
A Detailed Analysis of Contemporary ARM and x86 Architectures

Emily Blem, Jaikrishnan Menon, and Karthikeyan Sankaralingam
University of Wisconsin - Madison
{blem,menon,karu}@cs.wisc.edu

Abstract
RISC vs. CISC wars raged in the 1980s when chip area and

processor design complexity were the primary constraints and
desktops and servers exclusively dominated the computing land-
scape. Today, energy and power are the primary design con-
straints and the computing landscape is significantly different:
growth in tablets and smartphones running ARM (a RISC ISA)
is surpassing that of desktops and laptops running x86 (a CISC
ISA). Further, the traditionally low-power ARM ISA is enter-
ing the high-performance server market, while the traditionally
high-performance x86 ISA is entering the mobile low-power de-
vice market. Thus, the question of whether ISA plays an intrinsic
role in performance or energy efficiency is becoming important,
and we seek to answer this question through a detailed mea-
surement based study on real hardware running real applica-
tions. We analyze measurements on the ARM Cortex-A8 and
Cortex-A9 and Intel Atom and Sandybridge i7 microprocessors
over workloads spanning mobile, desktop, and server comput-
ing. Our methodical investigation demonstrates the role of ISA
in modern microprocessors’ performance and energy efficiency.
We find that ARM and x86 processors are simply engineering
design points optimized for different levels of performance, and
there is nothing fundamentally more energy efficient in one ISA
class or the other. The ISA being RISC or CISC seems irrelevant.

1. Introduction
The question of ISA design and specifically RISC vs. CISC

ISA was an important concern in the 1980s and 1990s when
chip area and processor design complexity were the primary
constraints [24, 12, 17, 7]. It is questionable if the debate was
settled in terms of technical issues. Regardless, both flourished
commercially through the 1980s and 1990s. In the past decade,
the ARM ISA (a RISC ISA) has dominated mobile and low-
power embedded computing domains and the x86 ISA (a CISC
ISA) has dominated desktops and servers.

Recent trends raise the question of the role of the ISA and
make a case for revisiting the RISC vs. CISC question. First, the
computing landscape has quite radically changed from when the
previous studies were done. Rather than being exclusively desk-
tops and servers, today’s computing landscape is significantly
shaped by smartphones and tablets. Second, while area and chip
design complexity were previously the primary constraints, en-
ergy and power constraints now dominate. Third, from a com-

mercial standpoint, both ISAs are appearing in new markets:
ARM-based servers for energy efficiency and x86-based mo-
bile and low power devices for higher performance. Thus, the
question of whether ISA plays a role in performance, power, or
energy efficiency is once again important.

Related Work: Early ISA studies are instructive, but miss
key changes in today’s microprocessors and design constraints
that have shifted the ISA’s effect. We review previous com-
parisons in chronological order, and observe that all prior com-
prehensive ISA studies considering commercially implemented
processors focused exclusively on performance.

Bhandarkar and Clark compared the MIPS and VAX ISA by
comparing the M/2000 to the Digital VAX 8700 implementa-
tions [7] and concluded: “RISC as exemplified by MIPS pro-
vides a significant processor performance advantage.” In an-
other study in 1995, Bhandarkar compared the Pentium-Pro to
the Alpha 21164 [6], again focused exclusively on performance
and concluded: “...the Pentium Pro processor achieves 80% to
90% of the performance of the Alpha 21164... It uses an aggres-
sive out-of-order design to overcome the instruction set level
limitations of a CISC architecture. On floating-point intensive
benchmarks, the Alpha 21164 does achieve over twice the per-
formance of the Pentium Pro processor.” Consensus had grown
that RISC and CISC ISAs had fundamental differences that led
to performance gaps that required aggressive microarchitecture
optimization for CISC which only partially bridged the gap.

Isen et al. [22] compared the performance of Power5+ to Intel
Woodcrest considering SPEC benchmarks and concluded x86
matches the POWER ISA. The consensus was that “with ag-
gressive microarchitectural techniques for ILP, CISC and RISC
ISAs can be implemented to yield very similar performance.”

