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Abstract

Design patterns are reusable abstractions in objecttedesoft-
ware. However, using current mainstream programming lages,
these elements can only be expressed extra-linguistiealgrose,
pictures, and prototypes. We believe that this is not intiene
the patterns themselves, but evidence of a lack of exprgsgiv
the languages of today. We expect that, in the languageseof th
future, the code parts of design patterns will be expressis
reusable library components. Indeed, we claim that theuages

of tomorrow will suffice; the future is not far away. All thas i
needed, in addition to commonly-available features, tagher-
order and datatype-genericonstructs; these features are already
or nearly available now. We argue the case by presentingehigh
order datatype-generic programs capturirgg@mi, a small suite

of patterns for recursive data structures.

Categories and Subject Descriptors F.3.3 [Logics and mean-
ings of programk Studies of program constructs—object-
oriented constructs; D.3.3fogramming languagésLanguage
constructs and features—Patterns, polymorphism, costrak-
tures, recursion; D.3.2 Programming languagés Language
classifications—Functional languages, design languagigiect-
oriented languages.

General Terms Languages, Design, Algorithms, Theory.

Keywords Design patterns, generic programming, higher-order
functions, functional programming, folds, unfolds.

1. Introduction

Design patterns, as the subtitle of the seminal book [11] has
it, are ‘elements of reusable object-oriented softwarewklver,
within the confines of existing mainstream programming lan-
guages, these supposedly reusable elements can only lessxgr
extra-linguistically: as prose, pictures, and prototypkfs believe
that this is not inherent in the patterns themselves, buteene of
a lack of expressivity in the languages of today. We expeatt th
the languages of the future, the code parts of design pattélibe
expressible as directly-reusable library components. Bdmeefits
will be considerable: patterns may then be reasoned abqs; t
checked, applied and reused, just as any other abstractons
Indeed, we claim that the languages of tomorrow will suf-
fice; the future is not far away. All that is needed, in additio
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to what is provided by essentially every programming laggua
are higher-order (parametrization by code) ardhtatype-generic
(parametrization by type constructor) features. Higheleo con-
structs have been available for decades in functional progring
languages such as ML [37] and Haskell [42]. Datatype geitgric
can be simulated in existing programming languages [7, 24, 3
but we already have significant experience with robust pypts
of languages that support it natively [25, 33].

We argue our case by capturing as higher-order datatype-
generic programs a small subserRi@AamI of the Gang of Four
(GOF) patterns. (For the sake of rhetorical style, we eq@&@F
patterns’ with ‘design patterns’.) These programs arerpatdazed
along three dimensions: by trehapeof the computation, which
is determined by the shape of the underlying data, and repre-
sented by a type constructor (an operation on types); by the
element type(a type); and by thebody of the computation,
which is a higher-order argument (a value, typically a func-
tion).

Although our presentation is in a functional programming
style, we do not intend to argue that functional programming
is the paradigm of the future (whatever we might feel per-
sonally!). Rather, we believe that functional programmiag-
guages are a suitable test-bed for experimental language fe
tures — as evidenced by parametric polymorphism and list-com
prehensions, for example, which are both now finding theiy wa
into mainstream programming languages such as Java and C#.
We expect that the evolution of programming languages will
continue to follow the same trend: experimental language fe
tures will be developed and explored in small, nimble labo-
ratory languages, and the successful experiments will teven
ally make their way into the outside world. Specifically, we
expect that the mainstream languages of tomorrow will be
broadly similar to the languages of today — strongly andi-stat
cally typed, object-oriented, with an underlying imperatimind-
set — but incorporating additional features from the fuorcai
world — specifically, higher-order operators and datatypeeg-
icity.

2. Parametrization

We start with a brief review of the kinds of parametrizatiegquired

to express design patterns as programs: as the title of ther pa
suggests, the necessary features lagher-order and datatype-
generic constructs. We then present a little suite of well-known
higher-order datatype-generic recursion operatorssfaldfolds,
and the like. These operators turn out, we claim, to captuee t
essence of a number of familiar design patterns.

2.1 Higher order programs

Design patterns are patterns in program structure. Thetui@p
commonalities in the large-scale structure of programstrabting
from differences in the small-scale structure. Thus, @st¢he ex-



tensional parts of) design patterns can be seen as proghemss:
operators on programs, taking small-scale program fratgveerar-
guments and returning large-scale pattern instances al¢stdsis
quite natural, therefore, to model design patterns as higiuer
operators.

Higher-order operators, programs that take other prograsns
arguments or return them as results, are the focus of furaitio
programming languages, which take the view that functioms a
first-class citizens, with the same rights as any other kindiate.

For example, consider the following definition of a datatyist|
of lists of integers.

dataListl = Nill | Consl Integer Listl
Various programs over this datatype have a common structure
definition by case analysis orL#stl argument; two clauses, one per
Listl variant; and the only use of the tail of the analysed argument
as an argument to an identical recursive call.

suml :: Listl — Integer

suml Nill =0

suml(Consl x X$ = X+ suml xs

appendl: Listl — Listl — Listl

append! Nill ys=ys

appendl(Consl x x$ ys= Consl x(append! xs ys
Higher-order features allow the abstraction of the commattepn
of computation in these two programs — in this case, as a fold.

foldLI::b — (Integer— b — b) — Listl — b

foldLI n ¢ Nill =n
foldLI n c(Consl x x$ = ¢ x (foldLI n c x3
sumi =foldLI 0 (+)

appendl xs ys- foldLI ys Consl xs
For more about higher-order programming, see any textbeok o
functional programming [41, 4].

