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Abstract
Design patterns are reusable abstractions in object-oriented soft-
ware. However, using current mainstream programming languages,
these elements can only be expressed extra-linguistically: as prose,
pictures, and prototypes. We believe that this is not inherent in
the patterns themselves, but evidence of a lack of expressivity in
the languages of today. We expect that, in the languages of the
future, the code parts of design patterns will be expressible as
reusable library components. Indeed, we claim that the languages
of tomorrow will suffice; the future is not far away. All that is
needed, in addition to commonly-available features, arehigher-
order and datatype-genericconstructs; these features are already
or nearly available now. We argue the case by presenting higher-
order datatype-generic programs capturing ORIGAMI , a small suite
of patterns for recursive data structures.

Categories and Subject Descriptors F.3.3 [Logics and mean-
ings of programs]: Studies of program constructs—object-
oriented constructs; D.3.3 [Programming languages]: Language
constructs and features—Patterns, polymorphism, controlstruc-
tures, recursion; D.3.2 [Programming languages]: Language
classifications—Functional languages, design languages,object-
oriented languages.

General Terms Languages, Design, Algorithms, Theory.

Keywords Design patterns, generic programming, higher-order
functions, functional programming, folds, unfolds.

1. Introduction
Design patterns, as the subtitle of the seminal book [11] has
it, are ‘elements of reusable object-oriented software’. However,
within the confines of existing mainstream programming lan-
guages, these supposedly reusable elements can only be expressed
extra-linguistically: as prose, pictures, and prototypes. We believe
that this is not inherent in the patterns themselves, but evidence of
a lack of expressivity in the languages of today. We expect that, in
the languages of the future, the code parts of design patterns will be
expressible as directly-reusable library components. Thebenefits
will be considerable: patterns may then be reasoned about, type-
checked, applied and reused, just as any other abstractionscan.

Indeed, we claim that the languages of tomorrow will suf-
fice; the future is not far away. All that is needed, in addition
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to what is provided by essentially every programming language,
are higher-order (parametrization by code) anddatatype-generic
(parametrization by type constructor) features. Higher-order con-
structs have been available for decades in functional programming
languages such as ML [37] and Haskell [42]. Datatype genericity
can be simulated in existing programming languages [7, 24, 39],
but we already have significant experience with robust prototypes
of languages that support it natively [25, 33].

We argue our case by capturing as higher-order datatype-
generic programs a small subset ORIGAMI of the Gang of Four
(GOF) patterns. (For the sake of rhetorical style, we equate‘GOF
patterns’ with ‘design patterns’.) These programs are parametrized
along three dimensions: by theshapeof the computation, which
is determined by the shape of the underlying data, and repre-
sented by a type constructor (an operation on types); by the
element type(a type); and by thebody of the computation,
which is a higher-order argument (a value, typically a func-
tion).

Although our presentation is in a functional programming
style, we do not intend to argue that functional programming
is the paradigm of the future (whatever we might feel per-
sonally!). Rather, we believe that functional programminglan-
guages are a suitable test-bed for experimental language fea-
tures — as evidenced by parametric polymorphism and list com-
prehensions, for example, which are both now finding their way
into mainstream programming languages such as Java and C#.
We expect that the evolution of programming languages will
continue to follow the same trend: experimental language fea-
tures will be developed and explored in small, nimble labo-
ratory languages, and the successful experiments will eventu-
ally make their way into the outside world. Specifically, we
expect that the mainstream languages of tomorrow will be
broadly similar to the languages of today — strongly and stati-
cally typed, object-oriented, with an underlying imperative mind-
set — but incorporating additional features from the functional
world — specifically, higher-order operators and datatype gener-
icity.

2. Parametrization
We start with a brief review of the kinds of parametrization required
to express design patterns as programs: as the title of the paper
suggests, the necessary features arehigher-order and datatype-
generic constructs. We then present a little suite of well-known
higher-order datatype-generic recursion operators: folds, unfolds,
and the like. These operators turn out, we claim, to capture the
essence of a number of familiar design patterns.

2.1 Higher order programs

Design patterns are patterns in program structure. They capture
commonalities in the large-scale structure of programs, abstracting
from differences in the small-scale structure. Thus, (at least the ex-



tensional parts of) design patterns can be seen as program schemes:
operators on programs, taking small-scale program fragments as ar-
guments and returning large-scale pattern instances as results. It is
quite natural, therefore, to model design patterns as higher-order
operators.

Higher-order operators, programs that take other programsas
arguments or return them as results, are the focus of functional
programming languages, which take the view that functions are
first-class citizens, with the same rights as any other kind of data.
For example, consider the following definition of a datatypeListI
of lists of integers.

data ListI = NilI | ConsI Integer ListI
Various programs over this datatype have a common structure:
definition by case analysis on aListI argument; two clauses, one per
ListI variant; and the only use of the tail of the analysed argument
as an argument to an identical recursive call.

sumI ::ListI → Integer
sumI NilI = 0
sumI(ConsI x xs) = x+sumI xs

appendI::ListI → ListI → ListI
appendI NilI ys= ys
appendI(ConsI x xs) ys= ConsI x(appendI xs ys)

Higher-order features allow the abstraction of the common pattern
of computation in these two programs — in this case, as a fold.

foldLI ::b→ (Integer→ b→ b) → ListI → b
foldLI n c NilI = n
foldLI n c(ConsI x xs) = c x(foldLI n c xs)

sumI = foldLI 0 (+)
appendI xs ys= foldLI ys ConsI xs

For more about higher-order programming, see any textbook on
functional programming [41, 4].

