The Need for Asynchronous, Zero-Copy Network 1/0

Problems and Possible Solutions

Ulrich Drepper
Red Hat, Inc.

drepper@redhat .com

Abstract

The network interfaces provided by today’s
OSes severely limit the efficiency of network
programs. The kernel copies the data coming in
from network interface at least once internally
before making the data available in the user-
level buffer. This article explains the problems
and introduces some possible solutions. These
necessarily cover more than just the network in-
terfaces themselves, there is a bit more support
needed.

1 Introduction

Writing scalable network applications is today
more challenging than ever. The problem is
the antiquated (standardized) network API. The
Unix socket API is flexible and remains usable
but with ever higher network speeds, new tech-
nologies like interconnects, and the resulting
expected scalability we reach the limits. CPUs
and especially their interface to the memory
subsystem are not capable of dealing with the
high volume of data in the available short time-
frames.

What is needed is an asynchronous interface for
networking. The asynchronicity would primar-
ily be a means to avoid unnecessary copying

of data. It also would help to avoid conges-
tion since network buffers can earlier be freed
which in turn ensures that retransmits due to
full network buffers are minimized.

Existing interfaces like the POSIX AIO func-
tions fall short of providing the necessary func-
tionality. This is not only due to the fact that
pre-posting of buffers is only possible at a lim-
ited scale. A perhaps bigger problem is the
expensive event handling. The event handling
itself has requirements and challenges which
currently cannot be worked around (like wak-
ing up too many waiters).

In the remainder of the paper we will see the
different set of interfaces which are needed:

e event handling
e physical memory handling

e asynchronous network interfaces

The event handling must work with the existing
select ()/poll () interfaces. It also should
be generic enough to be usable for other events
which currently do not map to file descriptors in
the moment (like message queues, futexes, etc).
This way we might finally have one unified in-
ner loop in the event handling of a program.



Physical memory suddenly becomes important
because network devices address only physical
memory. But physical memory is invisible in
the Unix ABI and this is very much welcome.
If this is not the case the Copy-On-Write con-
cept used on CPUs with MMU-support would
not work. The implementation of functions like
fork () becomes harder. The proposal will
center around making physical memory regions
objects the kernel knows to handle.

Finally, using event and physical memory han-
dling, it is possible to define sane interfaces for
asynchronous network handling. In the follow-
ing sections we will see some ideas on how this
can happen.

It is not at all guaranteed that these interfaces
will stand the test of time or will even be imple-
mented. The intention of this paper is to get the
ball rolling because the problems are pressing
and we definitely need something along these
lines. Starting only from the bottom (i.e., from
the kernel implementation) has the danger of
ignoring the needs of programmers and might
miss the bigger picture (e.g., integration into a
bigger event handling scheme, for instance).

2 The Existing Implementation

Network stacks in Unix-like OSes have more
or less the same architecture today as they had
10-20 years ago. The interface the OS provides
for reading and writing from and to network in-
terfaces consists of the interfaces in Table 1.

These interfaces all work synchronously. The
interfaces for reading return only when data
is available or in error conditions. In non-
blocking mode they can return immediately if
no data is available, but this is no real asyn-
chronous handling. The data is not transferred
to userlevel in an asynchronous fashion.

receiving sending
read () write ()
recv () send ()
recvirom() sendto ()
recvmsg () sendmsg ()

Table 1: Network APIs

receiving sending

read()1 1

aio_read()

write ()
aio_write ()
lio_listio()

Table 2: AIO APIs

Linux provides an asynchronous mode for ter-
minals, sockets, pipes, and FIFOs. If a file
descriptor has the 0_AsyNC flag set calls to
read () and write () immediately return and
the kernel notifies the program about comple-
tion by sending a signal. This is a slightly
more complicated and more restrictive version
of the AIO interfaces than when using SIGEV_
SIGNAL (see below) and therefore suffers in ad-
dition to its own limitation of those of SIGEV__
SIGNAL.

For truly asynchronous operations on files the
POSIX AIO functions from Table 2 are avail-
able. With these interfaces it is possible to sub-
mit a number of input and output requests on
one or more file descriptors. Requests are filled
as the data becomes available. No particular
order is guaranteed but requests can have pri-
orities associated with them and the implemen-
tation is supposed to order the requests by pri-
ority. The interfaces also have a synchronous
mode which comes in handy from time to time.
Interesting here is the asynchronous mode. The
big problem to solve is that somehow the pro-
gram has to be able to find out when the submit-
ted requests are handled. There are three modes

'With the O_ASYNC flag set for the descriptor.



defined by POSIX:

SIGEV_SIGNAL The completion is signaled
by sending a specified signal to the pro-
cess. Which thread receives the signal is
determined by the kernel by looking at the
signal masks. This makes it next to im-
possible to use this mechanism (and O_
ASYNC) in a library which might be linked
into arbitrary code.