Many informal studies in recent years claim the x86’s
“crufty” CISC ISA incurs many power overheads and attribute
the ARM processor’s power efficiency to the ISA [1, 2]. These
studies suggest that the microarchitecture optimizations from the
past decades have led to RISC and CISC cores with similar per-
formance, but the power overheads of CISC are intractable.

In light of the prior ISA studies from decades past, the signif-
icantly modified computing landscape, and the seemingly vastly
different power consumption of ARM implementations (1-2 W)
to x86 implementations (5 - 36 W), we feel there is need to
revisit this debate with a rigorous methodology. Specifically,
considering the dominance of ARM and x86 and the multi-
pronged importance of the metrics of power, energy, and perfor-

A version appears in the 19th IEEE Intl. Symposium on High Performance Computer Architecture (HPCA 2013) 2

SPEC CPU2006
10 INT
10 FP

Desktop
CoreMark
2 WebKit

Mobile

Lighttpd
CLucene

Database kernels

Server

Cortex A8
Beagle Board

Atom N450
Atom Dev Board

Cortex A9
Panda Board

i7-Core2700
SandyBridge

26 WorkloadsFour Platforms Over 200 Measures

WattsUp
Power
Measures

Perf interface to
Hw performance counters

Performance

P
o

w
er

RISC v CISC
appears

irrelevant

Simulated ARM
instruction mix

Binary Instrumentation
for x86 instruction info

Over 20,000 Data Points
+ Careful Analysis

Figure 1. Summary of Approach.

mance, we need to compare ARM to x86 on those three metrics.
Macro-op cracking and decades of research in high-performance
microarchitecture techniques and compiler optimizations seem-
ingly help overcome x86’s performance and code-effectiveness
bottlenecks, but these approaches are not free. The crux of our
analysis is the following: After decades of research to mitigate
CISC performance overheads, do the new approaches introduce
fundamental energy inefficiencies?
Challenges: Any ISA study faces challenges in separating
out the multiple implementation factors that are orthogonal to
the ISA from the factors that are influenced or driven by the
ISA. ISA-independent factors include chip process technology
node, device optimization (high-performance, low-power, or
low-standby power transistors), memory bandwidth, I/O device
effects, operating system, compiler, and workloads executed.
These issues are exacerbated when considering energy measure-
ments/analysis, since chips implementing an ISA sit on boards
and separating out chip energy from board energy presents addi-
tional challenges. Further, some microarchitecture features may
be required by the ISA, while others may be dictated by perfor-
mance and application domain targets that are ISA-independent.

To separate out the implementation and ISA effects, we con-
sider multiple chips for each ISA with similar microarchitec-
tures, use established technology models to separate out the
technology impact, use the same operating system and com-
piler front-end on all chips, and construct workloads that do not
rely significantly on the operating system. Figure 1 presents an
overview of our approach: the four platforms, 26 workloads,
and set of measures collected for each workload on each plat-
form. We use multiple implementations of the ISAs and specifi-
cally consider the ARM and x86 ISAs representing RISC against
CISC. We present an exhaustive and rigorous analysis using
workloads that span smartphone, desktop, and server applica-
tions. In our study, we are primarily interested in whether and,
if so, how the ISA impacts performance and power. We also
discuss infrastructure and system challenges, missteps, and soft-
ware/hardware bugs we encountered. Limitations are addressed
in Section 3. Since there are many ways to analyze the raw
data, this paper is accompanied by a public release of all data
at www.cs.wisc.edu/vertical/isa-power-struggles.
Key Findings: The main findings from our study are:
◦ Large performance gaps exist across the implementations, al-

though average cycle count gaps are ≤ 2.5×.

◦ Instruction count and mix are ISA-independent to first order.
◦ Performance differences are generated by ISA-independent

microarchitecture differences.
◦ The energy consumption is again ISA-independent.
◦ ISA differences have implementation implications, but mod-

ern microarchitecture techniques render them moot; one
ISA is not fundamentally more efficient.