2.2 Datatype genericity

The datatypeListI and the corresponding higher-order operator
foldLI can be made more useful may making themparametrically
polymorphic, abstracting away from the fixed element typeInteger.

data List a= Nil | Cons a(List a)

foldL ::b→ (a→ b→ b) → List a→ b
foldL n c Nil = n
foldL n c(Cons x xs) = c x(foldL n c xs)

This kind of parametrization is sometimes called ‘generic pro-
gramming’; for example, it underlies the kind of generic program-
ming embodied in the C++ Standard Template Library [2]. It is
a very well-behaved form of genericity — one can deduce proper-
ties of parametrically polymorphic programs from their types alone
[45] — but by the same token it is also relatively inflexible. For
example, suppose one also had a polymorphic datatype of binary
trees:

data Btree a= Tip a | Bin (Btree a) (Btree a)
and a corresponding fold operator:

foldB:: (a→ b) → (b→ b→ b) → Btree a→ b
foldB t b(Tip x) = t x
foldB t b(Bin xs ys) = b (foldB t b xs) (foldB t b ys)

The two higher-order, parametrically-polymorphic programs foldL
andfoldBhave quite a lot in common: both replace constructors by
supplied arguments; both have patterns of recursion that follow the
datatype definition, with one clause per datatype variant and one re-
cursive call per substructure. But neither parametric polymorphism
nor higher-order functions suffice to capture this recurring pattern.

In fact, what differs between the two fold operators is theshape
of the data on which they operate, and hence the shape of the
programs themselves. The kind of parametrization requiredis by
this shape; that is, by the datatype or type constructor (such asList
or Tree) concerned. We call thisdatatype genericity; it allows the

capture of recurring patterns inprograms of different shapes. In
Section 2.3 below, we explain the definition of a datatype-generic
operationfold with the following type:

fold ::Bifunctor s⇒ (s a b→ b) → Fix s a→ b
Here, in addition to the typea of collection elements and the fold
body (a function of types a b→ b), the shape parameters varies;
the type classBifunctor expresses the constraints we place on its
choice. The shape parameter determines the shape of the input
data; for one instantiation ofs, the typeFix s a is isomorphic to
List a, and for another instantiation it is isomorphic toBtree a.
The same shape parameter also determines the type of the fold
body, supplied as an argument with which to replace the construc-
tors.

For more about datatype genericity, see [17].

2.3 Origami programming

As argued above, data structure determines program structure. It
therefore makes sense to abstract from the determining shape, leav-
ing only what they have in common. We do this by defining a
datatypeFix, parametrized both by an element typea of basic kind
(a plain type, such as integers or strings), and by a shape type s of
higher kind (a type constructor, such as ‘pairs of’ or ‘listsof’).

data Fix s a= In{out::s a(Fix s a)}
The parametersdetermines the shape; ‘Fix’ ties the recursive knot.
Here are three instances ofFix using different shapes: lists, and
internally- and externally-labelled binary trees.

data ListF a b= NilF | ConsF a b
type List a= Fix ListF a

data TreeF a b= EmptyF| NodeF a b b
type Tree a= Fix TreeF a

data BtreeF a b= TipF a | BinF b b
type Btree a= Fix BtreeF a

Note thatFix s a is a recursive type. Typically, as in the three in-
stances above, the shapes has several variants, including a ‘base
case’ independent of its second argument. But with lazy evalua-
tion, infinite structures are possible, and so the definitionmakes
sense even with no such base case. For example,Fix ITreeF awith
ITreeF a b= INodeF a b bis a type of infinite internally-labelled
binary trees.

Not all valid binary type constructorss are suitable forFixing
(for example, because of function types). It turns out that we should
restrict attention tobifunctors, which support abimap operation
‘locating’ all the elements. We capture this constraint as atype
class.

class Bifunctor swhere
bimap:: (a→ c) → (b→ d) → s a b→ s c d

Technically speaking,bimapshould satisfy some properties:
bimap id id = id
bimap f g·bimap h j= bimap(f ·h) (g· j)

These cannot be expressed in Haskell — but we might expect to be
able to express them in the languages of tomorrow [8, 44].

All datatypes made from sum and product constructors induce
bifunctors. Here are instances for our three example shapes.

instance Bifunctor ListFwhere
bimap f g NilF = NilF
bimap f g(ConsF x y) = ConsF(f x) (g y)

instance Bifunctor BtreeFwhere
bimap f g(TipF x) = TipF (f x)
bimap f g(BinF y z) = BinF (g y) (g z)

instance Bifunctor TreeFwhere
bimap f g EmptyF = EmptyF
bimap f g(NodeF x y z) = NodeF(f x) (g y) (g z)



1
children

Leaf

+operation():void

Component

+operation():void

+add(g:Component):void

+remove(g:Component):void

+getChild(i:int):Component

Composite

+operation():void

+add(g:Component):void

+remove(g:Component):void

+getChild(i:int):Component

void operation() {

foreach g in children {

g.operation();

}

}

Client
0..*

Figure 1. The class structure of the COMPOSITEpattern

The type signature of the operatorbimapis datatype-generic, since
it is parameterized by the shapes of the data:

bimap::Bifunctor s⇒
(a→ c) → (b→ d) → s a b→ s c d

However, becausebimapis encoded as a member function of a type
class, the definitions for particular shapes are examples ofad-hoc
rather than parametric datatype genericity; each instanceentails a
proof obligation that the appropriate laws are satisfied.