SIGEV_THREAD The completion is signaled
by creating a thread which executes a
specified function. This is quite expensive
in spite of NPTL.

SIGEV_NONE No notification is sent. The pro-
gram can query the state of the request
using the aio_error () interface which
returns EINPROGRESS in case the request
has not yet been finished. This is also pos-
sible for the other two modes but it is cru-
cial for SIGEV_NONE.

The POSIX AIO interfaces are designed for file
operations. Descriptors for sockets might be
used with the Linux implementation but this
is not what the functions are designed for and
there might be problems.

All I/0O interfaces have some problems in com-
mon: the caller provides the buffer into which
the received data is stored. This is a problem
in most situation for even the best theoretical
implementation. Network traffic arrives asyn-
chronously, mostly beyond the control of the
program. The incoming data has to be stored
somewhere or it gets lost.

To avoid copying the data more than once it
would therefore be necessary to have buffers
usable by the user available right the moment
when the data arrives. This means:

e for the read () and recv () interfaces it
would be necessary that the program is
making such a call just before when the
data arrives. If there is no such call out-
standing the kernel has to use its own
buffers or (for unreliable protocols) it can
discard the data.

e with aio_read() and the equivalent
lio_listio () operation itis possible to
pre-post a number of buffers. When the
number goes down more buffers can be
pre-posted. The main problem with these
interfaces is what happens next. Some-
how the program needs to be notified
about arrival of data. The three mech-
anisms described above are either based
on polling (SIGEV_NONE) or are far too
heavy-weight. Imagine sending 1000s
of signals a second corresponding to the
number of incoming packages. Creating
threads is even more expensive.

Another problem is that for unreliable protocols
it might be more important to always receive
the last arriving data. It might contain more
relevant information. In this case data which
arrived before should be sacrificed.

A second problem all implementations have in
common is that the caller can provide arbitrary
memory regions for input and output buffer to
the kernel. This is in general wanted. But if
the network hardware is supposed to transfer
directly into the memory regions specified it is
necessary for the program to use memory that
is special. The network hardware uses Direct
Memory Access (DMA) to write into RAM in-
stead of passing data through the CPU. This
happens at a level below the virtual address
space management, DMA only uses physical
addresses.

Besides possible limitations on where the RAM
for the buffers is located in the physical address



space, the biggest problem is that the buffers
must remain in RAM until used. Ordinarily
userlevel programs do not see physical RAM;
the virtual address is an abstraction and the OS
might decide to remove memory pages from
RAM to make room for other processes. If this
would appear while an network I/O request is
pending the DMA access of the network hard-
ware would touch RAM which is now used for
something else.

This means while buffers are used for DMA
they must not be evicted from RAM. They must
be locked. This is possible with the mlock ()
interface but this is a privileged operation. If
a process would be able to lock down arbi-
trary amounts of memory it would impact all
the other processes on the system which would
be starved of resources. Recent Linux kernels
allow unprivileged processes to lock down a
modest amount of memory (by default eight
pages or so) but this would not be enough for
heavily network oriented applications.

The POSIX AIO interfaces certainly show the
way for the interfaces which can solve the net-
working problems. But we have to solve sev-
eral problems:

e make DMA-ready memory available to
unprivileged applications;

e create an efficient event handling mecha-
nism which can handle high volumes of
events;

e create I/O interfaces which can use the
new memory and event handling. As a
bonus they should be usable for disk I/0
as well.

At this point it should be mentioned that a
working group of the OpenGroup, the Intercon-
nect Software Consortium, tried to tackle this
problem. The specification is available from

their website at http: //www.opengroup.
org/icsc/. They arrived at the same set of
three problems and proposed solutions. Their
solutions are not implemented, though, and
they have some problems. Most importantly,
the event handling does not integrate with the
file-descriptor-based event handling.

3 Memory Handling

The main requirement on the memory handling
is to provide memory regions which are avail-
able at userlevel and which can be directly ac-
cessed by hardware other than the processor.
Network cards and disk controllers can trans-
fer data without the help of the CPU through
DMA. DMA addresses memory based on the
physical addresses. It does not matter how the
physical memory is currently used. If the vir-
tual memory system of the OS decides that a
page of RAM should be used for some other
purpose the devices would overwrite the new
user’s memory unless this is actively prevented.
There is no demand-paging as for the userlevel
code.

