
Objects and Aspects: Row
Polymorphism

Neel Krishnaswami

Department of Computer Science
Carnegie Mellon University

neelk@cs.cmu.edu

Overview

1. Records and Objects

2. Row Polymorphism

3. Using Rows

Objects and Aspects: Row Polymorphism

1

Encoding Objects in Type Theory

• Question: What is the type of an object?

• Answer: It is the set of messages it can send and receive.

• Question: How can we say this mathematically?

• Answer: Using recursive types, existential types, and records.

Objects and Aspects: Row Polymorphism

2

Encoding Objects in Type Theory

• Question: What is the type of an object?

• Answer: It is the set of messages it can send and receive.

• Question: How can we say this mathematically?

• Answer: Using recursive types and records.

Objects and Aspects: Row Polymorphism

3

Encoding Objects in Type Theory

Here’s an interface definition.

interface Point {

pos: int;

move: int -> Point

}

Here’s what the type-theoretic version looks like:

Point = µP.Rec{pos : int;move : int → P}

Objects and Aspects: Row Polymorphism

4

What this means

The µ is a “fixed point” operator, which introduces a recur-

sive type.

Point = µP.Rec{pos : int;move : int → P}
= µP.Rec{pos : int;

move : int → µP.Rec{pos : int;move : int → P}}

This lets us model the idea that an object can return another

object of with the same interface it supports. It seems like

we can now model OO, if we also add subtyping on records.

(That is, if Rec{a : τ, b : σ, c : ρ} ≤ Rec{a : τ, b : σ}.)

Objects and Aspects: Row Polymorphism

5

The Loss of Information Problem

Consider the following function:

foo :: Rec{a : int} → int×Rec{a : int}
foo = λx. (x.a, x)

foo has the type Rec{a : int} → int×Rec{a : int}. This seems

innocuous, but consider what happens when you say:

let (n, r) = foo({a:5, b:true})

The variable r has the less-precise type Rec{a : int} – we’ve

forgotten the existence of the b field. This is the famous

“loss of information” problem.

Objects and Aspects: Row Polymorphism

6

Row Polymorphism

Row polymorphism was invented to address the loss of infor-

mation problem. The core idea is to add a polymorphic type

variable to remember all of the extra fields:

foo :: ∀r : row.(r/a) ⇒ Rec{a : int|r} → int×Rec{a : int|r}
foo = λx. (x.a, x)

The way to read this type is: “for all rows r which lack a

field a, we have a function type which takes records with a

field a of type int and some other fields described by r, and

returns an int and another record of the same type.”

Objects and Aspects: Row Polymorphism

7

Basic Operations on Records

• Field Selection

selectl :: ∀α : type.∀r : row.(r/l) ⇒ Rec{l : α|r} → α

• Field Removal

removel :: ∀α : type.∀r : row.(r/l) ⇒ Rec{l : α|r} → Rec{r}

• Record Extension

addl :: ∀α : type.∀r : row.(r/l) ⇒ α → Rec{r} → Rec{l : α|r}

Objects and Aspects: Row Polymorphism

8

Uses of Row Polymorphism

Row polymorphism admits type inference, and this means

that an OO language that uses row polymorphism rather

than subtyping on the records also has type inference.

let o = object

val lst = []

method add(x) = {< lst = (x :: lst) >}

method length = List.length(lst)

end

val o : <add : ’b -> ’a; length : int> as ’a

(This is an example from Ocaml 3.08.)

Objects and Aspects: Row Polymorphism

9

Salient Points, Pt. 0

Consider the type of o.

val o : <add : ’b -> ’a; length : int> as ’a

Observe the similarity of this type to the type

µα.∀β. Rec{add : β → α; length : int}

Objects and Aspects: Row Polymorphism

10

Loss of Information Revisited

Note that Ocaml does not have a loss of information problem:

let foo(o) = (o#length, o)

val foo : (<length : ’b; ..> as ’a) -> (’b * ’a)

The row (“..”) guarantees that the second component of

the return value has all the methods as the original object.

(Also note that the absence predicate is implicit – the row

variable is assumed to lack a length field.)

Objects and Aspects: Row Polymorphism

11

Structural Typing

let o = object

val lst = []

method add(x) = {< lst = (x :: lst) >}

method length = List.length(lst)

end

Note that this is a literal object, created as an instance of no

class. This works because row polymorphism is a structural

type discipline, rather than a nominal discipline. This lets the

compiler statically typecheck prototype objects.

(Ocaml has classes, but classes and inheritance exist for

code reuse purposes, rather than to induce subtyping rela-

tionships.)

