Implementing Malloc: Students and Systems Programming

Brian P. Railing
Carnegie Mellon University
Pittsburgh, PA
bpr@cs.cmu.edu

ABSTRACT

This work describes our experience in revising one of the major
programming assignments for the second-year course Introduction
to Computer Systems, in which students implement a version of the
malloc memory allocator. The revisions involved fully supporting
a 64-bit address space, promoting a more modern programming
style, and creating a set of benchmarks and grading standards that
provide an appropriate level of challenge.

With this revised assignment, students were able to implement
more sophisticated allocators than they had in the past, and they
also achieved higher performance on the related questions on the
final exam.

KEYWORDS

malloc, programming assignment, systems programming

ACM Reference Format:

Brian P. Railing and Randal E. Bryant. 2018. Implementing Malloc: Stu-
dents and Systems Programming. In SIGCSE ’18: SIGCSE ’18: The 49th
ACM Technical Symposium on Computer Science Education, February 21—
24, 2018, Baltimore , MD, USA. ACM, New York, NY, USA, 6 pages.
https: //doi.org/10.1145/3159450.3159597

1 INTRODUCTION

Teaching Introduction to Computer Systems, a course developed
at Carnegie Mellon University [2] and widely adopted elsewhere,
exposes students to the basics of how the architecture, compiler,
and operating system work together to support program execu-
tion. The course makes use of seven programming assignments,
termed labs, that explore different aspects of the computer system.
The most challenging lab for the course, distributed as part of the
support materials for the Bryant-O’Hallaron textbook [3], requires
students to implement a memory allocator based on malloc. Anec-
dotal reports by students, the instructors of more advanced systems
courses, and subsequent employers of the students indicate that this
lab provides them an important experience in low-level program
implementation, debugging, and tuning.

In reflecting on the existing version of the malloc lab, we noted
that high scoring student submissions required identifying particu-
lar tricks and knowledge of the testing environment, all the while
not exploring the interesting design decisions and implementation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCSE ’18, February 21-24, 2018, Baltimore , MD, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5103-4/18/02...$15.00
https://doi.org/10.1145/3159450.3159597

Randal E. Bryant
Carnegie Mellon University
Pittsburgh, PA
randy.bryant@cs.cmu.edu

work that we would have expected. Furthermore, when faced with
the daunting design space during their work, students would often
resort to changing and tweaking what they had done so far in hopes
of following some random walk to a sufficiently optimized solution
that would pass the assignment performance standards.

As a further shortcoming, students were encouraged to follow a
programming style with extensive use of macros performing low-
level address arithmetic. Many students struggled working with this
style of programming—the compiler did not generate meaningful
error messages, symbolic debugging tools could only provide a view
into the post macro-expanded code, and it was very easy to make
mistakes in address computations. A small, but significant number
of students failed to write allocators that could even pass all of
the correctness tests. The ability of modern compilers to generate
efficient code via inline substitution has made most macro-based
programming obsolete.

Previously, students would base their malloc on the code in The
C Programming Language [6] and Computer Systems: A Program-
mer’s Perspective [3]. From our review of student submissions,
we concluded that there were several shortcomings in the assign-
ment and developed four areas for revision to the programming lab.
Listed here, these revisions will be discussed in greater detail later
in this work:

o Fully support a 64-bit address space. This required creating a
testing environment that allocated blocks of over 2 bytes,
even though no existing system has access to that much
memory.

e Promote a more modern programming style. Rather than writ-
ing macros that performed low-level address calculations,
students were required to make best use of the abstractions
provided by C, while still achieving high degrees of memory
utilization.

o Use a set of carefully selected benchmark traces. These bench-
marks should challenge students to develop well-engineered
designs that achieve an appropriate balance between mem-
ory utilization and throughput.

o Follow a revised time line and grading standards. We divided
the assignment into two phases to help students better man-
age their time.

The rest of the paper is organized as follows: Section 2 provides
the context of the course, Section 3 covers the overview of the mal-
loc assignment, Section 4 explores the changes we made, Section 5
presents our reflections on the results, and Section 6 concludes
this paper. Although the focus of this paper is on a specific assign-
ment for a specific purpose, we believe that many of the factors
addressed are important considerations for any systems program-
ming assignment and that the approaches we devised have broader
applications.

