
The CHERI capability model: Revisiting RISC in an age of risk

Jonathan Woodruff† Robert N. M. Watson† David Chisnall† Simon W. Moore† Jonathan Anderson†

Brooks Davis‡ Ben Laurie§ Peter G. Neumann‡ Robert Norton† Michael Roe†
† University of Cambridge ‡ SRI International § Google UK Ltd

firstname.lastname@cl.cam.ac.uk {neumann,brooks}@csl.sri.com benl@google.com

Abstract
Motivated by contemporary security challenges, we reeval-

uate and refine capability-based addressing for the RISC era.
We present CHERI, a hybrid capability model that extends
the 64-bit MIPS ISA with byte-granularity memory protection.
We demonstrate that CHERI enables language memory model
enforcement and fault isolation in hardware rather than soft-
ware, and that the CHERI mechanisms are easily adopted by
existing programs for efficient in-program memory safety.

In contrast to past capability models, CHERI complements,
rather than replaces, the ubiquitous page-based protection
mechanism, providing a migration path towards deconflat-
ing data-structure protection and OS memory management.
Furthermore, CHERI adheres to a strict RISC philosophy: it
maintains a load-store architecture and requires only single-
cycle instructions, and supplies protection primitives to the
compiler, language runtime, and operating system.

We demonstrate a mature FPGA implementation that runs
the FreeBSD operating system with a full range of software
and an open-source application suite compiled with an ex-
tended LLVM to use CHERI memory protection. A limit study
compares published memory safety mechanisms in terms of
instruction count and memory overheads. The study illustrates
that CHERI is performance-competitive even while providing
assurance and greater flexibility with simpler hardware.

1. Introduction
Research systems such as Mondrian Memory Protection [45,
46] and Hardbound [12], and industrial approaches such
as Intel’s recently announced Memory Protection Exten-
sions (iMPX) [17], have shown the importance of architectural
support for fine-grained memory protection. Mondrian in par-
ticular identified the conflation of protection with translation
as a flaw in existing approaches: paging is useful for operating
systems that provide coarse-grained separation and virtual-
ization (translation), whereas segmentation is more useful to
enforce intra-program protection. Program safety and security
depends on enforcing pointer safety (the size and permission
aspects of dynamic type safety) and isolation (for sandboxing
or application compartmentalization [40]).

Capability-system proponents have long argued that a strong
underlying protection model can improve software robustness
and security [11, 42]. However, limited historical demand

for fine-grained protection, combined with significant techni-
cal challenges (especially compatibility), has challenged the
adoption of capability systems. In contrast, coarse-grained
virtual-memory protection has seen wide deployment to isolate
application instances from one another. Ubiquitous network-
ing and widespread security threats have renewed interest in
finer-grained protection models that not only improve soft-
ware debuggability, but also mitigate vulnerability exploit
techniques (e.g., code injection via buffer overflows).

Processors with capability-based addressing, epitomized by
designs such as the M-Machine [5], provide strong technical
and intellectual grounding for intra-program protection. How-
ever, such systems fail to provide adequate compatibility with
existing source-code and binary software corpora, and often
require ground-up software rewrites. In contrast, hardware and
software bounds-checking techniques often exchange safety
(and sometimes performance) for clearer adoption paths.

In this paper, we introduce Capability Hardware Enhanced
RISC Instructions (CHERI), a hybrid capability model that
blends conventional ISA and MMU design choices with a
capability-system model. Key features include a capability
coprocessor (defining a set of compiler-managed capability
registers holding capabilities similar to unforgeable segment
descriptors), and tagged memory (protecting in-memory capa-
bilities). Capability addressing occurs before virtual-address
translation such that each process is a self-contained virtual
capability system. As programs adopt the CHERI ISA, object
accesses use these registers to check bounds, control access,
and protect pointer integrity. Tagging allows data and capa-
bilities to be safely combined within data structures. CHERI
offers scalable and secure intra-address-space protection, and
retains a high level of source-code and binary compatibility.
While the 64-bit MIPS ISA was our starting point, the ap-
proach is not specific to MIPS. Our key contributions are:
• a novel hybridization of capability-based addressing with a

RISC ISA and MMU-based virtual memory emphasizing
both performance and compatibility;

• an FPGA-based microprocessor implementation demon-
strating our approach;

• adaptations of the LLVM compiler suite [22] and FreeBSD
operating system [26] to use these features;

• functional and simulation-based comparisons of conven-
tional and research protection models; and

• benchmark comparison with software bounds checking.

978-1-4799-4394-4/14/$31.00 c© 2014 IEEE

We first describe requirements for fine-grained memory pro-
tection, our RISC memory capability model, its realizations in
the 64-bit MIPS ISA, and implementation on FPGA. We then
compare the CHERI model with a number of other research
and fielded protection models, exploring tradeoffs in protec-
tion, compatibility, and performance. A limit study, derived
from execution traces, reveals that CHERI has competitive
performance with other models. We also run benchmarks on
our FPGA implementation in order to understand practical im-
plementation and performance considerations, which illustrate
significant improvements over software bounds-checking.

2. Practical memory protection requirements

Practical userspace protection has several desirable properties:
Unprivileged use Protection should be the common case and
therefore should not require frequent system calls.

Fine granularity Granularity should accommodate data
structures that are small and densely packed (e.g., on-stack),
or with odd numbers of bytes or words.

Unforgeability Software should not be able to increase its
permissions, accidentally or maliciously.

Access control Hardware should enforce region permissions
such as store and execute.

Segment scalability Performance and memory storage over-
head should scale gracefully with the number of protected
memory regions.

Domain scalability Performance and memory storage over-
head should scale gracefully with the number of protection
domains and frequency of their communication.

Incremental deployment Extant userspace software should
run without recompilation even as selected components, such
as shared libraries, make use of fine-grained protection.

Furthermore, we believe userspace protection should exploit
program knowledge to offer pointer safety, not just address
validity. Address validity models associate protection proper-
ties with regions of address space. Paged virtual memory is an
address validity mechanism. Pointer safety models associate
protection properties with object references. Fat pointers are a
pointer safety mechanism. Pointer safety is more precise than
address validity and can, for example, distinguish between
a buffer overflow and a reference to an adjacent object in
memory. Address validity, however, makes supervision more
convenient due to a centralized protection table, and enables
features such as efficient revocation.

We observe that pointer safety implies a segmented view
of memory rather than the common flat view. It should be
possible to blend these two views on memory to gain safety
without unnecessarily breaking compatibility.

3. A RISC memory capability model

While the requirements outlined above are complex, the hard-
ware mechanism that fulfills these requirements should be as
simple as possible to ease adoption by processor manufactur-

ers. The most efficient unforgeable pointer safety implemen-
tations use a memory capability model. In such a model, a
memory capability is an unforgeable pointer that grants access
to a linear range of address space. To maintain safety, all
memory accesses must occur through a memory capabilities.

It is possible to implement a memory capability model in a
strict RISC instruction set with a load-store architecture and
single-cycle operations as demonstrated by the M-Machine [5].
In a RISC implementation, memory capabilities can be stored
in registers or in memory, but must be loaded into registers
for use. The current protection domain is defined by the
capabilities stored in registers along with all capabilities in
memory reachable through those capabilities. With explicit
management of memory capabilities in the style of pointers,
there is no need for an associative table (such as the protection
lookaside buffer in Mondrian) for managing permissions. This
approach allows protection to scale with memory space rather
than with a fixed resource like the TLB [27]. This approach
also allows performance with protection to match a general-
purpose pointer model.