◦ ARM and x86 implementations are simply design points op-
timized for different performance levels.

Implications: Our findings confirm known conventional (or
suspected) wisdom, and add value by quantification. Our results
imply that microarchitectural effects dominate performance,
power, and energy impacts. The overall implication of this work
is that the ISA being RISC or CISC is largely irrelevant for to-
day’s mature microprocessor design world.

Paper organization: Section 2 describes a framework we de-
velop to understand the ISA’s impacts on performance, power,
and energy. Section 3 describes our overall infrastructure and
rationale for the platforms for this study and our limitations,
Section 4 discusses our methodology, and Section 5 presents the
analysis of our data. Section 7 concludes.

2. Framing Key Impacts of the ISA
In this section, we present an intellectual framework in

which to examine the impact of the ISA—assuming a von Neu-
mann model—on performance, power, and energy. We con-
sider the three key textbook ISA features that are central to the
RISC/CISC debate: format, operations, and operands. We do
not consider other textbook features, data types and control, as
they are orthogonal to RISC/CISC design issues and RISC/CISC
approaches are similar. Table 1 presents the three key ISA fea-
tures in three columns and their general RISC and CISC char-
acteristics in the first two rows. We then discuss contrasts for
each feature and how the choice of RISC or CISC potentially
and historically introduced significant trade-offs in performance
and power. In the fourth row, we discuss how modern refine-
ments have led to similarities, marginalizing the choice of RISC
or CISC on performance and power. Finally, the last row raises
empirical questions focused on each feature to quantify or val-
idate this convergence. Overall, our approach is to understand
all performance and power differences by using measured met-
rics to quantify the root cause of differences and whether or not

www.cs.wisc.edu/vertical/isa-power-struggles

A version appears in the 19th IEEE Intl. Symposium on High Performance Computer Architecture (HPCA 2013) 3

Table 1. Summary of RISC and CISC Trends.
Format Operations Operands

R
IS

C
/

A
R

M ◦ Fixed length instructions ◦ Simple, single function operations ◦ Operands: registers, immediates
◦ Relatively simple encoding ◦ Single cycle ◦ Few addressing modes
◦ ARM: 4B, THUMB(2B, optional) ◦ ARM: 16 general purpose registers

C
IS

C
/

x8
6

◦ Variable length instructions ◦ Complex, multi-cycle instructions ◦ Operands: memory, registers, immediates
◦ Common insts shorter/simpler ◦ Transcendentals ◦Many addressing modes
◦ Special insts longer/complex ◦ Encryption ◦ x86: 8 32b & 6 16b registers
◦ x86: from 1B to 16B long ◦ String manipulation

H
is

to
ri

ca
l

C
on

tr
as

ts ◦ CISC decode latency prevents pipelining ◦ Even w/ µcode, pipelining hard ◦ CISC decoder complexity higher
◦ CISC decoders slower/more area ◦ CISC latency may be longer than ◦ CISC has more per inst work, longer cycles
◦ Code density: RISC < CISC compiler’s RISC equivalent ◦ Static code size: RISC > CISC

C
on

ve
rg

en
ce

Tr
en

ds

◦ µ-op cache minimizes decoding overheads ◦ CISC insts split into RISC-like micro-ops; ◦ x86 decode optimized for common insts
◦ x86 decode optimized for common insts optimizations eliminated inefficiencies ◦ CISC insts split into RISC-like micro-ops;
◦ I-cache minimizes code density impact ◦Modern compilers pick mostly RISC insts; x86 and ARM µ-op latencies similar

µ-op counts similar for ARM and x86 ◦ Number of data cache accesses similar

E
m

pi
ri

ca
l

Q
ue

st
io

ns

◦ How much variance in x86 inst length? ◦ Are macro-op counts similar? ◦ Number of data accesses similar?
Low variance⇒ common insts optimized Similar⇒ RISC-like on both Similar⇒ no data access inefficiencies

◦ Are ARM and x86 code densities similar? ◦ Are complex instructions used by x86 ISA?
Similar density⇒ No ISA effect Few complex⇒ Compiler picks RISC-like

◦What are instruction cache miss rates? ◦ Are µ-op counts similar?
Low⇒ caches hide low code densities Similar⇒ CISC split into RISC-like µ-ops

ISA differences contribute. The remainder of this paper is cen-
tered around these empirical questions framed by the intuition
presented as the convergence trends.