2.2 Datatypegenericity

The datatypelistl and the corresponding higher-order operator

foldLI can be made more useful may making theanametrically

polymorphic abstracting away from the fixed element typteger.
dataLista= Nil | Cons a(List a)

foldL::b— (a—b—b) — Lista—b

foldL n c Nil =n

foldL n c(Cons x x$= c x (foldL n ¢ x9
This kind of parametrization is sometimes called ‘generio-p
gramming’; for example, it underlies the kind of generic gmam-
ming embodied in the C++ Standard Template Library [2]. It is
a very well-behaved form of genericity — one can deduce prope
ties of parametrically polymorphic programs from theird¢gmlone
[45] — but by the same token it is also relatively inflexiblearF
example, suppose one also had a polymorphic datatype afybina
trees:

data Btree a= Tip a| Bin (Btree g (Btree g
and a corresponding fold operator:

foldB::(a— b) — (b—b—b) — Btreea— b

foldBtb(Tipx) =tx

foldB tb(Bin xsyg = b (foldB t b xg (foldB t b yg
The two higher-order, parametrically-polymorphic progsfoldL
andfoldB have quite a lot in common: both replace constructors by
supplied arguments; both have patterns of recursion tHaiwfthe
datatype definition, with one clause per datatype variathiose re-
cursive call per substructure. But neither parametric poigphism
nor higher-order functions suffice to capture this recgrpattern.

In fact, what differs between the two fold operators isshape

of the data on which they operate, and hence the shape of the

programs themselves. The kind of parametrization requgday
this shape; that is, by the datatype or type constructoh(astist
or Tree concerned. We call thidatatype genericityit allows the

capture of recurring patterns jrograms of different shapefn
Section 2.3 below, we explain the definition of a datatypeegie
operationfold with the following type:

fold:: Bifunctor s= (sab— b) — Fixsa—b
Here, in addition to the typa of collection elements and the fold
body (a function of types a b— b), the shape parametewvaries;
the type classBifunctor expresses the constraints we place on its
choice. The shape parameter determines the shape of the inpu
data; for one instantiation of the typeFix s ais isomorphic to
List a, and for another instantiation it is isomorphic Biree a
The same shape parameter also determines the type of the fold
body, supplied as an argument with which to replace the oanst
tors.

For more about datatype genericity, see [17].

2.3 Origami programming

As argued above, data structure determines program steudtu
therefore makes sense to abstract from the determining stesy-
ing only what they have in common. We do this by defining a
datatypeFix, parametrized both by an element typef basic kind
(a plain type, such as integers or strings), and by a shagestyp
higher kind (a type constructor, such as ‘pairs of’ or ‘lisfy.

dataFixsa=In{out::sa(Fixsa)}
The parametes determines the shapéd=ix’ ties the recursive knot.
Here are three instances Bix using different shapes: lists, and
internally- and externally-labelled binary trees.

dataListF ab= NilF | ConsF ab

typelList a= Fix ListF a

data TreeF a b= EmptyF| NodeF abb
type Tree a= Fix TreeF a

dataBtreeF a b= TipF a| BinFb b

type Btree a= Fix BtreeF a
Note thatFix s ais a recursive type. Typically, as in the three in-
stances above, the shapbas several variants, including a ‘base
case’ independent of its second argument. But with lazyuewval
tion, infinite structures are possible, and so the definitiaakes
sense even with no such base case. For exarfipléTreeF awith
ITreeF a b= INodeF a b bis a type of infinite internally-labelled
binary trees.

Not all valid binary type constructorsare suitable folFixing
(for example, because of function types). It turns out thashould
restrict attention tdifunctors which support éimap operation
‘locating’ all the elements. We capture this constraint ayse
class.

class Bifunctor swhere

bimap::(a—c¢) — (b—d) —>sab—scd
Technically speakinghimapshould satisfy some properties:
bimap id id =id

bimap f g bimap h j= bimap(f -h) (g-j)

These cannot be expressed in Haskell — but we might expeet to b
able to express them in the languages of tomorrow [8, 44].

All datatypes made from sum and product constructors induce
bifunctors. Here are instances for our three example shapes

instance Bifunctor ListFwhere

bimap f g NilF = NilF
bimap f g(ConsF x y = ConsF(f x) (g )

instance Bifunctor BtreeFwhere
bimap f g(TipF x) = TipF (f x)
bimap f g(BinFy 2 =BinF (gy) (g2
instance Bifunctor TreeFwhere
bimap f g EmptyF = EmptyF
bimap f g(NodeF xy 2= NodeF(f x) (Qy) (g 2



Component

Client

0.*

+operation():void
+add(g:Component):void
+remove(g:Component):void
+getChild(i:int):Component

children

Leaf

+operation():void

?

Composite

+operation():void
+add(g:Component):void
+remove(g:Component):void
+getChild(i:int):Component }

void operation() {
foreach g in children {
g.operation();

}

Figure1l. The class structure of thedMpPoOSITEpattern

The type signature of the operatimapis datatype-generic, since
it is parameterized by the shapef the data:

bimap:: Bifunctor s=

(a—c)—(b—d)—sab—scd
However, becaudgimapis encoded as a member function of a type
class, the definitions for particular shapes are examplesl-dfoc
rather than parametric datatype genericity; each instantals a
proof obligation that the appropriate laws are satisfied.