M e e
o I 11111

Figure 1: Memory layout of minimum-sized allocated and
free blocks for an explicit-list allocator

2 COURSE BACKGROUND

This course is normally taken by Computer Science and Electrical
and Computer Engineering majors in their second year, with a
significant fraction of non-majors also enrolled, and about equal
percentages of each of the three groups. All students are expected
to have previous experience with C programming. The course is
required for those majors, and the non-majors are usually tak-
ing the class to fulfill secondary major or minor requirements.
This course also serves as the prerequisite for upper-level systems
courses in computer science and engineering, including architec-
ture, compilers, operating systems, and embedded systems. The
malloc programming assignment is sixth, and most demanding, of
seven assignments.

Free

3 MALLOC PROGRAMMING LAB OVERVIEW

Students are required to implement the functions malloc, realloc,
calloc, and free, following the API set in the C standard for each
function. Their code is then linked into a driver that makes se-
quences of malloc and free calls. The driver populates allocated
blocks with random data and verifies these bytes are preserved until
freeing the block. Other correctness checks are also performed.
The lab exposes students to many aspects of systems program-
ming including:
o Implementing library functionality given an API
e Exploring a design space with many choices in data struc-
tures and algorithms
e Understanding that heap memory is just an array of bytes
that can be partitioned, reused, and redefined as a program
executes
e Debugging and tuning code that relies on low-level data
structure manipulation to meet targeted requirements
e Exploring possible trade offs between the conflicting goals
of high memory utilization and high throughput

The following is a brief discussion of the implementation con-
cerns present when working on this programming assignment. Wil-
son, et al. [10] has a detailed treatment of the design and evaluation
of memory allocators.

Correct malloc implementations are measured with two per-
formance metrics: throughput and utilization. Throughput is the
number of operations completed in a measured amount of time.
Utilization compares the heap space allocated to the program at
the end of execution (the heap never shrinks) compared to the peak
data requirement. The excess space required by the implementation
is termed fragmentation, of which there are two types. Internal
fragmentation occurs when the allocated block is larger than the
payload, due to extra space required to manage the blocks and to
satisfy alignment requirements. And as will be discussed later in
Section 4.3, internal fragmentation is greater proportionately with

12
*5 12 —Next Fit
2 ’ First Fit
3 11 —Best Fit
~ 1.1 —Perfect Fit
] .
210 - Data Fit
=T e Data

! a

10
=
€09

0.9

0.8 T T T T r)

0.3 0.35 0.4 0.45 0.5 0.55 0.6

Operation / Operation Count
Figure 2: Memory usage for a synthetically generated trace
for different free-block selection strategies. Usage is scaled
relative to peak data requirement, and operations are scaled
relative to the total number of operations

smaller requests. External fragmentation occurs when free blocks
are available, but none are large enough to satisfy a request. Each
fragmentation type is ameliorated by independent methods. Inter-
nal fragmentation is reduced by minimizing the overhead to track
the allocated blocks, while external fragmentation is decreased by
better selection of which free block to reuse. The fixed nature of
pointers in C prevents any form of memory compaction, where
allocated blocks are moved into a single region to reduce external
fragmentation.

Student implementations start from code using an implicit free
list, in which free blocks are located by traversing all allocated and
unallocated blocks in memory order. Making the free list explicit
with pointers between blocks significantly reduces the time to find
whether a unallocated block can be reused. Both implicit and explicit
list implementations use boundary tags for coalescing [7], with the
layout for a minimum-sized block shown in Figure 1. Students
can further improve the throughput of requests by segregating the
explicit list based on sizes.

The free lists are searched on subsequent malloc requests to find
if there are any blocks that satisfy the request. There are a variety
of strategies, including: next fit that resumes searching where the
previous search finished, first fit that selects the first block that
could satisfy the request, and best fit that checks every block and
selects the one closest to the requested size. Other design decisions
can include whether to manage the free block list(s) by a FIFO, LIFO,
address, or size ordering.

Figure 2 shows the memory usage for different free-block se-
lection strategies focused on the peak, as the peak fragmentation
characterizes the memory efficiency of the allocator. In addition to
the block-selection strategies, this figure also includes two targets
that serve as lower bounds for any allocator: perfect fit that as-
sumes there is no external fragmentation, and data fit that assumes
there is neither internal nor external fragmentation. In the figure,
the fit curves continue to increase after the allocation peak, as the
different strategies work to handle the churn of allocations and
frees. Eventually, a sufficient percentage of memory is free that any
new allocation in the trace can be satisfied and there is no further
increase in memory usage.