To be sure the DMA access will use the cor-
rect buffer, it is necessary to prevent swapping
the destination pages out. This is achieved by
using mlock (). Memory locking depletes the
amount of RAM the system can use to keep as
much of the combined virtual memory of all
processes in RAM. This can severely limit the
performance of the system or eventually pre-
vent it from making any progress. Memory
locking is therefore a privileged operation. This
is the first problem to be solved.

The situation is made worse by the fact that
locking can only be implemented on a per-
page-basis. Locking one small object on a page
ties down the entire page.



One possibility would be avoid locking pages
in the program and have the kernel instead do
the work all by itself and on-demand. That
means if a network I/O request specifies a
buffer the kernel could automatically make sure
that the memory page(s) containing the buffer
is locked. This would be the most elegant so-
lution from the userlevel point-of-view. But
it would mean significant overhead: for every
operation the memory page status would have
to be checked and if necessary modified. Net-
work operations can be frequent and multiple
buffers can be located on the same page. If
this is known the checks performed by the ker-
nel would be unnecessary and if they are per-
formed the kernel must keep track how many
DMA buffers are located on the page. This so-
lution is likely to be unattractive.

It is possible to defer solving this problem,
fully or in part, to the user. In the least ac-
commodating solution, the kernel could simply
require the userlevel code to use mmap () and
mprotect () with a new flag to create DMA-
able memory regions. Inside these memory
regions the program can carve out individual
buffers, thereby mitigating the problem of lock-
ing down many pages which are only partially
used as buffers. This solution puts all the bur-
den on the userlevel runtime.

It also has a major disadvantage. Pages locked
using mlock () are locked until they are un-
locked or unmapped. But for the purpose
of DMA the pages need not be permanently
locked. The locking is really only needed while
I/O requests using DMA are being executed.
For the network I/O interfaces we are talking
about here the kernel always knows when such
a request is pending. Therefore it is theoreti-
cally possible for the kernel to lock the pages
on request. For this the pages would have to be
specially marked. While no request is pending
or if a network interface is used which does not
provide DMA access the virtual memory sub-

system of the OS can move the page around in
physical memory or even swap it out.

One relatively minor change to the kernel could
allow for such optimizations. If the mmap ()
call could be passed a new flag MAP_DMA the
kernel would know what the buffer is used for.
It could keep track of the users of the page and
avoid locking it unless it is necessary. In an
initial implementation the flag could be treated
as an implicit mlock () call. If the flag is cor-
rectly implemented it would also be possible to
specify different limits on the amount of mem-
ory which can be locked and for DMA respec-
tively. This is no full solution to the problem of
requiring privileges to lock memory, though (an
application could simply have a read() call
pending all the time).

The MaP_DMA flag could also help dealing with
the effects of fork (). The POSIX specifica-
tion requires that no memory locking is inher-
ited by the child. File descriptors are inherited
on the other hand. If parts of the solution for
the new network interfaces uses file descriptors
(as it is proposed later) we would run into a
problem: the interface is usable but before the
first use it would be necessary to re-lock the
memory. With the MAP_DMA flag this could be
avoided. The memory would simply automati-
cally re-locked when it is used in the child for
the first time. To help in situations where the
memory is not used at all after fork (), for ex-
ample, if an exec call immediately follows, all
MAP_DMA memory is unlocked in the child.

Using this one flag alone could limit the perfor-
mance of the system, though. The kernel will
always have to make sure that the memory is
locked when an I/O request is pending. This
is overhead which could potentially be a limit-
ing factor. The programmer oftentimes has bet-
ter knowledge of the program semantics. She
would know which memory regions are used
for longer periods of time so that one explicit



lock might be more appropriate than implicit
locking performed by the kernel.

A second problem is fragmentation. A pro-
gram is usually not one homogeneous body of
code. Many separate libraries are used which
all could perform network I/0. With the MAP_
DMA method proposed so far each of the li-
braries would have to allocate its own memory
region. This use of memory might be inefficient
because of the granularity of memory locking
and because not all parts of the program might
need the memory concurrently.