Objects and Aspects: Row Polymorphism

12

Mixins

Rows can also let you write mixins as ordinary functions, and
infer their type (this is not legal Ocaml!):

fun print(o) =

{< method printlen =

Printf.printf ‘‘%d elements’’ self#length | o >}

Which could potentially be given the type:

(<length : int; ..> as ’a) ->

(<length: int; printlen: unit; ..> as ’a)

With explicit absence predicates, this is:

∀r : row.(r/length) ⇒ (r/printlen) ⇒
µα. Rec{length : int|r} → µα. Rec{length : int; printlen : unit|r}

Objects and Aspects: Row Polymorphism

13

Upcasts

let o = object(self) method happy = "Joy!"
method print = Printf.printf "%s" self#happy

end

let p = object(self) method misery = "Woe!"
method print = Printf.printf "%s" self#misery

end

type printable = <print:unit>

let list = [(o :> printable); (p :> printable)]

val o : < happy : string; print : unit >
val p : < misery : string; print : unit >
val list : printable list

Upcasts must be explicit.

Objects and Aspects: Row Polymorphism

14

Error Messages

[o; p];;

Characters 4-5:

[o; p];;

^

This expression has type < misery : string; print : unit >

but is here used with type < happy : string; print : unit >

Only the first object type has a method misery

Rows are formally quite simple, which makes generating rea-

sonably high quality error messages relatively easy. (Question

to the audience: how localize are error messages in Scala,

Cecil or Java 1.5 like?)

Objects and Aspects: Row Polymorphism

15

Downcasts

Downcasts not supported by Ocaml, because the designers

don’t like runtime type tests and refuse to implement them.

However, there’s no fundamental theoretical obstacle to it;

you might write:

typecase o with

| <print:unit; ..> -> o#print

| otherwise -> Printf.printf ‘‘default’’

Objects and Aspects: Row Polymorphism

16

Discussion

• Row polymorphism is structural, rather than nominal. I think this is
a virtue, but Jonathan and many other people (sometimes) disagree!

• This permits typing mixins as ordinary first-class functions. This lets
you select and compose mixins at runtime, rather than compile time.
(Can you do this in Scala?)

• Type errors with rows are simpler than with bounded quantification.
This advantage is reduced somewhat if you want to take advantage
of type inference.

• Upcasts are always explicit. How serious a limitation is this?

• Polymorphic types are predicative rather than impredicative. This is
weaker than bounded quantification. Is this a problem at all?

Objects and Aspects: Row Polymorphism

17

Bonus Slides!

This contains extra slides cut from the talk, but which might

be useful for discussion purposes.

Objects and Aspects: Row Polymorphism

18

The Type Theory of Rows: Kinds and Types

Kinds classify types, in the same way that types classify

terms. We have two basic kinds of types – regular types

and row types.

κ ::= type
| row
| κ → κ

τ represents expressions of kind type.

Objects and Aspects: Row Polymorphism

19

Type Constants

For each kind κ, we can generate the legal type expressions

C of that kind:

Cκ ::= χκ constants
| α variables

| Cκ′→κ Cκ′ applications

Purpose Constant Kind Example
Integers int type int
Function Types → type → type → type int → int
Empty Row {} row {}
Row Extension {l : −|−} type → row → row {l : int|r}
Record Constructor Rec row → type Rec{a : int}

Objects and Aspects: Row Polymorphism

20

Predicates and Type Schemes

The syntax for row types permits writing row expressions like

{l : τ ; l : τ ′}, so we need a mechanism for prohibiting such

row expressions. We have seen these predicates before; they

are the constraints of the form r/l.

In the ML tradition, we introduce polymorphism by adding

type schemes to the language:

σ ::= ∀α : κ. σ | ρ
ρ ::= τ | π ⇒ ρ

π is any row absence predicate.

Objects and Aspects: Row Polymorphism

21

Type Checking

The typing judgement is of the form:

P |Γ ` e : σ

This reads, “Given row constraints P and variable types Γ,

the type of the expression e is σ.”

(As an aside Γ ::= • | Γ, x : σ).

Objects and Aspects: Row Polymorphism

22

The Most Important Rules

The two typing rules most relevant for row types are the

introduction and elimination rules for the constraints:

P |A ` e : π ⇒ ρ P |= π
P |A ` e : ρ

{⇒ E}

P ∪ {π} | A ` e : ρ
P |A ` e : π ⇒ ρ

{⇒ I}

This is how the type system tracks the information in the

row constraints – you can add a constraint to a type if it is

in the set P , and you can strip it off a type if you remember

to put it in the context subsequently.

Objects and Aspects: Row Polymorphism

23

