized automatic
variable, might cause it to behave as if it is neither true nor false.

43 Therefore, enumerations (7.2) are not integral; however, enumerations can be promoted to integral types as specified in 4.5.

4 A positional representation for integers that uses the binary digits 0 and 1, in which the values represented by successive bits are additive, begin
with 1, and are multiplied by successive integral power of 2, except perhaps for the bit with the highest position. (Adapted from the American National
Dictionary for Information Processing Systems.)

Draft

1

2

71 Basic concepts 3.9 Types

nevertheless different types. — end note |
3.9.2 Compound types [basic.compound]
Compound types can be constructed in the following ways:
— arrays of objects of a given type, 8.3.4;
— functions, which have parameters of given types and return void or references or objects of a given type, 8.3.5;
— pointers to void or objects or functions (including static members of classes) of a given type, 8.3.1;
— references to objects or functions of a given type, 8.3.2. There are two types of references:
— Ivalue reference
— rvalue reference

— classes containing a sequence of objects of various types (clause 9), a set of types, enumerations and functions for
manipulating these objects (9.3), and a set of restrictions on the access to these entities (clause 11);

— unions, which are classes capable of containing objects of different types at different times, 9.5;

— enumerations, which comprise a set of named constant values. Each distinct enumeration constitutes a different
enumerated type, 7.2,

— pointers to non-static * class members, which identify members of a given type within objects of a given
class, 8.3.3.

These methods of constructing types can be applied recursively; restrictions are mentioned in 8.3.1, 8.3.4, 8.3.5,
and 8.3.2.

A pointer to objects of type T is referred to as a “pointer to T.” [Example: a pointer to an object of type int is referred
to as “pointer to int ” and a pointer to an object of class X is called a “pointer to X.” —end example | Except for
pointers to static members, text referring to “pointers” does not apply to pointers to members. Pointers to incomplete
types are allowed although there are restrictions on what can be done with them (3.11). A valid value of an object
pointer type represents either the address of a byte in memory (1.7) or a null pointer (4.10). If an object of type T is
located at an address A, a pointer of type cv T* whose value is the address A is said to point fo that object, regardless of
how the value was obtained. [Note: for instance, the address one past the end of an array (5.7) would be considered to
point to an unrelated object of the array’s element type that might be located at that address. — end note] The value
representation of pointer types is implementation-defined. Pointers to cv-qualified and cv-unqualified versions (3.9.3) of
layout-compatible types shall have the same value representation and alignment requirements (3.11). [Note: pointers to
over-aligned types have no special representation, but their range of valid values is restricted by the extended alignment
requirement. This International Standard specifies only two ways of obtaining such a pointer: taking the address of a
valid object with an over-aligned type, and using one of the runtime pointer alignment functions. An implementation
may provide other means of obtaining a valid pointer value for an over-aligned type. — end note |

Objects of cv-qualified (3.9.3) or cv-unqualified type void* (pointer to void), can be used to point to objects of unknown
type. A voidx* shall be able to hold any object pointer. A cv-qualified or cv-unqualified (3.9.3) voidx* shall have the
same representation and alignment requirements as a cv-qualified or cv-unqualified char*.

45 Static class members are objects or functions, and pointers to them are ordinary pointers to objects or functions.

Draft

3.10 Lvalues and rvalues Basic concepts 72

3.9.3 CV-qualifiers [basic.type.qualifier]

A type mentioned in 3.9.1 and 3.9.2 is a cv-unqualified type. Each type which is a cv-unqualified complete or incomplete
object type or is void (3.9) has three corresponding cv-qualified versions of its type: a const-qualified version, a volatile-
qualified version, and a const-volatile-qualified version. The term object type (1.8) includes the cv-qualifiers specified
when the object is created. The presence of a const specifier in a decl-specifier-seq declares an object of const-qualified
object type; such object is called a const object. The presence of a volatile specifier in a decl-specifier-seq declares
an object of volatile-qualified object type; such object is called a volatile object. The presence of both cv-qualifiers in a
decl-specifier-seq declares an object of const-volatile-qualified object type; such object is called a const volatile object.
The cv-qualified or cv-unqualified versions of a type are distinct types; however, they shall have the same representation
and alignment requirements (3.9).4)

A compound type (3.9.2) is not cv-qualified by the cv-qualifiers (if any) of the types from which it is compounded. Any
cv-qualifiers applied to an array type affect the array element type, not the array type (8.3.4).

Each non-static, non-mutable, non-reference data member of a const-qualified class object is const-qualified, each non-
static, non-reference data member of a volatile-qualified class object is volatile-qualified and similarly for members of a
const-volatile class. See 8.3.5 and 9.3.2 regarding cv-qualified function types.

There is a (partial) ordering on cv-qualifiers, so that a type can be said to be more cv-qualified than another. Table 8
shows the relations that constitute this ordering.

Table 8: relations on const and volatile
no cv-qualifier < const

no cv-qualifier < volatile
no cv-qualifier < const volatile
const < const volatile
volatile < const volatile

In this International Standard, the notation cv (or cvl, cv2, etc.), used in the description of types, represents an arbitrary
set of cv-qualifiers, i.e., one of {const }, {volatile }, {const, volatile}, or the empty set. Cv-qualifiers applied to
an array type attach to the underlying element type, so the notation “cv T,” where T is an array type, refers to an array
whose elements are so-qualified. Such array types can be said to be more (or less) cv-qualified than other types based
on the cv-qualification of the underlying element types.

3.10 Lvalues and rvalues [basic.lval]
Every expression is either an lvalue or an rvalue.

An lvalue refers to an object or function. Some rvalue expressions—those of (possibly cv-qualified) class or array
type—also refer to objects.*”)

[Note: some built-in operators and function calls yield lvalues. [Example: if E is an expression of pointer type, then *E
is an lvalue expression referring to the object or function to which E points. As another example, the function

46)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions, return values from func-
tions, and members of unions.

4DExpressions such as invocations of constructors and of functions that return a class type refer to objects, and the implementation can invoke a
member function upon such objects, but the expressions are not lvalues.

Draft

10

11

12

13

14

73 Basic concepts 3.10 Lvalues and rvalues

int& £Q);

yields an lvalue, so the call £ () is an lvalue expression. — end example] — end note |

[Note: some built-in operators expect lvalue operands. [Example: built-in assignment operators all expect their left-
hand operands to be lvalues. — end example] Other built-in operators yield rvalues, and some expect them. [Example:

the unary and binary + operators expect rvalue arguments and yield rvalue results. — end example] The discussion of
each built-in operator in clause 5 indicates whether it expects lvalue operands and whether it yields an lvalue. — end
note |

The result of calling a function that does not return an Ivalue reference is an rvalue. User defined operators are functions,
and whether such operators expect or yield lvalues is determined by their parameter and return types.

An expression which holds a temporary object resulting from a cast to a type other than an lvalue reference type is an
rvalue (this includes the explicit creation of an object using functional notation (5.2.3)).

Whenever an lvalue appears in a context where an rvalue is expected, the lvalue is converted to an rvalue; see 4.1, 4.2,
and 4.3.

The discussion of reference initialization in 8.5.3 and of temporaries in 12.2 indicates the behavior of lvalues and rvalues
in other significant contexts.

Class rvalues can have cv-qualified types; non-class rvalues always have cv-unqualified types. Rvalues shall always
have complete types or the void type; in addition to these types, lvalues can also have incomplete types.

An lvalue for an object is necessary in order to modify the object except that an rvalue of class type can also be used to
modify its referent under certain circumstances. [Example: a member function called for an object (9.3) can modify the
object. — end example |

Functions cannot be modified, but pointers to functions can be modifiable.

A pointer to an incomplete type can be modifiable. At some point in the program when the pointed to type is complete,
the object at which the pointer points can also be modified.

The referent of a const-qualified expression shall not be modified (through that expression), except that if it is of class
type and has a mutable component, that component can be modified (7.1.6.1).

If an expression can be used to modify the object to which it refers, the expression is called modifiable. A program that
attempts to modify an object through a nonmodifiable lvalue or rvalue expression is ill-formed.

If a program attempts to access the stored value of an object through an lvalue of other than one of the following types
the behavior is undefined*®

— the dynamic type of the object,

— acv-qualified version of the dynamic type of the object,

— atype similar (as defined in 4.4) to the dynamic type of the object,

— atype that is the signed or unsigned type corresponding to the dynamic type of the object,

— atype that is the signed or unsigned type corresponding to a cv-qualified version of the dynamic type of the object,

48)The intent of this list is to specify those circumstances in which an object may or may not be aliased.

Draft

3.11 Alignment Basic concepts 74

— an aggregate or union type that includes one of the aforementioned types among its members (including, recur-
sively, a member of a subaggregate or contained union),

— atype that is a (possibly cv-qualified) base class type of the dynamic type of the object,

— achar or unsigned char type.

3.11 Alignment [basic.align]

Object types have alignment requirements (3.9.1, 3.9.2) which place restrictions on the addressses at which an object of
that type may be allocated. An aligment is an implementation-defined integer value representing the number of bytes
between successive addresses at which a given object can be allocated. An object type imposes an alignment requirement
on every object of that type; stricter alignment can be requested using alignas (7.1.7).

A fundamental alignment is represented by an alignment less than or equal to the greatest alignment supported by the
implementation in all contexts, which is equal to alignof (std: :max_align_t) (18.1).

An extended alignment is represented by an alignment greater than alignof (std: :max_align_t). It is implementa-
tion-defined whether any extended alignments are supported and the contexts in which they are supported (7.1.7). A
type having an extended alignment requirement is an over-aligned type. [Note: every over-aligned type is or contains a
class type with a non-static data member to which an extended alignment has been applied. — end note]

Alignments are represented as values of the type std: :size_t. Valid alignments include only those values returned by
an alignof expression for the fundamental types plus an additional implementation-defined set of values which may
be empty.*)

Alignments have an order from weaker to stronger or stricter alignments. Stricter alignments have larger alignment
values. An address that satisfies an alignment requirement also satisfies any weaker valid alignment requirement.

The alignment requirement of a complete type can be queried using an alignof expression (5.3.6). Furthermore, the
types char, signed char, and unsigned char shall have the weakest alignment requirement. [Note: this enables the
character types to be used as the underlying type for an aligned memory area (7.1.7). —end note |

Comparing alignments is meaningful and provides the obvious results:
— Two alignments are equal when their numeric values are equal.
— Two alignments are different when their numeric values are not equal.
— When an alignment is larger than another it represents a stricter alignment.

[Note: the runtime pointer alignment function (20.6.7) can be used to obtain an aligned pointer within a buffer; the
aligned-storage templates in the library (20.4.7) can be used to obtain aligned storage. — end note |

If a request for a specific extended alignment in a specific context is not supported by an implementation, the imple-
mentation may reject the request as ill-formed. The implementation may also silently ignore the requested alignment.
[Note: additionally, a request for runtime allocation of dynamic memory for which the requested alignment cannot be
honored may be treated as an allocation failure. — end note]

Nt is intended that every valid alignment value be an integral power of two.

Draft

Chapter 4 Standard conversions [conv]

Standard conversions are implicit conversions defined for built-in types. Clause 4 enumerates the full set of such con-
versions. A standard conversion sequence is a sequence of standard conversions in the following order:

— Zero or one conversion from the following set: lvalue-to-rvalue conversion, array-to-pointer conversion, and
function-to-pointer conversion.

— Zero or one conversion from the following set: integral promotions, floating point promotion, integral conversions,
floating point conversions, floating-integral conversions, pointer conversions, pointer to member conversions, and
boolean conversions.

— Zero or one qualification conversion.

[Note: a standard conversion sequence can be empty, i.e., it can consist of no conversions. — end note] A standard
conversion sequence will be applied to an expression if necessary to convert it to a required destination type.

[Note: expressions with a given type will be implicitly converted to other types in several contexts:

— When used as operands of operators. The operator’s requirements for its operands dictate the destination type
(clause 5).

— When used in the condition of an if statement or iteration statement (6.4, 6.5). The destination type is bool.
— When used in the expression of a switch statement. The destination type is integral (6.4).

— When used as the source expression for an initialization (which includes use as an argument in a function call and
use as the expression in a return statement). The type of the entity being initialized is (generally) the destination
type. See 8.5, 8.5.3.

—end note |

An expression e can be implicitly converted to a type T if and only if the declaration T t=e; is well-formed, for some
invented temporary variable t (8.5). Certain language constructs require that an expression be converted to a Boolean
value. An expression e appearing in such a context is said to be contextually converted to bool and is well-formed if
and only if the declaration bool t(e); is well-formed, for some invented temporary variable t (8.5). The effect of
the either implicit conversion is the same as performing the declaration and initialization and then using the temporary
variable as the result of the conversion. The result is an lvalue if T is an lvalue reference type (8.3.2), and an rvalue
otherwise. The expression e is used as an Ivalue if and only if the initialization uses it as an Ivalue.

[Note: For user-defined types, user-defined conversions are considered as well; see 12.3. In general, an implicit conver-
sion sequence (13.3.3.1) consists of a standard conversion sequence followed by a user-defined conversion followed by
another standard conversion sequence. — end note]

4.1 Lvalue-to-rvalue conversion Standard conversions 76

[Note: There are some contexts where certain conversions are suppressed. For example, the lvalue-to-rvalue conversion
is not done on the operand of the unary & operator. Specific exceptions are given in the descriptions of those operators
and contexts. — end note |

4.1 Lvalue-to-rvalue conversion [conv.lval]

An lvalue (3.10) of a non-function, non-array type T can be converted to an rvalue. If T is an incomplete type, a program
that necessitates this conversion is ill-formed. If the object to which the lvalue refers is not an object of type T and is
not an object of a type derived from T, or if the object is uninitialized, a program that necessitates this conversion has
undefined behavior. If T is a non-class type, the type of the rvalue is the cv-unqualified version of T. Otherwise, the type
of the rvalue is T.>”

When an lvalue-to-rvalue conversion occurs in an unevaluated operand or a subexpression thereof (clause 5) the value
contained in the referenced object is not accessed. Otherwise, if the lvalue has a class type, the conversion copy-
initializes a temporary of type T from the Ivalue and the result of the conversion is an rvalue for the temporary. Other-
wise, if the lvalue has (possibly cv-qualified) type std: :nullptr_t, the rvalue result is a null pointer constant (4.10).
Otherwise, the value contained in the object indicated by the lvalue is the rvalue result.

[Note: See also 3.10. —end note |
4.2 Array-to-pointer conversion [conv.array]

An lvalue or rvalue of type “array of N T” or “array of unknown bound of T” can be converted to an rvalue of type
“pointer to T”. The result is a pointer to the first element of the array.

A string literal (2.13.4) with no prefix, with a u prefix, with a U prefix, or with an L prefix can be converted to an rvalue
of type “pointer to char”, “pointer to char16_t”, “pointer to char32_t”, or “pointer to wchar_t”, respectively. In any
case, the result is a pointer to the first element of the array. This conversion is considered only when there is an explicit
appropriate pointer target type, and not when there is a general need to convert from an lvalue to an rvalue. [Note: this
conversion is deprecated. See Annex D. — end note | For the purpose of ranking in overload resolution (13.3.3.1.1),
this conversion is considered an array-to-pointer conversion followed by a qualification conversion (4.4). [Example:
"abc" is converted to “pointer to const char” as an array-to-pointer conversion, and then to “pointer to char” as a

qualification conversion. — end example |

4.3 Function-to-pointer conversion [conv.func]
An lvalue of function type T can be converted to an rvalue of type “pointer to T .” The result is a pointer to the function."
[Note: See 13.4 for additional rules for the case where the function is overloaded. — end note |

4.4 Qualification conversions [conv.qual]

An rvalue of type “pointer to cvI T ” can be converted to an rvalue of type “pointer to cv2 T ” if “cv2 T ” is more
cv-qualified than “cvi T .”

An rvalue of type “pointer to member of X of type cv/ T ” can be converted to an rvalue of type “pointer to member of
Xof type cv2 T ” if “cv2 T ” is more cv-qualified than “cvi T .”

S0n C++ class rvalues can have cv-qualified types (because they are objects). This differs from ISO C, in which non-lvalues never have cv-qualified

types.
SDThis conversion never applies to non-static member functions because an lvalue that refers to a non-static member function cannot be obtained.

Draft

77 Standard conversions 4.4 Qualification conversions

[Note: Function types (including those used in pointer to member function types) are never cv-qualified (8.3.5). —end
note |

A conversion can add cv-qualifiers at levels other than the first in multi-level pointers, subject to the following rules:>%
Two pointer types T1 and T2 are similar if there exists a type T and integer n > 0 such that:
T1 is cvy o pointer to cvy 1 pointer to --- ¢vy ,—1 pointer to cvy, T
and
T2 is cv; o pointer to cvy 1 pointer to - -+ ¢vp ,—1 pointer to cvy , T

where each cv; ; is const, volatile, const volatile, or nothing. The n-tuple of cv-qualifiers after the first

in a pointer type, €.g., ¢vi 1, V12, -*-, CV1, in the pointer type 71, is called the cv-qualification signature of the
pointer type. An expression of type 71 can be converted to type 72 if and only if the following conditions are
satisfied:

— the pointer types are similar.
— for every j > 0, if const is in cvy ; then const is in ¢V, j, and similarly for volatile.
— if the cvyj and cv, ; are different, then const is in every cvo i for 0 < k < j.

[Note: if a program could assign a pointer of type T** to a pointer of type const T** (that is, if line //1 below was
allowed), a program could inadvertently modify a const object (as it is done on line //2). For example,

int main() {
const char ¢ = ’c’;
char* pc;
const char** pcc = &pc; // 1: not allowed
*pcc = &c;
*pc = 'C’; // 2: modifies a const object

—end note |

A multi-level pointer to member type, or a multi-level mixed pointer and pointer to member type has the form:
cvoPytoeviPito--- cevy,_1Pi_1tocv, T

where P, is either a pointer or pointer to member and where 7 is not a pointer type or pointer to member type.

Two multi-level pointer to member types or two multi-level mixed pointer and pointer to member types T1 and T2 are
similar if there exists a type T and integer n > 0 such that:

Tl is CVL()PO tocvi P to--- CVl,n—IPn—l tocvyy, T
and
T2is cvypPytocvy 1P to -+ cvp 1Py tocvy,, T

For similar multi-level pointer to member types and similar multi-level mixed pointer and pointer to member types, the
rules for adding cv-qualifiers are the same as those used for similar pointer types.

52)These rules ensure that const-safety is preserved by the conversion.

Draft

4.5 Integral promotions Standard conversions 78

4.5 Integral promotions [conv.prom]

An rvalue of an integer type other than bool, char16_t, char32_t, or wchar_t whose integer conversion rank (4.13)
is less than the rank of int can be converted to an rvalue of type int if int can represent all the values of the source
type; otherwise, the source rvalue can be converted to an rvalue of type unsigned int.

An rvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted to an rvalue of the first of the following
types that can represent all the values of its underlying type: int, unsigned int, long int, unsigned long int,
long long int, or unsigned long long int. If none of the types in that list can represent all the values of its
underlying type, an rvalue of type char16_t, char32_t, or wchar_t can be converted to an rvalue of its underlying
type. An rvalue of an unscoped enumeration type (7.2) can be converted to an rvalue of the first of the following types
that can represent all the values of the enumeration (i.e. the values in the range b,,;, to b4, as described in 7.2: int,
unsigned int, long int, unsigned long int, long long int, or unsigned long long int. If none of the
types in that list can represent all the values of the enumeration, an rvalue of an unscoped enumeration type can be
converted to an rvalue of the extended integer type with lowest integer conversion rank (4.13) greater than the rank of
long long in which all the values of the enumeration can be represented. If there are two such extended types, the
signed one is chosen.

An rvalue for an integral bit-field (9.6) can be converted to an rvalue of type int if int can represent all the values of the
bit-field; otherwise, it can be converted to unsigned int if unsigned int can represent all the values of the bit-field.
If the bit-field is larger yet, no integral promotion applies to it. If the bit-field has an enumerated type, it is treated as any
other value of that type for promotion purposes.

An rvalue of type bool can be converted to an rvalue of type int, with false becoming zero and true becoming one.
These conversions are called integral promotions.

4.6 Floating point promotion [conv.fpprom]
An rvalue of type float can be converted to an rvalue of type double. The value is unchanged.

This conversion is called floating point promotion.

4.7 Integral conversions [conv.integral]

An rvalue of an integer type can be converted to an rvalue of another integer type. An rvalue of an unscoped enumeration
type can be converted to an rvalue of an integer type.

If the destination type is unsigned, the resulting value is the least unsigned integer congruent to the source integer (mod-
ulo 2" where n is the number of bits used to represent the unsigned type). [Note: In a two’s complement representation,
this conversion is conceptual and there is no change in the bit pattern (if there is no truncation). — end note |

If the destination type is signed, the value is unchanged if it can be represented in the destination type (and bit-field
width); otherwise, the value is implementation-defined.

If the destination type is bool, see 4.12. If the source type is bool, the value false is converted to zero and the value
true is converted to one.

The conversions allowed as integral promotions are excluded from the set of integral conversions.
4.8 Floating point conversions [conv.double]

An rvalue of floating point type can be converted to an rvalue of another floating point type. If the source value can be

Draft

79 Standard conversions 4.9 Floating-integral conversions

exactly represented in the destination type, the result of the conversion is that exact representation. If the source value
is between two adjacent destination values, the result of the conversion is an implementation-defined choice of either of
those values. Otherwise, the behavior is undefined.

The conversions allowed as floating point promotions are excluded from the set of floating point conversions.
4.9 Floating-integral conversions [conv.fpint]

An rvalue of a floating point type can be converted to an rvalue of an integer type. The conversion truncates; that is,
the fractional part is discarded. The behavior is undefined if the truncated value cannot be represented in the destination
type. [Note: If the destination type is bool, see 4.12. — end note]

An rvalue of an integer type or of an unscoped enumeration type can be converted to an rvalue of a floating point type.
The result is exact if possible. Otherwise, it is an implementation-defined choice of either the next lower or higher
representable value. [Note: loss of precision occurs if the integral value cannot be represented exactly as a value of
the floating type. — end note] If the source type is bool, the value false is converted to zero and the value true is
converted to one.

4.10 Pointer conversions [conv.ptr]

A null pointer constant is an integral constant expression (5.19) rvalue of integer type that evaluates to zero or an rvalue
of type std: :nullptr_t. A null pointer constant can be converted to a pointer type; the result is the null pointer value
of that type and is distinguishable from every other value of pointer to object or pointer to function type. Two null pointer
values of the same type shall compare equal. The conversion of a null pointer constant to a pointer to cv-qualified type
is a single conversion, and not the sequence of a pointer conversion followed by a qualification conversion (4.4).

An rvalue of type “pointer to cv T ,” where T is an object type, can be converted to an rvalue of type “pointer to cv void”.
The result of converting a “pointer to cv T” to a “pointer to cv void” points to the start of the storage location where the
object of type T resides, as if the object is a most derived object (1.8) of type T (that is, not a base class subobject). The
null pointer value is converted to the null pointer value of the destination type.

An rvalue of type “pointer to cv D”, where D is a class type, can be converted to an rvalue of type “pointer to c¢v B”,
where B is a base class (clause 10) of D. If B is an inaccessible (clause 11) or ambiguous (10.2) base class of D, a program
that necessitates this conversion is ill-formed. The result of the conversion is a pointer to the base class subobject of the
derived class object. The null pointer value is converted to the null pointer value of the destination type.

4.11 Pointer to member conversions [conv.mem]

A null pointer constant (4.10) can be converted to a pointer to member type; the result is the null member pointer
value of that type and is distinguishable from any pointer to member not created from a null pointer constant. Two null
member pointer values of the same type shall compare equal. The conversion of a null pointer constant to a pointer to
member of cv-qualified type is a single conversion, and not the sequence of a pointer to member conversion followed
by a qualification conversion (4.4).