One common optimization is to remove the footer from allo-
cated blocks to allow larger payloads within a block. Other schemes
can further improve utilization by special handling of smaller re-
quests, or by reducing the headers for small blocks. Together, these
optimizations are focused on reducing the internal fragmentation.

4 ASSIGNMENT REVISIONS

In the following section, we discuss our four revisions to the malloc
implementation programming assignment.

4.1 64-bit Address Space

The previous version of the lab was derived from one based on a
32-bit address space. Students found they could exploit limitations
of the testing framework. For example, they would deduce that
no trace required more than 100MB of memory, and could there-
fore replace 64-bit pointers with 27-bit offsets and similarly for
each block’s size field. While these are valuable optimizations in a
memory constrained environment, student submissions using this
approach do not meet the programming lab objective of developing
a general purpose memory allocator.

One possible solution would be to modify the traces to use larger
request sizes; however, any such change would always have a
known upper bound. Furthermore, students commonly run their
code on shared servers, to which significant increases in memory
demands could impact the shared platform. Indeed, there are no
systems available that have access to the 1.8 X 10!° bytes that a true
64-bit machine could address.

We also felt it was important to provide a testing environment
that would truly evaluate the ability of the student programs to
handle a 64-bit address space, rather than relying on manual in-
spection by the students or the grading staff. There are many ways
to inadvertently invoke 32-bit arithmetic in C, e.g., by using the
expression 1 << n, rather than 1L << n, and so explicit testing is
important.

To address both of these concerns, we developed an alternative
testing infrastructure that would not be limited to the existing
memory availability and could then permit testing of request sizes
up to the maximum for the size_t parameter.

Using the LLVM compiler framework [8], a second, alternative
binary malloc-emulate was built, where all of the memory opera-
tions (loads and stores) were modified to instead call an emulation
library. This layer would either emulate the access if it was being
made to the heap region or allow direct the access to system mem-
ory for other memory regions. The emulator exploits the fact that,
even when a very large block is stored on the heap, the allocator
need only access the bytes at the very beginning or the very end of
the block (assuming no calls to calloc or realloc.) By emulating
a very sparse address space, it can handle allocations of blocks con-
taining 2°° or more bytes. With the emulated version, student code
can then be tested to support full 64-bit pointers (going beyond
current x86 support for 48-bits) and thereby determine if student
code was robust against all access sizes or if it had been tuned to
the smaller traces.

When running the emulated version, student code has roughly
a 9x slowdown versus the native (non-emulated) implementation,
and so throughput measurements are run on the native binary. It

/* Basic constants and macros */
#define WSIZE 8 /* Word and header/footer size (bytes) x/
#define DSIZE 16 /* Double word size (bytes) */
/* Pack a size and allocated bit into a word */
#define PACK(size, alloc) ((size) | (alloc))
/* Read and write a word at address p */
#define GET(p) (*(unsigned long *)(p))
#define PUT(p, val) (*(unsigned long *)(p) = (val))
/* Read the size field from address p. x/
#define GET_SIZE(p) (GET(p) & ~@x7L)
/* Given block ptr bp, compute address of
* its header and footer */
#define HDRP(bp) ((char =*)(bp) - WSIZE)
#define FTRP(bp) ((char *)(bp) + GET_SIZE(HDRP(bp))
- DSIZE)
Figure 3: Old coding style based on macros (from textbook)

is possible for student code to detect whether it was being run
with or without memory emulation, so the emulated tests are made
using all of the native traces, and the memory utilization compared
against the native execution. This prevents students from using the
earlier optimizations during native runs and turning them off in
emulation. In addition to rerunning the native traces, additional
“giant” traces were prepared that require the emulation support to
succeed.

Following the C standard [5], we use the implementation speci-
fied alignment for x86-64 [4] and require that student malloc im-
plementations align the allocations to 16-byte boundaries.