It is a bit tedious to have to provide a new instanc8ifinctor
for each new datatype shape; one would of course prefer &sing
datatype-generic definition. This is the kind of feature vigrich
Generic Haskell [25] is designed, and one can almost achieve
same effect in Haskell [39]. One might hope that these itgtan
definitions could in fact be inferred, in the languages of dommow
[26]. But whatever the implementation mechanism, the tasilil
still be ad-hoc datatype-generic: it is necessarily the ¢hat dif-
ferent code is used to locate the elements within data oéraifft
shapes.

It turns out that the cla®Bifunctorprovides sufficient flexibility
to capture a wide variety of recursion patterns as dataggmeric
programs: a little bit of ad-hockery goes a long way. Hereare
number of familiar recursion patterns (map [34], fold [28hfold
[21], hylomorphism [36], and build [22]) captured as dapety
generic programs parameterized bBifunctor shapes.

map:: Bifunctor s=-

(a—b) — Fixsa— Fixsb
map f=In-bimap f(map f) - out
fold:: Bifunctor s=
(sab—b) — Fixsa—b
fold f = f - bimap id(fold f) - out
unfold:: Bifunctor s=
(b—sab—b—Fixsa

unfold f= In-bimap id(unfold f) - f

hylo::  Bifunctor s=
(b—sab—(sac—c)—b—c

hylof g=g-bimapid(hylof g)-f

build:: Bifunctor s=
(Vb. (sab—b) —b) — Fixsa

build f =f In
The datatype-generic definitions are surprisingly shortherter
even than datatype-specific ones would be. The structuenies
much clearer with the higher level of abstraction. In paittic, the
duality betweerfold andunfoldis obvious.

For more about origami programming, see [13, 14].

3. Origami patterns

In this section we describe ®dGAMI, a little suite of patterns for
recursive data structures, consisting of four of the Gangafr
design patterns [11]:

e ComPOSITE for modelling recursive structures;

e |TERATOR, for linear access to the elements of a composite;
* VISITOR, for structured traversal of a composite;

e BUILDER, to generate a composite structure.

These four patterns belong together. They all revolve atoun
the notion of a hierarchical structure, represented a®DRIREDS
ITE. One way of constructing such hierarchies is captured by the
BUILDER pattern: a client application knows what kinds of part to
add and in what order, but it delegates to a separate objegtlkn
edge of their implementation and responsibility for cnegtand
holding them. Having constructed a hierarchy, there arekiwds
of traversal we might perform over it: either consideringsta con-
tainer of elements, in which case we use aBRATORfor a linear
traversal; or considering its shape as significant, in wiie we
use a siTorfor a structured traversal.

3.1 Composite

The ComPOSITEpattern ‘lets clients treat individual objects and
compositions of objects uniformly’, by ‘composing objedtsto
tree structures’. The essence of the pattern is a commornr-supe
type, of which both atomic and aggregated objects are sabtyp
as shown in Figure 1.

3.2

The ITERATOR pattern ‘provides a way to access the elements of
an aggregate object sequentially without exposing its thyidg
representation’. It does this by separating the respdit&biof
containment and iteration. The standard implementaticasisin
external or client-driven iterator, illustrated in Figure 2 and as
embodied for example in the Java standard library.

In addition to the standard implementation, GOF also dis-
cussinternal or iterator-driven TERATORS, illustrated in Figure 3.
These might be modelled by the following pair of interfaces:

publicinterface Action{ Object apply(Object 9; }

publicinterface Iterator{void iterate (Action g; }

An object implementing theéAction interface provides a single
methodapply, which takes in a collection element and returns (ei-
ther a new, or the same but modified) element. (The C++ STL
calls such objects ‘functors’, but we avoid that term herprevent
name clashes with type functors.) A collection (implemens.c-
TORY METHOD 0 return a separate subobject that) implements the

Iterator



Client

Aggregate

Aggregatelterator

+createlterator():Aggregatelterator

+first():void

+next():void
+isDone():boolean
+current():ltem

i

ConcreteAggregate

<<instantiate>> Concretelterator

return new Concretelterator(this); [ﬁ*

+createlterator():Aggregatelterator

Figure2. The class structure of th@ERATOR pattern

Iterator interface to accept aAction apply it to each element in
turn, and replace the original elements with the possibly aees
returned. InternalTERATORS are less flexible than external — for
example, it is more difficult to have two linked iterationseothe
same collection, and to terminate an iteration early — bey t@re
correspondingly simpler to use.

3.3 Visitor

In the normal object-oriented paradigm, the definition o€tea
traversal operation is spread across the whole class tigraf the
structure being traversed — typically but not necessariGyca-

possibility of ‘forward references’, adding parts as cteld of yet-
to-be-added parents.

GOF also suggest the possibility ofuB.DERs that compute.
Instead of constructing a largRroductand eventually collapsing it,
one can provide a separate implementation oBhider interface
that makes th@roductitself the collapsed result, computing it on
the fly while building.

35 Anexample

As an example of applying the ®dGAMI patterns, consider the
little document system illustrated in Figure 6. (The corpleode

POSITE This makes it easy to add new variants of the datatype (for is given in an appendix, for reference.)

example, new kinds of leaf node in theo@pPoOsSITE), but hard to
add new traversal operations.