An rvalue of type “pointer to member of B of type cv T”, where B is a class type, can be converted to an rvalue of type
“pointer to member of D of type c¢v T”, where D is a derived class (clause 10) of B. If B is an inaccessible (clause 11),
ambiguous (10.2), or virtual (10.1) base class of D, or a base class of a virtual base class of D, a program that necessitates
this conversion is ill-formed. The result of the conversion refers to the same member as the pointer to member before the
conversion took place, but it refers to the base class member as if it were a member of the derived class. The result refers
to the member in D’s instance of B. Since the result has type “pointer to member of D of type cv T”, it can be dereferenced

Draft

1

4.12 Boolean conversions Standard conversions 80

with a D object. The result is the same as if the pointer to member of B were dereferenced with the B subobject of D. The
null member pointer value is converted to the null member pointer value of the destination type.>?

4.12 Boolean conversions [conv.bool]

An rvalue of arithmetic, unscoped enumeration, pointer, or pointer to member type can be converted to an rvalue of type
bool. A zero value, null pointer value, or null member pointer value is converted to false any other value is converted
to true.

4.13 Integer conversion rank [conv.rank]
Every integer type has an integer conversion rank defined as follows:

— No two signed integer types shall have the same rank, even if they have the same represesentation.

— The rank of a signed integer type shall be greater than the rank of any signed integer type with a smaller size.

— The rank of long long int shall be greater than the rank of long int, which shall be greater than the rank of
int, which shall be greater than the rank of short int, which shall be greater than the rank of signed char.

— The rank of any unsigned integer type shall equal the rank of the corresponding signed integer type.

— The rank of any standard integer type shall be greater than the rank of any extended integer type with the same
size.

— the rank of char shall equal the rank of signed char and unsigned char.
— The rank of bool shall be less than the rank of all other standard integer types.
— The ranks of char16_t, char32_t, and wchar_t shall equal the ranks of their underlying types (3.9.1).

— The rank of any extended signed integer type relative to another extended signed integer type with the same size
is implementation-defined, but still subject to the other rules for determining the integer conversion rank.

— For all integer types T1, T2, and T3, if T1 has greater rank than T2 and T2 has greater rank than T3, then T1 shall
have greater rank than T3.

[Note: The integer conversion rank is used in the definition of the integral promotions (4.5) and the usual arithmetic
conversions (5). — end note |

53)The rule for conversion of pointers to members (from pointer to member of base to pointer to member of derived) appears inverted compared to
the rule for pointers to objects (from pointer to derived to pointer to base) (4.10, clause 10). This inversion is necessary to ensure type safety. Note
that a pointer to member is not a pointer to object or a pointer to function and the rules for conversions of such pointers do not apply to pointers to
members. In particular, a pointer to member cannot be converted to a voids.

Draft

Chapter S Expressions [expr]

[Note: Clause 5 defines the syntax, order of evaluation, and meaning of expressions.”” An expression is a sequence
of operators and operands that specifies a computation. An expression can result in a value and can cause side effects.
—end note |

[Note: Operators can be overloaded, that is, given meaning when applied to expressions of class type (clause 9) or enu-
meration type (7.2). Uses of overloaded operators are transformed into function calls as described in 13.5. Overloaded
operators obey the rules for syntax specified in clause 5, but the requirements of operand type, lvalue, and evaluation
order are replaced by the rules for function call. Relations between operators, such as ++a meaning a+=1, are not
guaranteed for overloaded operators (13.5), and are not guaranteed for operands of type bool. —end note |

Clause 5 defines the effects of operators when applied to types for which they have not been overloaded. Operator
overloading shall not modify the rules for the built-in operators, that is, for operators applied to types for which they are
defined by this Standard. However, these built-in operators participate in overload resolution, and as part of that process
user-defined conversions will be considered where necessary to convert the operands to types appropriate for the built-
in operator. If a built-in operator is selected, such conversions will be applied to the operands before the operation is
considered further according to the rules in clause 5; see 13.3.1.2, 13.6.

If during the evaluation of an expression, the result is not mathematically defined or not in the range of representable
values for its type, the behavior is undefined, unless such an expression appears where an integral constant expression is
required (5.19), in which case the program is ill-formed. [Note: most existing implementations of C++ ignore integer
overflows. Treatment of division by zero, forming a remainder using a zero divisor, and all floating point exceptions
vary among machines, and is usually adjustable by a library function. — end note]

If an expression initially has the type “lvalue reference to T” (8.3.2, 8.5.3), the type is adjusted to T prior to any further
analysis, the expression designates the object or function denoted by the lvalue reference, and the expression is an lvalue.

If an expression initially has the type “rvalue reference to T (8.3.2, 8.5.3), the type is adjusted to “T” prior to any further
analysis, and the expression designates the object or function denoted by the rvalue reference. If the expression is the
result of calling a function, whether implicitly or explicitly, it is an rvalue; otherwise, it is an lvalue. [Note: In general,
the effect of this rule is that named rvalue references are treated as Ivalues and unnamed rvalue references are treated as
rvalues. — end note |

[Example:

struct A {};
A&& operator+(A, A);
AgE £0);

59 The precedence of operators is not directly specified, but it can be derived from the syntax.

Expressions 82

A a;
A%& ar = a;

The expressions £ () and a + a are rvalues of type A. The expression ar is an lvalue of type A. — end example |
7 An expression designating an object is called an object-expression.

8 In some contexts, unevaluated operands appear (5.2.8, 5.3.3, 7.1.6.2). An unevaluated operand is not evaluated. [Note:
In an unevaluated operand, a non-static class member may be named (5.1) and naming of objects or functions does not,
by itself, require that a definition be provided (3.2). — end note]

9 Whenever an lvalue expression appears as an operand of an operator that expects an rvalue for that operand, the lvalue-to-
rvalue (4.1), array-to-pointer (4.2), or function-to-pointer (4.3) standard conversions are applied to convert the expression
to an rvalue. [Note: because cv-qualifiers are removed from the type of an expression of non-class type when the
expression is converted to an rvalue, an lvalue expression of type const int can, for example, be used where an rvalue
expression of type int is required. — end note]

10 Many binary operators that expect operands of arithmetic or enumeration type cause conversions and yield result types
in a similar way. The purpose is to yield a common type, which is also the type of the result. This pattern is called the
usual arithmetic conversions, which are defined as follows:

— If either operand is of type long double, the other shall be converted to 1long double.
— Otherwise, if either operand is double, the other shall be converted to double.
— Otherwise, if either operand is float, the other shall be converted to float.

— Otherwise, the integral promotions (4.5) shall be performed on both operands.’> Then the following rules shall
be applied to the promoted operands:

— If both operands have the same type, no further conversion is needed.

— Otherwise, if both operands have signed integer types or both have unsigned integer types, the operand with the
type of lesser integer conversion rank shall be converted to the type of the operand with greater rank.

— Otherwise, if the operand that has unsigned integer type has rank greater than or equal to the rank of the type of
the other operand, the operand with signed integer type shall be converted to the type of the operand with unsigned
integer type.

— Otherwise, if the type of the operand with signed integer type can represent all of the values of the type of the
operand with unsigned integer type, the operand with unsigned integer type shall be converted to the type of the
operand with signed integer type.

— Otherwise, both operands shall be converted to the unsigned integer type corresponding to the type of the operand
with signed integer type.

11 The values of the floating operands and the results of floating expressions may be represented in greater precision and
range than that required by the type; the types are not changed thereby.>®

33 As a consequence, operands of type bool, char16_t, char32_t, wchar_t, or an enumerated type are converted to some integral type.
36) The cast and assignment operators must still perform their specific conversions as described in 5.4, 5.2.9 and 5.17.

Draft

1

83 Expressions 5.1 Primary expressions

5.1 Primary expressions [expr.prim]

Primary expressions are literals, names, and names qualified by the scope resolution operator : :.
primary-expression:
literal
this
(expression)
id-expression
id-expression:
unqualified-id
qualified-id
unqualified-id:
identifier
operator-function-id
conversion-function-id
~ class-name
template-id

A literal is a primary expression. Its type depends on its form (2.13). A string literal is an lvalue; all other literals are
rvalues.

The keyword this names a pointer to the object for which a non-static member function (9.3.2) is invoked. The keyword
this shall be used only inside a non-static class member function body (9.3). The type of the expression is a pointer to
the function’s class (9.3.2), possibly with cv-qualifiers on the class type. The expression is an rvalue.

The operator : : followed by an identifier, a qualified-id, or an operator-function-id is a primary-expression. Its type
is specified by the declaration of the identifier, qualified-id, or operator-function-id. The result is the entity denoted by
the identifier, qualified-id, or operator-function-id. The result is an lvalue if the entity is a function or variable. The
identifier, qualified-id, or operator-function-id shall have global namespace scope or be visible in global scope because
of a using-directive (7.3.4). [Note: the use of : : allows a type, an object, a function, an enumerator, or a namespace
declared in the global namespace to be referred to even if its identifier has been hidden (3.4.3). — end note]

A parenthesized expression is a primary expression whose type and value are identical to those of the enclosed expres-
sion. The presence of parentheses does not affect whether the expression is an lvalue. The parenthesized expression can
be used in exactly the same contexts as those where the enclosed expression can be used, and with the same meaning,
except as otherwise indicated.

An id-expression is a restricted form of a primary-expression. [Note: an id-expression can appear after . and ->
operators (5.2.5). — end note]

An identifier is an id-expression provided it has been suitably declared (clause 7). [Note: for operator-function-id s,
see 13.5; for conversion-function-id s, see 12.3.2; for template-id s, see 14.2. A class-name prefixed by ~ denotes a
destructor; see 12.4. Within the definition of a non-static member function, an identifier that names a non-static member
is transformed to a class member access expression (9.3.1). — end note] The type of the expression is the type of the
identifier. The result is the entity denoted by the identifier. The result is an lvalue if the entity is a function, variable, or
data member.

Draft

10

11

5.1 Primary expressions Expressions 84

qualified-id:
1t opt Nested-name-specifier template,p, unqualified-id
: ¢ identifier
: 1 operator-function-id
1 template-id
nested-name-specifier:
type-name : :
namespace-name : :
nested-name-specifier identifier : :
nested-name-specifier template,y, simple-template-id : :

A nested-name-specifier that names a class, optionally followed by the keyword template (14.2), and then followed by
the name of a member of either that class (9.2) or one of its base classes (clause 10), is a qualified-id; 3.4.3.1 describes
name lookup for class members that appear in qualified-ids. The result is the member. The type of the result is the type
of the member. The result is an lvalue if the member is a static member function or a data member. [Note: a class
member can be referred to using a qualified-id at any point in its potential scope (3.3.6). — end note] Where class-
name : : class-name is used, and the two class-name s refer to the same class, this notation names the constructor (12.1).
Where class-name : : ~ class-name is used, the two class-name s shall refer to the same class; this notation names the
destructor (12.4). [Note: a typedef-name that names a class is a class-name (9.1). — end note |

A nested-name-specifier that names a namespace (7.3), followed by the name of a member of that namespace (or the
name of a member of a namespace made visible by a using-directive) is a qualified-id; 3.4.3.2 describes name lookup
for namespace members that appear in qualified-ids. The result is the member. The type of the result is the type of the
member. The result is an lvalue if the member is a function or a variable.

A nested-name-specifier that names an enumeration (7.2), followed by the name of an enumerator of that enumeration,
is a qualified-id that refers to the enumerator. The result is the enumerator. The type of the result is the type of the
enumeration. The result is an rvalue.

In a qualified-id, if the id-expression is a conversion-function-id, its conversion-type-id shall denote the same type in both
the context in which the entire qualified-id occurs and in the context of the class denoted by the nested-name-specifier.

An id-expression that denotes a non-static data member or non-static member function of a class can only be used:

— as part of a class member access (5.2.5) in which the object-expression refers to the member’s class or a class
derived from that class, or

— to form a pointer to member (5.3.1), or
— in the body of a non-static member function of that class or of a class derived from that class (9.3.1), or
— in a mem-initializer for a constructor for that class or for a class derived from that class (12.6.2), or

— if that id-expression denotes a non-static data member and it is the sole constituent of an unevaluated operand,
except for optional enclosing parentheses. [Example:

struct S {
int m;
};
int i = sizeof(S::m); // OK
int j = sizeof(S::m + 42); //error: reference to non-static member in subexpression

— end example |

Draft

85 Expressions 5.2 Postfix expressions

5.2 Postfix expressions [expr.post]

1 Postfix expressions group left-to-right.

postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (expression-list,p;)
simple-type-specifier (expression-listop;)
typename-specifier (expression-listop;)
postfix-expression . template,, id-expression
postfix-expression —=> template,,, id-expression
postfix-expression . pseudo-destructor-name
postfix-expression —> pseudo-destructor-name
postfix-expression ++
postfix-expression —-
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
reinterpret_cast < type-id> (expression)
const_cast < type-id> (expression)
typeid (expression)
typeid (type-id)

expression-list:
assignment-expression . . . opt
expression-list , assignment-expression . . . op;

pseudo-destructor-name:
: 1 opr Nested-name-specifierop; type-name : : ~ type-name
: 1 opr nested-name-specifier template simple-template-id : : ~ type-name
1 1 opt Nested-name-specifierp, ~ type-name

2 [Note: The > token following the fype-id in a dynamic_cast, static_cast, reinterpret_cast, or const_cast
may be the product of replacing a >> token by two consecutive > tokens (14.2). — end note]

3 An assignment-expression followed by an ellipsis is a pack expansion (14.5.3).

5.2.1 Subscripting [expr.sub]

1 A postfix expression followed by an expression in square brackets is a postfix expression. One of the expressions shall
have the type “pointer to T” and the other shall have enumeration or integral type. The result is an lvalue of type
“T.” The type “T” shall be a completely-defined object type.’”) The expression E1[E2] is identical (by definition) to
*((E1)+(E2)) [Note: see 5.3 and 5.7 for details of * and + and 8.3.4 for details of arrays. — end note |

5.2.2 Function call [expr.call]

1 There are two kinds of function call: ordinary function call and member function®® (9.3) call. A function call is a postfix
expression followed by parentheses containing a possibly empty, comma-separated list of expressions which constitute
the arguments to the function. For an ordinary function call, the postfix expression shall be either an lvalue that refers to
a function (in which case the function-to-pointer standard conversion (4.3) is suppressed on the postfix expression), or it

SDThis is true even if the subscript operator is used in the following common idiom: &x [0].
38 A static member function (9.4) is an ordinary function.

Draft

5.2 Postfix expressions Expressions 86

shall have pointer to function type. Calling a function through an expression whose function type has a language linkage
that is different from the language linkage of the function type of the called function’s definition is undefined (7.5). For
a member function call, the postfix expression shall be an implicit (9.3.1, 9.4) or explicit class member access (5.2.5)
whose id-expression is a function member name, or a pointer-to-member expression (5.5) selecting a function member.
The first expression in the postfix expression is then called the object expression, and the call is as a member of the object
pointed to or referred to. In the case of an implicit class member access, the implied object is the one pointed to by this.
[Note: a member function call of the form £ () is interpreted as (¥this) .£() (see 9.3.1). —end note] If a function or
member function name is used, the name can be overloaded (clause 13), in which case the appropriate function shall be
selected according to the rules in 13.3. The function called in a member function call is normally selected according to
the static type of the object expression (clause 10), but if that function is virtual and is not specified using a qualified-
id then the function actually called will be the final overrider (10.3) of the selected function in the dynamic type of the
object expression [Note: the dynamic type is the type of the object pointed or referred to by the current value of the
object expression. 12.7 describes the behavior of virtual function calls when the object-expression refers to an object
under construction or destruction. — end note |

2 [Note: if a function or member function name is used, and name lookup (3.4) does not find a declaration of that name,
the program is ill-formed. No function is implicitly declared by such a call. — end note]

3 The type of the function call expression is the return type of the statically chosen function (i.e., ignoring the virtual
keyword), even if the type of the function actually called is different. This type shall be a complete object type, a
reference type or the type void.

4 When a function is called, each parameter (8.3.5) shall be initialized (8.5, 12.8, 12.1) with its corresponding argument. If
the function is a non-static member function, the this parameter of the function (9.3.2) shall be initialized with a pointer
to the object of the call, converted as if by an explicit type conversion (5.4). [Note: There is no access or ambiguity
checking on this conversion; the access checking and disambiguation are done as part of the (possibly implicit) class
member access operator. See 10.2, 11.2, and 5.2.5. —end note] When a function is called, the parameters that have
object type shall have completely-defined object type. [Note: this still allows a parameter to be a pointer or reference
to an incomplete class type. However, it prevents a passed-by-value parameter to have an incomplete class type. — end
note | During the initialization of a parameter, an implementation may avoid the construction of extra temporaries by
combining the conversions on the associated argument and/or the construction of temporaries with the initialization
of the parameter (see 12.2). The lifetime of a parameter ends when the function in which it is defined returns. The
initialization and destruction of each parameter occurs within the context of the calling function. [Example: the access of
the constructor, conversion functions or destructor is checked at the point of call in the calling function. If a constructor
or destructor for a function parameter throws an exception, the search for a handler starts in the scope of the calling
function; in particular, if the function called has a function-try-block (clause 15) with a handler that could handle the
exception, this handler is not considered. — end example] The value of a function call is the value returned by the
called function except in a virtual function call if the return type of the final overrider is different from the return type of
the statically chosen function, the value returned from the final overrider is converted to the return type of the statically
chosen function.

5 [Note: a function can change the values of its non-const parameters, but these changes cannot affect the values of the
arguments except where a parameter is of a reference type (8.3.2); if the reference is to a const-qualified type, const_-
cast is required to be used to cast away the constness in order to modify the argument’s value. Where a parameter is
of const reference type a temporary object is introduced if needed (7.1.6, 2.13, 2.13.4, 8.3.4, 12.2). In addition, it is
possible to modify the values of nonconstant objects through pointer parameters. — end note |

6 A function can be declared to accept fewer arguments (by declaring default arguments (8.3.6)) or more arguments (by

Draft

10

87 Expressions 5.2 Postfix expressions

using the ellipsis, ..., or a function parameter pack (8.3.5)) than the number of parameters in the function defini-
tion (8.4). [Note: this implies that, except where the ellipsis (. . .) or a function parameter pack is used, a parameter is
available for each argument. — end note |

When there is no parameter for a given argument, the argument is passed in such a way that the receiving function
can obtain the value of the argument by invoking va_arg (18.8). The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and
function-to-pointer (4.3) standard conversions are performed on the argument expression. After these conversions, if the
argument does not have arithmetic, enumeration, pointer, pointer to member, or class type, the program is ill-formed.
Passing an argument of non-trivial class type (clause 9) with no corresponding parameter is conditionally-supported,
with implementation-defined semantics. If the argument has integral or enumeration type that is subject to the integral
promotions (4.5), or a floating point type that is subject to the floating point promotion (4.6), the value of the argument
is converted to the promoted type before the call. These promotions are referred to as the default argument promotions.

[Note: The evaluations of the postfix expression and of the argument expressions are all unsequenced relative to one
another. All side effects of argument expression evaluations are sequenced before the function is entered (see 1.9).
—end note |

Recursive calls are permitted, except to the function named main (3.6.1).
A function call is an lvalue if and only if the result type is an lvalue reference.
5.2.3 Explicit type conversion (functional notation) [expr.type.conv]

A simple-type-specifier (7.1.6) followed by a parenthesized expression-list constructs a value of the specified type given
the expression list. If the expression list is a single expression, the type conversion expression is equivalent (in de-
finedness, and if defined in meaning) to the corresponding cast expression (5.4). If the simple-type-specifier specifies a
class type, the class type shall be complete. If the expression list specifies more than a single value, the type shall be

a class with a suitably declared constructor (8.5, 12.1), and the expression T(x1, x2, ...) is equivalent in effect to
the declaration T t(x1, x2, ...); for some invented temporary variable t, with the result being the value of t as an
rvalue.

The expression T(), where T is a simple-type-specifier (7.1.6.2) for a non-array complete object type or the (possibly
cv-qualified) void type, creates an rvalue of the specified type, which is value-initialized (8.5; no initialization is done for
the void () case). [Note: if T is a non-class type that is cv-qualified, the cv-qualifiers are ignored when determining
the type of the resulting rvalue (3.10). — end note |

5.2.4 Pseudo destructor call [expr.pseudo]

The use of a pseudo-destructor-name after a dot . or arrow —> operator represents the destructor for the non-class type
named by type-name. The result shall only be used as the operand for the function call operator (), and the result of
such a call has type void. The only effect is the evaluation of the postfix-expression before the dot or arrow.

The left-hand side of the dot operator shall be of scalar type. The left-hand side of the arrow operator shall be of pointer to
scalar type. This scalar type is the object type. The cv-unqualified versions of the object type and of the type designated
by the pseudo-destructor-name shall be the same type. Furthermore, the two type-name s in a pseudo-destructor-name
of the form

1 1 opt Nested-name-specifieryp, type-name : : ~ type-name

Draft

5.2 Postfix expressions Expressions 88

shall designate the same scalar type.

5.2.5 Class member access [expr.ref]

A postfix expression followed by a dot . or an arrow —>, optionally followed by the keyword template (14.8.1), and
then followed by an id-expression, is a postfix expression. The postfix expression before the dot or arrow is evaluated;>”
the result of that evaluation, together with the id-expression, determine the result of the entire postfix expression.

For the first option (dot) the type of the first expression (the object expression) shall be “class object” (of a complete
type). For the second option (arrow) the type of the first expression (the pointer expression) shall be “pointer to class
object” (of a complete type). In these cases, the id-expression shall name a member of the class or of one of its base
classes. [Note: because the name of a class is inserted in its class scope (clause 9), the name of a class is also considered
a nested member of that class. —end note] [Note: 3.4.5 describes how names are looked up after the . and ->
operators. — end note |

If E1 has the type “pointer to class X,” then the expression E1->E2 is converted to the equivalent form (x(E1)) .E2; the
remainder of 5.2.5 will address only the first option (dot)°”). Abbreviating object-expression.id-expression as E1.E2,
then the type and lvalue properties of this expression are determined as follows. In the remainder of 5.2.5, cq represents
either const or the absence of const vq represents either volatile or the absence of volatile. cv represents an
arbitrary set of cv-qualifiers, as defined in 3.9.3.

If E2 is declared to have type “reference to T,” then E1.E2 is an lvalue; the type of E1.E2 is T. Otherwise, one of the
following rules applies.

— If E2 is a static data member, and the type of E2 is T, then E1.E2 is an Ivalue; the expression designates the named
member of the class. The type of E1.E2is T.

— If E2 is a non-static data member, and the type of E1 is “cql vgl X”, and the type of E2 is “cq2 vq2 T”, the
expression designates the named member of the object designated by the first expression. If E1 is an Ivalue, then
E1.E2 is an lvalue; otherwise, it is an rvalue. Let the notation vg/2 stand for the “union” of vq/ and vg2; that is,
if vgl or vq2 is volatile, then vql2 is volatile. Similarly, let the notation cq/2 stand for the “union” of cq/
and cq2; that is, if cql or c¢g2 is const, then c¢ql2 is const. If E2 is declared to be a mutable member, then the
type of E1.E2 is “vgI2 T”. If E2 is not declared to be a mutable member, then the type of E1.E2 is “cql2 vql2
T".

— IfE2is a (possibly overloaded) member function, function overload resolution (13.3) is used to determine whether
E1.E2 refers to a static or a non-static member function.

— If it refers to a static member function, and the type of E2 is “function of parameter-type-list returning T”,
then E1.E2 is an lvalue; the expression designates the static member function. The type of E1.E2 is the
same type as that of E2, namely “function of parameter-type-list returning T”.

— Otherwise, if E1.E2 refers to a non-static member function, and the type of E2 is “function of parameter-
type-list cv returning T”, then E1.E2 is not an lvalue. The expression designates a non-static member func-
tion. The expression can be used only as the left-hand operand of a member function call (9.3). [Note: any
redundant set of parentheses surrounding the expression is ignored (5.1). — end note] The type of E1.E2 is
“function of parameter-type-list cv returning T”.

59 This evaluation happens even if the result is unnecessary to determine the value of the entire postfix expression, for example if the id-expression
denotes a static member.
60)Note that if E1 has the type “pointer to class X,” then (* (E1)) is an Ivalue.

Draft

89 Expressions 5.2 Postfix expressions

— If E2 is a nested type, the expression E1.E2 is ill-formed.

— If E2 is a member enumerator, and the type of E2 is T, the expression E1.E2 is not an lvalue. The type of E1.E2
is T.

If E2 is a non-static data member or a non-static member function, the program is ill-formed if the class of which E2 is
directly a member is an ambiguous base (10.2) of the naming class (11.2) of E2.