4.2 Modern Programming Style

Traditionally, C programming required using macros for common,
low-level operations to avoid function call overhead. Also, the em-
phasis on carefully packing data to minimize memory usage, and
the natural reuse of memory blocks in malloc implementations
resulted in a significant usage of unstructured pointer arithmetic.
This coding style is illustrated in Figure 3, showing excerpts from
the allocator code described in the textbook. Many students would
struggle when extending this code to support the necessary com-
plexity to pass the assignment.

Modern C standards and compilers provide far greater support
for types and performance, such that many of the motivations for
macro code are obviated. We rewrote the starter code emphasizing
two things: first, insofar as possible, operations should be made
using explicit and appropriate type information, and second, inline
and optimization decisions should be left to the compiler. Figure 4
is taken from the revised starter code provided to all students. Each
internal block in the malloc implementation is now an explicit type;
however, the footer cannot be included given that its location is
dependent on the size of the payload. By compiling with optimiza-
tion enabled, the function-based code has the same performance as
macro-based code, and it significantly eases their debugging efforts
when the optimizations are disabled.

When students make the first change to an explicit free list, they
use union and struct to describe the types and positions of the
required pointers. This contrasts with the earlier code where these
fields would be known just by their offsets from the header, and

/* Basic declarations */
typedef uint64_t word_t;
static const size_t wsize = sizeof(word_t);
typedef struct block {
/* Header contains size + allocation flag */
word_t header;
/* Placeholder for payload */
char payload[0];
} block_t;
/* Pack size and allocation bit into single word x/
static word_t pack(size_t size, bool alloc) {
return size | alloc;
}
/* Extract size from packed field */
static size_t extract_size(word_t word) {
return (word & ~(word_t) Ox7);
}
/* Get block size */
static size_t get_size(block_t *block) {
return extract_size(block->header);
}
/* Set fields in block header */
static void write_header(block_t *block, size_t size,
bool alloc) {
block->header = pack(size, alloc);
}
/* Set fields in block header x/
static void write_footer(block_t *block, size_t size,
bool alloc) {
word_t xfooterp = (word_t *)((block->payload)
+ get_size(block) - dsize);
*footerp = pack(size, alloc);
}
/* Locate start of block, given pointer to payload x/
static block_t *payload_to_header(void *bp) {
return (block_t *)(((char *)bp) -
offsetof(block_t, payload));
}

Figure 4: New coding style based on constants and functions

thereby reduces the chance that the student mixes the meanings of
the offsets.

Even in making these changes to the baseline code, we did not
do away with all macros. For example, macros are still provided to
support assertions, debugging prints, and definitions of constant pa-
rameters. All student submissions were screened by a program that
detects the use of function-like macros (those having arguments.)

4.3 New Traces

The selection of appropriate traces for the assignment can make a
significant difference in establishing appropriate design decisions
in the lab. For example, larger request sizes minimize the impact
of internal fragmentation on reported utilization but can cause
greater external fragmentation. A good allocator must overcome
three challenges in achieving high utilization and throughput: (1) it
must minimize internal fragmentation by reducing the overhead of
the data structures, especially in the fields of the allocated blocks;

Category p:q Unit Maximum
Struct 70 : 30 8 256
String 60 : 40 1 256
Array 95:05 4 min(2'8,10°/N)
Giant array | 60 : 40 4 200/N

Figure 5: Power-law parameters for synthetic traces, when
generating trace with N allocation operations

(2) it must minimize external fragmentation, in which free blocks
accumulate due to a poor block placement strategy; and (3) it must
maximize throughput by minimizing the time required by each
operation. A good set of benchmarks must stress all three of these
aspects. No single benchmark can cover all of them, but hopefully a
collection of well-chosen and well-designed benchmarks will clearly
demonstrate the relative merits of different implementations.

We created a new set of benchmark traces that would stress the
diversity of program allocation behaviors. We did not conduct a sys-
tematic study of real program behaviors, rather we selected several
programs with diverse allocation behaviors and also constructed
additional synthetic traces to test specific categories of commonly
allocated data.

We started with a set of programs and used the compile-time
interpositioning method described in [3] to extract the sequence
of calls to malloc and free. We selected sets of input data to these
programs to generate a total of 12 traces having between 2,874 and
63,956 allocation requests, with an average of 34,515. Among the
largest traces, one requires that the allocator manage up to 44,465
blocks at its peak, while another requires a total of 31.3 MB of
payload data at its peak.