It is a bit tedious to have to provide a new instance ofBifunctor
for each new datatype shape; one would of course prefer a single
datatype-generic definition. This is the kind of feature forwhich
Generic Haskell [25] is designed, and one can almost achievethe
same effect in Haskell [39]. One might hope that these instance
definitions could in fact be inferred, in the languages of tomorrow
[26]. But whatever the implementation mechanism, the result will
still be ad-hoc datatype-generic: it is necessarily the case that dif-
ferent code is used to locate the elements within data of different
shapes.

It turns out that the classBifunctorprovides sufficient flexibility
to capture a wide variety of recursion patterns as datatype-generic
programs: a little bit of ad-hockery goes a long way. Here area
number of familiar recursion patterns (map [34], fold [28],unfold
[21], hylomorphism [36], and build [22]) captured as datatype-
generic programs parameterized by aBifunctorshapes.

map::Bifunctor s⇒
(a→ b) → Fix s a→ Fix s b

map f = In ·bimap f (map f) ·out

fold :: Bifunctor s⇒
(s a b→ b) → Fix s a→ b

fold f = f ·bimap id(fold f) ·out

unfold::Bifunctor s⇒
(b→ s a b) → b→ Fix s a

unfold f = In ·bimap id(unfold f) · f

hylo:: Bifunctor s⇒
(b→ s a b) → (s a c→ c) → b→ c

hylo f g= g·bimap id(hylo f g) · f

build :: Bifunctor s⇒
(∀b. (s a b→ b) → b) → Fix s a

build f = f In
The datatype-generic definitions are surprisingly short — shorter
even than datatype-specific ones would be. The structure becomes
much clearer with the higher level of abstraction. In particular, the
duality betweenfold andunfold is obvious.

For more about origami programming, see [13, 14].

3. Origami patterns
In this section we describe ORIGAMI , a little suite of patterns for
recursive data structures, consisting of four of the Gang ofFour
design patterns [11]:

• COMPOSITE, for modelling recursive structures;
• ITERATOR, for linear access to the elements of a composite;
• V ISITOR, for structured traversal of a composite;
• BUILDER, to generate a composite structure.

These four patterns belong together. They all revolve around
the notion of a hierarchical structure, represented as a COMPOS-
ITE. One way of constructing such hierarchies is captured by the
BUILDER pattern: a client application knows what kinds of part to
add and in what order, but it delegates to a separate object knowl-
edge of their implementation and responsibility for creating and
holding them. Having constructed a hierarchy, there are twokinds
of traversal we might perform over it: either considering itas a con-
tainer of elements, in which case we use an ITERATOR for a linear
traversal; or considering its shape as significant, in whichcase we
use a VISITOR for a structured traversal.

3.1 Composite

The COMPOSITEpattern ‘lets clients treat individual objects and
compositions of objects uniformly’, by ‘composing objectsinto
tree structures’. The essence of the pattern is a common super-
type, of which both atomic and aggregated objects are subtypes,
as shown in Figure 1.

3.2 Iterator

The ITERATOR pattern ‘provides a way to access the elements of
an aggregate object sequentially without exposing its underlying
representation’. It does this by separating the responsibilities of
containment and iteration. The standard implementation isas an
external or client-driven iterator, illustrated in Figure 2 and as
embodied for example in the Java standard library.

In addition to the standard implementation, GOF also dis-
cussinternal or iterator-driven ITERATORs, illustrated in Figure 3.
These might be modelled by the following pair of interfaces:

public interface Action{Object apply(Object o); }
public interface Iterator{void iterate(Action a); }

An object implementing theAction interface provides a single
methodapply, which takes in a collection element and returns (ei-
ther a new, or the same but modified) element. (The C++ STL
calls such objects ‘functors’, but we avoid that term here toprevent
name clashes with type functors.) A collection (implementsa FAC-
TORY METHOD to return a separate subobject that) implements the
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Figure 2. The class structure of the ITERATORpattern

Iterator interface to accept anAction, apply it to each element in
turn, and replace the original elements with the possibly new ones
returned. Internal ITERATORs are less flexible than external — for
example, it is more difficult to have two linked iterations over the
same collection, and to terminate an iteration early — but they are
correspondingly simpler to use.

3.3 Visitor

In the normal object-oriented paradigm, the definition of each
traversal operation is spread across the whole class hierarchy of the
structure being traversed — typically but not necessarily aCOM-
POSITE. This makes it easy to add new variants of the datatype (for
example, new kinds of leaf node in the COMPOSITE), but hard to
add new traversal operations.