To meet our memory-protection requirement in a RISC
memory capability architecture, we must ensure that:
1. Capability manipulation instructions are unprivileged.
2. Capabilities can span any range in the virtual address space.
3. Legacy references are supported, but are constrained by the

capability memory model.

These constraints make a RISC capability model not only
efficient, but useful to modern software stacks.

4. CHERI implementation

We have chosen to implement a RISC capability model as an
extension to the 64-bit MIPS IV instruction set. MIPS has a
well-established 64-bit specification and adheres to a proto-
typical RISC philosophy. We implemented the processor in
Bluespec SystemVerilog [4], with a general parity of features
with the MIPS R4000. As with the MIPS R4000, our base pro-
cessor (Bluespec Extensible RISC Implementation (BERI)) is
single-issue and in-order, with a throughput approaching one
instruction per cycle. BERI has a branch predictor and uses
limited register renaming for robust forwarding in its 6-stage
pipeline. BERI runs at 100MHz on an Altera Stratix IV FPGA
and is capable of running the stock FreeBSD 10 operating
system and associated applications. The CHERI processor
adds capability extensions to BERI and is fully backward
compatible, facilitating side-by-side comparisons.

CHERI capability extensions are implemented as a MIPS
coprocessor, CP2. Similar to the MIPS floating-point copro-
cessor, CP1, the capability coprocessor holds a new register
file and logic to access and update it. The MIPS pipeline
feeds instructions into the capability coprocessor, exchange
operands with it, and receive exceptions from it. The capabil-
ity coprocessor also transforms and limits memory requests
from instruction fetch and MIPS load and store instructions.

permissions (31 bits)

base (64 bits)

length (64 bits)


256 bits

Figure 1: Memory capability

4.1. Capability registers

CHERI implements an additional register file for capabilities.
This approach distinguishes capability state from integer state
(and floating point state) in the architecture to avoid dynamic
register types. There are 32 capability registers, each 256-
bit wide, mirroring the number of integer and floating-point
registers in MIPS. A commercial implementation might con-
sider a smaller register set that would not unduly increase
stack spills, and would reduce context-switch overhead and
hardware resources, but we have maintained a large set for ex-
perimentation and for consistency with the MIPS architecture.

The currently implemented capability structure is shown in
Figure 1. The base and length fields are the two basic fields
needed to describe a segment of memory. We have allocated
64 bits to each, and choose not to implement a compression
algorithm at this time to allow maximum flexibility as a re-
search tool. The permissions field is a 31-bit vector with a
“1” in each position indicating an allowed permission for the
region. Permissions include load data, store data, execute, and
load and store for capabilities. The other 26 permissions, and
remaining capability fields, are being used for experimentation
as described in Section 11. An implementation intended for
widespread deployment would likely use a denser representa-
tion – for example, 128-bits using 40-bit virtual addresses or
the Low-Fat Pointer approach [20].

Existing MIPS load and store instructions are implicitly
offset via capability register 0, C0, and instruction fetches
are offset via an implied program counter capability, PCC.
This allows legacy code to run unmodified on CHERI, facil-
itating incremental adoption, and also allows sandboxing of
unmodified programs within a parent address space.

We have also added a full set of load and store operations
for addressing memory through capability registers with both
immediate and register offsets. As MIPS lacks native register-
indexed addressing, capability-relative addressing can often
be faster than legacy loads and stores.

4.2. Capability manipulation and protection

The greatest challenge for a protection model is to protect
memory capabilities from arbitrary manipulation (unforgeabil-
ity) without appealing to the kernel (unprivileged use). This
is important, as system calls remain a relatively expensive
operation. For example, malloc() implementations typically
amortize kernel entry by using a single mmap() system call to
acquire a large block of memory for disbursement over many
allocations [13]. A memory protection scheme that requires a

Mnemonic Description
CGetBase Move base to a GPR
CGetLen Move length to a GPR
CGetTag Move tag bit to a GPR
CGetPerm Move permissions to a GPR
CGetPCC Move the PCC and PC to GPRs

CIncBase Increase base and decrease length
CSetLen Set (reduce) length
CClearTag Invalidate a capability register
CAndPerm Restrict permissions

CToPtr Generate C0-based integer pointer from
a capability

CFromPtr CIncBase with support for NULL casts

CBTU Branch if capability tag is unset
CBTS Branch if capability tag is set

CLC Load capability register
CSC Store capability register
CL[BHWD][U] Load byte, half-word, word or double

via capability register, (zero-extend)
CS[BHWD] Store byte, half-word, word or double

via capability register

CLLD Load linked via capability register
CSCD Store conditional via capability register

CJR Jump capability register
CJALR Jump and link capability register

Table 1: CHERI instruction-set extensions

system call for every malloc() would negate this optimization
and be avoided in performance-sensitive applications.

To preserve capability integrity while allowing user-space
management, we must restrict capability manipulation, par-
ticularly in memory. That is, capabilities in memory must
not be corrupted by general-purpose stores. Some traditional
capability machines [42] and capability microkernels such as
seL4 [19] have done this by defining regions of memory that
can store capabilities distinct from those that can store data.
This approach is problematic for a fat-pointer approach, as
most contemporary programming languages allow arbitrary in-
termixing of pointers and data. In keeping with the RISC idea
of the ISA as a compiler target [29], we have implemented
tagged memory rather than supporting only regional separation.
Valid capabilities are identified by an extra ‘tag’ bit associated
with each 256-bit location. Any non-capability store clears this
bit, thereby protecting the integrity of capabilities in memory
without appealing to kernel mode.

With capabilities protected in memory, we implement user-
mode instructions to safely manipulate capabilities in the reg-
ister file. Table 1 shows a summary of the instructions that
CHERI adds to the MIPS IV ISA. These include a full comple-
ment of load and store instructions, instructions for inspecting

Inst.
Fetch Scheduler Decode Execute Writeback

Capability Coprocessor

Memory
Access

Exchange
Operands

Put Capability
Instruction

Get
Address

Commit
Writeback

Offset
Address

Forwarding Register File
Read WriteSpeculative WriteRequest

Figure 2: BERI pipeline with capability coprocessor

a capability, and for reducing (but not extending) the rights
granted by a capability. Instructions that change fields in a
capability must strictly reduce privilege, that is, disclaim per-
missions or reduce the extent. These restrictions allow CHERI
to ensure capabilities are unforgeable. With the software un-
able to fabricate arbitrary memory references, a protection
domain is defined by the transitive closure of memory capa-
bilities reachable from its capability register set. Under an
operating system, a process that begins with a capability for all
privilege to its virtual address space can construct arbitrarily
restricted domains described by unforgeable references.

CHERI tags physical memory, not virtual memory, and
therefore maintains a single table for the entire system. This
table holds one tag bit for each 256-bit line in memory, or 4MB
of tag space per gigabyte of memory. A tag manager below the
last level cache presents a 257-bit, tagged-memory interface
to the CHERI cache hierarchy. The manager associates each
memory transaction with a tag from the table and ensures
consistency between memory and tags. The CHERI cache
hierarchy propagates capability tags and implements CHERI
tag semantics (which preserve the tag for a capability store
and clear a tag on a general-purpose store). The decision
to use physical – not virtual – memory for tags eliminates
translation for the tag table (as required by Hardbound), and
allows the tags to accompany physical cache lines through
the cache hierarchy. CHERI allows capability registers to
contain general-purpose data, which preserves the cleared tag
to prevent use as a capability. This allows capability load and
store instructions to copy 256-bit blocks of memory while
remaining oblivious to whether they are copying data or a
capability. As a result, a simple implementation of memcpy()
can copy data structures containing both.