5.2.6 Increment and decrement [expr.post.incr]

The value of a postfix ++ expression is the value of its operand. [Note: the value obtained is a copy of the original value
— end note | The operand shall be a modifiable lvalue. The type of the operand shall be an arithmetic type or a pointer to
a complete object type. The value of the operand object is modified by adding 1 to it, unless the object is of type bool,
in which case it is set to true. [Note: this use is deprecated, see Annex D. — end note] The value computation of the
++ expression is sequenced before the modification of the operand object. With respect to an indeterminately-sequenced
function call, the operation of postfix ++ is a single evaluation. [Note: Therefore, a function call shall not intervene
between the lvalue-to-rvalue conversion and the side effect associated with any single postfix ++ operator. — end note |
The result is an rvalue. The type of the result is the cv-unqualified version of the type of the operand. See also 5.7
and 5.17.

The operand of postfix -- is decremented analogously to the postfix ++ operator, except that the operand shall not be of
type bool. [Note: For prefix increment and decrement, see 5.3.2. — end note |

5.2.7 Dynamic cast [expr.dynamic.cast]

The result of the expression dynamic_cast<T>(v) is the result of converting the expression v to type T. T shall be a
pointer or reference to a complete class type, or “pointer to cv void.” Types shall not be defined in a dynamic_cast.
The dynamic_cast operator shall not cast away constness (5.2.11).

If T is a pointer type, v shall be an rvalue of a pointer to complete class type, and the result is an rvalue of type T. If T is
an lvalue reference type, v shall be an lvalue of a complete class type, and the result is an lvalue of the type referred to
by T. If T is an rvalue reference type, v shall be an expression having a complete class type, and the result is an rvalue
of the type referred to by T.

If the type of v is the same as the required result type (which, for convenience, will be called R in this description), or it
is the same as R except that the class object type in R is more cv-qualified than the class object type in v, the result is v
(converted if necessary).

If the value of v is a null pointer value in the pointer case, the result is the null pointer value of type R.

If T is “pointer to cvI B” and v has type “pointer to cv2 D” such that B is a base class of D, the result is a pointer to the
unique B subobject of the D object pointed to by v. Similarly, if T is “reference to cvI B” and v has type cv2 D such that
B is a base class of D, the result is the unique B subobject of the D object referred to by v. ®" The result is an lvalue if T
is an lvalue reference, or an rvalue if T is an rvalue reference. In both the pointer and reference cases, cv/ shall be the
same cv-qualification as, or greater cv-qualification than, cv2, and B shall be an accessible unambiguous base class of D.
[Example:

struct B {};
struct D : B {};

SDThe most derived object (1.8) pointed or referred to by v can contain other B objects as base classes, but these are ignored.

Draft

5.2 Postfix expressions Expressions 90

void foo(D* dp)
{

B* bp = dynamic_cast<B*>(dp); // equivalent to B¥ bp = dp;
}

— end example]

6 Otherwise, v shall be a pointer to or an Ivalue of a polymorphic type (10.3).

7 If T is “pointer to cv void,” then the result is a pointer to the most derived object pointed to by v. Otherwise, a run-time
check is applied to see if the object pointed or referred to by v can be converted to the type pointed or referred to by T.

8 The run-time check logically executes as follows:

— If, in the most derived object pointed (referred) to by v, v points (refers) to a public base class subobject of a
T object, and if only one object of type T is derived from the subobject pointed (referred) to by v the result is a
pointer (an lvalue referring) to that T object.

— Otherwise, if v points (refers) to a public base class subobject of the most derived object, and the type of the
most derived object has a base class, of type T, that is unambiguous and public, the result is a pointer (an lvalue
referring) to the T subobject of the most derived object.

— Otherwise, the run-time check fails.

9 The value of a failed cast to pointer type is the null pointer value of the required result type. A failed cast to reference
type throws std: :bad_cast (18.6.2).

[Example:

class A { virtual void £(); };
class B { virtual void g(); };
class D : public virtual A, private B {};

void g()
{
D d;
Bx bp = (Bx)&d; // cast needed to break protection
Ax ap = &d; // public derivation, no cast needed
D& dr = dynamic_cast<D&>(xbp); // fails
ap = dynamic_cast<A*>(bp); // fails
bp = dynamic_cast<B*>(ap); // fails
ap = dynamic_cast<Ax*>(&d) ; //succeeds
bp = dynamic_cast<B*>(&d); /fails
}

class E : public D, public B {};
class F : public E, public D {};

void h()

{
F f;
A* ap = &f; // succeeds: finds unique A
D* dp = dynamic_cast<D*>(ap); // fails: yields O

// £ has two D subobjects

Draft

91 Expressions 5.2 Postfix expressions

Ex ep (Ex)ap; / ill-formed:

// cast from virtual base
Ex epl = dynamic_cast<E*>(ap); // succeeds

—end example] [Note: 12.7 describes the behavior of a dynamic_cast applied to an object under construction or
destruction. — end note |

5.2.8 Type identification [expr.typeid]

1 The result of a typeid expression is an lvalue of static type const std: :type_info (18.6.1) and dynamic type const
std: :type_info or const name where name is an implementation-defined class derived from std : : type_info
which preserves the behavior described in 18.6.1.%) The lifetime of the object referred to by the lvalue extends to the
end of the program. Whether or not the destructor is called for the std: : type_info object at the end of the program is
unspecified.

2 When typeid is applied to an lvalue expression whose type is a polymorphic class type (10.3), the result refers to a
std: :type_info object representing the type of the most derived object (1.8) (that is, the dynamic type) to which the
Ivalue refers. If the lvalue expression is obtained by applying the unary * operator to a pointer®> and the pointer is a
null pointer value (4.10), the typeid expression throws the std: :bad_typeid exception (18.6.3).

3 When typeid is applied to an expression other than an lvalue of a polymorphic class type, the result refers to a
std: :type_info object representing the static type of the expression. Lvalue-to-rvalue (4.1), array-to-pointer (4.2),
and function-to-pointer (4.3) conversions are not applied to the expression. If the type of the expression is a class type,
the class shall be completely-defined. The expression is an unevaluated operand (clause 5).

4 When typeid is applied to a type-id, the result refers to a std: : type_info object representing the type of the type-id.
If the type of the fype-id is a reference to a possibly cv-qualified type, the result of the typeid expression refers to a
std: :type_info object representing the cv-unqualified referenced type. If the type of the fype-id is a class type or a
reference to a class type, the class shall be completely-defined. Types shall not be defined in the fype-id.

5 The top-level cv-qualifiers of the lvalue expression or the rype-id that is the operand of typeid are always ignored.
[Example:

class D { ... };

D di;

const D d2;

typeid(dl) == typeid(d2); // yields true
typeid(D) == typeid(const D); // yields true
typeid(D) == typeid(d2); // yields true
typeid(D) == typeid(const D&); // yields true

—end example |

6 If the header <typeinfo> (18.6.1) is not included prior to a use of typeid, the program is ill-formed.

62) The recommended name for such a class is extended_type_info.
63)1f p is an expression of pointer type, then *p, (*xp), *(p), ((*p)), *((p)), and so on all meet this requirement.

Draft

5.2 Postfix expressions Expressions 92

[Note: 12.7 describes the behavior of typeid applied to an object under construction or destruction. — end note |
5.2.9 Static cast [expr.static.cast]

The result of the expression static_cast<T>(v) is the result of converting the expression v to type T. If T is an lvalue
reference type, the result is an lvalue; otherwise, the result is an rvalue. Types shall not be defined in a static_cast.
The static_cast operator shall not cast away constness (5.2.11).

An lvalue of type “cvI B,” where B is a class type, can be cast to type “reference to cv2 D,” where D is a class derived
(clause 10) from B, if a valid standard conversion from “pointer to D” to “pointer to B” exists (4.10), c¢v2 is the same
cv-qualification as, or greater cv-qualification than, cv/, and B is neither a virtual base class of D nor a base class of a
virtual base class of D. The result has type “cv2 D.” It is an lvalue if the type cast to is an lvalue reference; otherwise, it
is an rvalue. An rvalue of type “cvl B” may be cast to type “rvalue reference to cv2 D” with the same constraints as for
an lvalue of type “cvI B.” The result is an rvalue. If the object of type “cvI B” is actually a subobject of an object of type
D, the result refers to the enclosing object of type D. Otherwise, the result of the cast is undefined. [Example:

struct B {};

struct D : public B {};
D d;

B &br = d;

static_cast<D&>(br); // produces lvalue to the original d object

— end example |

Otherwise, an expression e can be explicitly converted to a type T using a static_cast of the form static_-
cast<T>(e) if the declaration T t(e); is well-formed, for some invented temporary variable t (8.5). The effect
of such an explicit conversion is the same as performing the declaration and initialization and then using the temporary
variable as the result of the conversion. The result is an lvalue if T is an lvalue reference type (8.3.2), and an rvalue
otherwise. The expression e is used as an Ivalue if and only if the initialization uses it as an Ivalue.

Otherwise, the static_cast shall perform one of the conversions listed below. No other conversion shall be performed
explicitly using a static_cast.

Any expression can be explicitly converted to type cv void. The expression value is discarded. [Note: however, if
the value is in a temporary variable (12.2), the destructor for that variable is not executed until the usual time, and the
value of the variable is preserved for the purpose of executing the destructor. — end note | The lvalue-to-rvalue (4.1),
array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are not applied to the expression.

The inverse of any standard conversion sequence (clause 4), other than the lvalue-to-rvalue (4.1), array-to-pointer (4.2),
function-to-pointer (4.3), and boolean (4.12) conversions, can be performed explicitly using static_cast. A program
is ill-formed if it uses static_cast to perform the inverse of an ill-formed standard conversion sequence. [Example:

struct B {};

struct D : private B {};

void £() {
static_cast<D*>((B*)0); // Error: B is a private base of D.
static_cast<int B::*>((int D::%*)0); // Error: B is a private base of D.

— end example]

Draft

10

11

93 Expressions 5.2 Postfix expressions

The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) conversions are applied to the operand.
Such a static_cast is subject to the restriction that the explicit conversion does not cast away constness (5.2.11), and
the following additional rules for specific cases:

A value of integral or enumeration type can be explicitly converted to an enumeration type. The value is unchanged
if the original value is within the range of the enumeration values (7.2). Otherwise, the resulting enumeration value is
unspecified.

An rvalue of type “pointer to cvl B,” where B is a class type, can be converted to an rvalue of type “pointer to cv2
D,” where D is a class derived (clause 10) from B, if a valid standard conversion from “pointer to D” to “pointer to B”
exists (4.10), cv2 is the same cv-qualification as, or greater cv-qualification than, cvI, and B is neither a virtual base class
of D nor a base class of a virtual base class of D. The null pointer value (4.10) is converted to the null pointer value of
the destination type. If the rvalue of type “pointer to cv/ B” points to a B that is actually a subobject of an object of type
D, the resulting pointer points to the enclosing object of type D. Otherwise, the result of the cast is undefined.

An rvalue of type “pointer to member of D of type c¢vI T” can be converted to an rvalue of type “pointer to member
of B” of type cv2 T, where B is a base class (clause 10) of D, if a valid standard conversion from “pointer to member
of B of type T” to “pointer to member of D of type T exists (4.11), and cv2 is the same cv-qualification as, or greater
cv-qualification than, ¢v/.%% The null member pointer value (4.11) is converted to the null member pointer value of the
destination type. If class B contains the original member, or is a base or derived class of the class containing the original
member, the resulting pointer to member points to the original member. Otherwise, the result of the cast is undefined.
[Note: although class B need not contain the original member, the dynamic type of the object on which the pointer to
member is dereferenced must contain the original member; see 5.5. — end note]

An rvalue of type “pointer to cv/ void” can be converted to an rvalue of type “pointer to cv2 T,” where T is an object
type and cv2 is the same cv-qualification as, or greater cv-qualification than, cv/. The null pointer value is converted to
the null pointer value of the destination type. A value of type pointer to object converted to “pointer to cv void” and
back, possibly with different cv-qualification, shall have its original value. [Example:

T* pl = new T;
const T* p2 = static_cast<const T*>(static_cast<voidx*>(pl));
bool b = pl == p2; // b will have the value true.

— end example]

5.2.10 Reinterpret cast [expr.reinterpret.cast]

The result of the expression reinterpret_cast<T>(v) is the result of converting the expression v to type T. If T is an
Ivalue reference type, the result is an lvalue; otherwise, the result is an rvalue and the lvalue-to-rvalue (4.1), array-to-
pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the the expression v. Types shall not
be defined in a reinterpret_cast. Conversions that can be performed explicitly using reinterpret_cast are listed
below. No other conversion can be performed explicitly using reinterpret_cast.

The reinterpret_cast operator shall not cast away constness. [Note: see 5.2.11 for the definition of “casting away
constness”. Subject to the restrictions in this section, an expression may be cast to its own type using a reinterpret_-
cast operator. — end note]

The mapping performed by reinterpret_cast is implementation-defined. [Nofe: it might, or might not, produce a
representation different from the original value. — end note |

%) Function types (including those used in pointer to member function types) are never cv-qualified; see 8.3.5.

Draft

10

11

5.2 Postfix expressions Expressions 94

A pointer can be explicitly converted to any integral type large enough to hold it. The mapping function is implementa-
tion-defined. [Note: it is intended to be unsurprising to those who know the addressing structure of the underlying
machine. — end note |

A value of integral type or enumeration type can be explicitly converted to a pointer. A pointer converted to an integer of
sufficient size (if any such exists on the implementation) and back to the same pointer type will have its original value;
mappings between pointers and integers are otherwise implementation-defined.

A pointer to a function can be explicitly converted to a pointer to a function of a different type. The effect of calling a
function through a pointer to a function type (8.3.5) that is not the same as the type used in the definition of the function
is undefined. Except that converting an rvalue of type “pointer to T1” to the type “pointer to T2” (where T1 and T2 are
function types) and back to its original type yields the original pointer value, the result of such a pointer conversion is
unspecified. [Note: see also 4.10 for more details of pointer conversions. — end note |

A pointer to an object can be explicitly converted to a pointer to an object of different type.®> Except that converting
an rvalue of type “pointer to T1” to the type “pointer to T2” (where T1 and T2 are object types and where the alignment
requirements of T2 are no stricter than those of T1) and back to its original type yields the original pointer value, the
result of such a pointer conversion is unspecified.

Converting a pointer to a function into a pointer to an object type or vice versa is conditionally-supported. The meaning
of such a conversion is implementation defined, except that if an implementation supports conversions in both directions,
converting an rvalue of one type to the other type and back, possibly with different cv-qualification, shall yield the
original pointer value.

The null pointer value (4.10) is converted to the null pointer value of the destination type. [Note: A null pointer
constant;—which-has of integral type; is not necessarily converted to a null pointer value. (A null pointer constant
of type std: :nullptr_t cannot appear as the operand of reinterpret_cast, nor can any value be converted by
reinterpret_cast to type std: :nullptr_t.) —end note |

An rvalue of type “pointer to member of X of type T1” can be explicitly converted to an rvalue of type “pointer to member
of Y of type T2” if T1 and T2 are both function types or both object types.®® The null member pointer value (4.11) is
converted to the null member pointer value of the destination type. The result of this conversion is unspecified, except
in the following cases:

— converting an rvalue of type “pointer to member function” to a different pointer to member function type and back
to its original type yields the original pointer to member value.

— converting an rvalue of type “pointer to data member of X of type T1” to the type “pointer to data member of Y of
type T2” (where the alignment requirements of T2 are no stricter than those of T1) and back to its original type
yields the original pointer to member value.

An lvalue expression of type T1 can be cast to the type “reference to T2” if an expression of type “pointer to T1” can be
explicitly converted to the type “pointer to T2” using a reinterpret_cast. That is, a reference cast reinterpret_-
cast<T&>(x) has the same effect as the conversion *reinterpret_cast<T*>(&x) with the built-in & and * operators
(and similarly for reinterpret_cast<T&&>(x)). The result refers to the same object as the source lvalue, but with a
different type. The result is an lvalue for lvalue references or an rvalue for rvalue references. No temporary is created,
no copy is made, and constructors (12.1) or conversion functions (12.3) are not called.”

%5)The types may have different cv-qualifiers, subject to the overall restriction that a reinterpret_cast cannot cast away constness.
66)0T1 and T2 may have different cv-qualifiers, subject to the overall restriction that a reinterpret_cast cannot cast away constness.
6 This is sometimes referred to as a fype pun.

Draft

95 Expressions 5.2 Postfix expressions

5.2.11 Const cast [expr.const.cast]

The result of the expression const_cast<T>(v) is of type T. If T is an lvalue reference type, the result is an lvalue;
otherwise, the result is an rvalue and the lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3)
standard conversions are performed on the expression v. Types shall not be defined in a const_cast. Conversions
that can be performed explicitly using const_cast are listed below. No other conversion shall be performed explicitly
using const_cast.

[Note: Subject to the restrictions in this section, an expression may be cast to its own type using a const_cast operator.
—end note |

For two pointer types T1 and T2 where

T1 is cvy o pointer to cvy 1 pointer to ---cvy ,—1 pointer to cvy , T
and

T2 is cvo o pointer to cvy | pointer to ---cvy 51 pointer to cv , T

where T is any object type or the void type and where cv; ; and cv, ; may be different cv-qualifications, an rvalue of
type T1 may be explicitly converted to the type T2 using a const_cast. The result of a pointer const_cast refers to
the original object.

An lvalue of type T1 can be explicitly converted to an lvalue of type T2 using the cast const_cast<T2&> (where T1
and T2 are object types) if a pointer to T1 can be explicitly converted to the type “pointer to T2” using a const_cast.
Similarly, for two object types T1 and T2, an expression of type T1 can be explicitly converted to an rvalue of type T2
using the cast const_cast<T2&&> if a pointer to T1 can be explicitly converted to the type “pointer to T2” using a
const_cast. The result of a reference const_cast refers to the original object.

For a const_cast involving pointers to data members, multi-level pointers to data members and multi-level mixed
pointers and pointers to data members (4.4), the rules for const_cast are the same as those used for pointers; the
“member” aspect of a pointer to member is ignored when determining where the cv-qualifiers are added or removed
by the const_cast. The result of a pointer to data member const_cast refers to the same member as the original
(uncast) pointer to data member.

A null pointer value (4.10) is converted to the null pointer value of the destination type. The null member pointer
value (4.11) is converted to the null member pointer value of the destination type.

[Note: Depending on the type of the object, a write operation through the pointer, lvalue or pointer to data member
resulting from a const_cast that casts away a const-qualifier®® may produce undefined behavior (7.1.6.1). —end
note |

The following rules define the process known as casting away constness. In these rules Tn and Xn represent types.
For two pointer types:

X11is Tlcvy * --- cvin * where T1 is not a pointer type
X2is T2cvy1 * -+ cvp i * where T2 is not a pointer type

K is min(N,M)

%) const_cast is not limited to conversions that cast away a const-qualifier.

Draft

10

11

12

5.3 Unary expressions Expressions 96

casting from X1 to X2 casts away constness if, for a non-pointer type T there does not exist an implicit conversion
(clause 4) from:

Tevy (v—k+1) * CVI (N-K+2) * = CVIN *

to

Tevy mr—k+1) * CVo,(M—Kk+2) * -+ CVam *

Casting from an lvalue of type T1 to an lvalue of type T2 using a reference cast casts away constness if a cast from an
rvalue of type “pointer to T1” to the type “pointer to T2” casts away constness.

Casting from an rvalue of type “pointer to data member of X of type T1” to the type “pointer to data member of Y of
type T2” casts away constness if a cast from an rvalue of type “pointer to T1” to the type “pointer to T2” casts away
constness.

For multi-level pointer to members and multi-level mixed pointers and pointer to members (4.4), the “member” aspect
of a pointer to member level is ignored when determining if a const cv-qualifier has been cast away.

[Note: some conversions which involve only changes in cv-qualification cannot be done using const_cast. For
instance, conversions between pointers to functions are not covered because such conversions lead to values whose use
causes undefined behavior. For the same reasons, conversions between pointers to member functions, and in particular,
the conversion from a pointer to a const member function to a pointer to a non-const member function, are not covered.
—end note |

5.3 Unary expressions [expr.unary]

Expressions with unary operators group right-to-left.

unary-expression:
postfix-expression
++ cast-expression
-- cast-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
sizeof ... (identifier)
alignof (type-id)
new-expression
delete-expression

unary-operator: one of
*&+-/~

5.3.1 Unary operators [expr.unary.op]

The unary * operator performs indirection: the expression to which it is applied shall be a pointer to an object type, or
a pointer to a function type and the result is an lvalue referring to the object or function to which the expression points.
If the type of the expression is “pointer to T,” the type of the result is “T.” [Note: a pointer to an incomplete type (other
than cv void) can be dereferenced. The lvalue thus obtained can be used in limited ways (to initialize a reference, for
example); this lvalue must not be converted to an rvalue, see 4.1. — end note |

Draft

97 Expressions 5.3 Unary expressions

The result of the unary & operator is a pointer to its operand. The operand shall be an lvalue or a qualified-id. In the first
case, if the type of the expression is “T,” the type of the result is “pointer to T.” In particular, the address of an object of
type “cv T” is “pointer to cv T,” with the same cv-qualifiers. For a qualified-id, if the member is a static member of type
“T”, the type of the result is plain “pointer to T.” If the member is a non-static member of class C of type T, the type of
the result is “pointer to member of class C of type T.” [Example:

struct A { int i; };
struct B : A { };

. &B::i .. // has type int A::*
—end example] [Note: a pointer to member formed from a mutable non-static data member (7.1.1) does not reflect
the mutable specifier associated with the non-static data member. — end note]

A pointer to member is only formed when an explicit & is used and its operand is a qualified-id not enclosed in paren-
theses. [Note: that is, the expression &(qualified-id), where the qualified-id is enclosed in parentheses, does not
form an expression of type “pointer to member.” Neither does qualified-id, because there is no implicit conversion
from a qualified-id for a non-static member function to the type “pointer to member function” as there is from an lvalue
of function type to the type “pointer to function” (4.3). Nor is &unqualified-id a pointer to member, even within the
scope of the unqualified-id’s class. — end note]

The address of an object of incomplete type can be taken, but if the complete type of that object is a class type that
declares operator&() as a member function, then the behavior is undefined (and no diagnostic is required). The
operand of & shall not be a bit-field.

The address of an overloaded function (clause 13) can be taken only in a context that uniquely determines which version
of the overloaded function is referred to (see 13.4). [Note: since the context might determine whether the operand is a
static or non-static member function, the context can also affect whether the expression has type “pointer to function”
or “pointer to member function.” — end note |

The operand of the unary + operator shall have arithmetic, enumeration, or pointer type and the result is the value of the
argument. Integral promotion is performed on integral or enumeration operands. The type of the result is the type of the
promoted operand.

The operand of the unary - operator shall have arithmetic or enumeration type and the result is the negation of its
operand. Integral promotion is performed on integral or enumeration operands. The negative of an unsigned quantity is
computed by subtracting its value from 2", where n is the number of bits in the promoted operand. The type of the result
is the type of the promoted operand.

The operand of the logical negation operator ! is #mplieithy contextually converted to bool (clause 4); its value is true
if the converted operand is false and false otherwise. The type of the result is bool.

The operand of ~ shall have integral or enumeration type; the result is the one’s complement of its operand. Integral
promotions are performed. The type of the result is the type of the promoted operand. There is an ambiguity in the unary-
expression ~“X (), where X is a class-name. The ambiguity is resolved in favor of treating ~ as a unary complement rather
than treating ~X as referring to a destructor.