The VISITOR pattern ‘represents an operation to be performed
on the elements of an object structure’, allowing one to ‘define
a new operation without changing the classes of the elementson
which it operates’. This is achieved by providing a hook for as-
sociating new traversals (the methodacceptin Figure 4), and an
interface for those traversals to implement; the effect is to simu-
late double dispatchon the types of two arguments, the element
type and the operation, by two consecutive single dispatches. It is
a kind of aspect-oriented programming[32], modularizing what
would otherwise be a cross-cutting concern. It reverses thecosts:
it is now easy to add new traversals, but hard to add new variants.
(Wadler [48] has coined the termexpression problemfor this ten-
sion between dimensions of easy extension.)

3.4 Builder

Finally, the BUILDER pattern ‘separates the construction of a com-
plex object from its representation, so that the same construction
process can create different representations’. As Figure 5shows,
this is done by delegating responsibility for the construction to a
separate object — in fact, a STRATEGY for performing the con-
struction.

The GOF motivating example of the BUILDER pattern involves
assembling a product that is basically a simple collection;that is
necessarily the case, because the operations supported by abuilder
object add parts and return void. However, they also suggestthe
possibility of building a more structured product, in whichthe parts
are linked together. For example, to construct a tree, each operation
to add a part could return a unique identifier for the part added,
and take an optional identifier for the parent to which to add it;
a directed acyclic graph requires a set of parents for each node,
and construction in topological order; a cyclic graph requires the

possibility of ‘forward references’, adding parts as children of yet-
to-be-added parents.

GOF also suggest the possibility of BUILDERs that compute.
Instead of constructing a largeProductand eventually collapsing it,
one can provide a separate implementation of theBuilder interface
that makes theProduct itself the collapsed result, computing it on
the fly while building.

3.5 An example

As an example of applying the ORIGAMI patterns, consider the
little document system illustrated in Figure 6. (The complete code
is given in an appendix, for reference.)

• The focus of the application is a COMPOSITEstructure of docu-
ments:Sections have atitle and a collection of sub-Components,
andParagraphs have abody.

• One can iterate over such a structure using an internal IT-
ERATOR, which acts on everyParagraph. For instance, it-
erating with aSpellCorrectormight correct the spelling of
every paragraph body. (For brevity, we have omitted the
possibility of acting on theSections of a document, but it
would be easy to extend theAction interface to allow this.
We have also made theapply method returnvoid, so pro-
viding no way to change the identity of the document ele-
ments; more generally,apply could optionally return new el-
ements.)

• One can also traverse the document structure with a VISITOR,
for example to compute some summary of the document. For
instance, aPrintVisitor might yield a string array with the sec-
tion titles and paragraph bodies in order.

• Finally, one can construct such a document using a BUILDER.
We have used the structured variant, addingSections and
Paragraphs as children of existingComponents via uniqueint
identifiers. AComponentBuilderconstructs aComponentas ex-
pected, whereas aPrintBuilder incorporates the printing be-
haviour of thePrintVisitor incrementally, actually constructing
a string array instead.

This one application is a paradigmatic example of each of the
four ORIGAMI patterns. We therefore claim that any alternative
representation of the patterns cleanly capturing this structure is a
faithful rendition of those patterns. In Section 4 below, weprovide
just such a representation, in terms of the higher-order datatype-
generic programs from Section 2.3. Section 4.5 justifies ourclaim
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Figure 3. The class structure of an internal ITERATOR

of a faithful rendition by capturing the structure of the document
application in this alternative representation.

4. Patterns as HODGPs
We revisit the ORIGAMI patterns from Section 3, showing that each
of the four patterns can be captured as a higher-order datatype-
generic program (HODGP). However, we consider them in a
slightly different order; it turns out that the datatype-generic rep-
resentation of the ITERATORpattern builds on that of VISITOR.

4.1 Composite in HODGP

COMPOSITEs are recursive data structures; in the OO setting, they
are packaged together with some operations, but in a functional
setting the operations are represented separately. So actually, these
correspond not to programs, but to types. Recursive data structures
come essentially for free in functional programming languages.

data Fix s a= In{out::s a(Fix s a)}
What is datatype-generic about this definition is that it is
parametrized by the shapes of the data structure; thus, one recur-
sive datatype serves to captureall (regular) recursive data struc-
tures, whatever their shape.

4.2 Visitor in HODGP

The VISITOR pattern collects fragments of each traversal into
one place, and provides a hook for performing such traversals.
The resulting style matches the normal functional programming
paradigm, in which traversals are entirely separate from the data
structures traversed. No explicit hook is needed; the connection be-
tween traversal and data is made within the traversal by dispatching
on the data, either by pattern matching or (equivalently) byapply-
ing a destructor. What was a double dispatch in the OO settingbe-
comes in HODGP the choice of a function to apply, followed by a
case analysis on the variant of the data structure. A common case
of such traversals, albeit not the most general, is the fold operator
introduced above.

fold ::Bifunctor s⇒
(s a b→ b) → Fix s a→ b

fold f = f ·bimap id(fold f) ·out
This too is datatype-generic, parametrized by the shapes: the same
function fold suffices to traverse any shape of COMPOSITEstruc-
ture.

4.3 Iterator in HODGP

External ITERATORs give sequential access to the elements of
collection. The functional approach would be to provide a view
of the collection as a list of elements, at least for read-only access.