In addition, we generated a set of synthetic data that attempted
to capture heap-allocated data structures storing structs, strings,
and arrays:

Structs: These are used to implement nodes in lists, trees, and
graphs. On 64-bit machines, their sizes will typically be mul-
tiples of eight to satisfy the alignment of embedded pointers

Strings: These will have no particular pattern of uniformity
or size.

Arrays: These will have widely varying sizes, but they will be
multiples of 4 or 8.

The block sizes within each of these categories were generated
according to a power-law distribution, having a probability density
function of the form p(s) o« s™%, for some o < 1. A power-law
distribution can be characterized by a ratio of the form p : q, where
0 < p < 100 and g = 100 — p, indicating that percentage p of the
generated samples should be less than percentage q of the maximum
value. For example, the familiar 80 : 20 rule states that 80% of the
values are less than or equal to 20% of the maximum value. Each
class is also characterized by a unit u, defining both the minimum
value and a value for which all values must be multiples. Finally,
each class has a maximum value M.

Figure 5 specifies the parameters for the different classes. Ob-
serve that both strings and structs have maximum sizes of 256 bytes,
but strings have u = 1, while structs have u = 8. This difference
has important implications for the internal fragmentation. Arrays
have a maximum size of 262,144 (2'3) bytes, except when the trace
has so many allocations N, that there is a risk that it will require a
heap size of more than 100MB. In such cases, the maximum array

length is set to 10°/N. Normal arrays have an extreme power-law
distribution 95 : 5, giving it a very long-tailed distribution. Finally,
a class of giant arrays can be generated for traces to test the ability
of the allocator to handle 64-bit sizes and pointers. These could
have sizes up to 260/N (26° ~ 1.15 x 10'%), and with a fairly uni-
form 60 : 40 distribution. It should be noted that, although these
parameters seem reasonable, we made no attempt to systematically
evaluate the sizes of heap allocation requests in actual programs.

We generated four benchmark traces, each containing 40,000
allocation requests, for the regular benchmarks: one for each of the
three categories, and a fourth containing allocations chosen ran-
domly from the classes struct, string, and array, with probabilities
35%, 30%, and 35%, respectively. We also created a set of five “giant”
trace benchmarks, generated allocations that require almost the
entire 64-bit address space. The largest allocated block in these has
a payload of 8.4 x 101° (over 2%°) bytes.

The difficulty posed by a benchmark trace comes not just from
how blocks are allocated, but also how they are freed. For example,
a trace that only allocates blocks and never frees them (or frees
them at the very end) will have almost no external fragmentation
and so the free lists will be very short. These require only reducing
internal fragmentation to get good performance. Additionally, block
coalescing implies that a trace that frees most of the blocks at some
point will end up with a small number of large free blocks. Such
a configuration will not pose much challenge for the subsequent
utilization or throughput.

We devised a simple scheme for inserting free operations into
a trace (both the ones extracted from actual programs, as well as
the synthetic traces) that proved successful in stressing both the
throughput and the ability to minimize external fragmentation.
Consider a trace containing N allocations that are never freed. At
each such allocation step i, we generate a free target t = 2i/N,
indicating a target number of free operations to insert after the
allocation step. For t < 1, we flip a weighted (by t) coin to determine
whether or not to insert a free operation. For t > 1, we repeatedly
insert free operations and decrement ¢ until ¢ < 1, and then finish
with a weighted-coin flip. When inserting a free operation, one
of the existing blocks is selected at random to be freed. With this
strategy, the program begins by allocating blocks, but freeing them
only sporadically. At a midpoint, it approaches an equilibrium,
allocating and freeing blocks in roughly equal portions. Then it
increases the rate of freeing so that the expected number of allocated
blocks at the end should be nearly 0. We also free any allocated
blocks at the end to complete the trace.

Figure 2 illustrates the performance of allocators following differ-
ent block placement policies near the peak for one of the synthetic
benchmarks. This is that point where external fragmentation is at
its maximum, challenging both utilization and throughput.