To solve the issue, the problem has to be tackled
at a higher level. We need to abstract the mem-
ory handling. Providing interfaces to allocate
and deallocate memory would give the imple-
mentation sufficient flexibility to solve these is-
sues and more. The allocation interfaces could
still be implemented using the MAP_DMA flag
and the allocation functions could “simply” be
userlevel interfaces and no system calls. One
possible set of interfaces could look like this:

int dma_alloc (dma_mem t =xhandlep,
unsigned int flags);
int dma_free (dma_mem_t handle,

size_t size,

size_t size);

The interfaces which require DMA-able mem-
ory would be passed a value of type dma_mem__
t. How this handle is implemented would
be implementation defined and could in fact
change over time. An initial, trivial implemen-
tation could even do without support for some-
thing like MAP_DMA and use explicit mlock ()
calls.

epoll_wait () poll () select ()

epoll_pwait () ppoll() pselect()

Table 3: Notification APIs

4 Event Handling

The existing event handling mechanisms of
POSIX AIO uses polling, signals, or the cre-
ation of threads. Polling is not a general solu-
tion. Signals are not only costly, they are also
unreliable. Only a limited, small number of
signals can be outstanding at any time. Once
the limit is reached a program has to fall back
on alternative mechanisms (like polling) until
the situation is rectified. Also, due to the limi-
tations imposed on code usable in signal han-
dlers, writing programs using signal notifica-
tion is awkward and error-prone. The creation
of threads is even more expensive and despite
the speed of NPTL has absolute no chance to
scale with high numbers of events.

What is needed is a completely new mecha-
nism for event notification. We cannot use the
same mechanisms as used for synchronous op-
erations on a descriptor for a socket or a file.
If data is available and can be sent, this does
not mean that an asynchronously posted request
has been fulfilled.

The structure of a program designed to run on
a Unix-y system requires that the event mech-
anism can be used with the same interfaces
used today for synchronous notification (see
Table 3). It would be possible to invent a com-
pletely new notification handling mechanism
and map the synchronous file descriptor oper-
ation to it. But why? The existing mechanism
work nicely, they scale well, and programmers
are familiar with them. It also means existing
code does not have to be completely rewritten.

Creating a separate channel (e.g., file descrip-
tor) for each asynchronous I/O request is not



scalable. The number of I/O requests can be
high enough to forbid the use of the poll
and select interfaces. The epoll interfaces
would also be problematic because for each re-
quest the file descriptor would have to be reg-
istered and later unregistered. This overhead
is too big. Furthermore, is file descriptor has a
certain cost in the kernel and therefore the num-
ber is limited.

What is therefore needed is a kind of bus used
to carry the notifications for many requests.
A mechanism like net1ink would be usable.
The net1ink sockets receive broadcast traffic
for all the listeners and each process has to filter
out the data which it is interested in. Broadcast-
ing makes netlink sockets unattractive (at
best) for event handling. The possible volume
of notifications might be overwhelming. The
overhead for the unnecessary wake-ups could
be tremendous.

If filtering is accepted as not being a viable
implementation requirement we have as a re-
quirement for the solution that each process
can create multiple, independent event channel,
each capable of carrying arbitrarily many no-
tification events from multiple sources. If we
would not be able to create multiple indepen-
dent channels a program could not concurrently
and uncoordinatedly create such channels.

Each channel could be identified by a descrip-
tor. This would then allow the use of the no-
tification APIs in as many places as necessary
independently. At each site only the relevant
events are reported which allows the event han-
dling to be as efficient as possible.

An event is not just an impulse, it has to
transmit some information. The request which
caused the event has to be identified. It is usu-
ally? regarded best to allow the programmer
add additional information. A single pointer

2See the sigevent structure.

is sufficient, it allows the programmer to re-
fer to additional data allocated somewhere else.
There is no need to allow adding an arbitrary
amount of data. The event data structure can
therefore be of fixed length. This simplifies the
event implementation and possibly allows it to
perform better. If the transmission of the event
structure would be implemented using socket
the SOCK_SEQPACKET type can be used. The
structure could look like this:

typedef struct event_data {
enum { event_type_aio,
event_type_msqg,
event_type_sig }
union {

ev_type;

alio_ctx_t xev_aio;
mgd_t xev_msqg;
sigevent_t ev_sig;

} ev_un;

ssize_t ev_result;

int ev_errno;

void =*ev_data;

} event_data_t;

This structure can be used to signal events
other than AIO completion. It could be a gen-
eral mechanism. For instance, there currently
i1s no mechanism to integrate POSIX message
queues into poll () loops. With an exten-
sion to the sigevent structure it could be pos-
sible to register the event channel using the
mqg_notify () interface. The kernel can be ex-
tended to send events in all kinds of situations.