Seen this way, the ITERATORpattern can be implemented using the
V ISITOR pattern, traversing using a bodycombinerthat combines
the element lists from substructures into one overall element list.

contents::Bifunctor s⇒
(s a(List a) → List a) → Fix s a→ List a

contents combiner= fold combiner
With lazy evaluation, the list of elements can be generated incre-
mentally on demand, rather than eagerly in advance: ‘lazy evalua-
tion means that lists and iterators over lists are identified’ [49].

In the formulation above, thecombiner argument has to be
provided to thecontentsoperation. Passing differentcombiners
allows the same COMPOSITE to yield its elements in different
orders; for example, a tree-shaped container could supportboth
preorder and postorder traversal. On the other hand, it is clumsy
always to have to specify thecombiner. One could specify it once
and for all, in the classBifunctor, in effect making it another
datatype-generic operation parametrized by the shapes. In the
languages of tomorrow, one might expect that at least one, obvious
implementation ofcombinercould be inferred automatically.

Of course, some aspects of external ITERATORs can already be
expressed linguistically; the interfacejava.util.Iterator has been
available for years in the Java API, the iterator concept hasbeen
explicit in the C++ Standard Template Library for even longer,
and recent versions of Java and C# even provide language support
(‘ foreach’) for iterating over the elements yielded by such an oper-
ator. Thus, element consumers can be written datatype-generically
today. But still, one has to implement theIterator anew for each
datatype defined; element producers are still datatype-specific.

An internal ITERATOR is basically a map operation, iterating
over a collection and yielding one of the same shape but with
different or modified elements; it therefore supports writeaccess
to the collection as well as read access. In HODGP, we can givea
single genericdefinition of this.

map::Bifunctor s⇒
(a→ b) → Fix s a→ Fix s b

map f= In ·bimap f (map f) ·out
This is in contrast with the object-oriented approach, in which
Iterator implementations are datatype-specific. Note also that the
HODGP version is more general than the OO version, because it
can return a collection of elements of a different type.

Although the internal ITERATOR explains both read and write
access to a collection, it doesn’t explain imperative access, with
impure aspects such as side-effects, I/O and so on. Moreover, it
does not subsume the HODGP external ITERATOR, because it does
not allow accumulationof some measure of the elements (for ex-
ample, to compute the size of the collection in passing). Recent
work on idiomatic traversals[35, 19] overcomes both of these
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Figure 4. The class structure of the VISITOR pattern

shortcomings: idiomatic traversals support imperative features and
mapping and accumulating aspects simultaneously, usingidioms
or applicative functors, a slight generalization of monads [47].
One small extra piece of ad-hockery is required: a mechanism
for pulling an idiomatic effect out of the shape of a data struc-
ture.

class Bifunctor s⇒ Bitraversable swhere
bidist:: Idiom m⇒ s(m a) (m b) → m (s a b)

Given this tool, a datatype-generictraverseoperator turns out to be
an instance offold:

instance Bitraversable s⇒ Traversable(Fix s) where
traverse f= fold (fmap In·bidist·bimap f id)

Applications oftraverseinclude maps, accumulations and impera-
tive iterations over collections [19].

4.4 Builder in HODGP

The standard protocol for the BUILDER pattern involves aDirector
sendingParts one by one to aBuilder for it to assemble, and then
retrieving from theBuilder a Product. Thus, the product is assem-
bled in a step-by-step fashion, but is unavailable until assembly is
complete. With lazy evaluation, we can in some circumstances con-
struct theProduct incrementally: we can yield access to the root
of the product structure while continuing to assemble its substruc-
tures. In the case that the data structure is assembled in a regular
fashion, this corresponds in the HODGP style to an unfold opera-
tion.

unfold::Bifunctor s⇒
(b→ s a b) → b→ Fix s a

unfold f = In ·bimap id(unfold f) · f
When the data structure is assembled irregularly, a build operator
has to be used instead.

build ::Bifunctor s⇒
(∀b. (s a b→ b) → b) → Fix s a

build f = f In
These are both datatype-generic programs, parametrized bythe
shape of product to be built. In contrast, the GOF BUILDER pat-

tern states the general scheme, but requires code specific for each
Builder interface and eachConcreteBuilderimplementation.

Turning to GOF’s computing builders, with lazy evaluation
there is not so pressing a need to fuse building with postprocess-
ing. If the structure of the consumer computation matches that of
the producer — in particular, if the consumer is a fold and thepro-
ducer a build or an unfold — then consumption can be interleaved
with production, and the whole product never need be in existence.

Nevertheless, naive interleaving of production and consump-
tion of parts of the product still involves the creation and imme-
diate disposal of those parts. Even the individual parts need never
be constructed; often, they can be deforested [46], with theat-
tributes of a part being fed straight into the consumption process.
When the producer is an unfold, the composition of producer and
consumer is (under certain mild strictness conditions) a hylomor-
phism.

hylo::Bifunctor s⇒
(b→ s a b) → (s a c→ c) → b→ c

hylo f g= g·bimap id(hylo f g) · f
More generally, but less conveniently for reasoning, the producer
is a build, and the composition simply replaces the constructors in
the builder by the body of the fold.

foldBuild::Bifunctor s⇒
(∀b. (s a b→ b) → b) → (s a b→ b) → b

foldBuild f g= f g
Once again, both definitions are datatype-generic; both take as
arguments a producerf and a consumerg, both with types
parametrized by the shapes of the product to be built. Note es-
pecially that in both cases, the fusion requires no creativity; in con-
trast, GOF’s computing builders can take considerable insight and
ingenuity to program (as we shall see in the appendix).

