
Goodbye World!
The perils of relying on output streams in C

Jim Meyering
meyering@redhat.com

maintainer of coreutils, gnulib, etc.

 Outline:

 There are many problems with stdout
 they make it hard to write truly robust code
 one problem (the tip of the iceberg) and a 95% solution
 offenders, then and now
 oops, a QoI problem with glibc’s snprintf

 All users of C recognize this program:

 #include <stdio.h>
 int
 main ()
 {
 printf ("Hello, world!\n");
 return 0;
 }

 Is it robust?

 No. It fails to diagnose a write error:

 $ gcc hello.c && ./a.out > /dev/full; echo $?
 0

 What would it take to make it robust?

 If you think a nonzero exit code is enough
 of an error indication, then maybe this:

 #include <stdio.h>
 int
 main ()
 {
 if (printf ("Hello, world!\n") != 14)
 return 1;
 return 0;
 }

 or even this, if you like brevity:

 #include <stdio.h>
 int
 main ()
 {
 return ! (printf ("Hello, world!\n") == 14);
 }

 Unfortunately there are two problems with this:

 Most people *do* want diagnostics. They help distinguish
 a disk full error from permission denied or EIO.

 Testing each and every use of printf, fprintf, fputs, fseek, putc,
 putchar, etc., is often counter-productive and usually unmaintainable.

 Improvement: detect fclose failure:

 Here we call fclose explicitly rather than relying on
 exit doing it for us, and give a diagnostic upon failure:

 #include <stdio.h>
 #include <stdlib.h>
 int
 main ()
 {
 printf ("Hello, world!\n");

 if (fclose (stdout) != 0)
 {
 perror ("hello: write error");
 return EXIT_FAILURE;
 }
 return EXIT_SUCCESS;
 }

 Done?

 Now we see what we expected:

 $./a.out > /dev/full; echo $?
 hello: write error: No space left on device
 1

 We can even provoke a different diagnostic like this:

 $./a.out >&-; echo $?
 hello: write error: Bad file descriptor
 1

 The use of ">&-" above tells the shell to run the command with closed stdout.

 Are we done? No.

 For that small example, it might be ok, but in general, no.
 First of all, what if there are two or more exit points?
 We don’t want to duplicate even that small amount of code, so...

 First, factor out the stream-closing function

 #include <stdio.h>
 #include <stdlib.h>

 static void
 close_stdout (void)
 {
 if (fclose (stdout) != 0)
 {
 perror ("hello: write error");
 exit (EXIT_FAILURE);
 }
 }

 int
 main ()
 {
 atexit (close_stdout);
 printf ("Hello, world!\n");
 return EXIT_SUCCESS;
 }

 "atexit" arranges to call the named function at exit time.

 Better still, but we’re not there yet.

 Here is a counterexample:

 $ stdbuf --output=0 ./a.out > /dev/full; echo $?
 0

 Invoking stdbuf like that disables buffering on a.out’s stdout.
 That makes printf perform the write syscall, which fails.
 Then, when it comes time to close, there is no buffered data,
 and so the fclose succeeds.

 ferror saves us, but at a price

 #include <stdio.h>
 #include <stdlib.h>
 #include <stdbool.h>

 static void
 close_stdout (void)
 {
 bool prev_fail = ferror (stdout);
 bool fclose_fail = fclose (stdout);
 if (prev_fail || fclose_fail)
 {
 if (fclose_fail)
 perror ("hello: write error");
 else
 fprintf (stderr, "hello: write error\n");
 exit (EXIT_FAILURE);
 }
 }

 Using ferror like that comes with a small cost:

 In the unusual event that fclose succeeds when ferror
 returns nonzero, the diagnostic will not include errno
 information.

 A corner case: closed stdout

 There’s still one problem remaining. What if your program
 is like touch, mv and cp in that it rarely uses stdout?

 Since it doesn’t use stdout for normal operation
 it should not mind if you run it with stdout already closed.
 If touch were to use the close_stdout function, it would fail:

 $ touch foo >&-
 touch: write error: Bad file descriptor

 While using ">&-" may seem contrived (it *is* often wrong),
 it is not uncommon for a daemon to run with stdout closed.
 If that daemon may exec your program, your program should
 work with closed stdout.

 Another fix: use __fpending

 void
 close_stdout (void)
 {
 bool prev_fail = (ferror (stdout) == 0);
 bool none_pending = (__fpending (stdout) == 0);
 bool fclose_fail = (fclose (stdout) == 0);

 if (prev_fail || fclose_fail)
 {
 int e = fclose_fail ? errno : 0;

 if (!prev_fail && none_pending && e == EBADF)
 return;

 error (EXIT_FAILURE, e, "write error");
 }
 }

 The current version of close_stdout handles even more corner cases:

 http://git.sv.gnu.org/cgit/gnulib.git/tree/lib/closeout.c
 http://git.sv.gnu.org/cgit/gnulib.git/tree/lib/close-stream.c

 TL;DR: fix many programs by adding two lines

 Yes, using stdout in code that is supposed to be robust is a pain,
 but in the vast majority of cases, adding only two lines is enough
 to solve this problem:

 #include "closeout.h"
 atexit (close_stdout); # call very early in main

 Also include <stdlib.h>, for atexit, if it is not already done.

 Assuming you are using gnulib, you would also add "closeout" to
 your list of modules.

 Offenders, (all fixed in 2005):

 perl
 http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/2004-12/msg00072.html

 python
 http://mail.python.org/pipermail/python-bugs-list/2004-December/026600.html

 even rsync
 https://bugzilla.samba.org/show_bug.cgi?id=2116

 Offenders, now:

 emacs --batch --eval ’(print "oops!")’ > /dev/full
 guile --help > /dev/full
 printf ’(display "x")’|guile > /dev/full

 Summary:

 Always detect and diagnose write failure. In C, check both ferror and
 fclose return values. Every program that writes to an output stream
 should be careful to close it explicitly and to detect and report any
 error. Simply calling fclose and checking its return value is not always
 enough: if the program generates output via an unchecked call to a
 function like printf, fwrite or fputs, then it must call ferror just before
 fclose to detect a prior failure.

 Always check the return value of fclose. Even if all stream output
 functions and a final fflush have succeeded, fclose may still fail when
 the output file is on a networked (e.g., NFS) or distributed (e.g., CODA)
 file system.

 When it comes time to close standard output, don’t report a failure just
 because that stream happened to be closed at start-up. Do report the
 failure if there has been any attempt to write to a closed stream.

 Upon failure, always give an accurate diagnostic and exit with nonzero status.

 Thank You

 More problems:

 snprintf (NULL, 0, fmt, 0) may allocate memory

 Exercise with the printf command from coreutils 6.9 or earlier:

 (ulimit -v 10000
 env printf %.20000000f 0)
 $ echo $?
 $ 0