5.3.2 Increment and decrement [expr.pre.incr]

The operand of prefix ++ is modified by adding 1, or set to true if it is bool (this use is deprecated). The operand
shall be a modifiable lvalue. The type of the operand shall be an arithmetic type or a pointer to a completely-defined
object type. The result is the updated operand; it is an lvalue, and it is a bit-field if the operand is a bit-field. If x is

Draft

5.3 Unary expressions Expressions 98

not of type bool, the expression ++x is equivalent to x+=1 [Note: see the discussions of addition (5.7) and assignment
operators (5.17) for information on conversions. — end note]

The operand of prefix —-- is modified by subtracting 1. The operand shall not be of type bool. The requirements on
the operand of prefix —- and the properties of its result are otherwise the same as those of prefix ++. [Note: For postfix
increment and decrement, see 5.2.6. — end note |

5.3.3 Sizeof [expr.sizeof]

The sizeof operator yields the number of bytes in the object representation of its operand. The operand is either an
expression, which is an unevaluated operand (clause 5), or a parenthesized type-id. The sizeof operator shall not be
applied to an expression that has function or incomplete type, or to an enumeration type before all its enumerators have
been declared, or to the parenthesized name of such types, or to an lvalue that designates a bit-field. sizeof (char),
sizeof (signed char) and sizeof (unsigned char) are 1. The result of sizeof applied to any other fundamental
type (3.9.1) is implementation-defined. [Note: in particular, sizeof (bool), sizeof (char16_t), sizeof (char32_-
t), and sizeof (wchar_t) are implementation-deﬁned.69) —end note] [Note: See 1.7 for the definition of byte
and 3.9 for the definition of object representation. — end note |

When applied to a reference or a reference type, the result is the size of the referenced type. When applied to a class,
the result is the number of bytes in an object of that class including any padding required for placing objects of that type
in an array. The size of a most derived class shall be greater than zero (1.8). The result of applying sizeof to a base
class subobject is the size of the base class type.””’ When applied to an array, the result is the total number of bytes in
the array. This implies that the size of an array of n elements is n times the size of an element.

The sizeof operator can be applied to a pointer to a function, but shall not be applied directly to a function.

The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are not applied to
the operand of sizeof.

Types shall not be defined in a sizeof expression.

The identifier in a sizeof... expression shall name a parameter pack. The sizeof... operator yields the number
of arguments provided for the parameter pack identifier. The parameter pack is expanded (14.5.3) by the sizeof. ..
operator. [Example:

template<class... Types>
struct count {
static const std::size_t value = sizeof...(Types);

};

— end example |

The result of sizeof and sizeof... is a constant of type std::size_t. [Note: std::size_t is defined in the
standard header <cstddef> (18.1). — end note]

5.3.4 New [expr.new]

The new-expression attempts to create an object of the type-id (8.1) or new-type-id to which it is applied. The type
of that object is the allocated type. This type shall be a complete object type, but not an abstract class type or array

M sizeof (bool) is not required to be 1.
70The actual size of a base class subobject may be less than the result of applying sizeof to the subobject, due to virtual base classes and less strict
padding requirements on base class subobjects.

Draft

4

99 Expressions 5.3 Unary expressions

thereof (1.8, 3.9, 10.4). It is implementation-defined whether over-aligned types are supported (3.11). [Note: because
references are not objects, references cannot be created by new-expression s. — end note] [Note: the type-id may be a
cv-qualified type, in which case the object created by the new-expression has a cv-qualified type. — end note |
new-expression:
: 1 opt new new-placement,p, new-type-id new-initializerop;
: 1 opt new new-placement,,, (type-id) new-initializerop,
new-placement:
(expression-list)
new-type-id:
type-specifier-seq new-declarator op;
new-declarator:
ptr-operator new-declaratorp,
direct-new-declarator
direct-new-declarator:
[expression]
direct-new-declarator [constant-expression]
new-initializer:
Cexpression-listop;)

Entities created by a new-expression have dynamic storage duration (3.7.3). [Note: the lifetime of such an entity is
not necessarily restricted to the scope in which it is created. — end note] If the entity is a non-array object, the new-
expression returns a pointer to the object created. If it is an array, the new-expression returns a pointer to the initial
element of the array.

If the auto type-specifier appears in the type-specifier-seq of a new-type-id or type-id of a new-expression, the type-specifier-seq
shall contain no other type-specifiers except cv-qualifiers, and the new-expression shall contain a new-initializer of the form

(assignment-expression)

The allocated type is deduced from the new-initializer as follows: Let (e) be the new-initializer and T be the new-type-id
or type-id of the new-expression, then the allocated type is the type deduced for the variable x in the invented declara-
tion (7.1.6.4):

T x =e;
[Example:
new auto(1); // allocated type is int
auto x = new auto(’a’); // allocated type is char, x is of type char*

— end example |

The new-type-id in a new-expression is the longest possible sequence of new-declarator s. [Note: this prevents ambi-
guities between declarator operators &, *, [1, and their expression counterparts. — end note | [Example:

new int * i; // syntax error: parsed as (new int*) i
//not as (new int)x*i

The * is the pointer declarator and not the multiplication operator. — end example |

[Note: parentheses in a new-type-id of a new-expression can have surprising effects. [Example:

Draft

11

5.3 Unary expressions Expressions 100

new int(*[10]) (); // error

is ill-formed because the binding is

(new int) (x[10]1)Q); // error

Instead, the explicitly parenthesized version of the new operator can be used to create objects of compound types (3.9.2):

new (int (*[101)());

allocates an array of 10 pointers to functions (taking no argument and returning int. — end example] — end note |
The type-specifier-seq shall not contain class declarations, or enumeration declarations.

When the allocated object is an array (that is, the direct-new-declarator syntax is used or the new-type-id or type-id
denotes an array type), the new-expression yields a pointer to the initial element (if any) of the array. [Note: both new
int and new int[10] have type int* and the type of new int[i] [10] is int (%) [10] —end note]

Every constant-expression in a direct-new-declarator shall be an integral constant expression (5.19) and evaluate to a
strictly positive value. The expression in a direct-new-declarator shall be of integral type, enumeration type, or a class
type for which a single non-explicit conversion function to integral or enumeration type exists (12.3). If the expression
is of class type, the expression is converted by calling that conversion function, and the result of the conversion is used
in place of the original expression. If the value of the expression is negative, the behavior is undefined. [Example:
given the definition int n = 42, new float[n][5] is well-formed (because n is the expression of a direct-new-
declarator), but new float[5] [n] is ill-formed (because n is not a constant expression). If n is negative, the effect of
new float[n] [5] is undefined. — end example]

When the value of the expression in a direct-new-declarator is zero, the allocation function is called to allocate an array
with no elements.

A new-expression obtains storage for the object by calling an allocation function (3.7.3.1). If the new-expression ter-
minates by throwing an exception, it may release storage by calling a deallocation function (3.7.3.2). If the allocated
type is a non-array type, the allocation function’s name is operator new and the deallocation function’s name is op-
erator delete. If the allocated type is an array type, the allocation function’s name is operator new[] and the
deallocation function’s name is operator delete[]. [Note: an implementation shall provide default definitions for
the global allocation functions (3.7.3, 18.5.1.1, 18.5.1.2). A C++ program can provide alternative definitions of these
functions (17.4.3.4) and/or class-specific versions (12.5). — end note]

If the new-expression begins with a unary : : operator, the allocation function’s name is looked up in the global scope.
Otherwise, if the allocated type is a class type T or array thereof, the allocation function’s name is looked up in the scope
of T If this lookup fails to find the name, or if the allocated type is not a class type, the allocation function’s name is
looked up in the global scope.

A new-expression passes the amount of space requested to the allocation function as the first argument of type std: :
size_t. That argument shall be no less than the size of the object being created; it may be greater than the size of
the object being created only if the object is an array. For arrays of char and unsigned char, the difference between
the result of the new-expression and the address returned by the allocation function shall be an integral multiple of the
strictest fundamental alignment requirement (3.11) of any object type whose size is no greater than the size of the array
being created. [Note: Because allocation functions are assumed to return pointers to storage that is appropriately aligned
for objects of any type with fundamental alignment, this constraint on array allocation overhead permits the common
idiom of allocating character arrays into which objects of other types will later be placed. — end note]

Draft

12

13

14

15

101 Expressions 5.3 Unary expressions

The new-placement syntax is used to supply additional arguments to an allocation function. If used, overload resolution
is performed on a function call created by assembling an argument list consisting of the amount of space requested
(the first argument) and the expressions in the new-placement part of the new-expression (the second and succeeding
arguments). The first of these arguments has type std: :size_t and the remaining arguments have the corresponding
types of the expressions in the new-placement.

[Example:
— new Tresults in a call of operator new(sizeof(T)),
— new(2,f) T results in a call of operator new(sizeof (T),2,f),
— mnew T[5] results in a call of operator new[] (sizeof (T)*5+x), and
— new(2,f) T[5] results in a call of operator new[] (sizeof (T)*5+y,2,f).

Here, x and y are non-negative unspecified values representing array allocation overhead; the result of the new-expres-
sion will be offset by this amount from the value returned by operator new[]. This overhead may be applied in
all array new-expression s, including those referencing the library function operator new[] (std::size_t, voidx*)
and other placement allocation functions. The amount of overhead may vary from one invocation of new to another.
— end example |

[Note: unless an allocation function is declared with an empty exception-specification (15.4), throw(), it indicates
failure to allocate storage by throwing a bad_alloc exception (clause 15, 18.5.2.1); it returns a non-null pointer otherwise.
If the allocation function is declared with an empty exception-specification, throw (), it returns null to indicate failure
to allocate storage and a non-null pointer otherwise. — end note] If the allocation function returns null, initialization
shall not be done, the deallocation function shall not be called, and the value of the new-expression shall be null.

[Note: when the allocation function returns a value other than null, it must be a pointer to a block of storage in which
space for the object has been reserved. The block of storage is assumed to be appropriately aligned and of the requested
size. The address of the created object will not necessarily be the same as that of the block if the object is an array.
—end note |

A new-expression that creates an object of type T initializes that object as follows:
— If the new-initializer is omitted:

— If T is a (possibly cv-qualified) non-trivial class type (or array thereof), the object is default-initialized (8.5).
If T is a const-qualified type, the underlying class type shall have a user-provided default constructor.

— Otherwise, the object created has indeterminate value. If T is a const-qualified type, or a (possibly cv-
qualified) trivial class type (or array thereof) containing (directly or indirectly) a member of const-qualified
type, the program is ill-formed;

— If the new-initializer is of the form (), the item is value-initialized (8.5);

— If the new-initializer is of the form (expression-list) and T is a class type, the appropriate constructor is called,
using expression-list as the arguments (8.5);

— If the new-initializer is of the form (expression-list) and T is an arithmetic, enumeration, pointer, or pointer-to-
member type and expression-list comprises exactly one expression, then the object is initialized to the (possibly
converted) value of the expression (8.5);

— Otherwise the new-expression is ill-formed.

Draft

17

18

19

20

21

22

5.3 Unary expressions Expressions 102

If the new-expression creates an object or an array of objects of class type, access and ambiguity control are done for the
allocation function, the deallocation function (12.5), and the constructor (12.1). If the new expression creates an array
of objects of class type, access and ambiguity control are done for the destructor (12.4).

If any part of the object initialization described above’!) terminates by throwing an exception and a suitable deallocation
function can be found, the deallocation function is called to free the memory in which the object was being constructed,
after which the exception continues to propagate in the context of the new-expression. If no unambiguous matching
deallocation function can be found, propagating the exception does not cause the object’s memory to be freed. [Note:
This is appropriate when the called allocation function does not allocate memory; otherwise, it is likely to result in a
memory leak. — end note]

If the new-expression begins with a unary : : operator, the deallocation function’s name is looked up in the global scope.
Otherwise, if the allocated type is a class type T or an array thereof, the deallocation function’s name is looked up in
the scope of T. If this lookup fails to find the name, or if the allocated type is not a class type or array thereof, the
deallocation function’s name is looked up in the global scope.

A declaration of a placement deallocation function matches the declaration of a placement allocation function if it has
the same number of parameters and, after parameter transformations (8.3.5), all parameter types except the first are
identical. Any non-placement deallocation function matches a non-placement allocation function. If the lookup finds a
single matching deallocation function, that function will be called; otherwise, no deallocation function will be called.
If the lookup finds the two-parameter form of a usual deallocation function (3.7.3.2) and that function, considered as
a placement deallocation function, would have been selected as a match for the allocation function, the program is
ill-formed. [Example:

struct S {
// Placement allocation function:
static void* operator new(std::size_t, std::size_t);

// Usual (non-placement) deallocation function:
static void operator delete(void*, std::size_t);

};

Sx p = new (0) S; /ill-formed: non-placement deallocation function matches
// placement allocation function

— end example]

If a new-expression calls a deallocation function, it passes the value returned from the allocation function call as the first
argument of type voidx. If a placement deallocation function is called, it is passed the same additional arguments as
were passed to the placement allocation function, that is, the same arguments as those specified with the new-placement
syntax. If the implementation is allowed to make a copy of any argument as part of the call to the allocation function, it
is allowed to make a copy (of the same original value) as part of the call to the deallocation function or to reuse the copy
made as part of the call to the allocation function. If the copy is elided in one place, it need not be elided in the other.

Whether the allocation function is called before evaluating the constructor arguments or after evaluating the constructor
arguments but before entering the constructor is unspecified. It is also unspecified whether the arguments to a constructor
are evaluated if the allocation function returns the null pointer or exits using an exception.

7DThis may include evaluating a new-initializer and/or calling a constructor.

Draft

103 Expressions 5.3 Unary expressions

5.3.5 Delete [expr.delete]

The delete-expression operator destroys a most derived object (1.8) or array created by a new-expression.

delete-expression:
:1opr delete cast-expression
t:opr delete [] cast-expression

The first alternative is for non-array objects, and the second is for arrays. The operand shall have a pointer type, or a
class type having a single non-explicit conversion function (12.3.2) to a pointer type. The result has type void.

If the operand has a class type, the operand is converted to a pointer type by calling the above-mentioned conversion
function, and the converted operand is used in place of the original operand for the remainder of this section. In either
alternative, the value of the operand of delete may be a null pointer value. If it is not a null pointer value, in the first
alternative (delete object), the value of the operand of delete shall be a pointer to a non-array object or a pointer to a
subobject (1.8) representing a base class of such an object (clause 10). If not, the behavior is undefined. In the second
alternative (delete array), the value of the operand of delete shall be the pointer value which resulted from a previous
array new-expression.”” If not, the behavior is undefined. [Note: this means that the syntax of the delete-expression
must match the type of the object allocated by new, not the syntax of the new-expression. — end note] [Note: a pointer
to a const type can be the operand of a delete-expression; it is not necessary to cast away the constness (5.2.11) of the
pointer expression before it is used as the operand of the delete-expression. — end note]

In the first alternative (delete object), if the static type of the operand is different from its dynamic type, the static type
shall be a base class of the operand’s dynamic type and the static type shall have a virtual destructor or the behavior is
undefined. In the second alternative (delete array) if the dynamic type of the object to be deleted differs from its static
type, the behavior is undefined.”?

The cast-expression in a delete-expression shall be evaluated exactly once.

If the object being deleted has incomplete class type at the point of deletion and the complete class has a non-trivial
destructor or a deallocation function, the behavior is undefined.

If the value of the operand of the delete-expression is not a null pointer value, the delete-expression will invoke the
destructor (if any) for the object or the elements of the array being deleted. In the case of an array, the elements will be
destroyed in order of decreasing address (that is, in reverse order of the completion of their constructor; see 12.6.2).

If the value of the operand of the delete-expression is not a null pointer value, the delete-expression will call a deal-
location function (3.7.3.2). Otherwise, it is unspecified whether the deallocation function will be called. [Note: The
deallocation function is called regardless of whether the destructor for the object or some element of the array throws an
exception. — end note |

[Note: An implementation provides default definitions of the global deallocation functions operator delete() for
non-arrays (18.5.1.1) and operator deletel[] () for arrays (18.5.1.2). A C++ program can provide alternative defini-
tions of these functions (17.4.3.4), and/or class-specific versions (12.5). — end note] When the keyword delete in a
delete-expression is preceded by the unary : : operator, the global deallocation function is used to deallocate the storage.

72 For non-zero-length arrays, this is the same as a pointer to the first element of the array created by that new-expression. Zero-length arrays do not
have a first element.
73)This implies that an object cannot be deleted using a pointer of type void* because there are no objects of type void.

Draft

5.4 Explicit type conversion (cast notation) Expressions 104

Access and ambiguity control are done for both the deallocation function and the destructor (12.4, 12.5).
5.3.6 alignof [expr.alignof]

An alignof expression yields the alignment requirement of its operand type. The operand shall be a fype-id representing
a complete object type.

The result is an integral constant of type std: :size_t.

When alignof is applied to a reference type, the result shall be the alignment of the referenced type. When alignof
is applied to an array type, the result shall be the alignment of the element type.

A type shall not be defined in an alignof expression.
5.4 Explicit type conversion (cast notation) [expr.cast]

The result of the expression (T) cast-expression is of type T. The result is an lvalue if T is an lvalue reference type,
otherwise the result is an rvalue. [Note: if T is a non-class type that is cv-qualified, the cv-qualifiers are ignored when
determining the type of the resulting rvalue; see 3.10. — end note |

An explicit type conversion can be expressed using functional notation (5.2.3), a type conversion operator (dynamic_-
cast, static_cast, reinterpret_cast, const_cast), or the cast notation.

cast-expression:
unary-expression
(type-id) cast-expression

Types shall not be defined in casts.
Any type conversion not mentioned below and not explicitly defined by the user (12.3) is ill-formed.
The conversions performed by

— aconst_cast (5.2.11),

— astatic_cast (5.2.9),

— astatic_cast followed by a const_cast,

— areinterpret_cast (5.2.10), or

— areinterpret_cast followed by a const_cast,

can be performed using the cast notation of explicit type conversion. The same semantic restrictions and behaviors
apply, with the exception that in performing a static_cast in the following situations the conversion is valid even if
the base class is inaccessible:

— apointer to an object of derived class type or an lvalue or rvalue of derived class type may be explicitly converted
to a pointer or reference to an unambiguous base class type, respectively;

— a pointer to member of derived class type may be explicitly converted to a pointer to member of an unambiguous
non-virtual base class type;

— apointer to an object of an unambiguous non-virtual base class type, an lvalue or rvalue of an unambiguous non-
virtual base class type, or a pointer to member of an unambiguous non-virtual base class type may be explicitly
converted to a pointer, a reference, or a pointer to member of a derived class type, respectively.

Draft

105 Expressions 5.5 Pointer-to-member operators

If a conversion can be interpreted in more than one of the ways listed above, the interpretation that appears first in the
list is used, even if a cast resulting from that interpretation is ill-formed. If a conversion can be interpreted in more than
one way as a static_cast followed by a const_cast, the conversion is ill-formed. [Example:

struct A {};
struct I1 : A {};
struct I2 : A {};
struct D : I1, I2 {};
A xfoo(D *p) {
return (Ax)(p); // ill-formed static_cast interpretation

}

— end example |

The operand of a cast using the cast notation can be an rvalue of type “pointer to incomplete class type”. The destination
type of a cast using the cast notation can be “pointer to incomplete class type”. If both the operand and destination types
are class types and one or both are incomplete, it is unspecified whether the static_cast or the reinterpret_cast
interpretation is used, even if there is an inheritance relationship between the two classes. [Note: For example, if the
classes were defined later in the translation unit, a multi-pass compiler would be permitted to interpret a cast between
pointers to the classes as if the class types were complete at the point of the cast. — end note |

5.5 Pointer-to-member operators [expr.mptr.oper]

The pointer-to-member operators —>* and . * group left-to-right.

pm-expression:
cast-expression
pm-expression .* cast-expression
pm-expression =>* cast-expression

The binary operator .* binds its second operand, which shall be of type “pointer to member of T’ (where T is a
completely-defined class type) to its first operand, which shall be of class T or of a class of which T is an unambiguous
and accessible base class. The result is an object or a function of the type specified by the second operand.

The binary operator —>* binds its second operand, which shall be of type “pointer to member of T” (where T is a
completely-defined class type) to its first operand, which shall be of type “pointer to T” or “pointer to a class of which T
is an unambiguous and accessible base class.” The result is an object or a function of the type specified by the second
operand.

If the dynamic type of the object does not contain the member to which the pointer refers, the behavior is undefined.

The restrictions on cv-qualification, and the manner in which the cv-qualifiers of the operands are combined to produce
the cv-qualifiers of the result, are the same as the rules for E1.E2 given in 5.2.5. [Note: it is not possible to use a pointer
to member that refers to a mutable member to modify a const class object. For example,

struct S {
SO : i(0) { }
mutable int i;
};
void £()
{

const S cs;

Draft

5.6 Multiplicative operators Expressions 106

int S::* pm = &S::i; // pm refers to mutable member S: : i
cs.*pm = 88; // ill-formed: cs is a const object
}

—end note |

If the result of . * or —>* is a function, then that result can be used only as the operand for the function call operator ().
[Example:

(ptr_to_obj->*ptr_to_mfct) (10);

calls the member function denoted by ptr_to_mfct for the object pointed to by ptr_to_obj. —end example] The
result of a .* expression is an lvalue only if its first operand is an lvalue and its second operand is a pointer to data
member. The result of an ->* expression is an lvalue only if its second operand is a pointer to data member. If the
second operand is the null pointer to member value (4.11), the behavior is undefined.

5.6 Multiplicative operators [expr.mul]

The multiplicative operators *, /, and % group left-to-right.

multiplicative-expression:
pm-expression
multiplicative-expression * pm-expression
multiplicative-expression / pm-expression
multiplicative-expression 1, pm-expression

The operands of * and / shall have arithmetic or enumeration type; the operands of % shall have integral or enumeration
type. The usual arithmetic conversions are performed on the operands and determine the type of the result.

The binary * operator indicates multiplication.

The binary / operator yields the quotient, and the binary % operator yields the remainder from the division of the first
expression by the second. If the second operand of / or % is zero the behavior is undefined; otherwise (a/b)*b + alb
is equal to a. If both operands are nonnegative then the remainder is nonnegative; if not, the sign of the remainder is
implementation-defined’®.

5.7 Additive operators [expr.add]
The additive operators + and - group left-to-right. The usual arithmetic conversions are performed for operands of
arithmetic or enumeration type.

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression — multiplicative-expression

For addition, either both operands shall have arithmetic or enumeration type, or one operand shall be a pointer to a
completely defined object type and the other shall have integral or enumeration type.

For subtraction, one of the following shall hold:

7 According to work underway toward the revision of ISO C, the preferred algorithm for integer division follows the rules defined in the ISO
Fortran standard, ISO/IEC 1539:1991, in which the quotient is always rounded toward zero.

Draft

107 Expressions 5.8 Shift operators

— both operands have arithmetic or enumeration type; or

— both operands are pointers to cv-qualified or cv-unqualified versions of the same completely defined object type;
or

— the left operand is a pointer to a completely defined object type and the right operand has integral or enumeration
type.

The result of the binary + operator is the sum of the operands. The result of the binary - operator is the difference
resulting from the subtraction of the second operand from the first.

For the purposes of these operators, a pointer to a nonarray object behaves the same as a pointer to the first element of
an array of length one with the type of the object as its element type.

When an expression that has integral type is added to or subtracted from a pointer, the result has the type of the pointer
operand. If the pointer operand points to an element of an array object, and the array is large enough, the result points to
an element offset from the original element such that the difference of the subscripts of the resulting and original array
elements equals the integral expression. In other words, if the expression P points to the i-th element of an array object,
the expressions (P)+N (equivalently, N+(P)) and (P)-N (where N has the value) point to, respectively, the i + n-th and
i —n-th elements of the array object, provided they exist. Moreover, if the expression P points to the last element of an
array object, the expression (P)+1 points one past the last element of the array object, and if the expression Q points one
past the last element of an array object, the expression (Q) -1 points to the last element of the array object. If both the
pointer operand and the result point to elements of the same array object, or one past the last element of the array object,
the evaluation shall not produce an overflow; otherwise, the behavior is undefined.

When two pointers to elements of the same array object are subtracted, the result is the difference of the subscripts of
the two array elements. The type of the result is an implementation-defined signed integral type; this type shall be the
same type that is defined as std: :ptrdiff_t in the <cstddef> header (18.1). As with any other arithmetic overflow,
if the result does not fit in the space provided, the behavior is undefined. In other words, if the expressions P and Q point
to, respectively, the i-th and j-th elements of an array object, the expression (P)-(Q) has the value i — j provided the
value fits in an object of type std: :ptrdiff_t. Moreover, if the expression P points either to an element of an array
object or one past the last element of an array object, and the expression Q points to the last element of the same array
object, the expression ((Q)+1)-(P) has the same value as ((Q)-(P))+1 and as - ((P)-((Q)+1)), and has the value
zero if the expression P points one past the last element of the array object, even though the expression (Q)+1 does not
point to an element of the array object. Unless both pointers point to elements of the same array object, or one past the
last element of the array object, the behavior is undefined.”