One possible implementation consists of intro-
ducing a new protocol family PF_EVENT. An
event channel could then be created with:

int efd = socket (PF_EVENT,
SOCK_SEQPACKET, O0);



int ev_send (int s,
void =*data) ;

int ev_sendto (int s,
const struct sockaddr =xto,

int ev_sendmsg (int s,
void =xdata);

int ev_recv (int s,
void =*data) ;

int ev_recvfrom(int s,

void =*buf,

void =*buf,
struct sockaddr =*to,

int ev_recvmsg (int s,
void =*data) ;

const void *buf, size_t len,
const void *buf,
socklen_t tolen,
const struct msghdr =*msg,

size_t len,
size_t len,

socklen_t tolen,
struct msghdr =*msg,

int flags, ev_t ec,

size_t len, int flags,
void =*data) ;
int flags,

ev_t ec,
ev_t ec,
int flags, ev_t ec,
int flags,

ev_t ec, void =*data);

int flags, ev_t ec,

Figure 1: Network Interfaces with Event Channel Parameters

The returned handle could be used in poll ()
calls and be used as the handle for the event
channel. There are two potential problems
which need some thought:

e The kernel cannot allow the event queue
to take up arbitrary amounts of memory.
There has to be an upper limit on the num-
ber of events which can be queued at the
same time. When this happens a special
event should be generated. It might be
possible to use out-of-band notification for
this so that the error is recognized right
away.

e The number of events on a channel can po-
tentially be high. In this case the overhead
of all the read ()/recv () calls could be
a limiting factor. It might be beneficial to
apply some of the techniques for the net-
work I/O discussed in the next section to
this problem as well. Then it might be
possible to poll for new events without the
system call overhead.

To enable optimizations like possible userlevel-
visible event buffers the actual interface for the
event handling should be something like this:

ec_t ec_create(unsigned flags);

int ec_destroy(ec_t ec);

int ec_to_fd(ec_t ec);

int ec_next_event (ec_t ec,
event_data_t =xd);

The ec_to_fd () function returns a file de-
scriptor which can be used in poll() or
select () calls. An implementation might
choose to make this interface basically a no-op
by implementing the event channel descriptor
as a file descriptor. The ec_next_event ()
function returns the next event. A call might
result in a normal read () or recv call but
it might also use a user-level-visible buffer to
avoid the system call overhead. The events sig-
naled by poll () etc can be limited to the ar-
rival of new data. I.e., the userlevel code is re-
sponsible for clearing the buffers before wait-
ing for the next event using pol1l (). The ker-
nel is involved in the delivery of new data and
therefore this type of event can be quite easily
be generated.

Handles of type ec_t can be passed to the
asynchronous interfaces. The kernel can then



int aio_send(struct aiocb xaiocbp,
int aio_sendto(struct aiocb xaiocbp,
const struct sockaddr =*to,

int aio_sendmsg(struct aiocb *aiocbp,
int flags);

int aio_recv(struct aiocb =xaiocbp,

int aio_recvfrom(struct aiocb =xaiocbp,

socklen_t tolen);

int aio_recvmsg(struct aiocb *aiocbp,

int flags);

int flags,

socklen_t tolen);

int flags);
int flags, struct sockaddr =xto,

int flags);

Figure 2: Network Interfaces matching POSIX AIO

create appropriate events on the channel. There
will be no fixed relationship between the file
descriptor or socket used in the asynchronous
operation and the event channel. This gives the
most flexibility to the programmer.

5 1/0 Interfaces

There are several possible levels of innovation
and complexity which can go into the design of
the asynchronous I/O interfaces. It makes sense
to go through them in sequence of increasing
complexity. The more complicated interfaces
will likely take advantage of the same function-
ality the less complicated need, too. Mention-
ing the new interfaces here is not meant to im-
ply that all interfaces should be provided by the
implementation.

The simplest of the interfaces can extend the
network interfaces with asynchronous variants
which use the event handling introduced in the
previous section. One possibility is to extend
interfaces like recv () and send () to take ad-
ditional parameters to use event channels. The
result is seen in Figure 1.

Calls to these functions immediately return.
Valid requests are simply queued and the no-
tifications about the completion are sent via
the event channel ec. The data parameter

is the additional value passed back as part of
the event_data_t object read from the event
channel. The event notification would signal
the type of operation by setting ev_type ap-
propriately. Success and the amount of data
received or transmitted are stored in the ev__
errno and ev_result elements.