The VISITOR pattern ‘represents an operation to be performed
on the elements of an object structure’, allowing one to foefi
a new operation without changing the classes of the elenmnts
which it operates’. This is achieved by providing a hook fer a
sociating new traversals (the methadceptin Figure 4), and an
interface for those traversals to implement; the effecbisimu-
late double dispatchon the types of two arguments, the element
type and the operation, by two consecutive single dispatdhés
a kind of aspect-oriented programming2], modularizing what
would otherwise be a cross-cutting concern. It reversesoes:
it is now easy to add new traversals, but hard to add new \tarian
(Wadler [48] has coined the terexpression problerfor this ten-
sion between dimensions of easy extension.)

3.4 Builder

Finally, the BJILDER pattern ‘separates the construction of a com-
plex object from its representation, so that the same aactsin
process can create different representations’. As Figusholvs,
this is done by delegating responsibility for the consinrcto a
separate object — in fact, arTSATEGY for performing the con-
struction.

The GOF motivating example of theUB.DER pattern involves
assembling a product that is basically a simple collecttbat is
necessarily the case, because the operations supporteolbiger
object add parts and return void. However, they also sugbest
possibility of building a more structured product, in whitle parts
are linked together. For example, to construct a tree, epefation
to add a part could return a unique identifier for the part ddde
and take an optional identifier for the parent to which to atgld i
a directed acyclic graph requires a set of parents for eade,no
and construction in topological order; a cyclic graph reggithe

¢ The focus of the application is adMposITEStructure of docu-
ments:Sectiors have ditle and a collection of suitomponerd,
andParagrapls have aody.

One can iterate over such a structure using an intermal |
ERATOR, Which acts on everyParagraph For instance, it-
erating with aSpellCorrectormight correct the spelling of
every paragraph body. (For brevity, we have omitted the
possibility of acting on theSectios of a document, but it
would be easy to extend thiction interface to allow this.
We have also made thapply method returnvoid, so pro-
viding no way to change the identity of the document ele-
ments; more generallgpply could optionally return new el-
ements.)

One can also traverse the document structure withaa™oR,

for example to compute some summary of the document. For
instance, @rintVisitor might yield a string array with the sec-
tion titles and paragraph bodies in order.

Finally, one can construct such a document usinga.BER.
We have used the structured variant, addfBectiors and
Paragrapts as children of existin€omponerg via uniqueint
identifiers. AComponentBuildeconstructs £omponenas ex-
pected, whereas BrintBuilder incorporates the printing be-
haviour of thePrintVisitor incrementally, actually constructing
a string array instead.

This one application is a paradigmatic example of each of the
four ORIGAMI patterns. We therefore claim that any alternative
representation of the patterns cleanly capturing thiscgire is a
faithful rendition of those patterns. In Section 4 below, pvevide
just such a representation, in terms of the higher-ordeatyiae-
generic programs from Section 2.3. Section 4.5 justifiesctaim
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g

Aggregate

Iterator

Action

-———>

+createlterator():Iterator

+iterate(Action):void

+apply(Object):Object

i

ConcreteAggregate <<create>>

Concretelterator

ConcreteAction

+createlterator():Iterator

+apply(Object):Object

Figure3. The class structure of an internalHRATOR

of a faithful rendition by capturing the structure of the dowent
application in this alternative representation.

4. PatternsasHODGPs

We revisit the RIGAMI patterns from Section 3, showing that each
of the four patterns can be captured as a higher-order gataty
generic program (HODGP). However, we consider them in a
slightly different order; it turns out that the datatypeigec rep-
resentation of theTlERATORpattern builds on that of MITOR.

4.1 Compositein HODGP

COMPOSITES are recursive data structures; in the OO setting, they
are packaged together with some operations, but in a furaitio
setting the operations are represented separately. Sallgctoese
correspond not to programs, but to types. Recursive datetstes
come essentially for free in functional programming largesa
dataFixsa=In{out::sa(Fixsa)}
What is datatype-generic about this definition is that it is
parametrized by the shapef the data structure; thus, one recur-
sive datatype serves to captuakt (regular) recursive data struc-
tures, whatever their shape.

4.2 Visitor in HODGP

The VISITOR pattern collects fragments of each traversal into
one place, and provides a hook for performing such traversal
The resulting style matches the normal functional programm
paradigm, in which traversals are entirely separate froenddita
structures traversed. No explicit hook is needed; the adiorebe-
tween traversal and data is made within the traversal byatismg
on the data, either by pattern matching or (equivalentlyapply-
ing a destructor. What was a double dispatch in the OO sditng
comes in HODGP the choice of a function to apply, followed by a
case analysis on the variant of the data structure. A comrase c
of such traversals, albeit not the most general, is the fpktator
introduced above.

fold:: Bifunctor s=

(sab—b)— Fixsa—b

fold f = f - bimap id(fold f) - out
This too is datatype-generic, parametrized by the skajbe same
function fold suffices to traverse any shape ob@POSITEStruc-
ture.

4.3 lterator in HODGP

External TERATORS give sequential access to the elements of
collection. The functional approach would be to provide ewi
of the collection as a list of elements, at least for reagragkess.

Seen this way, theTERATORpattern can be implemented using the
VISITOR pattern, traversing using a bodgmbinerthat combines
the element lists from substructures into one overall eferist.
contents: Bifunctor s=
(sa(Lista) — Lista) — Fixsa— Lista

contents combinet fold combiner
With lazy evaluation, the list of elements can be generatecet
mentally on demand, rather than eagerly in advance: ‘laaluav
tion means that lists and iterators over lists are identif@].