Our prototype maintains the tag table in DRAM. We could
alternatively move it to a smaller memory that can be accessed
in parallel with DRAM, or store tags in ECC-like bits to elimi-
nate table lookups. However, the current tag controller (which
minimizes table lookups using an 8KB tag cache) does not
noticeably degrade performance.

4.3. Compatibility

CHERI allows capability-aware and legacy code to share an ad-
dress space. Unsandboxed legacy executables run with access
to the full address space, but may invoke capability-protected
libraries. For example, an unmodified web browser can in-

voke capability-aware image libraries or video CODECs via
MIPS-ABI functions. Capability-aware code can use sand-
boxed legacy code by restricting the default instruction and
data capabilities (PCC and C0). The CToPtr and CFromPtr

instructions convert between C pointers and capabilities to
support safe and efficient interaction between capability-aware
and legacy code.

The CHERI capability model requires minimal support from
the OS. CHERI capabilities are layered atop standard paging,
so the virtual memory system works without modification.
On CPU reset, capability registers are initialized, granting
the OS access to the entire address space so an OS can run
unchanged without knowledge of the capability extensions.
Indeed, we first achieved stability with unmodified FreeBSD
on the processor before we added support for capabilities.

Our extended version of FreeBSD enables the capability
coprocessor on boot; when the first user process is created or
execve() is invoked, the entire user virtual address space is del-
egated to the user register file. The kernel saves and restores
per-thread capability-register state on context switches. The
user process then manages capabilities within that space, thus
restricting access. Capability-aware allocators can manage
memory and return capabilities in much the same way as con-
ventional memory allocators. Revocation can be accomplished
via zero-address-space-reuse allocators, TLB unmapping, or
by a simplified version of garbage collection (made reliable by
capability tags). New TLB permissions authorize capability
loads and stores. The OS virtual-memory system is being
extended to preserve tags for swapped pages.

4.4. Pipeline organization

As seen in Figure 2, our capability extensions are modularized
as a MIPS coprocessor with a dedicated register file. All
data accesses reference a capability register either explicitly
or implicitly (C0), so the capability coprocessor is tightly
coupled with the Execute and Memory Access stages of the
pipeline. While instruction fetches are logically offset by
a capability register, PCC, in implementation CHERI uses
an absolute address for the program counter and validates it
against PCC in the Execute stage to simplify both forwarding
and instruction address calculation.

The capability register file is an instantiation of the general-
purpose forwarding register file and inherits register renaming.
All capability manipulation instructions are single cycle, as
are capability loads and stores. This style of manipulation
has orders of magnitude higher performance than protected
segment manipulation on IA32 that, for example, required at
least 241 cycles on a 1.1GHz Pentium III [21].

5. Use cases for CHERI capabilities
CHERI user-managed memory protection has a variety of
potential uses, most of which are unexplored in contemporary
operating systems. Cheap, fine-grained memory protection
radically changes the memory-safety trade-off topography, and

we hope that our platform will enable exploration of this new
landscape. This section describes some anticipated use cases.

5.1. Memory safety for C

The C language provides programmers with a great deal of
flexibility, but the price of this flexibility is a lack of memory
safety. Previous work has attempted to provide C programmers
with greater memory safety via static and dynamic checks
in software. Cyclone [18] is a variant of C that explicitly
allows definition of fat pointers that are dynamically checked;
CCured [28] automates the same process with either static
verification or run-time checks. Fat pointers come at a run-
time cost, but adding hardware support for fat pointers in the
form of CHERI capabilities removes most of the distribution
and enforcement costs.

CHERI capabilities can be used as general-purpose pointers
with the limitation that their range cannot be enlarged. We
have extended the LLVM [22] compiler framework and Clang,
the C front end, to implement pointers as memory capabilities
to ensure they are used according to programmer intent, in-
cluding bounds checking and read, write, and execute property
enforcement. We have added support for the __capability

and __output qualifiers in the Clang front end and extended
its understanding of casts. We improved LLVM’s notion of
address space to encode capabilities, and added special cases
for a small number of optimizations that assumed that point-
ers were integers. Finally, we extended the MIPS back end
with support for our new instructions. As a result, a malloc()

that returns a capability will use the CIncBase and CSetLen

instructions to construct a capability for the region that can be
used to address the object with automatic bounds checking. In
addition, a const-qualified capability pointer will explicitly
disclaim the write permission via the CAndPerm instruction, so
that the processor will throw an exception if attempts are made
to write through it. We anticipate that other languages will
make similar use of this functionality, but aim to provide a
rich toolbox of simple primitives for compilers to use rather
than prescribe specific models.

CHERI capabilities can also protect the stack. For example,
stack pointers can be cast to capabilities to take advantage
of bounds checking. We have an experimental version of
the compiler that protects individual frames by using stack
capabilities to eliminate stack overflow.

Pointer subtraction is not supported natively by CHERI
capabilities because they do not have an internal index. An ex-
ternal integer register index can be used if pointer subtraction
is required. Capabilities can be indexed with signed register
and immediate values, but an access will throw an exception
if the final offset is out of range.

The CHERI ABI defines eight capability-argument registers
for passing capabilities in a function call, which greatly alle-
viate register pressure when replacing a software fat-pointer
scheme, which would otherwise require at least two general-
purpose registers for each pointer. However, stack spills will

still have a larger cache footprint due to increased register size.
Inter-domain calls (which incur a larger overhead to support
mutual distrust) are not yet integrated into our compiler.

We might note that consistency between base and bounds
can be a problem even for hardware fat pointer implementa-
tions, as we describe in Section 6.4. However, CHERI capa-
bilities used as fat pointers avoid race conditions by updating
capability fields and tags atomically.

5.2. Managed language runtime support

Languages that do provide memory safety must enforce it
with the available instructions. CHERI capabilities provide a
level of object support in the instruction set to allow managed
language runtimes and the JIT compilers that target them to
be simpler, faster, and more secure. The segments-as-objects
model was one of the basic motivations for iAPχ432 segmen-
tation [30], and in turn for Intel 80286 segments [7], but these
segment-table approaches do not scale to arbitrary program
size or data complexity. In contrast, a straightforward applica-
tion of capability registers as pointers and of protected calls
(see Section 11) on invocations would provide scalable, strong
hardware protection of language objects.

5.3. Sandboxing and compartmentalization

Memory protection constrains the effects of code, which
can be used not just for improvements in robustness, but
also for security. The CHERI model conveniently and ef-
ficiently supports application sandboxing and compartmen-
talization. Conventional binaries are sandboxed in micro-
address spaces within existing processes by constraining C0
and PCC. CHERI-aware programs use capabilities to describe
more granular compartmentalization in which memory and
object rights are safely delegated between multiple protection
domains within a UNIX process.

6. Functional comparison of protection models

In this section, we review several proposed protection models
supporting safety and compartmentalization, and compare
them with CHERI. Table 2 considers these models in terms of
our protection criteria: unprivileged use; fine-grained control;
unforgeable references; read, write, and execute permissions;
pointer safety, segment scalability; domain scalability; and
incremental deployability to current programming languages.

CHERI is able to provide the stronger memory-protection
and domain-transition properties of the M-Machine capability
model with greater adoptability due to inclusion of a general-
purpose MMU and a complete fat-pointer representation. How-
ever, this comes with increased memory traffic relative to
M-Machine, more invasive instruction set additions relative
to Hardbound, and reduced binary compatibility relative to
iMPX. Protection, representation, and performance tradeoffs
are considered in greater detail in Sections 7 and 8.