If the value O is added to or subtracted from a pointer value, the result compares equal to the original pointer value.
If two pointers point to the same object or both point one past the end of the same array or both are null, and the two
pointers are subtracted, the result compares equal to the value O converted to the type std: :ptrdiff_t.

5.8 Shift operators [expr.shift]

The shift operators << and >> group left-to-right.

75 Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In this scheme the integral value of the
expression added to or subtracted from the converted pointer is first multiplied by the size of the object originally pointed to, and the resulting pointer
is converted back to the original type. For pointer subtraction, the result of the difference between the character pointers is similarly divided by the
size of the object originally pointed to.

When viewed in this way, an implementation need only provide one extra byte (which might overlap another object in the program) just after the
end of the object in order to satisfy the “one past the last element” requirements.

Draft

5.9 Relational operators Expressions 108

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

The operands shall be of integral or enumeration type and integral promotions are performed. The type of the result is
that of the promoted left operand. The behavior is undefined if the right operand is negative, or greater than or equal to
the length in bits of the promoted left operand.

The value of E1 << E2is E1 (interpreted as a bit pattern) left-shifted E2 bit positions; vacated bits are zero-filled. If E1
has an unsigned type, the value of the result is E1 multiplied by the quantity 2 raised to the power E2, reduced modulo
ULLONG_MAX+1 if E1 has type unsigned long long int, ULONG_MAX+1 if E1 has type unsigned long int, UINT_-
MAX+1 otherwise. [Note: the constants ULLONG_MAX, ULONG_MAX, and UINT_MAX are defined in the header <climits>.
—end note]

The value of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type or if E1 has a signed type and a
nonnegative value, the value of the result is the integral part of the quotient of E1 divided by the quantity 2 raised to the
power E2. If E1 has a signed type and a negative value, the resulting value is implementation-defined.

5.9 Relational operators [expr.rel]
The relational operators group left-to-right. [Example: a<b<c means (a<b)<c and not (a<b)&&(b<c). — end exam-
ple]

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

The operands shall have arithmetic, enumeration, or pointer type, or type std: :nullptr_t. The operators < (less than),
> (greater than), <= (less than or equal to), and >= (greater than or equal to) all yield false or true. The type of the
result is bool.

The usual arithmetic conversions are performed on operands of arithmetic or enumeration type. Pointer conversions
(4.10) and qualification conversions (4.4) are performed on pointer operands (or on a pointer operand and a null pointer
constant) to bring them to their composite pointer type. If one operand is a null pointer constant, the composite pointer
type is the type of the other operand. Otherwise, if one of the operands has type “pointer to cv/ void,” then the other
has type “pointer to cv2 T” and the composite pointer type is “pointer to cvi2 void,” where cvI2 is the union of cv/
and cv2. Otherwise, the composite pointer type is a pointer type similar (4.4) to the type of one of the operands, with
a cv-qualification signature (4.4) that is the union of the cv-qualification signatures of the operand types. [Note: this
implies that any pointer can be compared to a null pointer constant and that any object pointer can be compared to a
pointer to (possibly cv-qualified) void. —end note] [Example:

void *p;

const int *q;

int **pij;

const int *const *pci;
void ct()

{

Draft

109 Expressions 5.10 Equality operators

P <= q; // Both converted to const void* before comparison
pi <= pci; // Both converted to const int *const * before comparison

— end example | Pointers to objects or functions of the same type (after pointer conversions) can be compared, with a
result defined as follows:

— If two pointers p and q of the same type point to the same object or function, or both point one past the end of the
same array, or are both null, then p<=q and p>=q both yield true and p<q and p>q both yield false.

— If two pointers p and q of the same type point to different objects that are not members of the same object or
elements of the same array or to different functions, or if only one of them is null, the results of p<q, p>q, p<=q,
and p>=q are unspecified.

— If two pointers point to non-static data members of the same object, or to subobjects or array elements of such
members, recursively, the pointer to the later declared member compares greater provided the two members have
the same access control (clause 11) and provided their class is not a union.

— If two pointers point to non-static data members of the same object with different access control (clause 11) the
result is unspecified.

— If two pointers point to data members of the same union object, they compare equal (after conversion to voidx, if
necessary). If two pointers point to elements of the same array or one beyond the end of the array, the pointer to
the object with the higher subscript compares higher.

— Other pointer comparisons are unspecified.

If two operands of type std::nullptr_t are compared, the result is true if the operator is <= or >=, and false
otherwise.

5.10 Equality operators [expr.eq]
equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression = relational-expression

The == (equal to) and the != (not equal to) operators have the same semantic restrictions, conversions, and result type as
the relational operators except for their lower precedence and truth-value result. [Note: a<b == c¢<d is true whenever
a<b and c<d have the same truth-value. — end note] Pointers to objects or functions of the same type (after pointer
conversions) can be compared for equality. Two pointers of the same type compare equal if and only if they are both
null, both point to the same function, or both represent the same address (3.9.2).

In addition, pointers to members can be compared, or a pointer to member and a null pointer constant. Pointer to member
conversions (4.11) and qualification conversions (4.4) are performed to bring them to a common type. If one operand is
a null pointer constant, the common type is the type of the other operand. Otherwise, the common type is a pointer to
member type similar (4.4) to the type of one of the operands, with a cv-qualification signature (4.4) that is the union of
the cv-qualification signatures of the operand types. [Note: this implies that any pointer to member can be compared to
a null pointer constant. — end note] If both operands are null, they compare equal. Otherwise if only one is null, they
compare unequal. Otherwise if either is a pointer to a virtual member function, the result is unspecified. Otherwise they

Draft

5.11 Bitwise AND operator Expressions 110

compare equal if and only if they would refer to the same member of the same most derived object (1.8) or the same
subobject if they were dereferenced with a hypothetical object of the associated class type. [Example:

struct B {
int £();

};

struct L : B

struct R : B

struct D : L

{3}
{}

, R{};

int (B::*pb) () = &B::f;

int (L::*pl) () = pb;

int (R::*pr)() = pb;

int (D::*pdl) () = pl;

int (D::*pdr) () = pr;

bool x = (pdl == pdr); // false

— end example |

If two operands of type std: :nullptr_t are compared, the result is true if the operator is ==, and false otherwise.

5.11 Bitwise AND operator [expr.bit.and]

and-expression:
equality-expression
and-expression & equality-expression
The usual arithmetic conversions are performed; the result is the bitwise AND function of the operands. The operator
applies only to integral or enumeration operands.

5.12 Bitwise exclusive OR operator [expr.xor]

exclusive-or-expression:
and-expression
exclusive-or-expression ~ and-expression

The usual arithmetic conversions are performed; the result is the bitwise exclusive OR function of the operands. The
operator applies only to integral or enumeration operands.
5.13 Bitwise inclusive OR operator [expr.or]

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

The usual arithmetic conversions are performed; the result is the bitwise inclusive OR function of its operands. The
operator applies only to integral or enumeration operands.

5.14 Logical AND operator [expr.log.and]

logical-and-expression:
inclusive-or-expression
logical-and-expression && inclusive-or-expression

Draft

111 Expressions 5.15 Logical OR operator

The && operator groups left-to-right. The operands are both #mpheitly contextually converted to type bool (clause 4).
The result is true if both operands are true and false otherwise. Unlike &, && guarantees left-to-right evaluation: the
second operand is not evaluated if the first operand is false.

The result is a bool. If the second expression is evaluated, every value computation and side effect associated with the
first expression is sequenced before every value computation and side effect associated with the second expression.

5.15 Logical OR operator [expr.log.or]
logical-or-expression:
logical-and-expression
logical-or-expression || logical-and-expression

The || operator groups left-to-right. The operands are both implieitly contextually converted to bool (clause 4). It
returns true if either of its operands is true, and false otherwise. Unlike |, || guarantees left-to-right evaluation;
moreover, the second operand is not evaluated if the first operand evaluates to true.

The result is a bool. All side effects of the first expression except for destruction of temporaries (12.2) happen before
the second expression is evaluated.

5.16 Conditional operator [expr.cond]

conditional-expression:

logical-or-expression

logical-or-expression 7 expression : assignment-expression
Conditional expressions group right-to-left. The first expression is implieitly contextually converted to bool (clause 4).
It is evaluated and if it is true, the result of the conditional expression is the value of the second expression, otherwise
that of the third expression. Only one of the second and third expressions is evaluated. Every value computation and
side effect associated with the first expression is sequenced before every value computation and side effect associated
with the second or third expression.

If either the second or the third operand has type (possibly cv-qualified) void, then the lvalue-to-rvalue (4.1), array-to-
pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the second and third operands, and
one of the following shall hold:

— The second or the third operand (but not both) is a throw-expression (15.1); the result is of the type of the other
and is an rvalue.

— Both the second and the third operands have type void; the result is of type void and is an rvalue. [Note: this
includes the case where both operands are throw-expression s. — end note]

Otherwise, if the second and third operand have different types, and either has (possibly cv-qualified) class type, an
attempt is made to convert each of those operands to the type of the other. The process for determining whether an
operand expression E1 of type T1 can be converted to match an operand expression E2 of type T2 is defined as follows:

— If E2 is an Ivalue: E1 can be converted to match E2 if E1 can be implicitly converted (clause 4) to the type “lvalue
reference to T2”, subject to the constraint that in the conversion the reference must bind directly (8.5.3) to E1.

— If E2 is an rvalue, or if the conversion above cannot be done:

— if E1 and E2 have class type, and the underlying class types are the same or one is a base class of the other: E1
can be converted to match E2 if the class of T2 is the same type as, or a base class of, the class of T1, and the
cv-qualification of T2 is the same cv-qualification as, or a greater cv-qualification than, the cv-qualification

Draft

5.17 Assignment and compound assignment operators Expressions 112

of T1. If the conversion is applied, E1 is changed to an rvalue of type T2 by copy-initializing a temporary of
type T2 from E1 and using that temporary as the converted operand.

— Otherwise (i.e., if E1 or E2 has a nonclass type, or if they both have class types but the underlying classes are
not either the same or one a base class of the other): E1 can be converted to match E2 if E1 can be implicitly
converted to the type that expression E2 would have if E2 were converted to an rvalue (or the type it has, if
E2 is an rvalue).

Using this process, it is determined whether the second operand can be converted to match the third operand, and
whether the third operand can be converted to match the second operand. If both can be converted, or one can be
converted but the conversion is ambiguous, the program is ill-formed. If neither can be converted, the operands
are left unchanged and further checking is performed as described below. If exactly one conversion is possible,
that conversion is applied to the chosen operand and the converted operand is used in place of the original operand
for the remainder of this section.

4 If the second and third operands are Ivalues and have the same type, the result is of that type and is an lvalue and it is a
bit-field if the second or the third operand is a bit-field, or if both are bit-fields.

5 Otherwise, the result is an rvalue. If the second and third operands do not have the same type, and either has (pos-
sibly cv-qualified) class type, overload resolution is used to determine the conversions (if any) to be applied to the
operands (13.3.1.2, 13.6). If the overload resolution fails, the program is ill-formed. Otherwise, the conversions thus
determined are applied, and the converted operands are used in place of the original operands for the remainder of this
section.

6 Lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the
second and third operands. After those conversions, one of the following shall hold:

— The second and third operands have the same type; the result is of that type. If the operands have class type, the
result is an rvalue temporary of the result type, which is copy-initialized from either the second operand or the
third operand depending on the value of the first operand.

— The second and third operands have arithmetic or enumeration type; the usual arithmetic conversions are per-
formed to bring them to a common type, and the result is of that type.

— The second and third operands have pointer type, or one has pointer type and the other is a null pointer constant;
pointer conversions (4.10) and qualification conversions (4.4) are performed to bring them to their composite
pointer type (5.9). The result is of the composite pointer type.

— The second and third operands have pointer to member type, or one has pointer to member type and the other is a
null pointer constant; pointer to member conversions (4.11) and qualification conversions (4.4) are performed to
bring them to a common type, whose cv-qualification shall match the cv-qualification of either the second or the
third operand. The result is of the common type.

5.17 Assignment and compound assignment operators [expr.ass]

1 The assignment operator (=) and the compound assignment operators all group right-to-left. All require a modifiable
Ivalue as their left operand and return an lvalue referring to the left operand. The result in all cases is a bit-field if the left
operand is a bit-field. In all cases, the assignment is sequenced after the value computation of the right and left operands,
and before the value computation of the assignment expression. With respect to an indeterminately-sequenced function
call, the operation of a compound assignment is a single evaluation. [Note: Therefore, a function call shall not intervene

Draft

113 Expressions 5.18 Comma operator

between the lvalue-to-rvalue conversion and the side effect associated with any single compound assignment operator.
—end note |
assignment-expression:
conditional-expression
logical-or-expression assignment-operator assignment-expression
throw-expression

assignment-operator: one of
= %= /= Y= += —-= >>= <K= &= "= |=

In simple assignment (=), the value of the expression replaces that of the object referred to by the left operand.

If the left operand is not of class type, the expression is implicitly converted (clause 4) to the cv-unqualified type of the
left operand.

If the left operand is of class type, the class shall be complete. Assignment to objects of a class is defined by the copy
assignment operator (12.8, 13.5.3).

[Note: For class objects, assignment is not in general the same as initialization (8.5, 12.1, 12.6, 12.8). —end note]

When the left operand of an assignment operator denotes a reference to T, the operation assigns to the object of type T
denoted by the reference.

The behavior of an expression of the form E1 op = E2 is equivalent to E1 = E1 op E2 except that E1 is evaluated only
once. In += and -=, E1 shall either have arithmetic type or be a pointer to a possibly cv-qualified completely defined
object type. In all other cases, E1 shall have arithmetic type.

If the value being stored in an object is accessed from another object that overlaps in any way the storage of the first
object, then the overlap shall be exact and the two objects shall have the same type, otherwise the behavior is undefined.

5.18 Comma operator [expr.comma]

The comma operator groups left-to-right.

expression:
assignment-expression
expression , assignment-expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression is discarded.
The Ivalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are not applied to
the left expression. Every value computation and side effect associated with the left expression is sequenced before
every value computation and side effect associated with the right expression. The type and value of the result are the
type and value of the right operand; the result is an lvalue if its right operand is an lvalue, and is a bit-field if its right
operand is an lvalue and a bit-field.

In contexts where comma is given a special meaning, [Example: in lists of arguments to functions (5.2.2) and lists
of initializers (8.5) —end example] the comma operator as described in clause 5 can appear only in parentheses.
[Example:

fla, (=3, t+2), c);

Draft

5.19 Constant expressions Expressions 114

has three arguments, the second of which has the value 5. — end example]

5.19 Constant expressions [expr.const]

Certain contexts require expressions that satisfy additional requirements as detailed in this sub-clause. Such expressions
are called constant expressions. [Note: Those expressions can be evaluated during translation. — end note]

constant-expression:
conditional-expression

A conditional-expression is a constant expression unless it involves one of the following as a potentially evaluated
subexpression (3.2), but subexpressions of logical AND (5.14), logical OR (5.15), and conditional (5.16) operations that
are not evaluated are not considered [Note: an overloaded operator invokes a function — end note]:

— this (5.1) unless it appears as the postfix-expression in a class member access expression, including the result of
the implicit transformation in the body of a non-static member function (9.3.1);

— an invocation of a function other than a constexpr function or a constexpr constructor [Note: overload resolu-
tion (13.3) is applied as usual — end note |;

— an lvalue-to-rvalue conversion (4.1) unless it is applied to

— an lvalue of integral type that refers to a non-volatile const variable or static data member initialized with
constant expressions, or

— an lvalue of literal type that refers to a non-volatile object defined with constexpr, or that refers to a
sub-object of such an object;

— an id-expression that refers to a variable or data member of reference type;

— a type conversion from a floating-point type to an integral type (4.9) unless the conversion is directly applied to a
floating-point literal;

— adynamic cast (5.2.7);

— a type conversion from a pointer or pointer-to-member type to a literal type [Note: a user-defined conversion
invokes a function — end note |,

— a pseudo-destructor call (5.2.4);

— a class member access (5.2.5) unless its postfix-expression is of trivial or literal type or of pointer to trivial or
literal type;

— increment or decrement operations (5.2.6, 5.3.2);

— a typeid expression (5.2.8) whose operand is of a polymorphic class type;

— anew-expression (5.3.4);

— adelete-expression (5.3.5);

— a subtraction (5.7) where both operands are pointers;

— arelational (5.9) or equality (5.10) operator where at least one of the operands is a pointer;

— an assignment or a compound assignment (5.17); or

Draft

5

115 Expressions 5.19 Constant expressions

— a throw-expression (15.1).

A constant expression is an integral constant expression if it is of integral or enumeration type. [Note: such ex-
pressions may be used as array bounds (8.3.4, 5.3.4), as case expressions (6.4.2), as bit-field lengths (9.6), as enu-
merator initializers (7.2), as static member initializers (9.4.2), and as integral or enumeration non-type template argu-
ments (14.3). —end note |

If an expression of literal class type is used in a context where an integral constant expression is required, then that class
type shall have a single non-explicit conversion function to an integral or enumeration type and that conversion function
shall be constexpr. [Example:

struct A {
constexpr A(int i) : val(i) { }
constexpr operator int() { return val; }
constexpr operator long() { return 43; }
private:
int val;
};
template<int> struct X { };
constexpr A a = 42;
X<a> x; // OK: unique conversion to int
int ary[al; // error: ambiguous conversion

— end example]

An expression is a potential constant expression if it is a constant expression when all occurrences of function parameters
are replaced by arbitrary constant expressions of the appropriate type.

Draft

5.19 Constant expressions Expressions 116

Draft

Chapter 6 Statements [stmt.stmt]

Except as indicated, statements are executed in sequence.
statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block

6.1 Labeled statement [stmt.label]

A statement can be labeled.
labeled-statement:

identifier : statement

case constant-expression . Statement

default : statement
An identifier label declares the identifier. The only use of an identifier label is as the target of a goto. The scope of a
label is the function in which it appears. Labels shall not be redeclared within a function. A label can be used in a goto
statement before its definition. Labels have their own name space and do not interfere with other identifiers.

Case labels and default labels shall occur only in switch statements.
6.2 [Expression statement [stmt.expr]

Expression statements have the form

expression-statement:
expressiongp; ;

The expression is evaluated and its value is discarded. The Ivalue-to-rvalue (4.1), array-to-pointer (4.2), and function-
to-pointer (4.3) standard conversions are not applied to the expression. All side effects from an expression statement are
completed before the next statement is executed. An expression statement with the expression missing is called a null
statement. [Note: Most statements are expression statements — usually assignments or function calls. A null statement
is useful to carry a label just before the } of a compound statement and to supply a null body to an iteration statement
such as a while statement (6.5.1). —end note]

6.3 Compound statement or block [stmt.block]

So that several statements can be used where one is expected, the compound statement (also, and equivalently, called

6.4 Selection statements Statements 118

“block”) is provided.

compound-statement:
{ statement-seqp;
statement-seq:
statement
statement-seq statement

A compound statement defines a local scope (3.3). [Note: a declaration is a statement (6.7). — end note]
6.4 Selection statements [stmt.select]

Selection statements choose one of several flows of control.
selection-statement:
if (condition) statement
if (condition) statement else statement
switch (condition) statement
condition:
expression
type-specifier-seq declarator = assignment-expression

In clause 6, the term substatement refers to the contained statement or statement s that appear in the syntax notation.
The substatement in a selection-statement (each substatement, in the else form of the if statement) implicitly defines
a local scope (3.3). If the substatement in a selection-statement is a single statement and not a compound-statement, it
is as if it was rewritten to be a compound-statement containing the original substatement. [Example:

if (x)
int i;

can be equivalently rewritten as

if (x) {
int i;

}

Thus after the if statement, i is no longer in scope. — end example |

The rules for condition s apply both to selection-statement s and to the for and while statements (6.5). The declarator
shall not specify a function or an array. The type-specifier-seq shall not contain typedef and shall not declare a new
class or enumeration. If the auto type-specifier appears in the type-specifier-seq, the type-specifier-seq shall contain no other
type-specifiers except cv-qualifiers, and the type of the identifier being declared is deduced from the assignment-expression
as described in 7.1.6.4.

A name introduced by a declaration in a condition (either introduced by the type-specifier-seq or the declarator of the
condition) is in scope from its point of declaration until the end of the substatements controlled by the condition. If the
name is re-declared in the outermost block of a substatement controlled by the condition, the declaration that re-declares
the name is ill-formed. [Example:

if (int x = £0) {
int x; // ill-formed, redeclaration of x

}
else {

Draft

119 Statements 6.4 Selection statements

int x; // ill-formed, redeclaration of x

— end example]

The value of a condition that is an initialized declaration in a statement other than a switch statement is the value of the
declared variable implieithy contextually converted to type bool (clause 4). If that conversion is ill-formed, the program
is ill-formed. The value of a condition that is an initialized declaration in a switch statement is the value of the declared
variable if it has integral or enumeration type, or of that variable implicitly converted to integral or enumeration type
otherwise. The value of a condition that is an expression is the value of the expression, implieithy contextually converted
to bool for statements other than switch; if that conversion is ill-formed, the program is ill-formed. The value of the
condition will be referred to as simply “the condition” where the usage is unambiguous.

If a condition can be syntactically resolved as either an expression or the declaration of a local name, it is interpreted as
a declaration.

6.4.1 The if statement [stmt.if]

If the condition (6.4) yields true the first substatement is executed. If the else part of the selection statement is present

and the condition yields false, the second substatement is executed. In the second form of if statement (the one

including else), if the first substatement is also an if statement then that inner if statement shall contain an else
76)

part.

6.4.2 The switch statement [stmt.switch]
The switch statement causes control to be transferred to one of several statements depending on the value of a condition.

The condition shall be of integral type, enumeration type, or of a class type for which a single non-explicit conversion
function to integral or enumeration type exists (12.3). If the condition is of class type, the condition is converted
by calling that conversion function, and the result of the conversion is used in place of the original condition for the
remainder of this section. Integral promotions are performed. Any statement within the switch statement can be
labeled with one or more case labels as follows:

case constant-expression :

where the constant-expression shall be an integral constant expression (5.19). The integral constant expression is im-
plicitly converted to the promoted type of the switch condition. No two of the case constants in the same switch shall
have the same value after conversion to the promoted type of the switch condition.

There shall be at most one label of the form

default :

within a switch statement.
Switch statements can be nested; a case or default label is associated with the smallest switch enclosing it.

When the switch statement is executed, its condition is evaluated and compared with each case constant. If one of the
case constants is equal to the value of the condition, control is passed to the statement following the matched case label.
If no case constant matches the condition, and if there is a default label, control passes to the statement labeled by the
default label. If no case matches and if there is no default then none of the statements in the switch is executed.

791n other words, the else is associated with the nearest un-elsed if.

Draft

6.5 Iteration statements Statements 120

case and default labels in themselves do not alter the flow of control, which continues unimpeded across such labels.
To exit from a switch, see break, 6.6.1. [Note: usually, the substatement that is the subject of a switch is compound and
case and default labels appear on the top-level statements contained within the (compound) substatement, but this is
not required. Declarations can appear in the substatement of a switch-statement. — end note |

6.5 Iteration statements [stmt.iter]

Iteration statements specify looping.

iteration-statement:
while (condition) statement
do statement while (expression) ;
for (for-init-statement conditiongp; ; expressiongp;) statement

for-init-statement:
expression-statement
simple-declaration

[Note: a for-init-statement ends with a semicolon. — end note |

The substatement in an iteration-statement implicitly defines a local scope (3.3) which is entered and exited each time
through the loop.

If the substatement in an iteration-statement is a single statement and not a compound-statement, it is as if it was rewritten
to be a compound-statement containing the original statement. [Example:

while (--x >= 0)
int i;
can be equivalently rewritten as
while (--x >= 0) {
int i;
}
Thus after the while statement, i is no longer in scope. — end example |
[Note: The requirements on condition s in iteration statements are described in 6.4. — end note |

A loop that, outside of the for-init-statement in the case of a for statement,

— performs no I/O operations, and

— does not access or modify volatile objects, and

— performs no synchronization or atomic operations

may be assumed by the implementation to terminate. [Note: This is intended to allow compiler transformations, such as
removal of empty loops, even when termination cannot be proven. — end note |

6.5.1 The while statement [stmt.while]

In the while statement the substatement is executed repeatedly until the value of the condition (6.4) becomes false.
The test takes place before each execution of the substatement.