In the formulation above, theombinerargument has to be
provided to thecontentsoperation. Passing differemiombines
allows the same GMPOSITE to yield its elements in different
orders; for example, a tree-shaped container could supmbht
preorder and postorder traversal. On the other hand, iUisgy
always to have to specify thmmbiner One could specify it once
and for all, in the classBifunctor, in effect making it another
datatype-generic operation parametrized by the stgmpa the
languages of tomorrow, one might expect that at least onéood
implementation oEombinercould be inferred automatically.

Of course, some aspects of extermet RATORS can already be
expressed linguistically; the interfagava.util.lterator has been
available for years in the Java API, the iterator conceptheen
explicit in the C++ Standard Template Library for even longe
and recent versions of Java and C# even provide languagersupp
(‘foreach’) for iterating over the elements yielded by such an oper-
ator. Thus, element consumers can be written datatyperigalhe
today. But still, one has to implement titerator anew for each
datatype defined; element producers are still datatypeifape

An internal ITERATORis basically a map operation, iterating
over a collection and yielding one of the same shape but with
different or modified elements; it therefore supports wateess
to the collection as well as read access. In HODGP, we canagive
single generidefinition of this.

map:: Bifunctor s=-

(a—b) —» Fixsa— Fixsb

map f= In-bimap f(map f) - out
This is in contrast with the object-oriented approach, inclvh
Iterator implementations are datatype-specific. Note also that the
HODGP version is more general than the OO version, because it
can return a collection of elements of a different type.

Although the internal TERATOR explains both read and write
access to a collection, it doesn’t explain imperative agcesth
impure aspects such as side-effects, 1/0 and so on. Moreibver
does not subsume the HODGP exterm@RATOR, because it does
not allow accumulationof some measure of the elements (for ex-
ample, to compute the size of the collection in passing).eRec
work on idiomatic traversals[35, 19] overcomes both of these



Client Visitor

+visitConcreteElementA(e:ConcreteElementA):void
+visitConcreteElementB(e:ConcreteElementB).:void
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i

ConcreteVisitor1

ConcreteVisitor2

+visitConcreteElementA(e:ConcreteElementA):void
+visitConcreteElementB(e:ConcreteElementB):void
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ObjectStructure
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f
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void accept (Visitor v) {

+accept(v:Visitor):void
+operationA():void

v.visitConcreteElementA(this); |_ _ _|
}

f

ConcreteElementB

void accept (Visitor v) {

v.visitConcreteElementB(this)Ij

+accept(v:Visitor):void |— — —]
+operationB():void }

Figure4. The class structure of thel¥ITOR pattern

shortcomings: idiomatic traversals support imperatisifees and
mapping and accumulating aspects simultaneously, usdiogs
or applicative functorsa slight generalization of monads [47].

One small extra piece of ad-hockery is required: a mechanism

for pulling an idiomatic effect out of the shape of a data stru
ture.
class Bifunctor s=- Bitraversable svhere
bidist::Idiomm=-s(ma) (mb) - m(sab
Given this tool, a datatype-genetiaverseoperator turns out to be
an instance ofold:
instance Bitraversable s=- TraversablegFix s) where
traverse f= fold (fmap In- bidist- bimap f id)
Applications oftraverseinclude maps, accumulations and impera-
tive iterations over collections [19].

4.4 Builder in HODGP

The standard protocol for thetBLDER pattern involves ®irector
sendingParts one by one to Builder for it to assemble, and then
retrieving from theBuilder a Product Thus, the product is assem-
bled in a step-by-step fashion, but is unavailable untieadsy is
complete. With lazy evaluation, we can in some circumstacoe-
struct theProductincrementally: we can yield access to the root
of the product structure while continuing to assemble itsstuic-
tures. In the case that the data structure is assembled ukare
fashion, this corresponds in the HODGP style to an unfoldape
tion.

unfold:: Bifunctor s=

(b—sab—b—Fixsa

unfold f= In-bimap id(unfold f) - f
When the data structure is assembled irregularly, a buiktaipr
has to be used instead.

build :: Bifunctor s=

(Vb. (sab—b) —b) — Fixsa

build f =f In
These are both datatype-generic programs, parametrizetieby
shape of product to be built. In contrast, the GOBIBER pat-

tern states the general scheme, but requires code speciéadh
Builder interface and eacBoncreteBuildeimplementation.

Turning to GOF’'s computing builders, with lazy evaluation
there is not so pressing a need to fuse building with posgzoc
ing. If the structure of the consumer computation matchas @h
the producer — in particular, if the consumer is a fold andpte
ducer a build or an unfold — then consumption can be inteddav
with production, and the whole product never need be in emcst.

Nevertheless, naive interleaving of production and comsum
tion of parts of the product still involves the creation anthie-
diate disposal of those parts. Even the individual partsl mewer
be constructed; often, they can be deforested [46], withathe
tributes of a part being fed straight into the consumpticocess.
When the producer is an unfold, the composition of producer a
consumer is (under certain mild strictness conditions) larhgr-
phism.

hylo:: Bifunctor s=

(b—sab—(sac—c)—b—c

hylof g=g-bimapid(hylof g)-f
More generally, but less conveniently for reasoning, tredpcer
is a build, and the composition simply replaces the consiradn
the builder by the body of the fold.

foldBuild:: Bifunctor s=

(Vb. (Sabﬂb)—»b)—»(sab—»b)—»b

foldBuild f g=f g
Once again, both definitions are datatype-generic; both ek
arguments a producef and a consumeig, both with types
parametrized by the shapeof the product to be built. Note es-
pecially that in both cases, the fusion requires no crestiii con-
trast, GOF's computing builders can take considerablgimsind
ingenuity to program (as we shall see in the appendix).