Protection Unprivileged Fine- Unforgeable* Access Pointer Segment Domain Incremental
mechanism use grained control safety scalability scalability deployment

MMU - - - ! - - - !

Mondrian - !** - ! - ! - !

Hardbound ! ! ! - ! ! n/a !

iMPX ! ! ! - ! ! n/a !

iMPX Fat Pointers ! ! - - ! ! n/a -
M-Machine ! - ! ! ! ! ! -

CHERI ! ! ! ! ! ! ! !

*Unforgeability in the context of protection-domain-free models refers to the difficulty of constructing an unauthorized pointer to an object.
**Mondrian supports fine-grained heap protection, but not fine-grained stack or global protection.

Table 2: Comparison of address-validity, pointer-validity (table-based), and pointer-validity (fat-pointer based) models

6.1. Conventional Memory Management Units (MMUs)

Traditional Memory Management Units (MMUs) map a (pos-
sibly sparse) virtual address space into physical memory via a
page table, with permissions assigned to each page. Kernels
used MMUs to isolate processes from one another (implement-
ing protection domains), with shared memory supported by
mapping the same physical page into multiple address spaces.

The MMU approach fails most of our requirements for
in-address space protection, but is the only widely deployed
protection mechanism today. Page-based protection is coarse-
grained: most implementations have a minimum page size
of 4KB limiting bounds-checking precision. Coarse-grained
MMU protection can detect either overflows or underflows
for small objects, but not both; single-object allocations will
waste physical memory, and guard pages between allocations
will consume virtual address space. MMUs implement only
address validation, not pointer safety: a sufficiently large over-
flow may miss the guard page and write to another allocation.

MMU isolation can also be used for application compart-
mentalization, such as in the Chromium web browser where
tabs run in separate processes to improve robustness and se-
curity. MMU process isolation proves expensive due to TLB
capacity limits that are exacerbated by aliasing between shared
pages. As a result, applications limit use of sandboxes, thus
reducing isolation in favor of performance [33].

CHERI inherits all the benefits of the MMU and adds capa-
bility protection for principled fine-grained protection within
an address space. A key virtue of the MMU as an address
validation approach is centralized management, which simpli-
fies address-space revocation, a classic weakness of capabil-
ity machines. While CHERI does not accelerate revocation
of pointers that use the capability mechanism, the operating
system can manipulate mappings of the underlying pages to
enforce revocation. To facilitate this, CHERI extends page ta-
ble entries with bits to to authorize capability loads and stores.
This also allows the OS to implement shared memory between
processes that cannot act as a channel for passing capabilities.

6.2. Mondrian memory protection

Mondrian memory protection is a model that allows fine-
grained memory protection to be layered on top of page-
based virtual memory, to facilitate multiple protection do-
mains [45]. The conventional page table is supplemented
by word-granularity in-memory protection tables that contain
permissions managed by the supervisor. These tables popu-
late a Protection Look-aside Buffer (PLB) analogous to the
TLB in the MMU. In addition, a set of sidecar registers are
paired with general-purpose registers to reduce PLB pressure.
No userspace ISA changes are required to support Mondrian,
which enhances incremental deployment.

Mondrian relies on supervisor mode to maintain its pro-
tection table, and thus incurs a domain switch for each allo-
cation and free event. At the time Mondrian was evaluated,
such domain switches would have been common already due
to invocations of sbrk() or mmap() system calls; however,
userspace allocators now aggressively cache memory in order
to amortize domain switches and lock contention. Reintroduc-
ing domain switches for Mondrian would significantly impair
segmentation scalability. In contrast, CHERI does not require
system calls to create new segments.

As with an MMU, Mondrian provides address validation
rather than pointer validation (albeit at much finer granular-
ity). Thus, all allocations must be padded to introduce guard
regions, which raises similar concerns to MMU guard pages.
Smaller pads are possible than with pages, while reducing
the threshold at which overflows can be detected. This pre-
vents Mondrian from providing effective protection for sub-
allocations such as array entries or individual stack frames,
and limits its usefulness for fine-grained protection. This is
particularly a concern today when many classes of exploitable
security vulnerabilities are premised on overflows with at-
tacker control over inputs to arithmetic. At somewhat greater
cost to ISA-level compatibility, CHERI provides pointer safety
suitable for bounds checking on densely packed (and divisible)
memory locations.

Protection-domain scalability in Mondrian is limited: each
domain requires its own complete protection table, each with
substantial memory and initialization expense. In CHERI,
userspace protection does not involve tables. Instead, pro-
tection information is embedded in pointers, and protection
domains are infinitely scalable and defined only by the set of
capability pointers reachable by the current thread.

6.3. Hardbound

Hardbound [12] is a hardware-assisted fat-pointer model
grounded in software bounds-checking research. Unlike the
MMU and Mondrian, Hardbound provides pointer safety, not
just address validation, and is able to enforce sub-allocations
and stack variables. Hardbound maintains a shadow table of
base and bounds values for each pointer-aligned virtual mem-
ory location, and another table of tag bits to identify pointers.
Memory bounds are initialized by a modified memory alloca-
tor for heap objects, and ideally also by a modified compiler
for stack and global objects. The Hardbound simulated proces-
sor propagates bounds into the shadow table and via registers,
and verifies bounds when pointers are dereferenced. Libraries
and applications that are not recompiled to assign bounds to
pointers will experience less mitigation. Interestingly, Hard-
bound does not provide permission bits necessary to enforce
certain references such as const read-only.

Hardbound, the M-Machine, and CHERI rely on tags to
robustly distinguish pointers from other data in memory. How-
ever, Hardbound fat pointers are forgeable: the setbound in-
struction allows arbitrary bounds, and the tables are accessible
via virtual memory. As a result, unlike the M-Machine and
CHERI, Hardbound pointers do not constitute a protection
domain. Hardbound is also a CISC design that proposes a mi-
crocode implementation, and requires transactional memory
to write to three table entries atomically.

As with Mondrian and CHERI, Hardbound is concerned
with incremental adoption. Hardbound executables can run on
legacy hardware by careful use of NOP opcodes, and ABIs
are maintained by retaining native pointer size.

Hardbound performance is limited by TLB overhead (due
to sparse table access), and by memory overhead (due to in-
flated pointers). For example, a single memory instruction
in Hardbound might experience two additional TLB misses
for the tag and bound tables, compared to the same access in
CHERI. To mitigate these, Hardbound relies on fat-pointer
compression, and wherever possible stores bounds within the
tag or in the user pointer. We observe that unused pointer
bits are not always available, because some language runtimes
(such as Java, JavaScript, and Objective-C) use these bits for
their own optimizations.

6.4. iMPX

Intel’s recently announced Memory Protection Exten-
sions (iMPX) [17] describe additions to the x86 ISA to pro-
vide hardware-assisted bounds checking. At present, Intel has

not shipped a hardware implementation of iMPX, although
a simulator and compiler extensions are available. As with
Hardbound, bounds information can be stored in a table within
a process’s virtual address space. There are several important
differences, however:
• Bounds are not automatically propagated, but are explicitly

loaded and stored into a new register set by instructions.
• Bounds can originate in architecturally supported shadow

tables, but also in software-defined locations (e.g., stored
adjacent to the pointer itself).

• Rather than explicit tags in a second table, iMPX includes
the original pointer value in the bounds-table entry. If the
bounds are loaded against a pointer of a different value, the
bounds will be ignored. This preserves compatibility with
legacy code which may not update bounds.