4.5 The example, revisited

To justify our claim that the higher-order datatype-generic repre-
sentation of the ORIGAMI patterns is a faithful rendition, we use it
to re-express the document application discussed in Section 3.5 and
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illustrated in Figure 6. (It is instructive to compare these40 lines of
Haskell code with the equivalent Java code in the appendix.)

• The COMPOSITEstructure has the following shape.

data DocF a b= Para a| Sec String[b]
type Doc= Fix DocF String

instance Bifunctor DocFwhere
bimap f g(Para s) = Para(f s)
bimap f g(Sec s xs) = Sec s(map g xs)

We have chosen to consider paragraph bodies as the ‘contents’
of the data structure, but section titles as part of the ‘shape’; that
decision could be varied.

• We used an ITERATOR to implement theSpellCorrector; this
would be modelled now as an instance ofmap.

correct::String→ String -- definition omitted

corrector::Doc→ Doc
corrector= map correct

• The use of VISITOR to print the contents of a document is a
paradigmatic instance of afold.

printDoc::Doc→ [String]
printDoc= fold combine

combine::DocF String[String] → [String]
combine(Para s) = [s]
combine(Sec s xs) = s: concat xs

• Finally, in place of the BUILDER pattern, we can useunfold for
constructing documents, at least when doing so in a structured
fashion. For example, consider the following simple represen-
tation of XML documents.

data XML = Text String| Entity Tag Attrs[XML]
type Tag= String
type Attrs= [(String,String)]

From such an XML document we can construct one of our
documents, withText elements as paragraphs andEntitys as
sections with appropriate titles.

fromXML::XML→ Doc
fromXML= unfold step

step::XML→ DocF String XML
step(Text s) = Para s
step(Entity t kvs xs) = Sec(title t kvs) xs

title ::Tag→ Attrs→ String
title t [ ] = t
title t kvs= t ++paren(join (map attr kvs)) where

join [s] = s
join (s:ss) = s++", "++ join ss

attr (k,v) = k++"=’"++v++"’"
paren s = " ("++s++")"

Printing of a document constructed from an XML file is the
composition of a fold with an unfold, and so a hylomorphism:

printXML ::XML→ [String]
printXML = hylo step combine

• For constructing documents in a less structured fashion, we
have to resort to the more general and more complicatedbuild
operator. For example, here is a builder for a simple document
of one section with two sub-paragraphs.

buildDoc:: (DocF String b→ b) → b
buildDoc f = f (Sec"Heading" [f (Para"p1"),

f (Para"p2")])

We can actually construct the document from this builder, sim-
ply by passing it to the operatorbuild, which plugs the holes
with document constructors.

myDoc::Doc
myDoc= build buildDoc

If we want to traverse the resulting document, for example to
print it, we can do so directly without having to construct the
document in the first place; we do so by plugging the holes
instead with the body of theprintDoc fold.

printMyDoc:: [String]
printMyDoc= buildDoc combine

5. Discussion
We have shown that two advanced language features —higher-
order functionsanddatatype genericity— suffice (in the presence
of other standard features such as datatypes and interfaces) to cap-
ture as reusable code a number of the familiar GOF design pat-
terns; specifically, the patterns we have considered are COMPOS-
ITE, ITERATOR, V ISITOR and BUILDER, which together we call
the ORIGAMI patterns. We also believe that these or similar fea-
tures are necessary for this purpose, since the design patterns are
parametrized by actions and by the shape of datatypes.

Our intentions in doing this work are not so much to criticize
the existing informal presentations of these four and otherpat-
terns; indeed, as we explain below, the informal presentations con-
tribute much useful information beyond the code. Rather, weaim
to promote the uptake of higher-order and datatype-generictech-
niques, and to encourage their incorporation in mainstreampro-
gramming languages. In this regard, we are following in the foot-
steps of Norvig [38], who wrote that 16 of the 23 GOF patterns
are ‘invisible or simple’ in Lisp, and others who argue that design
patterns amount to admissions of inexpressiveness in programming
languages. However, in contrast to Norvig and the others favouring
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dynamic languages [43], our presentation provides genericity while
preserving strong static typing.

We do not claim to have captured all 23 of the GOF patterns, or
for that matter any deuterocanonical ones either. In particular, we
do not see yet how to capturecreationaldesign patterns as higher-
order datatype-generic programs. This is perhaps because our ap-
proach is to model object-oriented ideas in a functional framework,
and that framework has no direct analogue of object creation. How-
ever, we hope and expect that the languages of tomorrow will pro-
vide higher-order datatype-generic features in a more traditional
framework, and then we may be able to make better progress. In-
deed, Alexandrescu’stype listimplementation of a GENERIC AB-
STRACT FACTORY [1] is essentially a datatype-generic metapro-
gram written using C++ templates.