We rejected constructing any adversarial traces that might un-
duly penalize specific design decisions, such as one that would force
the allocator’s search strategy to fully traverse a FIFO list. The only
defense against such traces would be to implement an allocator with
strong worst-case performance guarantees, e.g., using balanced tree
data structure to implement the free list. Such a requirement was
deemed beyond the scope of the course. We also worked to avoid
any benchmark trace that would target particular implementation
characteristics. Finally, in keeping with the previous lab assignment,

Semester Version | Assignment Score | Exam Scores
Spring 2016 Old 78.0 78.0
Fall 2016 New 75.1 87.0
Spring 2017 | New 75.3 89.0

Figure 6: Malloc Assignment and final exam question scores
(both with maximum values of 100), for the old and new ver-
sions of the assignments

traces using realloc are tested only for correctness and not any
performance metrics.

4.4 Grading Standards

Having established a set of benchmarks, existing norms for student
submissions no longer apply. Instead we performed an extensive
benchmarking process, implementing a number of allocators trying
different strategies for reducing internal and external fragmentation.
We measured how each performed in terms of throughput and
utilization, and then selected cutoff points based on the features
we considered achievable by all students versus those of increasing
difficulty and complexity. Students implementing segregated free
lists, removing footers, and an approximation of best fit would earn
a B (around 85%) for the assignment. These features take students
a self-reported average of 20-30 hours to complete, which fits with
a multiweek assignment. Students completing those features faster
generally use additional time to make further improvements to
their submissions.

Furthermore, we found that splitting the assignment into two
parts by introducing a checkpoint also aided student learning and
experience. Given the sequence of features to implement, transition-
ing the baseline code from implicit free lists to explicit, segregated
free lists roughly corresponded to half of student time, as they built
up their understanding of the code and the approaches required to
debug their implementation. This transition only significantly im-
pacts the throughput of the implementation, which allows students
to focus on optimizing for a single constraint. The second part of
the assignment requires them to then improve utilization, mostly
by reducing internal fragmentation.

5 REFLECTIONS

A major question in any update to course material is whether stu-
dent learning is improved. As we wrote new traces and grading
standards for the assignment, we cannot easily compare before
and after the revision on the assignment itself. However, one set of
questions on the final exam test students’ knowledge of malloc. In
Figure 6, we compared the before (Spring 2016) scores with those
after revising the lab (Fall 2016 and Spring 2017), as well as includ-
ing the programming assignment scores for comparison.! Using
an independent samples t-test, we found no statistically significant
difference in the assignment scores, yet a clear difference (p value
less than 0.01) in the related exam scores before and after the lab
revision. However, the score distribution on the assignment is such
that only half of the students in each semester are earning a B.
This assignment gave us considerable exposure to students’ ef-
forts to debug their implementations. In particular, corruptions in
the internal state of the implementation will not immediately crash

Due to other course changes, we cannot make a broader comparison between
semesters.

(x(void **)((*(void *x)(bp)) + DSIZE)) =
(x(void *%)(bp + DSIZE));
Figure 7: Untyped malloc implementation

bp->prev->next = bp->next;
Figure 8: Typed malloc implementation

the allocator, but rather instead fail at some later point. Some fail-
ures are crashes (segmentation faults or bus errors), but many others
are observed as overlapping allocated blocks or corruption of an
allocated block’s payload. We emphasize the use of gdb, specifically
using the two recitations during the assignment to work through
debugging techniques using several simple implementations of
malloc that have bugs commonly seen by students; however, as
observed by others [1] [9], many students will use other debugging
approaches. For example, we require students to write a function,
the heap checker, that will check appropriate invariants of their
implementations. And finally, many students debug their code by
manually tracing the state or introducing print statements to ob-
serve the state.

Given the design space described in Section 3, this assignment
is often one of students’ first exposure to a problem with an open
design space. Regularly, students attempt to glean specific insights
from the instructional staff such as “How many segregated free
lists should my implementation use?” or “Now that I have imple-
mented X, what should I do next?”. We emphasize the need to test
and explore the options available in the potential design space,
while providing a basic set of possible features. They both enjoy
the ownership that comes from making these decisions, while also
expressing frustration with the lack of specific guidance. The guid-
ance is improving as teaching assistants come through the course
with the new lab. And for those TAs with experience across both
versions of the assignment, they report a greater satisfaction and
ease of helping students from this revision.

From the grading and support side, it can be difficult to under-
stand the meaning of purely pointer-based code. Figure 7 provides
one extreme example of the minimal level of type information that
student code may use. When students ask for assistance debugging
similar code, our common response has been to recommend a type-
based rewrite, resulting in code similar to Figure 8. And for many,
this rewrite is sufficient to find the cause of the bug and fix the
original issue.