• Bounds checking is performed using explicit instructions.
• There is no support for pointer compression. Each 64-bit

pointer consumes 320 bits: the original pointer along with
256 bits of metadata including base, bounds, the expected
pointer value, and 64 reserved bits.

• iMPX uses a hierarchical protection table.
Without Hardbound’s pointer compression, iMPX experi-

ences significant memory overheads, even compared to 256-bit
CHERI capabilities. However, support for storing bounds in ar-
bitrary addresses enables a traditional, consecutive fat-pointer
layout, which has greater locality. As with Hardbound, iMPX
does not support permission bits, although reserved space in
the shadow table might be used for this in the future.

iMPX strongly emphasizes compatibility. As with Hard-
bound, iMPX instructions decode as NOPs in older ISAs, and
will be ignored by older processors. Its ABI will reset bounds
registers for iMPX-unaware code for compatibility. iMPX’s
table mode has greater binary compatibility than CHERI as
pointer sizes remain the same – but hinders safety and ef-
ficiency. As with Hardbound, portions of the pointer may
be stored in different cache lines, and require transactional
memory to preserve atomicity. If atomicity is not maintained,
iMPX fails open. If multiple threads interfere such that pointer
and table entries become inconsistent, any memory accesses
for the pointer are silently allowed.

6.5. M-Machine

The M-Machine [5] is a 64-bit tagged-memory capability sys-
tem design using guarded pointers to implement fine-grained
memory protection for pointer safety. M-Machine pointers
are unforgeable. They define a protection domain within a
single address space, and protection-domain switching is sup-
ported. The M-Machine implementation depends on a su-
pervisor mode for pointer creation and manipulation, though
the authors propose guarded user-mode instructions. CHERI
differs from the M-Machine in the following ways:
• The M-Machine uses an MMU only for paging support,

whereas CHERI uses an MMU to support multiple address
spaces (processes), and uses capabilities for protection and

domain switching within each address space.
• The M-Machine provides a pointer compression scheme

that reduces fat pointers to 64 bits at the cost of granu-
larity: only power-of-two aligned and sized segments are
supported. This reduces memory and cache footprint, at the
cost of granularity and adoptability; padding is required for
common structures that break binary layouts.

• CHERI provides explicit pointer/capability conversions and
sandboxing to support (and confine) legacy code.

• CHERI allows capability manipulation in usermode.
The M-Machine is an efficient capability-based addressing

implementation, but almost entirely sacrifices compatibility
with current software designs. CHERI adopts similar design el-
ements, but with stronger focus on compatibility, adoptability,
and efficient compiler manipulation of capabilities.

7. Limit study
Protection schemes vary widely in functionality and perfor-
mance. To understand performance tradeoffs, we performed a
simulation-based limit study on pointer-intensive benchmarks.
The study measured instruction rate, memory traffic overhead,
system-call rate, and memory storage overhead (Figure 3).
We compared 256-bit CHERI with six models: the Mondrian
model; two variations on iMPX (ABI-preserving look-aside
tables, compiler-managed fat pointers); software fat pointers;
Hardbound; and the M-Machine. We also added a 128-bit
CHERI variant: 256-bit capabilities allow flexibility in experi-
mentation, but we would expect a production implementation
to use a smaller size. We adapted each model to 64-bit MIPS:
Mondrian We extend Mondrian to a 40-bit virtual address
space, and simulate its vector-table model with indices to
the first- and mid-level tables stretched to 14 bits. Records
are extended to 64 bits and hold permissions for 16 nodes
rather than 8, giving finer granularity. We assume a hardware
read of the table but simulate a software table fill based on a
minimal table fill algorithm in C.

iMPX Fat-pointer and table-based models translate directly.
Soft fat pointers Fat-pointer loads, stores, and bounds
checks use general-purpose instructions.

Hardbound We extend base and bounds information to 64
bits. We retain a direct offset for the bounds table and model
a 128-bit table access for every load (or store) of an incom-
pressible pointer. Compressed pointers encode up to 1024
bytes of length in 8 unused bits in the pointer and require
length to be 4-byte word aligned. We model a 2-bit tag for
each 64-bit word stored in a separate table in memory.
We used the Olden benchmarks [34], a suite developed for

distributed shared-memory research that has become popular
in bounds-checking research due to its focus on pointer-based
data structures. The benchmarks use a range of data structures,
memory footprints, and workloads to exercise various pointer
access patterns and densities.

To measure performance for each approach, we recorded
complete instruction traces of Olden benchmarks on our

M
on

dri
an

M
PX

M
PX

(F
P)

Soft
ware

FP

Hard
bo

un
d

M
-M

ac
hin

e

CHERI

12
8b

CHERI

0
100
200
300
400

O
ve

rh
ea

d
[%

]

Virtual memory footprint (pages)

0

200

400

O
ve

rh
ea

d
[%

]

Memory I/O (bytes)

0

50

100

O
ve

rh
ea

d
[%

]

Memory references (count)

0
5

10
15
20

O
ve

rh
ea

d
[%

]
Total instructions — optimistic (count)

M
on

dri
an

M
PX

M
PX

(F
P)

Soft
ware

FP

Hard
bo

un
d

M
-M

ac
hin

e

CHERI

12
8b

CHERI
0

50

100

O
ve

rh
ea

d
[%

]

Total instructions — pessimistic (count)

Figure 3: Simulated overheads of Olden benchmarks

baseline MIPS implementation in hardware. We then ex-
tracted information relevant to bounds checking: C memory-
management functions such as malloc() and free(), and all
memory loads and stores. This allowed us to track accesses to
all objects in memory-mapped segments (globals), heap and
stack. We simulated extra memory accesses, instructions, TLB
and cache behavior, and system calls that would result from
ideal implementations of each model. Performance results are
presented as normalized overhead against the baseline.

The number of virtual memory pages touched by the process
reflects both TLB and cache pressure. Caches optimize for
locality of reference so cache performance should degrade as
the range of pages increases, even if the total traffic remains
constant. The iMPX case has the highest page overhead. The
iMPX table contains more than 4 pages for each page of
memory containing pointers, maintaining 256 bits in the leaf
nodes for each 64-bit memory location. The Hardbound model

uses a simpler table structure and 128 bits of metadata per
pointer, but must also maintain a tag table. Interestingly, the
M-Machine performs poorly by the page metric due to padding
allocations to powers of two. CHERI and the other simple fat-
pointer approaches have comparatively small page overhead,
as the additional data is packed into existing data and the larger
structures will only sometimes spill onto another page. These
will use more cache, but not significantly more TLB entries.

The simplest memory metric is the total number of bytes
read or written. As expected, the table walk in iMPX requires
significantly more memory accesses than any other scheme.
CHERI generates more traffic on these pointer-heavy bench-
marks due to its larger pointer size; however, the proposed
128-bit variant is competitive with most of the other models.
Mondrian uses the smallest amount of memory traffic, as it
does not provide per-pointer bounds.

The number of individual loads and stores is presented sep-
arately from the number of bytes stored, as many structures
in the CPU scale with the number of independent transac-
tions rather than with the total size of transactions. CHERI,
Hardbound, and the M-Machine all do well on this metric. In
the case of CHERI and the M-Machine, where metadata is
stored inline, they have negligible increases in this category.
Hardbound does well because it succeeds in compressing a
large proportion of the pointers. Mondrian has a similarly low
overhead because it does not associate protection with pointers
and therefore does not cache larger regions of protection.