We also appreciate that there is more to design patterns than
their extensional characteristics, which can be expressedas class
and sequence diagrams and captured as programs or programming
constructs. Also important are their intensional characteristics: mo-
tivation for their use, paradigmatic examples, trade-offsin their ap-
plication, and other aspects of the ‘story’ behind the pattern. Our
presentation impinges only on the limited extensional aspects of
those patterns we treat.

6. Related work
This paper is based on ideas from the Algebra of Programming
(‘Squiggol’) community, and especially the work of Roland Back-
house and Grant Malcolm [34, 3], Richard Bird and Oege de Moor
[5, 6], Maarten Fokkinga, Erik Meijer and Ross Paterson [10,36],
Johan Jeuring and Ralf Hinze [29, 23, 25], and John Hughes [27].
For their inspiration, I am indebted. For further details onthe
datatype-generic style presented here, see [13, 14] and theabove
references.

Barry Jay has an alternative approach to datatype-generic pro-
gramming, which he callsshape polymorphism[31, 30]. He and
Jens Palsberg have also done some work on a generic representa-
tion of the VISITORpattern [40], but this relies heavily on reflection
rather than his work on shape.

For other recent discussions of the meeting between functional
and object-oriented views of genericity, see [9, 12].

7. Conclusions
Design patterns are traditionally expressed informally, using prose,
pictures and prototypes. In this paper we have argued that, given the
right language features, certain patterns at least could beexpressed
more usefully as reusable library code. The language features re-



quired, in addition to those provided by mainstream languages, are
higher-order functionsanddatatype genericity; for some aspects,
lazy evaluationalso turns out to be helpful. These features are fa-
miliar in the world of functional programming; we hope to seethem
soon in more mainstream programming languages.
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9. Appendix: Java programs
Section 4.5 provides a nearly complete implementation of the doc-
ument application in a higher-order datatype-generic style; all that
is missing is a definition for the spelling correctorcorrect. In con-
trast, Section 3.5 presents only the outline of a Java implementation
of the same application. For completeness, this appendix presents
the Java code.

9.1 Component

public interface Component{
void accept(Visitor v);
Iterator getIterator();

}

9.2 Section

import java.util.Vector;
import java.util.Enumeration;

public class Sectionimplements Component{
protected Vector children;
protected String title;
public Section(String title){

children= new Vector();
this.title = title;

}
public String getTitle(){

return title;
}
public void addComponent(Component c){

children.addElement(c);
}
public Enumeration getChildren(){

return children.elements();

}
public Iterator getIterator(){

return new SectionIterator(this);
}
public void accept(Visitor v){

v.visitSection(this);
}

}

9.3 Paragraph

public class Paragraphimplements Component{
protected String body;
public Paragraph(String body){

setBody(body);
}
public void setBody(String s){

body= s;
}
public String getBody(){

return body;
}
public Iterator getIterator(){

return new ParagraphIterator(this);
}
public void accept(Visitor v){

v.visitParagraph(this);
}

}

9.4 Iterator

public interface Iterator{
void iterate(Action a);

}

9.5 SectionIterator

import java.util.Enumeration;

public class SectionIteratorimplements Iterator{
protected Section s;
public SectionIterator(Section s){

this.s= s;
}
public void iterate(Action a){

for (Enumeration e= s.getChildren();
e.hasMoreElements();){

((Component) (e.nextElement())).
getIterator().iterate(a);

}
}

}

9.6 ParagraphIterator

public class ParagraphIteratorimplements Iterator{
protected Paragraph p;
public ParagraphIterator(Paragraph p){

this.p = p;
}
public void iterate(Action a){

a.apply(p);
}

}



9.7 Action

public interface Action{
void apply(Paragraph p);

}

9.8 SpellCorrector

public class SpellCorrectorimplements Action{
public void apply(Paragraph p){

p.setBody(correct(p.getBody()));
}
public String correct(String s){

return s.toLowerCase();
}

}

9.9 Visitor

public interface Visitor{
void visitParagraph(Paragraph p);
void visitSection(Section s);

}

9.10 PrintVisitor

import java.util.Enumeration;
import java.util.Vector;

public class PrintVisitor implements Visitor{

protected String indent= "";
protected Vector lines= new Vector();

public String[ ] getResult(){
String[ ] ss= new String[0];
ss= (String[ ]) lines.toArray(ss);
return ss;

}
public void visitParagraph(Paragraph p){

lines.addElement(indent+p.getBody());
}

public void visitSection(Section s){
String currentIndent= indent;
lines.addElement(indent+s.getTitle());
for (Enumeration e= s.getChildren();

e.hasMoreElements();){
indent= currentIndent+" ";
((Component) e.nextElement()).accept(this);

}
indent= currentIndent;

}

}

9.11 Builder

public interface Builder{
int addParagraph(String body, int parent)

throws InvalidBuilderId;
int addSection(String title, int parent)

throws InvalidBuilderId;
}

9.12 InvalidBuilderId

public class InvalidBuilderId extends Exception{
public InvalidBuilderId(String reason){

super(reason);
}

}

9.13 ComponentBuilder

import java.util.AbstractMap;
import java.util.HashMap;

public class ComponentBuilderimplements Builder{
protected int nextId= 0;
protected AbstractMap comps= new HashMap();
public int addParagraph(String body, int pId)

throws InvalidBuilderId{
return addComponent(new Paragraph(body),pId);