There are two objections to this approach. First,
the other frequently used interfaces for sockets
(read () and write ()) are not handled. Al-
though their functionality is a strict subset of
recv () and send () respectively it might be a
deterrent. The second argument is more severe:
there is no justification to limit the event han-
dling to network transfer. The same functional-
ity would be “nice to have”™ for file, pipe, and
FIFO I/O. Extending the read () andwrite ()
interfaces in the same way as the network I/0
interfaces makes no sense, though. We already
have interfaces which could be extended.

With a simple extension of the sigevent
structure we can reuse the POSIX AIO inter-
faces. All that would be left to do is to define
appropriate versions of the network I/O inter-
faces to match the existing POSIX AIO inter-
faces and change the aiocb structure slightly.
The new interfaces can be seen in Figure 2. The
aiocb structure needs to have one additional
element:



struct aiocb {
struct msghdr xaio_msg;

}i

It is used in the aio_sendmsg() and aio_
recvmsg () calls. The implementation can
chose to reuse the memory used for the aio_
buf element because it never gets used at the
same time as aio_msg. The other four inter-
faces use aio_buf and aio_nbytes to spec-
ify the source and destination buffer respec-
tively.

The <signal.h> header has to be extended to
define SIGEV_EC. If the sigev_notify el-
ement of the sigevent structure is set to this
value the completion is signal by an appropriate
event available on an event channel. The chan-
nel is identified by a new element which must
be added to the sigevent structure:

struct sigevent ({
ec_t sigev_ec;

}i

The additional pointer value which is passed
back to the application is also stored in the
sigevent structure. The application has to
store it in sigev_value.sival_ptr which
is in line with all the other uses of this part of
the sigevent structure.

Introducing these additional AIO interfaces and
the SIGEV_EC notification mechanism would
help to solve some problems.

10

e programs could get more efficient notifica-
tion of events (at least more efficient than
signals and thread creation), even for file
1/0O;

network operations which require the ex-
tended functionality of the recv and
send interfaces can be performed asyn-
chronously;

e by pre-posting buffers with aio_read ()
or the aio_recv () and now the aio_
recv and aio_send interfaces network
I/O might be able to avoid intermediate

buffers.

Especially the first two points are good argu-
ments to implement these interfaces or at the
very least allow the existing POSIX AIO in in-
terfaces use the event channel notification. As
explained in section section 2 the memory han-
dling of the POSIX AIO functions makes di-
rect use by the network hardware cumbersome
and slower than necessary. Additionally the
system call overhead is high when many inter-
faces use the event channel notification. As ex-
plained network requests have to be submitted.
This can potentially be solved by extending the
lio_listio () interface to allow submit mul-
tiple requests at once. But this will not solve
the problem of the resulting event notification
storm. For this we need more radical changes.

6 Advanced I/0 Interfaces

For the more advanced interfaces we need to in-
tegrate the DM A memory handling into the 1/0
interfaces. We need to consider synchronous
and asynchronous interfaces. We could ignore
the synchronous interfaces and require the use
of 1io_listio or an equivalent interface but
this is a bit cumbersome to use.



int
int

dma_assoc (int sock, dma_mem_ t mem,
dma_disassoc (int sock, dma_mem_

t,

size_t size, unsigned flags);

size_t size);

Figure 3: Association of DM A-able memory to Sockets

int
int

sio_reserve (dma_mem_t dma,
sio_release (dma_mem_t dma,

void *xxmemp off,
void *mem,

size_t size);
size_t size);

Figure 4: Network Buffer Memory Management

For network interfaces it is ideally the interface
which controls the memory into which incom-
ing data is written. Today this happens with
buffers allocated by and under full control of
the kernel. It is conceivable to allow applica-
tions to allocate buffers and assign them to a
given interface. This is where dma_alloc ()
comes in. The latter possibility has some dis-
tinct advantages; mainly, it gives the program
the opportunity to influence the address space
layout. This can be necessary for some pro-

grams.>

It is usually not possible to associate each net-
work interface with a userlevel process. The
network interface is in most cases a shared re-
source. The usual Unix network interface rules
therefore need to be followed. A userlevel pro-
cess opens a socket, binds the socket to a port,
and it can send and receive data. For the incom-
ing data the header decides which port the re-
mote party wants to target. Based on the num-
ber, the socket is selected. Therefore the associ-
ation of the DMA-able buffer should be with a
socket. What is needed are interfaces as can be
seen in Figure 3. It probably should be possible
to associate more than one DMA-able memory
region with a socket. This way it is possible to
dynamically react to unexpected network traffic

3For instance, when address space is scarce or when
fixed addresses are needed.