Draft

2

121 Statements 6.5 Iteration statements

When the condition of a while statement is a declaration, the scope of the variable that is declared extends from its point
of declaration (3.3.1) to the end of the while statement. A while statement of the form

while (T t = x) statement

is equivalent to

label:
{ // start of condition scope
Tt =x;
if () {
statement
goto label;
}
} // end of condition scope

The object created in a condition is destroyed and created with each iteration of the loop. [Example:

struct A {

int val;

A(int i) : val(i) { }

“AO {}

operator bool() { return val != 0; }
};

int i = 1;
while (A a = i) {
/...

In the while-loop, the constructor and destructor are each called twice, once for the condition that succeeds and once for
the condition that fails. — end example |

6.5.2 The do statement [stmt.do]

The expression is #mplieithy contextually converted to bool (clause 4); if that is-net-pessible conversion is ill-formed,
the program is ill-formed.

In the do statement the substatement is executed repeatedly until the value of the expression becomes false. The test
takes place after each execution of the statement.

6.5.3 The for statement [stmt.for]

The for statement
for (for-init-statement conditiongp; ; expressiongp;) statement

is equivalent to

Draft

6.6 Jump statements Statements 122

{
for-init-statement
while (condition) {
statement
expression ;
}
}

except that names declared in the for-init-statement are in the same declarative-region as those declared in the condition,
and except that a continue in statement (not enclosed in another iteration statement) will execute expression before
re-evaluating condition. [Note: Thus the first statement specifies initialization for the loop; the condition (6.4) specifies
a test, made before each iteration, such that the loop is exited when the condition becomes false; the expression often
specifies incrementing that is done after each iteration. — end note |

Either or both of the condition and the expression can be omitted. A missing condition makes the implied while clause
equivalent to while (true).

If the for-init-statement is a declaration, the scope of the name(s) declared extends to the end of the for-statement.
[Example:

int i = 42;

int a[10];

for (int i = 0; i < 10; i++)
ali] = i;

int j = i; /3 = 42

— end example |
6.6 Jump statements [stmt.jump]

Jump statements unconditionally transfer control.

jump-statement:
break ;
continue ;
return expressiongp; ;
goto identifier ;

On exit from a scope (however accomplished), destructors (12.4) are called for all constructed objects with automatic
storage duration (3.7.2) (named objects or temporaries) that are declared in that scope, in the reverse order of their
declaration. Transfer out of a loop, out of a block, or back past an initialized variable with automatic storage duration
involves the destruction of variables with automatic storage duration that are in scope at the point transferred from but
not at the point transferred to. (See 6.7 for transfers into blocks). [Note: However, the program can be terminated (by
calling std: :exit () or std: :abort () (18.4), for example) without destroying class objects with automatic storage
duration. — end note |

6.6.1 The break statement [stmt.break]

The break statement shall occur only in an iteration-statement or a switch statement and causes termination of the
smallest enclosing iteration-statement or switch statement; control passes to the statement following the terminated

Draft

123 Statements 6.7 Declaration statement

statement, if any.

6.6.2 The continue statement [stmt.cont]

The continue statement shall occur only in an iteration-statement and causes control to pass to the loop-continuation
portion of the smallest enclosing iteration-statement, that is, to the end of the loop. More precisely, in each of the
statements

while (foo) { do { for (;;) {
{ { {

/... /... /...

} } }
contin: ; contin: ; contin: ;
} } while (foo); ¥

a continue not contained in an enclosed iteration statement is equivalent to goto contin.
6.6.3 The return statement [stmt.return]
A function returns to its caller by the return statement.

A return statement without an expression can be used only in functions that do not return a value, that is, a function with
the return type void, a constructor (12.1), or a destructor (12.4). A return statement with an expression of non-void type
can be used only in functions returning a value; the value of the expression is returned to the caller of the function. The
expression is implicitly converted to the return type of the function in which it appears. A return statement can involve
the construction and copy of a temporary object (12.2). [Note: A copy operation associated with a return statement
may be elided or considered as an rvalue for the purpose of overload resolution in selecting a constructor (12.8). — end
note | Flowing off the end of a function is equivalent to a return with no value; this results in undefined behavior in a
value-returning function.

A return statement with an expression of type “cv void” can be used only in functions with a return type of cv void; the
expression is evaluated just before the function returns to its caller.

6.6.4 The goto statement [stmt.goto]

The goto statement unconditionally transfers control to the statement labeled by the identifier. The identifier shall be a
label (6.1) located in the current function.

6.7 Declaration statement [stmt.dcl]

A declaration statement introduces one or more new identifiers into a block; it has the form

declaration-statement:
block-declaration

If an identifier introduced by a declaration was previously declared in an outer block, the outer declaration is hidden for
the remainder of the block, after which it resumes its force.

Variables with automatic storage duration (3.7.2) are initialized each time their declaration-statement is executed. Vari-
ables with automatic storage duration declared in the block are destroyed on exit from the block (6.6).

It is possible to transfer into a block, but not in a way that bypasses declarations with initialization. A program that

Draft

6.8 Ambiguity resolution Statements 124

jumps’”? from a point where a local variable with automatic storage duration is not in scope to a point where it is in
scope is ill-formed unless the variable has trivial type (3.9) and is declared without an initializer (8.5). [Example:

void £()
{
/...
goto 1x; // ill-formed: jump into scope of a
y/a
ly:
Xa=1;
/s
1x:
goto ly; // OK, jump implies destructor
// call for a followed by construction
// again immediately following label 1y
}

— end example |

The zero-initialization (8.5) of all local objects with static storage duration (3.7.1) is performed before any other initial-
ization takes place. A local object of trivial or literal type (3.9) with static storage duration initialized with constant-
expressions is initialized before its block is first entered. An implementation is permitted to perform early initialization
of other local objects with static storage duration under the same conditions that an implementation is permitted to stat-
ically initialize an object with static storage duration in namespace scope (3.6.2). Otherwise such an object is initialized
the first time control passes through its declaration; such an object is considered initialized upon the completion of its
initialization. If the initialization exits by throwing an exception, the initialization is not complete, so it will be tried
again the next time control enters the declaration. If control re-enters the declaration (recursively) while the object is
being initialized, the behavior is undefined. [Example:

int foo(int i)

{

static int s = foo(2*i); // recursive call - undefined
return i+1;

— end example |

The destructor for a local object with static storage duration will be executed if and only if the variable was constructed.
[Note: 3.6.3 describes the order in which local objects with static storage duration are destroyed. — end note |

6.8 Ambiguity resolution [stmt.ambig]

There is an ambiguity in the grammar involving expression-statement s and declaration s: An expression-statement with
a function-style explicit type conversion (5.2.3) as its leftmost subexpression can be indistinguishable from a declaration
where the first declarator starts with a (. In those cases the statement is a declaration. [Note: To disambiguate,
the whole statement might have to be examined to determine if it is an expression-statement or a declaration. This
disambiguates many examples. [Example: assuming T is a simple-type-specifier (7.1.6),

T(a)->m = 7; // expression-statement

7DThe transfer from the condition of a switch statement to a case label is considered a jump in this respect.

Draft

125 Statements 6.8 Ambiguity resolution

T(a)++; // expression-statement
T(a,5)<<c; // expression-statement
T(*d) (int); // declaration
T(e) [5]; // declaration
T(E) ={1, 2 }; // declaration
T(*g) (double(3)); // declaration

In the last example above, g, which is a pointer to T, is initialized to double(3). This is of course ill-formed for
semantic reasons, but that does not affect the syntactic analysis. — end example]

2 The remaining cases are declaration s. [Example:

class T {

/...
public:

TO;

T(int);

T(int, int);
};
T(a); // declaration
T(*b) O; // declaration
T(c)=7; // declaration
T(d),e,f=3; // declaration
extern int h;
T(g) (h,2); // declaration

—end example] — end note |

3 The disambiguation is purely syntactic; that is, the meaning of the names occurring in such a statement, beyond whether
they are type-name s or not, is not generally used in or changed by the disambiguation. Class templates are instantiated
as necessary to determine if a qualified name is a type-name. Disambiguation precedes parsing, and a statement disam-
biguated as a declaration may be an ill-formed declaration. If, during parsing, a name in a template parameter is bound
differently than it would be bound during a trial parse, the program is ill-formed. No diagnostic is required. [Note: This
can occur only when the name is declared earlier in the declaration. — end note | [Example:

struct T1 {
T1 operator() (int x) { return Ti(x); }
int operator=(int x) { return x; }
Ti(int) { }

};

struct T2 { T2@int){ } };

int a, (*x(*b)(T2))(int), c, d;

void £() {
// disambiguation requires this to be parsed
// as a declaration

Ti(a) = 3,
T2(4), // T2 will be declared as
(x(*b) (T2(c))) (int(d)); // a variable of type T1

// but this will not allow

Draft

6.8 Ambiguity resolution Statements 126

// the last part of the

// declaration to parse

// properly since it depends
// on T2 being a type-name

—end example |

Draft

Chapter 7 Declarations [dcl.dcl]

1 Declarations specify how names are to be interpreted. Declarations have the form

declaration-seq:
declaration
declaration-seq declaration

declaration:
block-declaration
Sfunction-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition
block-declaration:
simple-declaration
asm-definition
namespace-alias-definition
using-declaration
using-directive
static_assert-declaration
alias-declaration
alias-declaration:
using identifier = type-id
simple-declaration:
decl-specifier-seq,p, init-declarator-listp; ;
static_assert-declaration:

static_assert (constant-expression , string-literal) ;

[Note: asm-definition s are described in 7.4, and linkage-specification s are described in 7.5. Function-definition s
are described in 8.4 and template-declaration s are described in clause 14. Namespace-definition s are described
in 7.3.1, using-declaration s are described in 7.3.3 and using-directive s are described in 7.3.4. —end note] The
simple-declaration

decl-specifier-seqop; init-declarator-listop; ;

is divided into two parts: decl-specifier s, the components of a decl-specifier-seq, are described in 7.1 and declarator s,
the components of an init-declarator-list, are described in clause 8.

7.1 Specifiers Declarations 128

A declaration occurs in a scope (3.3); the scope rules are summarized in 3.4. A declaration that declares a function or
defines a class, namespace, template, or function also has one or more scopes nested within it. These nested scopes, in
turn, can have declarations nested within them. Unless otherwise stated, utterances in clause 7 about components in, of,
or contained by a declaration or subcomponent thereof refer only to those components of the declaration that are not
nested within scopes nested within the declaration.

In a simple-declaration, the optional init-declarator-list can be omitted only when declaring a class (clause 9) or enu-
meration (7.2), that is, when the decl-specifier-seq contains either a class-specifier, an elaborated-type-specifier with a
class-key (9.1), or an enum-specifier. In these cases and whenever a class-specifier or enum-specifier is present in the
decl-specifier-seq, the identifiers in these specifiers are among the names being declared by the declaration (as class-
names, enum-names, or enumerators, depending on the syntax). In such cases, and except for the declaration of an
unnamed bit-field (9.6), the decl-specifier-seq shall introduce one or more names into the program, or shall redeclare a
name introduced by a previous declaration. [Example:

enum { }; // ill-formed
typedef class { }; // ill-formed

— end example |

In a static_assert-declaration the constant-expression shall be an-integral a constant expression (5.19) that can be con-
textually converted to bool (clause 4). If the value of the expression when gj converted te-beel is true, the declaration
has no effect. Otherwise, the program is ill-formed, and the resulting diagnostic message (1.4) shall include the text
of the string-literal, except that characters not in the basic source character set (2.2) are not required to appear in the
diagnostic message. [Example:

static_assert(sizeof (long) >= 8, "64-bit code generation required for this library.");

— end example]

Each init-declarator in the init-declarator-list contains exactly one declarator-id, which is the name declared by that
init-declarator and hence one of the names declared by the declaration. The rype-specifiers (7.1.6) in the decl-specifier-
seq and the recursive declarator structure of the init-declarator describe a type (8.3), which is then associated with the
name being declared by the init-declarator.

If the decl-specifier-seq contains the typedef specifier, the declaration is called a typedef declaration and the name of
each init-declarator is declared to be a typedef-name, synonymous with its associated type (7.1.3). If the decl-specifier-
seq contains no typedef specifier, the declaration is called a function declaration if the type associated with the name
is a function type (8.3.5) and an object declaration otherwise.

Syntactic components beyond those found in the general form of declaration are added to a function declaration to
make a function-definition. An object declaration, however, is also a definition unless it contains the extern specifier
and has no initializer (3.1). A definition causes the appropriate amount of storage to be reserved and any appropriate
initialization (8.5) to be done.

Only in function declarations for constructors, destructors, and type conversions can the decl-specifier-seq be omitted.”®
7.1 Specifiers [dcl.spec]

The specifiers that can be used in a declaration are

78)The “implicit int” rule of C is no longer supported.

Draft

129 Declarations 7.1 Specifiers

decl-specifier:

storage-class-specifier

type-specifier

function-specifier

friend

typedef

constexpr

alignment-specifier
decl-specifier-seq:

decl-specifier-seq,p, decl-specifier

2 The longest sequence of decl-specifier s that could possibly be a type name is taken as the decl-specifier-seq of a
declaration. The sequence shall be self-consistent as described below. [Example:

typedef char* Pc;
static Pc; // error: name missing

Here, the declaration static Pc is ill-formed because no name was specified for the static variable of type Pc. To get a
variable called Pc, a type-specifier (other than const or volatile) has to be present to indicate that the typedef-name
Pc is the name being (re)declared, rather than being part of the decl-specifier sequence. For another example,

void f(const Pc); //void f(char* const) (not const charx)
void g(const int Pc); //void g(const int)

— end example]

3 [Note: since signed, unsigned, long, and short by default imply int, a fype-name appearing after one of those
specifiers is treated as the name being (re)declared. [Example:

void h(unsigned Pc); //void h(unsigned int)
void k(unsigned int Pc); //void k(unsigned int)

—end example] — end note |
7.1.1 Storage class specifiers [dcl.stc]

1 The storage class specifiers are
storage-class-specifier:

register

static

extern

mutable
At most one storage-class-specifier shall appear in a given decl-specifier-seq. If a storage-class-specifier appears in
a decl-specifier-seq, there can be no typedef specifier in the same decl-specifier-seq and the init-declarator-list of
the declaration shall not be empty (except for global anonymous unions, which shall be declared static (9.5)). The
storage-class-specifier applies to the name declared by each init-declarator in the list and not to any names declared
by other specifiers. A storage-class-specifier shall not be specified in an explicit specialization (14.7.3) or an explicit
instantiation (14.7.2) directive.

2 The register specifier shall be applied only to names of objects declared in a block (6.3) or to function parame-
ters (8.4). It specifies that the named object has automatic storage duration (3.7.2). An object declared without a
storage-class-specifier at block scope or declared as a function parameter has automatic storage duration by default.

Draft

7.1 Specifiers Declarations 130

A register specifier is a hint to the implementation that the object so declared will be heavily used. [Note: the hint
can be ignored and in most implementations it will be ignored if the address of the object is taken. — end note]

The static specifier can be applied only to names of objects and functions and to anonymous unions (9.5). There can
be no static function declarations within a block, nor any static function parameters. A static specifier used in
the declaration of an object declares the object to have static storage duration (3.7.1). A static specifier can be used
in declarations of class members; 9.4 describes its effect. For the linkage of a name declared with a static specifier,
see 3.5.

The extern specifier can be applied only to the names of objects and functions. The extern specifier cannot be used in
the declaration of class members or function parameters. For the linkage of a name declared with an extern specifier,
see 3.5. [Note: The extern keyword can also be used in explicit-instantiations and linkage-specifications, but it is not a
storage-class-specifier in such contexts. — end note |

A name declared in a namespace scope without a storage-class-specifier has external linkage unless it has internal
linkage because of a previous declaration and provided it is not declared const. Objects declared const and not
explicitly declared extern have internal linkage.

The linkages implied by successive declarations for a given entity shall agree. That is, within a given scope, each
declaration declaring the same object name or the same overloading of a function name shall imply the same linkage.
Each function in a given set of overloaded functions can have a different linkage, however. [Example:

static charx £(); // £() has internal linkage

char* £() // £ Q) still has internal linkage
{4 . x/}

char*x g(); // g() has external linkage

static char*x g() // error: inconsistent linkage
{4 . %}

void h();

inline void hQ); // external linkage

inline void 1Q);
void 1Q); // external linkage

inline void m(Q);
extern void m(); // external linkage

static void n(Q);

inline void nQ); // internal linkage

static int a; // a has internal linkage

int a; // error: two definitions
static int b; //'b has internal linkage
extern int b; //'b still has internal linkage
int c; // ¢ has external linkage
static int c; // error: inconsistent linkage

Draft

10

131 Declarations 7.1 Specifiers

extern int d; // 4 has external linkage
static int d; // error: inconsistent linkage

— end example]

The name of a declared but undefined class can be used in an extern declaration. Such a declaration can only be used
in ways that do not require a complete class type. [Example:

struct S;

extern S a;
extern S f();
extern void g(8);

void h()
{
ga); // error: 8 is incomplete
£0O; // error: S is incomplete
}

—end example |

The mutable specifier can be applied only to names of class data members (9.2) and cannot be applied to names declared
const or static, and cannot be applied to reference members. [Example:

class X {
mutable const int* p; // OK
mutable int* const q; // ill-formed
};

—end example |

The mutable specifier on a class data member nullifies a const specifier applied to the containing class object and
permits modification of the mutable class member even though the rest of the object is const (7.1.6.1).

7.1.2 Function specifiers [dcl.fct.spec]

Function-specifiers can be used only in function declarations.
function-specifier:

inline

virtual

explicit
A function declaration (8.3.5, 9.3, 11.4) with an inline specifier declares an inline function. The inline specifier
indicates to the implementation that inline substitution of the function body at the point of call is to be preferred to the
usual function call mechanism. An implementation is not required to perform this inline substitution at the point of
call; however, even if this inline substitution is omitted, the other rules for inline functions defined by 7.1.2 shall still be
respected.

A function defined within a class definition is an inline function. The inline specifier shall not appear on a block scope
function declaration.”® If the inline specifier is used in a friend declaration, that declaration shall be a definition or
the function shall have previously been declared inline.

")The inline keyword has no effect on the linkage of a function.

Draft

7.1 Specifiers Declarations 132

An inline function shall be defined in every translation unit in which it is used and shall have exactly the same definition
in every case (3.2). [Note: a call to the inline function may be encountered before its definition appears in the translation
unit. — end note] If the definition of a function appears in a translation unit before its first declaration as inline, the
program is ill-formed. If a function with external linkage is declared inline in one translation unit, it shall be declared
inline in all translation units in which it appears; no diagnostic is required. An inline function with external linkage
shall have the same address in all translation units. A static local variable in an extern inline function always refers
to the same object. A string literal in the body of an extern inline function is the same object in different translation
units. [Note: A string literal appearing in a default argument expression is not in the body of an inline function merely
because the expression is used in a function call from that inline function. — end note]

The virtual specifier shall be used only in the initial declaration of a non-static class member function; see 10.3.

The explicit specifier shall be used only in the declaration of a constructor or conversion function within its class
definition; see 12.3.1 and 12.3.2.

7.1.3 The typedef specifier [dcl.typedef]

Declarations containing the decl-specifier typedef declare identifiers that can be used later for naming fundamen-
tal (3.9.1) or compound (3.9.2) types. The typedef specifier shall not be used in a function-definition (8.4), and it shall
not be combined in a decl-specifier-seq with any other kind of specifier except a type-specifier.

typedef-name:
identifier

A name declared with the typedef specifier becomes a typedef-name. Within the scope of its declaration, a typedef-
name is syntactically equivalent to a keyword and names the type associated with the identifier in the way described in
clause 8. A typedef-name is thus a synonym for another type. A typedef-name does not introduce a new type the way a
class declaration (9.1) or enum declaration does. [Example: after

typedef int MILES, *KLICKSP;

the constructions

MILES distance;
extern KLICKSP metricp;

are all correct declarations; the type of distance is int and that of metricp is “pointer to int.” — end example]

A typedef-name can also be introduced by an alias-declaration. The identifier following the using keyword becomes
a typedef-name. It has the same semantics as if it were introduced by the typedef specifier. In particular, it does not
define a new type and it shall not appear in the type-id. [Example:

using handler_t = void (x)(int);

extern handler_t ignore;

extern void (xignore) (int); // redeclare ignore
using cell = pair<voidx, cellx*>; // ill-formed

— end example]

In a given non-class scope, a typedef specifier can be used to redefine the name of any type declared in that scope to
refer to the type to which it already refers. [Example:

Draft

133 Declarations 7.1 Specifiers

typedef struct s { /.. %/ } s;
typedef int I;

typedef int I;

typedef I I;

— end example]

4 In agiven class scope, a typedef specifier can be used to redefine any class-name declared in that scope that is not also
a typedef-name to refer to the type to which it already refers. [Example:

struct S {
typedef struct A {} A; // OK
typedef struct B B; // OK
typedef A A; // error

— end example]

5 In a given scope, a typedef specifier shall not be used to redefine the name of any type declared in that scope to refer
to a different type. [Example:

class complex { /* .. %/ };
typedef int complex; // error: redefinition
—end example]

6 Similarly, in a given scope, a class or enumeration shall not be declared with the same name as a typedef-name that is
declared in that scope and refers to a type other than the class or enumeration itself. [Example:

typedef int complex;
class complex { /* ... */ }; // error: redefinition
—end example]

7 [Note: A typedef-name that names a class type, or a cv-qualified version thereof, is also a class-name (9.1). If a typedef-
name is used to identify the subject of an elaborated-type-specifier (7.1.6.3), a class definition (clause 9), a constructor
declaration (12.1), or a destructor declaration (12.4), the program is ill-formed. — end note | [Example:

struct S {
SO
50 ;
};

typedef struct S T;

Sa=T0O; // OK
struct T * p; // error
— end example |

8 If the typedef declaration defines an unnamed class (or enum), the first typedef-name declared by the declaration to be
that class type (or enum type) is used to denote the class type (or enum type) for linkage purposes only (3.5). [Example:

typedef struct { } #*ps, S; // 8 is the class name for linkage purposes

Draft

7.1 Specifiers Declarations 134

— end example]

If a typedef TD names a type that is a reference to a type T, an attempt to create the type “Ivalue reference to cv TD”
creates the type “lvalue reference to T,” while an attempt to create the type “rvalue reference to cv TD” creates the type

TD. [Example:
int i;
typedef int& LRI;
typedef int&& RRI;

LRI& rl = i; // 1 has the type int&
const LRI& r2 = i; //x2 has the type int&
const LRI&& r3 = i; // x3 has the type int&
RRI& r4 = i; // x4 has the type int&
RRI&& r5 = i; // 5 has the type int&&

— end example |

7.1.4 The friend specifier [dcl.friend]
The friend specifier is used to specify access to class members; see 11.4.

7.1.5 The constexpr specifier [dcl.constexpr]

The constexpr specifier shall be applied only to the definition of an object, function, or function template, or to the dec-
laration of a static data member of a literal type (3.9). [Note: function parameters cannot be declared constexpr. — end note |

[Example:

constexpr int square(int x) // OK
{
return x * Xx;
}
constexpr int bufsz = 1024; // OK
constexpr struct pixel { // error: pixel is a type
int x;
int y;
};
int next(constexpr int x) // error
{
return x + 1;
}
extern constexpr int memsz; // error: not a definition

— end example |

A constexpr specifier used in a function declaration declares that function to be a constexpr function. Similarly, a
constexpr specifier used in a constructor declaration declares that constructor to be a constexpr constructor. Constexpr
functions and constexpr constructors are implicitly inline (7.1.2). A constexpr function shall not be virtual (10.3).