}
public int addSection(String title, int pId)

throws InvalidBuilderId{
return addComponent(new Section(title),pId);

}
public Component getProduct(){

return (Component) comps.get(new Integer(0));
}
protected int addComponent(Component c, int pId)

throws InvalidBuilderId{
if (pId<0){ // root component

if (comps.isEmpty()){
comps.put (new Integer(nextId),c);
return nextId++;

}
else

throw new InvalidBuilderId
("Duplicate root");

} else { // non-root
Component parent= (Component) comps.

get(new Integer(pId));
if (parent≡ null){

throw new InvalidBuilderId
("Non-existent parent");

} else {
if (parentinstanceof Paragraph){

throw new InvalidBuilderId
("Adding child to paragraph");

} else {
Section s= (Section) parent;
s.addComponent(c);
comps.put (new Integer(nextId),c);
return nextId++;

}
}

}
}

}

9.14 PrintBuilder

This is the only class with a non-obvious implementation. Itcon-
structs the printed representation (aString [ ]) of a Componenton
the fly. In order to do so, it needs to retain some of the tree structure:
for eachComponent, in the last field of the correspondingRecord,
the unique identifier of its right-most child (or its own identifier, if it
has no children). The vectorrecordsis stored in the order the lines
will be returned, namely, preorder. A newComponentis placed af-
ter the rightmost descendent of its immediate parent, located by
following the last references. (The code would be cleaner using
Java generics to declarerecordsas aVector〈Record〉 rather than a
plainVectorof Objects, but we wish to emphasize that the datatype-
genericity discussed in this paper is a different kind of genericity to
that provided in Java 1.5.)



import java.util.Vector;

public class PrintBuilder implements Builder{

protected class Record{
public int id;
public int last;
public String line;
public String indent;
public Record(int id, int last,

String line,String indent){
this.id = id;
this.last= last;
this.line = line;
this.indent= indent;

}
}
protected Vector records= new Vector();
protected Record recordAt(int i){

return (Record) records.elementAt(i);
}
protected int find (int id, int start){

while(start< records.size()&&
recordAt(start).id ! = id)

start++;
if (start< records.size())

return start;
else

return−1;
}

protected int nextId= 0;

protected SpellCorrector c= new SpellCorrector();

public int addParagraph(String body, int pid)
throws InvalidBuilderId{

return addComponent(c.correct(body),pid);
}

public int addSection(String title, int pid)
throws InvalidBuilderId{

return addComponent(title,pid);
}

public String[ ] getProduct(){
String[ ] ss= new String[records.size()];
for (int i = 0;i <ss.length; i++)

ss[ i ] = recordAt(i).indent+ recordAt(i).line;
return ss;

}

protected int addComponent(String s, int pId)
throws InvalidBuilderId{

if (pId<0){ // root component
if (records.isEmpty()){

records.addElement(new Record
(nextId,nextId,s,""));

return nextId++;
}
else

throw new InvalidBuilderId
("Duplicate root");

} else { // non-root
int x = find (pId,0);
Record r= recordAt(x);
String indent= r.indent;
if (x== −1){

throw new InvalidBuilderId
("Non-existent parent");

} else {
int y = x; // ids [x] = ids [y] = pid
while(r.id ! = r.last){

y = x;
x = find (r.last,x);
r = recordAt(x);

} // lasts[y] = lasts[x] = ids [x]
records.insertElementAt(new Record

(nextId,nextId,s, indent+" "),x+1);
recordAt(y).last= nextId;

// lasts[y] = lasts[x+1] = nextId
return nextId++;

}
}

}
}

9.15 Main

public abstractclass Main{
public static void build (Builder b){

try{
int rootId = b.addSection("Doc",−1);
int sectId= b.addSection("Sec 1", rootId);
int subsId= b.addSection("Subsec 1.1",sectId);
int id = b.addParagraph("Para 1.1.1",subsId);
id = b.addParagraph("Para 1.1.2",subsId);
subsId= b.addSection("Subsec 1.2",sectId);
id = b.addParagraph("Para 1.2.1",subsId);
id = b.addParagraph("Para 1.2.2",subsId);
sectId= b.addSection("Sec 2", rootId);
subsId= b.addSection("Subsec 2.1",sectId);
id = b.addParagraph("Para 2.1.1",subsId);
id = b.addParagraph("Para 2.1.2",subsId);
subsId= b.addSection("Subsec 2.2",sectId);
id = b.addParagraph("Para 2.2.1",subsId);
id = b.addParagraph("Para 2.2.2",subsId);

}catch (InvalidBuilderId e){
System.out.println ("Exception: "+e);

}
}

public static void main(String[ ] args){
String[ ] lines;
if (false){ // build then compute

ComponentBuilder b= new ComponentBuilder();
build (b);
Component root= b.getProduct();
root.getIterator().iterate(new SpellCorrector());
PrintVisitor pv= new PrintVisitor ();
root.accept(pv);
lines= pv.getResult();

} else { // computing builder
PrintBuilder b= new PrintBuilder ();
build (b);
lines= b.getProduct();

}
for (int i = 0;i < lines.length; i++)

System.out.println (lines[ i ]);
}

}