Perhaps the simplest form of overhead is increased instruc-
tion count; this is not an accurate predictor of performance
in superscalar implementations, but does impact instruction
cache usage. We show optimistic and pessimistic instruction
count overheads. The optimistic model assumes bounds can
be checked once on every pointer load; the pessimistic model
assumes that bounds must be checked on every pointer derefer-
ence. These are identical for hardware fat-pointer approaches,
where all dereferences are checked implicitly and the only ad-
ditional instructions are to set the bounds on new allocations.
CHERI and Hardbound require a single instruction; Mondrian
requires a system call to modify the protection table. Explicit
bounds loads and checks in iMPX and the software fat-pointer
approaches have the most overhead.

The CHERI model proves competitive in all major metrics
(especially in its 128-bit variant), indicating that there are no
major limitations to our approach.

8. Performance measurement
In addition to our limit study, we also measured the perfor-
mance of four of the Olden benchmarks running on CHERI
implemented in FPGA. We compiled each benchmark with
conventional MIPS code generation, MIPS code with auto-
matically generated bounds checks inserted by CCured [28],
and CHERI memory safety driven by manual insertion of
__capability annotations. Each was compiled with our mod-
ified version of LLVM, and run as a userspace program on

FreeBSD 10 with CHERI extensions.
CCured was chosen as a best-of-breed software bounds-

checking implementation as it elides bounds checks where
it can statically prove them unnecessary. CHERI will al-
ways enforce bounds dynamically in hardware. In contrast
to CHERI, the CCured version is not thread-safe due to non-
atomic pointer access (as noted in its documentation).

The four benchmarks were bisort, mst, treeadd and
perimeter. To enable comparison, we ran the benchmarks
with the same parameters as used in the evaluation of Hard-
bound: bisort 250000 0, mst 1024 0, treeadd 21 1 0

and perimeter 12 0. Figure 4 shows execution-time over-
head relative to the unsafe MIPS baseline, with total time
decomposed into allocation and computation phases.

In the bisort benchmark, CHERI experiences a very small
overhead while allocating memory for each node in the tree.
CHERI requires one extra instruction for each allocation to set
bounds, while the software-enforcement case is significantly
more complex. The sorting phase involves traversing the tree
and swapping pointers. This phase is dominated by cache miss
time. Unsafe nodes are 24-bytes, which fit more efficiently
in our 32-byte cache lines than CHERI’s 96-byte nodes. Due
to the similar data structure used, treeadd has comparable
performance profile to bisort.

The mst benchmark shows a different access pattern with
two contiguous allocations to build the graph and a linear read
to compute the minimum spanning tree. When building the
graph, the total run time is dominated by the hash calculations
that are the same in both cases. When computing the minimum
spanning tree, as with bisort, the dominant factor is cache
misses. CHERI experiences more cache misses because of
large capabilities, though this linear case would be alleviated
with cache prefetching.

The perimeter benchmark shows a small performance
improvement during the memory allocation phase when capa-
bilities are used. This is probably because the slowdown due
to capabilities is smaller than the performance variation due
to other effects, such as allocation alignment in malloc.

CHERI outperforms CCured substantially in all configu-
rations. In bisort, treeadd, and perimeter, this is due
to improvements in both allocation and computation. In mst,
CCured is effective in eliding inner-loop bounds checks during
computation, achieving greater cache efficiency by avoiding
fat-pointer overhead. Similar elision could also be applied to
CHERI to selectively utilize capabilities.

Figure 5 shows the percentage slowdown of CHERI relative
to MIPS code for increasing data-set sizes. For very small
sets, overhead is negligible. As working set-size increases,
capability cache pressure grows faster than for unprotected
code. This leads to visible ‘steps’ as the 16KB L1 cache,
64KB L2 cache, and TLB covering 1MB overflow.

Our benchmarks are consistent with those predicted by the
limit study: MIPS and CHERI execution times remain very
close when data is cached, but performance degrades where

Biso
rt

M
ST

Tree
ad

d

Peri
mete

r
Biso

rt
M

ST

Tree
ad

d

Peri
mete

r

0

50

100

150

0

O
ve

rh
ea

d
[%

]

Allocation
Computation

Total

CCured CHERI

Figure 4: Benchmark results comparing unmodified MIPS
code to software and hardware enforcement

4 8 16 32 64 128 256 512 1024
0

10

20

O
ve

rh
ea

d
[%

]

Treeadd Bisort
Perimeter MST

Figure 5: Slowdown for CHERI at different heap sizes (KB)

pointer-size is dominant. These results reconfirm that CHERI
will benefit from capability compression, and perhaps also
elision techniques, although performance is acceptable even
in pointer-heavy benchmarks.

9. Area and speed cost
CHERI capability support adds both area and speed cost to our
FPGA soft core. A synthesis of CHERI, excluding peripherals,
consumes 32% more logic elements than BERI. This over-
head includes not only the capability coprocessor and the tag
manager, but also logic in the main pipeline to allow loading
and storing 256-bit capabilities into the data cache. Figure 6
shows a synthesis of CHERI broken into components to in-
dicate area cost by module. A commercial implementation
would optimize capability size and may have a wide vector
path to memory that might also be used for the capabilities.

Capability support also affects the timing of our implemen-
tation due to wider paths and increased complexity in the
pipeline; our current implementation reduces clock speed by
8.1%, as BERI achieves a maximum frequency of 110.84 MHz,
while the capability coprocessor reaches 102.54 MHz. Little
attempt has been made to improve the timing of either case be-
yond 100MHz. An implementation that expects less-frequent
capability updates could decouple capability operations from
the main pipeline at a performance cost.

10. Limitations
The CHERI approach is not without limitations, many of
which we hope to address in future work. Perhaps most im-

BERI Pipeline 18.6%
Floating Point 31.8%

Capability Unit 14.7%

Tag Cache 4.0%

CPro0 & TLB 7.8%
Level 2 Cache 6.6%

L1 Data Cache 4.6%

L1 Instr. Cache 2.4%

Debug 4.7%

Multiply & Divide 2.6%

Branch Predictor 2.3%

Figure 6: CHERI layout on FPGA

portantly, CHERI’s protection features require adapting and
recompiling application code. Despite capability-qualified
pointers supporting all operations permitted by the C standard
with the exception of subtraction, practical C implementations
tolerate undefined pointer behaviors that CHERI capabilities
will not. The Olden suite, for example, was trivially adapted to
CHERI by simply tagging pointers with __capability. Some
applications, however, routinely construct pointers that extend
significantly beyond the end of valid buffers (disallowed by
the C specification), which will trigger exceptions on CHERI.
In performing a more complex adaptation of tcpdump to use
CHERI capabilities, we encountered many such uses — some
of which led to undesirable (and potentially exploitable) out-
of-bounds memory accesses with conventional compilation.

Unadapted MIPS code with ambient authority in the same
address space as CHERI-adapted code leaves adapted code
vulnerable to buggy or exploited MIPS code. This can be
mitigated by deploying explicit sandboxing of unadapted code,
at some cost to complexity and performance. In future work,
we hope to explore techniques for automated adaptation of
application code and for sandboxing of unmodified code.

11. Future work

Our larger research effort has now just begun. We intend
to explore compiler and system ramifications of the current
hardware extensions, and also to explore the utility of further
extensions. We expect to be able to demonstrate efficient
sandboxing using CHERI protection primitives, and explore
software models and scalability.