11

volume by adding additional buffers.

Once the memory is associated with the socket
the application cannot use it anymore as it
pleases until dma_disassoc () is called. The
kernel has to be notified if the memory is writ-
ten to and the kernel needs to tell the applica-
tion when data is available to be read. Oth-
erwise the kernel might start using a DMA
memory region which the program is also us-
ing, thus overwriting the data. We therefore
need at least interfaces as shown in Figure 4.
The sio_reserve () interface allows to re-
serve (parts of) the DMA-able buffer for writ-
ing by the application. This will usually be
done in preparation of a subsequent send op-
eration. The dma parameter is the value re-
turned by a previous call to dma_alloc (). We
use a size parameter because this allows the
DMA-able buffer to be split into several smaller
pieces. As explained in section 3 it is more ef-
ficient to allocate larger blocks of DMA-able
memory instead of many smaller ones because
memory locking only works with page granu-
larity. The implementation is responsible for
not using the same part of the buffer more than
once at the same time. A pointer to the avail-
able memory is returned in the variable pointed
to by memp.

When reading from the network the situation
is reversed: the kernel will allocate the mem-



int sio_send (int sock,
int sio_sendto (int sock,

const struct sockaddr =*to,
int sio_sendmsg(int sock,
int sio_recv (int sock,
int sio_recvfrom(int sock,

void =*xbuf,

struct sockaddr =*to,
int sio_recvmsg(int sock,

const void #*buf,
const void xbuf,
socklen_t tolen);
const void *buf,
size_t size,
const void =*xbuf,
socklen_t tolen);

const void *xbuf,

size_t size, int flags);

size_t size, int flags,
size_t size, int flags);
int flags);

size_t size, int flags,

size_t size, int flags);

Figure 5: Advanced Synchronous Network Interfaces

ory region into which it stores the incoming
data. This happens using the kernel-equivalent
of the sio_reserve () interface. Then the
program is notified about the location and size
of the incoming data. Until the program is done
handling the data the buffer cannot be reused.
To signal that the data has been handled, the
sio_release () interface is used. It is also
possible to use the interface to abort the prepa-
ration of a write operation by undoing the ef-
fects of a previous sio_reserve () call.

The sio_reserve() and sio_release ()
interfaces basically implement dynamic mem-
ory allocation and deallocation. It adds an un-
due burden on the implementation to require
a full-fledged malloc-like implementation. It
is therefore suggested to require a significant
minimum allocation size. If reservations are
also rounded according to the minimum size
this will in turn limit the number of reservations
which can be given out at any given time. It is
possible to use a simple bitmap allocator.

What remains to be designed are the actual net-
work interfaces. For the synchronous inter-
faces we need the equivalent of the send and
recv interfaces. The send interfaces can ba-
sically work like the existing Unix interfaces
with the one exception that the memory block
containing the data must be part of a DM A-able
memory region. The recv interfaces need to
have one crucial difference: the implementa-

12

tion must be able to decide the location of the
buffer containing the returned data. The result-
ing interfaces can be seen in Figure 5.

The programmer has to make sure the buffer
pointers passed to the sio_send functions
have been returned by a sio_reserve () call
or as part of the notification of a previous sio_
recv call. The implementation can potentially
detect invalid pointers.

When the sio_recv functions return, the
pointer pointed to by the second parameter con-
tains the address of the returned data. This ad-
dress is in the DMA-able memory area associ-
ated with the socket. After the data is handled
and the buffer is not used anymore the applica-
tion has to mark the region as unused by calling
sio_release (). Otherwise the kernel would
run out of memory to store the incoming data
in.

For the asynchronous interfaces one could
imagine simply adding a sigevent structure
parameter to the sio_recv and sio_send in-
terfaces. This is unfortunately not sufficient.
The program must be able to retrieve the er-
ror status and the actual number of bytes which
have been received or sent. There is no way
to transmit this information in the sigevent
structure. We could extend it but would du-
plicate functionality which is already available.
The asynchronous file I/O interfaces have the



same problem and the solution is the AIO con-
trol block structure aiocb. It only makes sense
to extend the POSIX AIO interfaces. We al-
ready defined the additional interfaces needed
in Figure 2. What is missing is the tie-in with
the DMA handling.