45 Theexample, revisited

To justify our claim that the higher-order datatype-genegpre-
sentation of the @IGAMI patterns is a faithful rendition, we use it
to re-express the document application discussed in $egtiocand
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Builder

+addPart():void

ConcreteBuilder

Product

+addPart():void
+getProduct():

Product

Figure5. The class structure of theUBLDER pattern

illustrated in Figure 6. (It is instructive to compare thdédines of
Haskell code with the equivalent Java code in the appendix.)

e The ComposITEstructure has the following shape.

data DocF a b= Para a| Sec Stringb]
type Doc = Fix DocF String

instance Bifunctor DocFwhere
bimap f g(Parag =Para(fs)
bimap f g(Sec s xs= Sec Ymap g x$
We have chosen to consider paragraph bodies as the ‘cdntents
of the data structure, but section titles as part of the ‘shaipat
decision could be varied.

e We used an TERATOR to implement theSpellCorrector this
would be modelled now as an instancentdp

correct:: String— String -- definition omitted

corrector:: Doc — Doc
corrector= map correct

e The use of SITOR to print the contents of a document is a
paradigmatic instance offald.
printDoc:: Doc — [String]
printDoc = fold combine

combine: DocF String[String] — [String]
combing(Paras) =][s]
combineg(Sec s xp= s: concat xs

¢ Finally, in place of the BILDER pattern, we can usenfold for

constructing documents, at least when doing so in a streattur
fashion. For example, consider the following simple repnes
tation of XML documents.

data XML = Text String Entity Tag Attrg XML]

type Tag= String

type Attrs = [ (String, String)]
From such an XML document we can construct one of our
documents, withText elements as paragraphs aBdtitys as
sections with appropriate titles.

fromXML:: XML — Doc

fromXML= unfold step

step:: XML — DocF String XML

step(Text 9 =Paras

step(Entity t kvs x$ = Sec(title t kvs) xs

title :: Tag— Attrs — String

title t[] =t
title t kvs= t ++ paren(join (map attr kv$) where
join[s] =s

join (s:sg =s+", " ++joinss

attr (k,v) =K+H"="" HvH"""
parens =" (" +s+")"
Printing of a document constructed from an XML file is the
composition of a fold with an unfold, and so a hylomorphism:
printXML:: XML — [String]
printXML = hylo step combine

For constructing documents in a less structured fashion, we
have to resort to the more general and more complicaéd
operator. For example, here is a builder for a simple docimen
of one section with two sub-paragraphs.

buildDoc:: (DocF String b— b) — b
buildDoc f=f (Sec' Headi ng" [f (Para" pl"),
f (Para" p2")])
We can actually construct the document from this builden si
ply by passing it to the operatduild, which plugs the holes
with document constructors.

myDoc:: Doc
myDoc= build buildDoc

If we want to traverse the resulting document, for example to
print it, we can do so directly without having to construce th
document in the first place; we do so by plugging the holes
instead with the body of therintDoc fold.

printMyDoc:: [String]
printMyDoc = buildDoc combine

5. Discussion

We have shown that two advanced language featuresigher-
order functionsanddatatype genericity— suffice (in the presence

of other standard features such as datatypes and intertacessp-

ture as reusable code a number of the familiar GOF design pat-
terns; specifically, the patterns we have considered amr®©s

ITE, ITERATOR, VISITOR and BUILDER, which together we call

the ORIGAMI patterns. We also believe that these or similar fea-
tures are necessary for this purpose, since the designmatee
parametrized by actions and by the shape of datatypes.

Our intentions in doing this work are not so much to criticize
the existing informal presentations of these four and otfer
terns; indeed, as we explain below, the informal presemtatcon-
tribute much useful information beyond the code. Ratheraime
to promote the uptake of higher-order and datatype-geneci-
nigues, and to encourage their incorporation in mainstrpeon
gramming languages. In this regard, we are following in tet-f
steps of Norvig [38], who wrote that 16 of the 23 GOF patterns
are ‘invisible or simple’ in Lisp, and others who argue thesign
patterns amount to admissions of inexpressiveness ingmoging
languages. However, in contrast to Norvig and the otheisuidng
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Figure6. An application of the @IGAMI patterns

dynamic languages [43], our presentation provides geihevitile 6. Related work

preserving strong static typing. This paper is based on ideas from the Algebra of Programmin
We do not claim to have cath(ed all 23 of.the GOF patterns, or (lsquipgg%r) community, and especially the \?vork of Rolar?ddk- 9
for that matter any deuterocanonical ones either. In paaicwe house and Grant Malcolm [34, 3], Richard Bird and Oege de Moor
do not see yet how to captuweaﬂonaldeggn patterns as higher- [5, 6], Maarten Fokkinga, Erik Meijer and Ross Paterson RA],
order datatype-generic programs. This is perhaps becausape Johan Jeuring and Ralf Hinze [29, 23, 25], and John Hughdgs [27
proach is to model object-oriented ideas in a functionah&raork, For their inspiration, | am indebted. For further details the

and that framework has no direct analogue of object creatiow- ;
g -gener le presen here, 13, 14] anabihes
ever, we hope and expect that the languages of tomorrow meil p tr:i;tearté/rﬁ)sege eric style presented here, see [13, 14] a