We are experimenting with several mechanisms for pro-
tected domain crossing. Our current prototype traps to the
OS to emulate a protected procedure-call instruction, but we
intend to provide a hardware (or hardware-assisted) implemen-
tation as the software model matures.

Our current work provides spatial memory safety. The pres-
ence of tagged memory also provides opportunities to enforce
temporal safety. Tags allow us to identify all references, so
we can provide accurate garbage collection to low-level lan-
guages such as C. Possibilities include a non-reuse allocator
(to eliminate most dangling pointer errors) that periodically
runs a tracing pass to identify reusable address space.

Distinguishing integers and pointers in the memory hierar-
chy also enables cache hinting for pre-fetching or coherency.

We are also investigating the use of the capability mecha-
nism for interactions between coprocessors (e.g., GPUs) and
userspace code, without requiring operating-system mediation.

12. Related work
Strong memory protection has long been sought for com-
puter systems [10, 35]. Initially, segmentation (and capabil-
ities) were developed to protect and relocate program struc-
tures [11, 23]. Fixed-size paging, however, eventually became
dominant to allow operating systems to efficiently manage
multiple programs on the same machine [14, 32]. For exam-
ple, Intel implemented fine-grained segmentation in the 80286
but it was eventually dropped in x86-64 [8]. Nevertheless,
computers that optimized for protecting individual programs
often support segmentation, for example the Burroughs large
systems [25, 43], and the modern ARM Cortex R cores [15].

For systems without hardware segmentation in user space,
programmers turned to statically enforced memory protec-
tion [6] and/or run-time checks [9]. Managed-language virtual
machines automate these mechanisms to enforce an object
memory model [16] and incur significant overhead as a re-
sult [31]. Other attempts have been made to provide bounds
checking in software for C [2, 37, 38], but with prohibitive
overhead for a performance-oriented language. To achieve
coarse-grained software sandboxing of program components,
efforts have been made to use process separation [36, 40], dis-
joint TLB sets in a shared process, static analysis of specially
compiled binaries [24, 39, 48], and delegation of hypervisor
support to userspace [3].

Another approach is memory protection in user-space code
for managed languages [44, 47] that implements certain as-
pects of the virtual machine’s memory model in the hard-
ware. Such approaches are less applicable when computers
run software written in multiple languages, with different
memory models. Commercial approaches, such as ARM’s
Jazelle and Thumb-2EE, have provided bounds-checking in-
structions aimed at efficiently implementing languages such
as Java without a specialized Java processor.

13. Availability
The CHERI ISA reference is available as a technical re-
port [41]. In the interests of experimental reproducibility,
we have open sourced our BERI prototype and software stack:
http://www.bericpu.org/

http://www.chericpu.org/

We hope that this will not only encourage experimentation
with capability-based techniques such as CHERI, but also
support further combined hardware-software research.

14. Conclusions
Fine-grained memory protection is vital for increasing security
and robustness in contemporary software. To date, only coarse-
grained MMU-based protection models have had wide impact

on computer systems, despite many historic proposals for capa-
bility systems and more recent proposals for protection tables
and fat pointers. We have hybridized a capability model with
an MMU-based design to demonstrate that a tagged capability
system can provide efficient fine-grained protection as well
as compatibility with current source-code and binary corpora.
Incremental adoption is critical, as we live in a world with
large established software codebases. Mandatory rewriting –
or even recompiling – is no longer acceptable for deployment.

Earlier capability systems have seen limited adoption, al-
though they largely predated widespread Internet connectiv-
ity and security threats. More recently, processor vendors
have introduced new security features (i.e., TrustZone [1] and
iMPX [17]), which might suggest that there could soon be a
sufficient market for capability-based addressing. Hybrid soft-
ware capability systems (e.g., Capsicum [40]) have allowed
capabilities (also neglected in the software community) to be
adopted on a larger scale, due to improved legacy-code com-
patibility. Similarly, a key contribution of the CHERI approach
is adoptability that is incremental, rather than ground-up.

Our feature comparison and limit study illustrate how
protection-model design choices made by several published
schemes can trade off among protection, performance, and
compatibility. They demonstrate that CHERI performs com-
petitively with all schemes while often providing stronger
protection, and that capability-size optimizations would fur-
ther improve CHERI performance. We also demonstrate that
incremental deployment is possible and that parts of a program
can benefit from complete spatial safety – without having to
rewrite or recompile entire codebases.

CHERI exemplifies the RISC philosophy of creating sim-
ple instructions that are designed to be useful to compilers.
As a result, implementation complexity is sufficiently low
for consideration in modern processors, and performance is
noticeably faster than weaker enforcement in software.

14.1. Acknowledgments

We thank our colleagues – especially Ross Anderson, Gregory
Chadwick, Nirav Dave, Khilan Gudka, Wojciech Koszek, A
Theodore Markettos, Ed Maste, Andrew W. Moore, Will Mor-
land, Prashanth Mundkur, Steven J. Murdoch, Philip Paeps,
Colin Rothwell, Hassen Saidi, Stacey Son, and Bjoern Zeeb;
we also thank our anonymous reviewers for their feedback.

This work is part of the CTSRD Project that is sponsored by
the Defense Advanced Research Projects Agency (DARPA)
and the Air Force Research Laboratory (AFRL), under con-
tract FA8750-10-C-0237. The views, opinions, and/or findings
contained in this paper are those of the authors and should not
be interpreted as representing the official views or policies, ei-
ther expressed or implied, of the Defense Advanced Research
Projects Agency or the Department of Defense. We gratefully
acknowledge Google, Inc. for its sponsorship.

References
[1] T. Alves and D. Felton, “ARM TrustZone: Integrated hardware and

software security,” Information Quarterly, vol. 3, no. 4, July 2004.
[2] T. M. Austin, S. E. Breach, and G. S. Sohi, “Efficient detection of all

pointer and array access errors,” in Proceedings of the ACM SIGPLAN
1994 conference on Programming language design and implementation,
ser. PLDI ’94. New York, NY, USA: ACM, 1994, pp. 290–301.

[3] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières, and
C. Kozyrakis, “Dune: safe user-level access to privileged CPU features,”
in Proceedings of the 10th USENIX conference on Operating Systems
Design and Implementation, ser. OSDI’12, 2012, pp. 335–348.

[4] Bluespec SystemVerilog Version 3.8 Reference Guide, Bluespec, Inc.,
Waltham, MA, November 2004.

[5] N. P. Carter, S. W. Keckler, and W. J. Dally, “Hardware support for
fast capability-based addressing,” SIGPLAN Not., vol. 29, no. 11, pp.
319–327, Nov. 1994.

[6] B. Chess, “Improving computer security using extended static check-
ing,” in Proceedings of the 2002 Symposium on Security and Privacy.
Oakland, California: IEEE Computer Society, May 2002, pp. 160–173.

[7] R. Childs Jr, J. Crawford, D. House, and R. Noyce, “A Processor
Family for Personal Computers,” Proceedings of the IEEE, vol. 72,
no. 3, pp. 363–376, 1984.

[8] S. Cleveland, “x86-64 technology white paper,” Advanced Micro De-
vices, Tech. Rep., 02 2002.

[9] C. Cowan, F. Wagle, C. Pu, S. Beattie, and J. Walpole, “Buffer over-
flows: Attacks and defenses for the vulnerability of the decade,” in
DARPA Information Survivability Conference and Exposition, 2000.
DISCEX’00. Proceedings, vol. 2. IEEE, 2000, pp. 119–129.

[10] P. Denning, “Virtual memory,” ACM Computing Surveys (CSUR),
vol. 2, no. 3, pp. 153–189, 1970.