However, this typed code is not without cost. Those students ex-
tending the baseline code with additional pointer casts can violate
strict aliasing rules, such as by casting block_t* (see Figure 4) di-
rectly to free_block_t* (or other alternative structure). This cast
can have undefined behavior in the C standard, whereas previously
all pointers would be char* or void* and not have this behavior.
Identifying undefined behavior that is causing failures is tricky
and students can be particularly frustrated that introducing print
statements to debug the failing behavior can disrupt the compiler’s
analysis and optimizations, such that this and other undefined be-
haviors are no longer failing. Finally, a small percentage of students
state a preference for the traditional, macro-based code.

6 CONCLUSION AND FUTURE WORK

This paper has shown our revisions to a demanding systems pro-
gramming assignment. These changes have helped refocus student

effort on the learning objectives for the assignment. And our prelim-
inary analysis of student scores shows a significant improvement,
indicating that students are learning the material better than before.
There are several opportunities to continue the assignment rewrite.
First, we can revisit the trace generation of Section 4.3 and compare
it against a more systematic study of allocation patterns. Second,
the throughput measurements can be sensitive to machine configu-
ration and load, so we are investigating how to maintain the time
component while minimizing the sources of variation. Finally, we
are continuing to update our guidance to students on both how to
improve their design and style, as well as exploring how to better
prepare students for debugging complex and optimized code.

ACKNOWLEDGMENTS

Matthew Salim, an undergraduate student at CMU, participated in
many parts of the lab development. The CMU Eberly Center for
Teaching Excellence has provided helpful guidance in how best to
assess the effectiveness of the assignment in enhancing student
learning, as well as assisting with the collection and analysis of stu-
dent scores. The National Science Foundation, under grant 1245735,
has supported some of our efforts in course material development.

REFERENCES

[1] Basma S. Alqadi and Jonathan I. Maletic. 2017. An Empirical Study of Debugging
Patterns Among Novices Programmers. In Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education (SIGCSE ’17). ACM, New
York, NY, USA, 15-20. https://doi.org/10.1145/3017680.3017761

Randal E. Bryant and David R. O’Hallaron. 2001. Introducing Computer Systems

from a Programmer’s Perspective. In Proceedings of the Thirty-second SIGCSE

Technical Symposium on Computer Science Education (SIGCSE "01). ACM, New

York, NY, USA, 90-94. https://doi.org/10.1145/364447.364549

[3] Randal E. Bryant and David R. O’Hallaron. 2015. Computer Systems: A Program-
mer’s Perspective (3rd ed.). Pearson.

[4] Intel Corporation, Santa Clara, CA 2017. Intel 64 and IA-32 Archi-
tectures Software Developer Manuals. Intel Corporation, Santa Clara,
CA. http://www.intel.com/content/www/us/en/processors/architectures-
software-developer-manuals.html.

[5] ISO/IEC 9899:2011 WG14 2011. Programming Languages - C (C11). ISO/IEC
9899:2011 WG14. http://www.open-std.org/jtc1/sc22/wgl4/www/docs/n1570.pdf

[6] Brian W. Kernighan and Dennis M. Ritchie. 1988. The C Programming Language.
Prentice Hall Press, Upper Saddle River, NJ, USA.

[7] Donald E Knuth. 1973. Fundamental algorithms: the art of computer programming.

[8] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed and Runtime
Optimization (CGO "04). IEEE Computer Society, Washington, DC, USA, 75-88.
http://dl.acm.org/citation.cfm?id=977395.977673

[9] Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth Simon, Lynda

Thomas, and Carol Zander. 2008. Debugging: The Good, the Bad, and the Quirky

- a Qualitative Analysis of Novices’ Strategies. In Proceedings of the 39th SIGCSE

Technical Symposium on Computer Science Education (SIGCSE "08). ACM, New

York, NY, USA, 163-167. https://doi.org/10.1145/1352135.1352191

Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. 1995. Dy-

namic Storage Allocation: A Survey and Critical Review. In Proceedings of the

International Workshop on Memory Management (IWMM °95). Springer-Verlag,

London, UK, UK, 1-116. http://dl.acm.org/citation.cfm?id=645647.664690

—_
&,

[10