;/ide highir-or((jjerhdatatype-gegericblfeatureskinba mordtivadl | Barry Jay has an alternative approach to datatype-genesic p
ramework, and then we may be able to make better progress. In oo mming, which he callshape polymorphisrs1, 30]. He and

deed, Alle:xandrescgls'.pe "Stith.)le”men(tjat:O? ofa GNER'CAtB' Jens Palsberg have also done some work on a generic represent
STRACT FACTORY [1] is essentially a datatype-generic metapro- yiqn of the \isiTorpattern [40], but this relies heavily on reflection
gram written using C++ templates. rather than his work on shape.

We also _appreciate that_ there is [more to design patterns than For other recent discussions of the meeting between furaitio
their extensional characteristics, which can be expreasetiass and object-oriented views of genericity, see [9, 12].

and sequence diagrams and captured as programs or progrgmmi
constructs. Also important are their intensional charésties: mo-
tivation for their use, paradigmatic examples, trade-offtheir ap- 7. Conclusions
plication, and other aspects of the ‘story’ behind the patt®ur
presentation impinges only on the limited extensional eispef
those patterns we treat.

Design patterns are traditionally expressed informabinag prose,
pictures and prototypes. In this paper we have argued tivat) the
right language features, certain patterns at least couttkpeessed
more usefully as reusable library code. The language feata-



quired, in addition to those provided by mainstream langsagre
higher-order functionsand datatype genericityfor some aspects,

lazy evaluatioralso turns out to be helpful. These features are fa-

miliar in the world of functional programming; we hope to seem
soon in more mainstream programming languages.
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9. Appendix: Java programs

Section 4.5 provides a nearly complete implementation etitc-
ument application in a higher-order datatype-generiessil that
is missing is a definition for the spelling correctmrrect In con-
trast, Section 3.5 presents only the outline of a Java im@heation
of the same application. For completeness, this appendixepts
the Java code.

9.1 Component

publicinterface Componen{
void accept(Visitor v);
Iterator getlterator();

}

9.2 Section

import java.util.\Vector,
import java util. Enumeration

public class Sectionmplements Componen{
protected Vector children
protected String title
public Section(String title){
children= new Vector();
this.title = title;

}
public String getTitle(){
return title;

public void addComponentComponent
childrenaddElementc);

public Enumeration getChildref){
return childrenelements);

public Iterator getlterator(){
return new Sectionlterator(this);

publicvoid accept(Visitor v){
v.visitSectior(this);
}
}

9.3 Paragraph

public class Paragraphimplements Componen{
protected String body
public Paragraph(String body{
setBody(body);

publicvoid setBody(String 9{
body=s;

public String getBody(){
return body,

public Iterator getlterator(){
return new Paragraphlterator(this);

publicvoid accept(Visitor v){
v.visitParagraph(this);
}
}

9.4 Iterator

publicinterface Iterator{
void iterate (Action a);

}

9.5 Sectionlterator
import java.util. Enumeration

public class Sectionlteratoimplements Iterator{
protected Section s
public Sectionlterator(Section ${
thiss=s;

publicvoid iterate (Action a){
for (Enumeration e= s.getChildren();
e hasMoreElement§); ){
((Component (e.nextElement))).
getlterator().iterate(a);

}
}

9.6 Paragraphlterator

public class Paragraphlteratorimplements Iterator{

protected Paragraph p
public Paragraphlterator(Paragraph p{
thisp=p;

publicvoid iterate (Action a){
a.apply (p);



9.7 Action

publicinterface Action{
void apply (Paragraph p;

9.8 SpdlCorrector

public class SpellCorrectorimplements Action{

publicvoid apply (Paragraph p{
p.setBody(correct (p.getBody()));

public String correct(String 9{
return s.toLowerCase);

}
}

9.9 Visitor

publicinterface Visitor{
void visitParagraph(Paragraph p;
void visitSectionSection

}
9.10 PrintVisitor

import java util. Enumeration
import java.util.\Vector,

public class PrintVisitor implements Visitor{

protected String indent="";
protected Vector lines= new Vector();

public String[ ] getResulf){
String[] ss= new String[0];
ss= (String[]) linestoArray (ss);
returnss

publicvoid visitParagraph(Paragraph p{
linesaddElementindent+ p.getBody());
}

publicvoid visitSectionSection ${
String currentindent= indent
linesaddElementindent+ s.getTitle());
for (Enumeration e= s.getChildren();
e.hasMoreElement§); ){
indent= currentindent-" "

((Componente.nextElement)).accept(this);

indent= currentIndent

}
}

9.11 Builder

publicinterface Builder{
int addParagraph(String bodyint parent
throws InvalidBuilderld;
int addSectior{String title int parent)
throws InvalidBuilderld;
}

9.12 InvalidBuilderid

public class InvalidBuilderld extends Excepti¢n

public InvalidBuilderld (String reasof{
super(reason);