[11] J. B. Dennis and E. C. Van Horn, “Programming semantics for multi-
programmed computations,” Commun. ACM, vol. 9, no. 3, pp. 143–155,
1966.

[12] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic, “Hard-
bound: architectural support for spatial safety of the C programming
language,” SIGARCH Comput. Archit. News, vol. 36, no. 1, pp. 103–
114, Mar. 2008.

[13] J. Evans, “A scalable concurrent malloc(3) implementation for
FreeBSD,” in BSDCan, 2006.

[14] J. Fotheringham, “Dynamic storage allocation in the Atlas computer,
including an automatic use of a backing store,” Communications of the
ACM, vol. 4, no. 10, pp. 435–436, 1961.

[15] A. Frame and C. Turner, “Introducing new ARM Cortex-R technology
for safe and reliable systems,” ARM, Tech. Rep., 03 2011.

[16] J. Gosling and H. McGilton, The Java language environment. Sun
Microsystems Computer Company, 1995, vol. 2550.

[17] Intel Plc., “Introduction to Intel R© memory protec-
tion extensions,” http://software.intel.com/en-us/articles/
introduction-to-intel-memory-protection-extensions, July 2013.

[18] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and
Y. Wang, “Cyclone: A safe dialect of C,” in ATEC ’02: Proceedings of
the USENIX Annual Technical Conference, 2002, pp. 275–288.

[19] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “seL4: Formal verification of an operating-
system kernel,” Commun. ACM, vol. 53, pp. 107–115, June 2009.

[20] A. Kwon, U. Dhawan, J. M. Smith, T. F. Knight, Jr., and A. De-
Hon, “Low-fat pointers: Compact encoding and efficient gate-level
implementation of fat pointers for spatial safety and capability-based
security,” in 20th ACM Conference on Computer and Communications
Security, November 2013.

[21] L. Lam and T. Chiueh, “Checking array bound violation using segmen-
tation hardware,” in IEEE International Conference on Dependable
Systems and Networks, 2005, pp. 388–397.

[22] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the Interna-
tional Symposium on Code Generation and Optimization: Feedback-
directed and runtime optimization, ser. CGO ’04, 2004, pp. 75–86.

[23] H. M. Levy, Capability-Based Computer Systems. Newton, MA,
USA: Butterworth-Heinemann, 1984.

[24] Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich, and M. F. Kaashoek,
“Software fault isolation with API integrity and multi-principal mod-
ules,” in SOSP 2011: Proceedings of the 23rd ACM Symposium on
Operating Systems Principles, 2011.

[25] A. J. Mayer, “The architecture of the Burroughs B5000: 20 years later
and still ahead of the times?” ACM SIGARCH Computer Architecture
News, vol. 10, no. 4, pp. 3–10, 1982.

[26] M. K. McKusick and G. V. Neville-Neil, The design and implementa-
tion of the FreeBSD operating system. Pearson Education, 2004.

[27] J. Navarro, S. Iyer, P. Druschel, and A. L. Cox, “Practical, transparent
operating system support for superpages,” in OSDI, 2002.

[28] G. C. Necula, S. McPeak, and W. Weimer, “CCured: Type-safe
retrofitting of legacy code,” in ACM SIGPLAN Notices, vol. 37, no. 1,
2002, pp. 128–139.

[29] D. A. Patterson and C. H. Sequin, “RISC I: A reduced instruction
set VLSI computer,” in Proceedings of the 8th Annual Symposium on
Computer Architecture, 1981, pp. 443–457.

[30] F. J. Pollack, G. W. Cox, D. W. Hammerstrom, K. C. Kahn, K. K.
Lai, and J. R. Rattner, “Supporting Ada memory management in the
iAPX-432,” in ACM SIGARCH Computer Architecture News, vol. 10,
no. 2, 1982, pp. 117–131.

[31] F. Qian, L. Hendren, and C. Verbrugge, “A comprehensive approach to
array bounds check elimination for Java,” in Compiler Construction.
Springer, 2002, pp. 325–341.

[32] B. Randell and C. Kuehner, “Dynamic Storage Allocation Systems,”
Communications of the ACM, vol. 11, no. 5, pp. 297–306, 1968.

[33] C. Reis and S. D. Gribble, “Isolating web programs in modern browser
architectures,” in EuroSys ’09: Proceedings of the 4th ACM European
Conference on Computer Systems. New York, NY, USA: ACM, 2009,
pp. 219–232.

[34] A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J. Hendren, “Supporting
dynamic data structures on distributed-memory machines,” ACM Trans.
Program. Lang. Syst., vol. 17, no. 2, pp. 233–263, Mar. 1995.

[35] J. Saltzer and M. Schroeder, “The protection of information in com-
puter systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278–1308,
September 1975.

[36] M. Schroeder and J. Saltzer, “A hardware architecture for implementing
protection rings,” Communications of the ACM, vol. 15, no. 3, March
1972.

[37] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
Sanitizer: A fast address sanity checker,” in USENIX ATC, vol. 12,
2012.

[38] R. Shetty, M. Kharbutli, Y. Solihin, and M. Prvulovic, “Heapmon: a
helper-thread approach to programmable, automatic, and low-overhead
memory bug detection,” IBM J. Res. Dev., vol. 50, no. 2/3, pp. 261–275,
Mar. 2006.

[39] R. Wahbe, S. Lucco, T. E. Anderson, and S. u. L. Graham, “Efficient
software-based fault isolation,” in SOSP ’93: Proceedings of the four-
teenth ACM Symposium on Operating Systems Principles, New York,
NY, USA, 1993, pp. 203–216.

[40] R. N. M. Watson, J. Anderson, B. Laurie, and K. Kennaway, “Cap-
sicum: Practical capabilities for Unix,” in Proceedings of the 19th
USENIX Security Symposium. USENIX, August 2010.

[41] R. N. M. Watson, P. G. Neumann, J. Woodruff, J. Anderson,
D. Chisnall, B. Davis, B. Laurie, S. W. Moore, S. J. Murdoch, and
M. Roe, “Capability Hardware Enhanced RISC Instructions: CHERI
Instruction-Set Architecture,” University of Cambridge, Computer
Lab., Tech. Rep. UCAM-CL-TR-850, May 2014. [Online]. Available:
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-850.html

[42] M. Wilkes and R. Needham, The Cambridge CAP computer and its
operating system. Elsevier North Holland, New York, 1979.

[43] A. Wilkinson et al., “A penetration study of a Burroughs large system,”
ACM Operating Systems Review, vol. 15, no. 1, pp. 14–25, January
1981.

[44] I. Williams and M. Wolczko, “An object-based memory architecture,”
in Fourth International Workshop on Persistent Objects. Morgan
Kaufmann, 1990, pp. 114–130.

[45] E. Witchel, J. Cates, and K. Asanović, Mondrian memory protection.
ACM, 2002, vol. 37, no. 10.

[46] E. Witchel, J. Rhee, and K. Asanović, “Mondrix: Memory isolation
for Linux using Mondriaan memory protection,” in Proceedings of the
20th ACM Symposium on Operating Systems Principles, October 2005.

[47] G. Wright, M. L. Seidl, and M. Wolczko, “An object-aware memory
architecture,” Science of Computer Programming, vol. 62, pp. 145–163,
2006.

[48] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native client: A sandbox for
portable, untrusted x86 native code,” in SP ’09: Proceedings of the
2009 30th IEEE Symposium on Security and Privacy, 2009, pp. 79–93.