The definition of a constexpr function shall satisfy the following constraints:

— its return type shall be a literal type

Draft

135 Declarations 7.1 Specifiers

— each of its parameter types shall be a literal type
— its function-body shall be a compound-statement of the form

{ return ezpression; }

where expression is a potential constant expression (5.19)

— every implicit conversion used in converting expression to the function return type (8.5) shall be one of those
allowed in a constant expression (5.19).

[Example:
constexpr int square(int x)
{ return x * x; } // OK
constexpr long long_max()
{ return 2147483647; } // OK

constexpr int abs(int x)
{return x<0°? -x : x; } /OK

constexpr void f(int x) // error: return type is void

{4 . x/}
constexpr int prev(int x)

{ return --x; } // error: use of decrement
constexpr int g(int x, int n) /error: body not just “return expr”
{

int r = 1;
while (--n > 0) r *= x;
return r;

— end example]
The definition of a constexpr constructor shall satisfy the following constraints:
— the compound-statement of its function-body shall be empty
— every non-static data member and base class sub-object shall be initialized (12.6.2)

— every constructor involved in initializing non-static data members and base class sub-objects shall be a constexpr
constructor invoked with potential constant expression arguments, if any.

A trivial copy constructor is also a constexpr constructor.

[Example:

struct Length {

explicit constexpr Length(int i = 0) : val(i) { }
private:

int val;

};

—end example |

Draft

7.1 Specifiers Declarations 136

5 If the instantiated template specialization of a constexpr function template would fail to satisfy the requirements for a
constexpr function, the constexpr specifier is ignored and the specialization is not a constexpr function.

6 A constexpr specifier used in a non-static member function definition declares that member function to be const (9.3.1).
[Note: the constexpr specifier has no other effect on the function type. — end note] The class of which that function
is a member shall be a literal type (3.9). [Example:

class debug_flag {

public:
explicit debug_flag(bool);
constexpr bool is_on(); // error: debug_flag not
// literal type
private:
bool flag;
};

constexpr int bar(int x, int y) /OK
{ return x + y + x*y; }

/s

int bar(int x, int y) // error: redefinition of bar
{ return x * 2 + 3 x y; }

— end example]

7 A constexpr specifier used in an object declaration declares the object as const. Such an object shall be initialized,
and every expression that appears in its initializer (8.5) shall be a constant expression. Every implicit conversion used
in converting the initializer expressions shall be one of those allowed in a constant expression (5.19). [Example:

struct pixel {

int x, y;
};
constexpr pixel ur = { 1294, 1024 };/OK
constexpr pixel origin; // error: initializer missing

—end example]

7.1.6 Type specifiers [dcl.type]

1 The type-specifiers are

type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
typename-specifier
cv-qualifier

2 As a general rule, at most one type-specifier is allowed in the complete decl-specifier-seq of a declaration. The only
exceptions to this rule are the following:

— const can be combined with any type specifier except itself.

Draft

137 Declarations 7.1 Specifiers

— volatile can be combined with any type specifier except itself.

— signed or unsigned can be combined with char, long, short, or int.
— short or long can be combined with int.

— long can be combined with double.

— long can be combined with long.

— auto can be combined with any type specifier except itself.

At least one type-specifier that is not a cv-qualifier is required in a declaration unless it declares a constructor, destructor
or conversion function.?”

[Note: class-specifier s and enum-specifier s are discussed in clause 9 and 7.2, respectively. The remaining type-specifier
s are discussed in the rest of this section. — end note |

7.1.6.1 The cv-qualifiers [dcl.type.cv]

There are two cv-qualifiers, const and volatile. If a cv-qualifier appears in a decl-specifier-seq, the init-declarator-list
of the declaration shall not be empty. [Note: 3.9.3 describes how cv-qualifiers affect object and function types. — end
note] Redundant cv-qualifications are ignored. [Note: for example, these could be introduced by typedefs. — end note |

An object declared in namespace scope with a const-qualified type has internal linkage unless it is explicitly declared
extern or unless it was previously declared to have external linkage. A variable of non-volatile const-qualified integral
or enumeration type initialized by an integral constant expression can be used in integral constant expressions (5.19).
[Note: as described in 8.5, the definition of an object or subobject of const-qualified type must specify an initializer or
be subject to default-initialization. — end note]

A pointer or reference to a cv-qualified type need not actually point or refer to a cv-qualified object, but it is treated as
if it does; a const-qualified access path cannot be used to modify an object even if the object referenced is a non-const
object and can be modified through some other access path. [Note: cv-qualifiers are supported by the type system so
that they cannot be subverted without casting (5.2.11). — end note]

Except that any class member declared mutable (7.1.1) can be modified, any attempt to modify a const object during
its lifetime (3.8) results in undefined behavior. [Example:

const int ci = 3; // cv-qualified (initialized as required)

ci = 4; // ill-formed: attempt to modify const

int 1 = 24 // not cv-qualified

const int* cip; // pointer to const int

cip = &i; // OK: cv-qualified access path to unqualified

xcip = 4; // ill-formed: attempt to modify through ptr to const
int* ip;

ip = const_cast<int*>(cip); // cast needed to convert const intx* fo int*

xip = 4; // defined: *ip points to i, a non-const object

80)There is no special provision for a decl-specifier-seq that lacks a type-specifier or that has a type-specifier that only specifies cv-qualifier s. The
“implicit int” rule of C is no longer supported.

Draft

5

1

7.1 Specifiers Declarations 138

const int* ciq = new const int (3); // initialized as required
int* iq = const_cast<int*>(ciq); // cast required
xiq = 4; // undefined: modifies a const object

For another example

class X {
public:
mutable int i;
int j;
};
class Y {
public:
X x;
YO;
};
const Y y;
y.x.it++; // well-formed: mutable member can be modified
y.x.jt++; // ill-formed: const-qualified member modified
Y+ p = const_cast<Y*>(&y); // cast away const-ness of y
p—>x.i = 99; // well-formed: mutable member can be modified
p—>x.j = 99; // undefined: modifies a const member

— end example]
If an attempt is made to refer to an object defined with a volatile-qualified type through the use of an lvalue with a
non-volatile-qualified type, the program behaviour is undefined.

[Note: volatile is a hint to the implementation to avoid aggressive optimization involving the object because the value
of the object might be changed by means undetectable by an implementation. See 1.9 for detailed semantics. In general,

the semantics of volatile are intended to be the same in C++ as they are in C. — end note]
7.1.6.2 Simple type specifiers [dcl.type.simple]

The simple type specifiers are

Draft

139 Declarations

7.1 Specifiers

simple-type-specifier:

1 1 opt Nested-name-specifierqp, type-name
: 1 opt hested-name-specifier template simple-template-id

char
charl16_t
char32_t
wchar_t
bool
short
int

long
signed
unsigned
float
double
void
auto

decltype (expression)

type-name:
class-name
enum-name
typedef-name

2 The auto specifier is a placeholder for a type to be deduced (7.1.6.4). The other simple-type-specifier s specify ei-
ther a previously-declared user-defined type or one of the fundamental types (3.9.1). Table 9 summarizes the valid
combinations of simple-type-specifier s and the types they specify.

Table 9: simple-type-specifier s and the types they specify

Specifier(s)

Type

type-name

char

unsigned char
signed char
charl6_t

char32_t

bool

unsigned

unsigned int
signed

signed int

int

unsigned short int
unsigned short
unsigned long int
unsigned long
unsigned long long int
unsigned long long

the type named
“char
“unsigned char”
“signed char”
“charl6_t”
“char32_t”
“bool”
“unsigned int”
“unsigned int”

[73PeEt)

nt

[73PeEl)

int
“int”
“unsigned short int”
“unsigned short int”
“unsigned long int”
“unsigned long int”
“unsigned long long int

“unsigned long long int

tL)

T3]

T3]

Draft

7.1 Specifiers Declarations 140

] Specifier(s) Type
type-name the type named
signed long int “long int”
signed long “long int”
signed long long int “long long int”
signed long long “long long int”
long long int “long long int”
long long “long long int”
long int “long int”
long “long int”
signed short int “short int”
signed short “short int”
short int “short int”
short “short int”
wchar_t “wchar_t”
float “float”
double “double”
long double “long double”
void “void”
auto placeholder for a type to be deduced
decltype(expression) the type as defined below

3 When multiple simple-type-specifiers are allowed, they can be freely intermixed with other decl-specifiers in any order.
[Note: 1t is implementation-defined whether objects of char type and certain bit-fields (9.6) are represented as signed
or unsigned quantities. The signed specifier forces char objects and bit-fields to be signed; it is redundant in other
contexts. — end note |

4 The type denoted by decltype(e) is defined as follows:

— if e is an id-expression or a class member access (5.2.5), decltype(e) is the type of the entity named by e. If
there is no such entity, or if e names a set of overloaded functions, the program is ill-formed;

— otherwise, if e is a function call (5.2.2) or an invocation of an overloaded operator (parentheses around e are
ignored), decltype (e) is the return type of that function;

— otherwise, if e is an lvalue, decltype (e) is T&, where T is the type of e;
— otherwise, decltype (e) is the type of e.
The operand of the decltype specifier is an unevaluated operand (clause 5).

[Example:

const int&& foo();

int i;

struct A { double x; }
const A* a = new AQ);

decltype(foo()); //type is const int&&
decltype(i); // type is int
decltype (a->x) ; // type is double

Draft

141 Declarations 7.1 Specifiers

decltype((a->x)); // type is const double&

— end example |

7.1.6.3 Elaborated type specifiers [dcl.type.elab]

elaborated-type-specifier:
class-key : : opr nested-name-specifier,p; identifier
class-key : : opr nested-name-specifier,p; template,,, simple-template-id
enum-key : :op nested-name-specifier,, identifier

If an elaborated-type-specifier is the sole constituent of a declaration, the declaration is ill-formed unless it is an explicit
specialization (14.7.3), an explicit instantiation (14.7.2) or it has one of the following forms:

class-key identifier ;

friend class-key ::,p; identifier ;

friend class-key ::op; simple-template-id ;

friend class-key ::,p; nested-name-specifier identifier ;

friend class-key ::,p; nested-name-specifier template,y, simple-template-id ;

3.4.4 describes how name lookup proceeds for the identifier in an elaborated-type-specifier. If the identifier resolves
to a class-name or enum-name, the elaborated-type-specifier introduces it into the declaration the same way a simple-
type-specifier introduces its type-name. If the identifier resolves to a typedef-name, the elaborated-type-specifier is
ill-formed. [Note: this implies that, within a class template with a template type-parameter T, the declaration

friend class T;

is ill-formed. — end note |

The class-key or enum-key present in the elaborated-type-specifier shall agree in kind with the declaration to which
the name in the elaborated-type-specifier refers. This rule also applies to the form of elaborated-type-specifier that
declares a class-name or friend class since it can be construed as referring to the definition of the class. Thus, in
any elaborated-type-specifier, the enum-key shall be used to refer to an enumeration (7.2), the union class-key shall be
used to refer to a union (clause 9), and either the class or struct class-key shall be used to refer to a class (clause 9)
declared using the class or struct class-key. The enum-key used in an elaborated-type-specifier need not match the
one in the enumeration’s definition. [Example:

enum class E { a, b };

enum E x = E::a; // OK

— end example |

7.1.6.4 auto specifier [dcl.spec.auto]

The auto type-specifier has two meanings depending on the context of its use. In a decl-specifier-seq that contains at least
one type-specifier (in addition to auto) that is not a cv-qualifier, the auto rype-specifier specifies that the object named in
the declaration has automatic storage duration. The decl-specifier-seq shall contain no storage-class-specifiers. This use of
the auto specifier shall only be applied to names of objects declared in a block (6.3) or to function parameters (8.4).

Otherwise (auto appearing with no type specifiers other than cv-qualifiers), the auto rype-specifier signifies that the type
of an object being declared shall be deduced from its initializer. The name of the object being declared shall not appear
in the initializer expression.

Draft

7.1 Specifiers Declarations 142

This use of auro is allowed when declaring objects in a block (6.3), in namespace scope (3.3.5), and in a for-init-
statement (6.5.3). The decl-specifier-seq shall be followed by one or more init-declarators, each of which shall have a
non-empty initializer of either of the following forms:

= assignment-expression
(assignment-expression)

[Example:
auto x = 5; // OK: x has type int
const auto *v = &x, u = 6; // OK: v hastype const intx, u has type const int
static auto y = 0.0; // OK: y has type double
static auto int z; // error: auto and static conflict
auto int r; // OK: r has type int

— end example |

The auto fype-specifier can also be used in declaring an object in the condition of a selection statement (6.4) or an
iteration statement (6.5), in the type-specifier-seq in a new-type-id (5.3.4), and in declaring a static data member with a
constant-initializer that appears within the member-specification of a class definition (9.4.2).

A program that uses auto in a context not explicitly allowed in this section is ill-formed.

Once the type of a declarator-id has been determined according to 8.3, the type of the declared variable using the
declarator-id is determined from the type of its initializer using the rules for template argument deduction. Let T be
the type that has been determined for a variable identifier d. Obtain P from T by replacing the occurrences of auto
with a new invented type template parameter U. Let A be the type of the initializer expression for d. The type deduced
for the variable d is then the deduced type determined using the rules of template argument deduction from a function
call (14.8.2.1), where P is a function template parameter type and A is the corresponding argument type. If the deduction
fails, the declaration is ill-formed.

If the list of declarators contains more than one declarator, the type of each declared variable is determined as described
above. If the type deduced for the template parameter U is not the same in each deduction, the program is ill-formed.

[Example:

const auto &i = expr;

The type of i is the deduced type of the parameter u in the call £ (expr) of the following invented function template:

template <class U> void f(const U& u);

— end example]
7.1.7 Alignment specifier [dcl.align]

The alignment specifier has the form

alignment-specifier:
alignas (constant-expression)
alignas (type-id)

When the alignment specifier is of the form alignas (constant-expression):

— the constant expression shall be an integral constant expression

Draft

10

143 Declarations 7.2 Enumeration declarations

— if the constant expression evaluates to a fundamental alignment, the alignment requirement of the declared object
shall be the specified fundamental alignment

— if the constant expression evaluates to an extended alignment and the implementation supports that alignment in
the context of the declaration, the alignment of the declared object shall be that alignment

— if the constant expression evaluates to an extended alignment and the implementation does not support that align-
ment in the context of the declaration, the program is ill-formed

— if the constant expression evaluates to zero, the alignment specifier shall have no effect

— otherwise, the program is ill-formed.

When the alignment specifier is of the form alignas (type-id), it shall have the same effect as alignas (alignof (type-id))

(5.3.6).

When multiple alignment specifiers are specified for an object, the alignment requirement shall be set to the strictest
specified alignment.

The combined effect of all alignment specifiers in a declaration shall not specify an alignment that is less strict than the
alignment that would otherwise be required for the object being declared.

An alignment specifier shall not be specified in a declaration of a typedef, a bit-field, a reference, a function parameter
or return type, or an object declared with the register storage-class specifier. [Note: in short, the specifier can be used
on automatic variables, namespace scope variables, and members of class types (as long as they are not bit-fields). In
other words, it cannot be used in contexts where it would become part of a type so it would affect name mangling, name
lookup, or ordering of function templates. — end note]

If the defining declaration of an object has an alignment specifier, any non-defining declaration of that object shall either
specify equivalent alignment or have no alignment specifier. No diagnostic is required if declarations of an object have
different alignment specifiers in different translation units.

[Example: An aligned buffer with an alignment requirement of A and holding N elements of type T other than char,
signed char, or unsigned char can be declared as:

T alignas(T) alignas(A) buffer([N];
Specifying alignas(T) in the alignment specifier list ensures that the final requested algnment will not be weaker than
alignof (T), and therefore the program will not be ill-formed. — end example |

[Note: the alignment of a union type can be strengthened by applying the alignment specifier to any member of the
union. — end note |

[Note: the std: :aligned_union template (20.4.7) can be used to create a union containing a type with a non-trivial
constructor or destructor. — end note |

7.2 Enumeration declarations [dcl.enum]

An enumeration is a distinct type (3.9.1) with named constants. Its name becomes an enum-name, within its scope.

Draft

2

7.2 Enumeration declarations Declarations 144

enum-name:
identifier
enum-specifier:
enum-key identifier oy, enum-baseqy, { enumerator-listop,
enum-key identifier oy, enum-baseqy, { enumerator-list , >
enum-key:
enum
enum class
enum struct
enum-base:
: type-specifier-seq
enumerator-list:
enumerator-definition
enumerator-list , enumerator-definition
enumerator-definition:
enumerator
enumerator = constant-expression
enumerator:
identifier

The enumeration type declared with an enum-key of only enum is an unscoped enumeration, and its enumerators
are unscoped enumerators. The enum-keys enum class and enum struct are semantically equivalent; an enumer-
ation type declared with one of these is a scoped enumeration, and its enumerators are scoped enumerators. The
type-specifier-seq of an enum-base shall name an integral type; any cv-qualification is ignored. The identifiers in an
enumerator-list are declared as constants, and can appear wherever constants are required. An enumerator-definition
with = gives the associated enumerator the value indicated by the constant-expression. The constant-expression shall be
an integral constant expression. If the first enumerator has no initializer, the value of the corresponding constant is zero.
An enumerator-definition without an initializer gives the enumerator the value obtained by increasing the value of the
previous enumerator by one.

[Example:

enum { a, b, c=0 };
enum { d, e, f=e+2 };

defines a, c, and d to be zero, b and e to be 1, and f to be 3. — end example]

Each enumeration defines a type that is different from all other types. Each enumeration also has an underlying type. The
underlying type can be explicitly specified using enum-base; if not explicitly specified, the underlying type of a scoped
enumeration type is int. In these cases, the underlying type is said to be fixed. Following the closing brace of an enum-
specifier, each enumerator has the type of its enumeration. If the underlying type is fixed, the type of each enumerator
prior to the closing brace is the underlying type; if the initializing value of an enumerator cannot be represented by the
underlying type, the program is ill-formed. If the underlying type is not fixed, the type of each enumerator is the type of
its initializing value:

— If an initializer is specified for an enumerator, the initializing value has the same type as the expression.
— If no initializer is specified for the first enumerator, the initializing value has an unspecified integral type.

— Otherwise the type of the initializing value is the same as the type of the initializing value of the preceding
enumerator unless the incremented value is not representable in that type, in which case the type is an unspecified
integral type sufficient to contain the incremented value.

Draft

145 Declarations 7.2 Enumeration declarations

For an enumeration whose underlying type is not fixed, the underlying type is an integral type that can represent all
the enumerator values defined in the enumeration. If no integral type can represent all the enumerator values, the
enumeration is ill-formed. It is implementation-defined which integral type is used as the underlying type except that
the underlying type shall not be larger than int unless the value of an enumerator cannot fit in an int or unsigned
int. If the enumerator-list is empty, the underlying type is as if the enumeration had a single enumerator with value 0.

For an enumeration whose underlying type is fixed, the values of the enumeration are the values of the underlying
type. Otherwise, for an enumeration where e, is the smallest enumerator and e, is the largest, the values of the
enumeration are the values in the range by, to b4y, defined as follows: Let K be 1 for a two’s complement representation
and O for a one’s complement or sign-magnitude representation. by, is the smallest value greater than or equal to
max(|emin| — K, |emax|) and equal to 22 — 1, where M is a non-negative integer. by, is zero if e, is non-negative and
—(bmax + K) otherwise. The size of the smallest bit-field large enough to hold all the values of the enumeration type is
max(M, 1) if by, is zero and M + 1 otherwise. It is possible to define an enumeration that has values not defined by any
of its enumerators.

Two enumeration types are layout-compatible if they have the same underlying type.

The value of an enumerator or an object of an unscoped enumeration type is converted to an integer by integral promo-
tion (4.5). [Example:

enum color { red, yellow, green=20, blue };

color col = red;

color* cp = &col;

if (*cp == blue) /...

makes color a type describing various colors, and then declares col as an object of that type, and cp as a pointer to an
object of that type. The possible values of an object of type color are red, yellow, green, blue these values can be
converted to the integral values O, 1, 20, and 21. Since enumerations are distinct types, objects of type color can be
assigned only values of type color.

color c = 1; // error: type mismatch,
// no conversion from int to color

int i = yellow; // OK: yellow converted to integral value 1
// integral promotion

Note that this implicit enum to int conversion is not provided for a scoped enumeration:

enum class Col { red, yellow, green };

int x = Col::red; // error: no Col to int conversion
Col y = Col::red;
if (y) {1} // error: no Col fo bool conversion

— end example |

An expression of arithmetic or enumeration type can be converted to an enumeration type explicitly. The value is
unchanged if it is in the range of enumeration values of the enumeration type; otherwise the resulting enumeration value
is unspecified.

Each enum-name and each unscoped enumerator is declared in the scope that immediately contains the enum-specifier.
Each scoped enumerator is declared in the scope of the enumeration. These names obey the scope rules defined for all
names in (3.3) and (3.4).[Example:

Draft

7.3 Namespaces Declarations 146

enum direction { left=’1’, right=’r’ };

void g()

{
direction d; // OK
d = left; // OK
d = direction::right; // OK

}

enum class altitude { high=’h’, low=’1’ };

void h()

{
altitude a; // OK
a = high; // error: high not in scope
a = altitude::low; // OK

}

— end example] An enumerator declared in class scope can be referred to using the class member access operators (: :,
. (dot) and -> (arrow)), see 5.2.5. [Example:

class X {

public:
enum direction { left=’1’, right="r’ };
int f(int i)
{ return i==left ? 0 : i==right ? 1 : 2; }

};
void g(X* p)
{
direction d; // error: direction not in scope
int i;
i = p—>f(left); // error: 1left not in scope
i = p—>f(X::right); // OK
i = p—>f(p—>left); // OK
/7.
}

—end example]

7.3 Namespaces [basic.namespace]

A namespace is an optionally-named declarative region. The name of a namespace can be used to access entities
declared in that namespace; that is, the members of the namespace. Unlike other declarative regions, the definition of a
namespace can be split over several parts of one or more translation units.

The outermost declarative region of a translation unit is a namespace; see 3.3.5.
7.3.1 Namespace definition [namespace.def]

The grammar for a namespace-definition is

Draft

147 Declarations 7.3 Namespaces

namespace-name:
original-namespace-name
namespace-alias
original-namespace-name:
identifier
namespace-definition:
named-namespace-definition
unnamed-namespace-definition
named-namespace-definition:
original-namespace-definition
extension-namespace-definition
original-namespace-definition:
namespace identifier { namespace-body }
extension-namespace-definition:
namespace original-namespace-name { namespace-body }
unnamed-namespace-definition:
namespace { namespace-body }
namespace-body:
declaration-seqp;

The identifier in an original-namespace-definition shall not have been previously defined in the declarative region in
which the original-namespace-definition appears. The identifier in an original-namespace-definition is the name of the
namespace. Subsequently in that declarative region, it is treated as an original-namespace-name.

The original-namespace-name in an extension-namespace-definition shall have previously been defined in an original-
namespace-definition in the same declarative region.

Every namespace-definition shall appear in the global scope or in a namespace scope (3.3.5).

Because a namespace-definition contains declarations in its namespace-body and a namespace-definition is itself a
declaration, it follows that namespace-definitions can be nested. [Example:

namespace Outer {

int i;
namespace Inner {
void f() { i++; } //Outer::i
int i;
void g() { i++; } //Inner::i
}

— end example]

The enclosing namespaces of a declaration are those namespaces in which the declaration lexically appears, except for
a redeclaration of a namespace member outside its original namespace (e.g., a definition as specified in 7.3.1.2). Such a
redeclaration has the same enclosing namespaces as the original declaration. [Example:

namespace Q {
namespace V {
void £(); / enclosing namespaces are the global namespace, Q, and Q: :V
class C { void m(); };
}

void V::f() { / enclosing namespaces are the global namespace, Q, and Q: :V

Draft

7.3 Namespaces Declarations 148

extern void h(); /... sothis declares Q::V::h
}

void V::C::m() { /enclosing namespaces are the global namespace, Q, and Q: :V

}
}

—end example |

7.3.1.1 Unnamed namespaces [namespace.unnamed]

An unnamed-namespace-definition behaves as if it were replaced by

namespace unique { /* empty body */ }
using namespace unique ;
namespace unique { namespace-body }

where all occurrences of unique in a translation unit are replaced by the same identifier and this identifier differs from
all other identifiers in the entire program.3" [Example:

namespace { int i; } // unique : :1i
void £() { i++; } //unique : :i++

namespace A {
namespace {

int 1; //A:: unique ::i
int j; //A:: unique ::j
}
void g() { i++; } //A:: unique : :i++
}
using namespace A;
void h() {
it // error: unique ::ior A:: unique : :i
A:iit; //A:: unique ::i
j++; //A:: unique ::j
}

— end example |
The use of the static keyword is deprecated when declaring objects in a namespace scope (see annex D); the unnamed-

namespace provides a superior alternative.