9.13 ComponentBuilder

import java.util. AbstractMap
import java util. HashMap

public class ComponentBuildermplements Builder{
protected int nextld= 0;
protected AbstractMap comps- new HashMap();
publicint addParagraph(String bodyint pld)
throws InvalidBuilderld{
return addComponentnew Paragraph(body), pld);

publicint addSectior{String title int pld)
throws InvalidBuilderld{
return addComponentnew Section(title), pld);

public Component getProdu¢} {
return (Componentcompsget (new Integer(0));
}
protected int addComponentComponent @nt pld)
throws InvalidBuilderld{
if (pld<0){ // root component
if (compsisEmpty()){
compsput (new Integer(nextld),c);
return nextlcd+—+;
}
else
throw new InvalidBuilderld
("Duplicate root");
}else{ /I non-root
Component parent (Componertcomps
get(new Integer(pld));
if (parent= null){
throw new InvalidBuilderld
("Non- exi stent parent");
}else{
if (parentinstanceof Paragraph) {
throw new InvalidBuilderld
("Addi ng child to paragraph");
}else
Section s= (Sectior) parent
s.addComponen{c);
compsput (new Integer(nextld),c);
return nextld+—+;

9.14 PrintBuilder

This is the only class with a non-obvious implementatiorcadn-
structs the printed representation§aing[]) of a Componenbn

the fly. In order to do so, it needs to retain some of the treegtre:

for eachComponentin thelastfield of the correspondin&ecord

the unique identifier of its right-most child (or its own id#ier, if it

has no children). The vectoecordsis stored in the order the lines
will be returned, namely, preorder. A né@omponents placed af-

ter the rightmost descendent of its immediate parent, ¢éacaty
following the last references. (The code would be cleaner using
Java generics to declarecordsas aVectorRecord rather than a
plainVectorof Objecs, but we wish to emphasize that the datatype-
genericity discussed in this paper is a different kind ofeyarity to
that provided in Java 1.5.)



throw new InvalidBuilderld
("Non-exi stent parent");
}else{

import java util.Vector,
public class PrintBuilderimplements Builder{

pfg{fg}iiﬂ dassRecord inty—x /I ids[x] = idsy] = pid
publicint last while (r.id! =r last){

y=X

x = find (r.last, x);

r = recordAt(x);
} /I lasts[y] = lasts[x] = ids [X]
recordsinsertElementAtnew Record

(nextld nextld s,indent+" "), x+1);
recordAt(y).last= nextld

Il asts[y] = lasts[x+ 1] = nextld

public String line
public String indent
public Record(int id,int last,
String ling String indenj{
thisid =id;
thislast= last
thisline =line;
this.indent= indent

return nextld++;
3 J
protected Vector records= new Vector(); } }
protected Record recordAtint i){ }
return (Record recordselementAti);
9.15 Main

}
protected int find (int id, int start){
while (start< recordssize() &&
recordAt(start).id! =id)
start++;

public abstractclass Main{
public static void build (Builder b){

try{
int rootld = b.addSectior{" Doc" ,—1);

if (start< recordssize())
return start
else
return—1;
}

protected int nextld= 0;
protected SpellCorrector c= new SpellCorrector();
publicint addParagraph(String bodyint pid)
throws InvalidBuilderld{
return addComponentc.correct(body), pid);
}
publicint addSectior{String title,int pid)
throws InvalidBuilderld{
return addComponenttitle, pid);

}
public String[] getProduct(){
String[] ss= new String[recordssize()];
for (inti = 0;i < sslengthi++)
ss[i] = recordAt(i).indent+ recordAt(i).line;
return ss

}

protected int addComponen(tString sint pld)
throws InvalidBuilderld{
if (pld<0){ /I root component
if (recordsisEmpty()){
recordsaddElemen{new Record
(nextld nextlds," " ));
return nextld++;
}
ese
throw new InvalidBuilderld
("Duplicate root");
telse{ // non-root
int x = find (pld, 0);
Record r= recordAt(x);
String indent=r.indent
if (x==—-1){

int sectld= b.addSectior{(" Sec 1" ,rootld);

int subsld= b.addSectior{" Subsec 1. 1", sectld;
int id = b.addParagraph(" Para 1. 1. 1", subsld;

id = b.addParagraph(" Para 1. 1. 2", subsld;
subsld= b.addSectior{" Subsec 1. 2", sectld;
id = b.addParagraph(" Para 1. 2. 1",subsld;
id = b.addParagraph(" Para 1. 2. 2", subsld;
sectld= b.addSectior{" Sec 2" ,rootld);
subsld= b.addSectior{" Subsec 2. 1", sectld;
id = b.addParagraph(" Para 2. 1. 1",subsld;
id = b.addParagraph(" Para 2. 1. 2", subsld;
subsld= b.addSectior(" Subsec 2. 2", sectld;
id = b.addParagraph(" Para 2. 2. 1" ,subsld;
id = b.addParagraph(" Para 2. 2. 2", subsld;
}catch (InvalidBuilderld 84
Systenout.println (" Excepti on: " +e);

}

public static void main(String[] args){

String[] lines

if (false){ // build then compute
ComponentBuilder b= new ComponentBuilde();
build (b);
Component root b.getProduct();
root.getlterator().iterate (new SpellCorrector());
PrintVisitor pv= new PrintVisitor ();
root.accept(pv);
lines= pv.getResult);

}else{ /I computing builder
PrintBuilder b= new PrintBuilder ();
build (b);
lines= b.getProduct();

}

for (inti = 0;i <lineslengthi++)
Systenout.println (lines|i]);