For this the most simplistic approach is to ex-
tend aiocb structure by adding an element
aio_dma_buf of type dma_mem_t replacing
the aio_buf pointer for DMA-ready opera-
tions. To use aio_dma_buf instead of aio_
buf the caller passes the new ATO_DMA_BUF
flag to the aio_recv and aio_send inter-
faces. For the 1io_listio () interface it is
possible to define new operations LIO_DMA_
READ and LIO_DMA_ WRITE. This leaves the
existing aio_read () and aio_write () in-
terfaces. It would be possible to define alter-
native interfaces which take a flag parameter or
one could simply ignore the problem and tell
people touse 1io_listio () instead.

The implementation of the AIO functions to
receive data when operating on DMA-able
buffers could do more than just pass the re-
quest to the kernel. The implementation can
keep track of the buffers involved and check for
available data in them before calling the ker-
nel. If data is available the call can be avoided
and the appropriate buffer can be made known
through an appropriate event. When writing the
data could be written into the DM A-able buffer
(if necessary). Depending on the implementa-
tion of the user-level/kernel interaction of the
DMA -able buffers it might or might not be nec-
essary to make a system call to notify the kernel
about the new pending data.

7 Related Interfaces

The event channel mechanism is general
enough to be used in other situations than just

13

I/0. They can help solving a long-standing
problem of the interfaces Unix systems pro-
vide. Programs, be it server or interactive pro-
grams, are often designed with a central loop
from which the various activities requested are
initiated. There can be one thread working the
inner loop or many. The requested actions can
be performed by the thread which received the
request or a new thread can be created which
performs the action. The threads in the program
are then either waiting in the main loop or busy
working on an action. If the action could poten-
tially be delayed significantly the thread would
add the wait event to the list the main loop han-
dles and then enters the main loop again. This
achieves maximum resource usage.

In reality this is not so easy. Not all events can
be waited on with the same mechanism. POSIX
does not provide mechanisms to use pol1l () to
wait for messages to arrive in message queues,
for mutexes to be unlocked, etc. This is where
the event channels can help. If we can asso-
ciate an event channel with these objects the
kernel could generate events whenever the state
changes.

For POSIX message queues there is fortunately
not much which needs to be done. The mqg__
notify () interface takes a sigevent struc-
ture parameter. Once the implementation is ex-
tended to handle sSIGEV_EC for I/O it should
work here, too. One question to be answered
is what to pass as the data parameter which can
be used to identify the request.

For POSIX semaphore we need a new inter-
face to initiate asynchronous waiting. Fig-
ure 6 shows the prototype for sem_await ().
The first two parameters are the same as for
sem_wait (). The latter two parameters spec-
ify the event channel and the parameter to pass
back. When the event reports a successful op-
eration the semaphore has been posted. It is not
necessary to call sem_wait () again.



int sem_await (sem_t semdes,
ec_t ec, void =*data);

int pthread_mutex_alock (pthread _mutex_t *mutex,

const struct timespec xabstime,

ec_t ec, void =*data);

Figure 6: Additional Event Channel Users

The actual implementation of this interface will
be more interesting. Semaphores and also mu-
texes are implemented using futexes. Only part
of the actual implementation is in the kernel.
The kernel does not know the actual protocol
used for the synchronization primitive, this is
left to the implementation. In case the event
channel notification is requested the kernel will
have to learn about the protocol.

Once the POSIX semaphore problem is solved
it is easy enough to add support for the POSIX
mutexes, read-write mutexes, barriers, etc. The
pthread_mutex_alock () interface is Fig-
ure 6 is a possible solution. The other syn-
chronization primitives can be similarly han-
dled. This extends also to the System V mes-
sage queues and semaphores. The difference
for the latter two is that the implementation is
already completely in the kernel and therefore
the implementation should be significantly sim-
pler.

8 Summary

The proposed interfaces for network 1/O have
the potential of great performance improve-
ments. They avoid using the most limiting
resources in a modern computer: memory-to-
CPU cache and CPU cache-to-memory band-
width. By minimizing the number of copies
which have to be performed the CPUs have the
chance of keeping up with the faster increasing
network speeds.

14

Along the way we sketched out a event han-
dling implementation which is not only effi-
cient enough to keep up with the demands
of the network interfaces. It is also versatile
enough to finally allow implementing a uni-
fied inner loop of all event driven programs.
With poll or select interfaces being able
to receive event notifications for currently un-
observable objects like POSIX/SysV message
queues and futexes many programs have the op-
portunity to become much easier because spe-
cial handling for these cases can be removed.