7.3.1.2 Namespace member definitions [namespace.memdef]

Members (including explicit specializations of templates (14.7.3)) of a namespace can be defined within that namespace.
[Example:

namespace X {
void £O { & .. v }

}

81) Although entities in an unnamed namespace might have external linkage, they are effectively qualified by a name unique to their translation unit

and therefore can never be seen from any other translation unit.

Draft

149 Declarations 7.3 Namespaces

— end example]

Members (including explicit specializations of templates (14.7.3)) of a named namespace can also be defined outside
that namespace by explicit qualification (3.4.3.2) of the name being defined, provided that the entity being defined was
already declared in the namespace and the definition appears after the point of declaration in a namespace that encloses
the declaration’s namespace. [Example:

namespace Q {
namespace V {

void f();
}
void V::f() { /A .. / } // OK
void V::g() { /.. #/ } // error: g() is not yet a member of V
namespace V {
void g();
}

}

namespace R {
void Q::V::g(O) { /... %/ } // error: R doesn’t enclose Q

}

—end example |

Every name first declared in a namespace is a member of that namespace. If a friend declaration in a non-local class
first declares a class or function®? the friend class or function is a member of the innermost enclosing namespace. The
name of the friend is not found by unqualified lookup (3.4.1) or by qualified lookup (3.4.3) until a matching declaration
is provided in that namespace scope (either before or after the class definition granting friendship). If a friend function is
called, its name may be found by the name lookup that considers functions from namespaces and classes associated with
the types of the function arguments (3.4.2). If the name in a friend declaration is neither qualified nor a template-id
and the declaration is a function or an elaborated-type-specifier, the lookup to determine whether the entity has been
previously declared shall not consider any scopes outside the innermost enclosing namespace. [Note: the other forms
of friend declarations cannot declare a new member of the innermost enclosing namespace and thus follow the usual
lookup rules. — end note] [Example:

// Assume £ and g have not yet been defined.
void h(int);

template <class T> void £2(T);
namespace A {

class X {
friend void f(X); /A £ (X) is a friend
class Y {
friend void gQ); //A::gisafriend
friend void h(int); //A::his afriend

// : :h not considered
friend void £2<>(int); // ::£2<>(int) is a friend
};
};

82)this implies that the name of the class or function is unqualified.

Draft

7.3 Namespaces Declarations 150

// A::f, A::gand A: :h are not visible here

X x;

void gO) { £(x); } // definition of A: :g
void £(X) { /* ... */} // definition of A: : £
void h(int) { /* ... =/} // definition of A: :h

// A::f, A: g and A: :h are visible here and known to be friends

using A::x;

void h()
{
A::f(x);
A::X::f(x); // error: £ is not a member of A: :X
A::X::Y::g0; // error: g is not a member of A: :X::Y
}

—end example |
7.3.2 Namespace alias [namespace.alias]

A namespace-alias-definition declares an alternate name for a namespace according to the following grammar:

namespace-alias:
identifier
namespace-alias-definition:
namespace identifier = qualified-namespace-specifier ;
qualified-namespace-specifier:
Diopt nested-name-specifier,, namespace-name
The identifier in a namespace-alias-definition is a synonym for the name of the namespace denoted by the qualified-
namespace-specifier and becomes a namespace-alias. [Note: when looking up a namespace-name in a namespace-
alias-definition, only namespace names are considered, see 3.4.6. — end note]

In a declarative region, a namespace-alias-definition can be used to redefine a namespace-alias declared in that declar-
ative region to refer only to the namespace to which it already refers. [Example: the following declarations are well-
formed:

namespace Company_with_very_long_name { /x..*/ }

namespace CWVLN = Company_with_very_long_name;

namespace CWVLN = Company_with_very_long_name; // OK: duplicate

namespace CWVLN = CWVLN;

— end example]

A namespace-name or namespace-alias shall not be declared as the name of any other entity in the same declarative
region. A namespace-name defined at global scope shall not be declared as the name of any other entity in any global
scope of the program. No diagnostic is required for a violation of this rule by declarations in different translation units.

7.3.3 The using declaration [namespace.udecl]

A using-declaration introduces a name into the declarative region in which the using-declaration appears. That name is
a synonym for the name of some entity declared elsewhere.

Draft

5

151 Declarations 7.3 Namespaces

using-declaration:
using typename,y ::opr hested-name-specifier unqualified-id ;
using :: unqualified-id ;
The member name specified in a using-declaration is declared in the declarative region in which the using-declaration
appears. [Note: only the specified name is so declared; specifying an enumeration name in a using-declaration does not
declare its enumerators in the using-declaration’s declarative region. — end note |

Every using-declaration is a declaration and a member-declaration and so can be used in a class definition. [Example:

struct B {
void f(char);
void g(char);
enum E { e };
union { int x; };

};
struct D : B {
using B::f;
void f(int) { £(’°c’); } //calls B: : £ (char)
void g(int) { g(’c’); } // recursively calls D: : g(int)

};

— end example]

In a using-declaration used as a member-declaration, the nested-name-specifier shall name a base class of the class
being defined. Such a using-declaration introduces the set of declarations found by member name lookup (10.2, 3.4.3.1).

[Example:

class C {
int gQ);

}

class D2 : public B {
using B::f; // OK: B is a base of D2
using B::e; // OK: e is an enumerator of base B
using B::x; // OK: x is a union member of base B
using C::g; // error: Cisn’t a base of D2

};

— end example |

[Note: since constructors and destructors do not have names, a using-declaration cannot refer to a constructor or a
destructor for a base class. Since specializations of member templates for conversion functions are not found by name
lookup, they are not considered when a using-declaration specifies a conversion function (14.5.2). —end note] If
an assignment operator brought from a base class into a derived class scope has the signature of a copy-assignment
operator for the derived class (12.8), the using-declaration does not by itself suppress the implicit declaration of the
derived class copy-assignment operator; the copy-assignment operator from the base class is hidden or overridden by
the implicitly-declared copy-assignment operator of the derived class, as described below.

A using-declaration shall not name a template-id. [Example:

Draft

7.3 Namespaces Declarations 152

class A {

public:
template <class T> void £(T);
template <class T> struct X { };

};
class B : public A {
public:
using A::f<double>; // ill-formed
using A::X<int>; //ill-formed
};

—end example]
6 A using-declaration shall not name a namespace.
7 A using-declaration shall not name a scoped enumerator.

8 A using-declaration for a class member shall be a member-declaration. [Example:

struct X {
int i;
static int s;
};
void f()
{
using X::i; // error: X: :1 is a class member
// and this is not a member declaration.
using X::s; // error: X: :s is a class member
// and this is not a member declaration.
}

—end example |

9 Members declared by a using-declaration can be referred to by explicit qualification just like other member names
(3.4.3.2). In a using-declaration, a prefix : : refers to the global namespace. [Example:

void £();

namespace A {

void g();

}

namespace X {
using ::f; // global £
using A::g; //Asg

}

void h()

{
X::f0; /calls ::f
X::g0); HcallsA::g

Draft

10

11

153 Declarations 7.3 Namespaces

— end example]

A using-declaration is a declaration and can therefore be used repeatedly where (and only where) multiple declarations
are allowed. [Example:

namespace A {
int i;

}

namespace Al {
using A::i;

using A::i; // OK: double declaration
¥
void £()
{
using A::i;
using A::i; // error: double declaration
}
class B {
public:
int i;
};

class X : public B {
using B::i;
using B::i; // error: double member declaration

};

— end example]

The entity declared by a using-declaration shall be known in the context using it according to its definition at the point
of the using-declaration. Definitions added to the namespace after the using-declaration are not considered when a use
of the name is made. [Example:

namespace A {
void f(int);
}

using A::f; // £ is a synonym for A: : f;
// that is, for A: : £ (int).
namespace A {
void f(char);
}

void foo()

{
£Ca’); // calls £ (int),

Draft

7.3 Namespaces Declarations 154

} // even though £ (char) exists.
void bar()
{
using A::f; // £ is a synonym for A: : £;
//that is, for A: :£(int) and A: : f (char).
f(’a’); // calls £ (char)
}

— end example |

12 [Note: partial specializations of class templates are found by looking up the primary class template and then consid-
ering all partial specializations of that template. If a using-declaration names a class template, partial specializations
introduced after the using-declaration are effectively visible because the primary template is visible (14.5.5). —end

note |

13 Since a using-declaration is a declaration, the restrictions on declarations of the same name in the same declarative
region (3.3) also apply to using-declaration s. [Example:

namespace A {
int x;

}

namespace B {
int i;
struct g { };
struct x { };
void f(int);
void f(double);

void g(char); // OK: hides struct g
}
void func()
{
int i;
using B::i; // error: i declared twice
void f(char);
using B::f; // OK: each £ is a function
£(3.5); // calls B: : £ (double)
using B::g;
g’a’); // calls B: :g(char)
struct g gi; // g1 has class type B: : g
using B::x;
using A::x; // OK: hides struct B::x
x = 99; // assigns to A: :x
struct x x1; // x1 has class type B: :x
}

— end example |

14 If a function declaration in namespace scope or block scope has the same name and the same parameter types as a

Draft

155 Declarations 7.3 Namespaces

function introduced by a using-declaration, and the declarations do not declare the same function, the program is ill-
formed. [Note: two using-declaration s may introduce functions with the same name and the same parameter types.
If, for a call to an unqualified function name, function overload resolution selects the functions introduced by such
using-declaration s, the function call is ill-formed. [Example:

namespace B {
void f(int);
void f(double);
}
namespace C {
void f(int);
void f(double);
void f(char);

}
void h()
{
using B::f; //B::f(int) and B: : £ (double)
using C::f; //C::f(int), C: : £ (double), and C: : f (char)
£f(°h’); // calls C: : f (char)
£(1); // error: ambiguous: B: :£(int) or C::£(int)?
void f(int); // error:
// £ (int) conflicts with C: : £ (int) and B: : £ (int)
}

—end example | — end note)

15 When a using-declaration brings names from a base class into a derived class scope, member functions and member
function templates in the derived class override and/or hide member functions and member function templates with the
same name, parameter-type-list (8.3.5), and cv-qualification in a base class (rather than conflicting). [Example:

struct B {
virtual void f(int);
virtual void f(char);
void g(int);
void h(int);

};
struct D : B {
using B::f;
void f(int); // OK: D: :f(int) overrides B: : £(int);
using B::g;
void g(char); // OK
using B::h;
void h(int); //OK:D::h(int) hides B: :h(int)

};

void k(D* p)
{

Draft

16

17

18

7.3 Namespaces Declarations 156

p—>f(1); //callsD: : £ (int)
p—>f(Ca’); //calls B: : £ (char)
p—>g(1); // calls B: :g(int)
p—>gCa’); // calls D: : g (char)

—end example |

[Note: two using-declaration s may introduce functions with the same name and the same parameter types. If, for a call
to an unqualified function name, function overload resolution selects the functions introduced by such using-declaration
s, the function call is ill-formed. — end note]

For the purpose of overload resolution, the functions which are introduced by a using-declaration into a derived class
will be treated as though they were members of the derived class. In particular, the implicit this parameter shall be
treated as if it were a pointer to the derived class rather than to the base class. This has no effect on the type of the
function, and in all other respects the function remains a member of the base class.

All instances of the name mentioned in a using-declaration shall be accessible. In particular, if a derived class uses
a using-declaration to access a member of a base class, the member name shall be accessible. If the name is that
of an overloaded member function, then all functions named shall be accessible. The base class members mentioned
by a using-declaration shall be visible in the scope of at least one of the direct base classes of the class where the
using-declaration is specified. [Note: because a using-declaration designates a base class member (and not a member
subobject or a member function of a base class subobject), a using-declaration cannot be used to resolve inherited
member ambiguities. For example,

struct A { int xQO; };
struct B : A { };
struct C : A {

using A::x;

int x(int);

};

struct D : B, C {
using C::x;
int x(double);
};
int £(D* 4) {
return d->xQ); // ambiguous: B: :x or C: :x

}

—end note |

19 The alias created by the using-declaration has the usual accessibility for a member-declaration. [Example:

class A {
private:

void f(char);
public:

void f(int);
protected:

void g();

Draft

20

21

157 Declarations 7.3 Namespaces

};
class B : public A {

using A::f; // error: A: :f (char) is inaccessible
public:

using A::g; //B: :gis a public synonym for A: : g

};

—end example]

[Note: use of access-declarations (11.3) is deprecated; member using-declaration s provide a better alternative. — end
note |

If a using-declaration uses the keyword typename and specifies a dependent name (14.6.2), the name introduced by the
using-declaration is treated as a typedef-name (7.1.3).

7.3.4 Using directive [namespace.udir]

using-directive:
using namespace ::,y nested-name-specifierqp namespace-name ;
A using-directive shall not appear in class scope, but may appear in namespace scope or in block scope. [Note: when
looking up a namespace-name in a using-directive, only namespace names are considered, see 3.4.6. — end note |

A using-directive specifies that the names in the nominated namespace can be used in the scope in which the using-
directive appears after the using-directive. During unqualified name lookup (3.4.1), the names appear as if they were
declared in the nearest enclosing namespace which contains both the using-directive and the nominated namespace.
[Note: in this context, “contains” means “contains directly or indirectly”. — end note |

A using-directive does not add any members to the declarative region in which it appears. [Example:
namespace A {
int i;
namespace B {
namespace C {

int i;
}
using namespace A::B::C;
void £1() {
i = 5; // OK, C: :1 visible in B and hides A: : i
}

¥

namespace D {
using namespace B;
using namespace C;

void f2() {
i=5; // ambiguous, B: :C::1iorA::1i?
}
}
void £3() {
i=5; /uses A::i
}

Draft

7.3 Namespaces Declarations 158

}
void f4() {

i = 5; // ill-formed; neither 1 is visible
}

— end example]

The using-directive is transitive: if a scope contains a using-directive that nominates a second namespace that itself
contains using-directive s, the effect is as if the using-directive s from the second namespace also appeared in the first.
[Example:

namespace M {
int i;
}
namespace N {
int i;
using namespace M;

}
void f()
{
using namespace N;
i=17; // error: bothM: :i and N: : i are visible
}

For another example,

namespace A {

int i;
}
namespace B {
int i;
int j;
namespace C {
namespace D {
using namespace A;
int j;
int k;
int a = i; //B::1ihides A::i
}
using namespace D;
int k = 89; // no problem yet
int 1 = k; // ambiguous: C: :k orD: :k
int m = i; //B::ihides A::i
int n = j; //D::j hidesB: :j
}
}

—end example |

Draft

159 Declarations 7.3 Namespaces

If a namespace is extended by an extension-namespace-definition after a using-directive for that namespace is given, the
additional members of the extended namespace and the members of namespaces nominated by using-directive s in the
extension-namespace-definition can be used after the extension-namespace-definition.

If name lookup finds a declaration for a name in two different namespaces, and the declarations do not declare the
same entity and do not declare functions, the use of the name is ill-formed. [Note: in particular, the name of an object,
function or enumerator does not hide the name of a class or enumeration declared in a different namespace. For example,

namespace A {
class X { };
extern "C" int g();
extern "C++" int h();
}
namespace B {
void X(int);
extern "C" int g();
extern "C++" int h();
}
using namespace A;
using namespace B;

void £() {
X(1); // error: name X found in two namespaces
g0 // okay: name g refers to the same entity
h(); // error: name h found in two namespaces
}
—end note |

During overload resolution, all functions from the transitive search are considered for argument matching. The set of
declarations found by the transitive search is unordered. [Nofe: in particular, the order in which namespaces were
considered and the relationships among the namespaces implied by the using-directive s do not cause preference to be
given to any of the declarations found by the search. — end note] An ambiguity exists if the best match finds two
functions with the same signature, even if one is in a namespace reachable through using-directive s in the namespace

of the other.®? [Example:

namespace D {
int di;
void f(char);
}

using namespace D;

int di; // OK: no conflict withD: :d1

namespace E {
int e;
void f(int);
}

83)During name lookup in a class hierarchy, some ambiguities may be resolved by considering whether one member hides the other along some
paths (10.2). There is no such disambiguation when considering the set of names found as a result of following using-directive s.

Draft

7.4 The asm declaration Declarations 160

namespace D { // namespace extension
int d2;
using namespace E;
void f(int);

}
void f()
{
di++; // error: ambiguous ::d1 orD::d1?
pidli++; // OK
D::dl++; // OK
d2++; //OK:D::d2
et++; /OK:E::e
£(1); // error: ambiguous: D: : £ (int) or E: :£(int)?
f(’a’); // OK:D: :f(char)
}

—end example |
7.4 The asm declaration [dcl.asm]

An asm declaration has the form
asm-definition:
asm (string-literal) ;
The asm declaration is conditionally-supported; its meaning is implementation-defined. [Note: Typically it is used to
pass information through the implementation to an assembler. — end note |

7.5 Linkage specifications [dcl.link]

All function types, function names with external linkage, and variable names with external linkage have a language
linkage. [Note: Some of the properties associated with an entity with language linkage are specific to each implementa-
tion and are not described here. For example, a particular language linkage may be associated with a particular form of
representing names of objects and functions with external linkage, or with a particular calling convention, etc. — end
note | The default language linkage of all function types, function names, and variable names is C++ language linkage.
Two function types with different language linkages are distinct types even if they are otherwise identical.

Linkage (3.5) between C++ and non-C++ code fragments can be achieved using a linkage-specification:
linkage-specification:
extern string-literal { declaration-seqp: +
extern string-literal declaration

The string-literal indicates the required language linkage. This International Standard specifies the semantics for
the string-literal s "C" and "C++". Use of a string-literal other than "C" or "C++" is conditionally-supported, with
implementation-defined semantics. [Note: Therefore, a linkage-specification with a string-literal that is unknown to the
implementation requires a diagnostic. — end note]| [Note: It is recommended that the spelling of the string-literal be
taken from the document defining that language. For example, Ada (not ADA) and Fortran or FORTRAN, depending on
the vintage. — end note]

Draft

161 Declarations 7.5 Linkage specifications

Every implementation shall provide for linkage to functions written in the C programming language, "C", and linkage
to C++ functions, "C++". [Example:

complex sqrt(complex) ; // C++ linkage by default
extern "C" {

double sqgrt(double); // C linkage
}

— end example]

Linkage specifications nest. When linkage specifications nest, the innermost one determines the language linkage. A
linkage specification does not establish a scope. A linkage-specification shall occur only in namespace scope (3.3). In
a linkage-specification, the specified language linkage applies to the function types of all function declarators, func-
tion names with external linkage, and variable names with external linkage declared within the linkage-specification.
[Example:

extern "C" void f1(void(*pf) (int));
// the name £1 and its function type have C language
// linkage; pf is a pointer to a C function

extern "C" typedef void FUNC(Q);

FUNC £2; // the name £2 has C++ language linkage and the
// function’s type has C language linkage
extern "C" FUNC £3; // the name of function £3 and the function’s type
// have C language linkage
void (*pf2) (FUNCx*) ; // the name of the variable p£2 has C++ linkage and

// the type of pf2 is pointer to C++ function that
// takes one parameter of type pointer to C function
extern "C" {
static void £4(Q); // the name of the function f4 has
// internal linkage (not C language
// linkage) and the function’s type
// has C language linkage.

extern "C" void £f5() {
extern void f4(); // OK: Name linkage (internal)
// and function type linkage (C
// language linkage) gotten from
// previous declaration.

}

extern void f4(); // OK: Name linkage (internal)
// and function type linkage (C
// language linkage) gotten from
// previous declaration.

}

void £6() {

extern void f4(Q); // OK: Name linkage (internal)
// and function type linkage (C
// language linkage) gotten from

Draft

7.5 Linkage specifications Declarations 162

// previous declaration.

—end example] A C language linkage is ignored for the names of class members and the member function type of
class member functions. [Example:

extern "C" typedef void FUNC_c();

class C {
void mf1(FUNC_c*); // the name of the function mf 1 and the member
// function’s type have C++ language linkage; the
// parameter has type pointer to C function
FUNC_c mf2; // the name of the function mf2 and the member
// function’s type have C++ language linkage
static FUNC_c* q; // the name of the data member q has C++ language
// linkage and the data member’s type is pointer to
// C function
};
extern "C" {
class X {
void mf(); // the name of the function mf and the member
// function’s type have C++ language linkage
void mf2(void(*) ()); // the name of the function mf2 has C++ language
// linkage; the parameter has type pointer to
// C function
};

—end example |

If two declarations of the same function or object specify different linkage-specification s (that is, the linkage-specifica-
tion s of these declarations specify different string-literal s), the program is ill-formed if the declarations appear in the
same translation unit, and the one definition rule (3.2) applies if the declarations appear in different translation units.
Except for functions with C++ linkage, a function declaration without a linkage specification shall not precede the
first linkage specification for that function. A function can be declared without a linkage specification after an explicit
linkage specification has been seen; the linkage explicitly specified in the earlier declaration is not affected by such a
function declaration.

At most one function with a particular name can have C language linkage. Two declarations for a function with C
language linkage with the same function name (ignoring the namespace names that qualify it) that appear in different
namespace scopes refer to the same function. Two declarations for an object with C language linkage with the same
name (ignoring the namespace names that qualify it) that appear in different namespace scopes refer to the same object.
[Note: because of the one definition rule (3.2), only one definition for a function or object with C linkage may appear
in the program; that is, such a function or object must not be defined in more than one namespace scope. For example,

namespace A {
extern "C" int f();
extern "C" int g() { return 1; }
extern "C" int h();

Draft

163 Declarations

7.5 Linkage specifications

namespace B {
extern "C" int f();

//A::f and B: : £ refer
// to the same function

extern "C" int g() { return 1; }/ill-formed, the function g

}
int A::f() { return 98; }

extern "C" int h() { returnm 97; }

—end note |

// with C language linkage
// has two definitions

//definition for the function £
// with C language linkage

// definition for the function h
// with C language linkage
//A::hand : :hrefer to the same function

A declaration directly contained in a linkage-specification is treated as if it contains the extern specifier (7.1.1) for the
purpose of determining the linkage of the declared name and whether it is a definition. Such a declaration shall not

specify a storage class. [Example:

extern "C" double f();
static double f();
extern "C" int i;
extern "C" {

int i;
}

extern "C" static void g();

—end example]

// error
// declaration

// definition

// error

[Note: because the language linkage is part of a function type, when a pointer to C function (for example) is derefer-
enced, the function to which it refers is considered a C function. — end note |

Linkage from C++ to objects defined in other languages and to objects defined in C++ from other languages is implemen-
tation-defined and language-dependent. Only where the object layout strategies of two language implementations are

similar enough can such linkage be achieved.

Draft

7.5 Linkage specifications Declarations 164

Draft

Chapter 8 Declarators [dcl.decl]

A declarator declares a single object, function, or type, within a declaration. The init-declarator-list appearing in a
declaration is a comma-separated sequence of declarators, each of which can have an initializer.

init-declarator-list:

init-declarator

init-declarator-list , init-declarator
init-declarator:

declarator initializer

The two components of a declaration are the specifiers (decl-specifier-seq; 7.1) and the declarators (init-declarator-list).
The specifiers indicate the type, storage class or other properties of the objects, functions or typedefs being declared. The
declarators specify the names of these objects, functions or typedefs, and (optionally) modify the type of the specifiers
with operators such as * (pointer to) and () (function returning). Initial values can also be specified in a declarator;
initializers are discussed in 8.5 and 12.6.

Each init-declarator in a declaration is analyzed separately as if it was in a declaration by itself.?¥

Declarators have the syntax

declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator (parameter-declaration-clause)
cv-qualifier-seqp, ref-qualifier,,, exception-specificationgp,
direct-declarator [constant-expressiongp,]
(declarator)

84) A declaration with several declarators is usually equivalent to the corresponding sequence of declarations each with a single declarator. That is
T D1, D2, ... Dn;
is usua