Although whether an ISA is RISC or CISC seems irrelevant,
ISAs are evolving; expressing more semantic information has
led to improved performance (x86 SSE, larger address space),
better security (ARM Trustzone), better virtualization, etc. Ex-
amples in current research include extensions to allow the hard-
ware to balance accuracy with energy efficiency [15, 13] and ex-
tensions to use specialized hardware for energy efficiency [18].
We revisit this issue in our conclusions.

3. Infrastructure
We now describe our infrastructure and tools. The key take-

away is that we pick four platforms, doing our best to keep them
on equal footing, pick representative workloads, and use rigor-
ous methodology and tools for measurement. Readers can skip
ahead to Section 4 if uninterested in the details.
3.1. Implementation Rationale and Challenges

Choosing implementations presents multiple challenges due
to differences in technology (technology node, frequency, high
performance/low power transistors, etc.); ISA-independent mi-
croarchitecture (L2-cache, memory controller, memory size,
etc.); and system effects (operating system, compiler, etc.). Fi-
nally, platforms must be commercially relevant and it is unfair
to compare platforms from vastly different time-frames.

We investigated a wide spectrum of platforms spanning In-
tel Nehalem, Sandybridge, AMD Bobcat, NVIDIA Tegra-2,
NVIDIA Tegra-3, and Qualcomm Snapdragon. However, we
did not find implementations that met all of our criteria: same
technology node across the different ISAs, identical or similar

microarchitecture, development board that supported necessary
measurements, a well-supported operating system, and similar
I/O and memory subsystems. We ultimately picked the Beagle-
board (Cortex-A8), Pandaboard (Cortex-A9), and Atom board,
as they include processors with similar microarchitectural fea-
tures like issue-width, caches, and main-memory and are from
similar technology nodes, as described in Tables 2 and 7. They
are all relevant commercially as shown by the last row in Ta-
ble 2. For a high performance x86 processor, we use an Intel i7
Sandybridge processor; it is significantly more power-efficient
than any 45nm offering, including Nehalem. Importantly, these
choices provided usable software platforms in terms of operat-
ing system, cross-compilation, and driver support. Overall, our
choice of platforms provides a reasonably equal footing, and we
perform detailed analysis to isolate out microarchitecture and
technology effects. We present system details of our platforms
for context, although the focus of our work is the processor core.

A key challenge in running real workloads was the rela-
tively small memory (512MB) on the Cortex-A8 Beagleboard.
While representative of the typical target (e.g., iPhone 4 has
512MB RAM), it presents a challenge for workloads like SPEC-
CPU2006; execution times are dominated by swapping and OS
overheads, making the core irrelevant. Section 3.3 describes
how we handled this. In the remainder of this section, we discuss
the platforms, applications, and tools for this study in detail.

3.2. Implementation Platforms

Hardware platform: We consider two chip implementations
each for the ARM and x86 ISAs as described in Table 2.
Intent: Keep non-processor features as similar as possible.

A version appears in the 19th IEEE Intl. Symposium on High Performance Computer Architecture (HPCA 2013) 4
Table 2. Platform Summary.

32/64b x86 ISA ARMv7 ISA

Architecture Sandybridge Atom Cortex-A9 Cortex-A8
Processor Core 2700 N450 OMAP4430 OMAP3530
Cores 4 1 2 1
Frequency 3.4 GHz 1.66 GHz 1 GHz 0.6 GHz
Width 4-way 2-way 2-way 2-way
Issue OoO In Order OoO In Order
L1 Data 32 KB 24 KB 32 KB 16 KB
L1 Inst 32 KB 32 KB 32 KB 16 KB
L2 256 KB/core 512 KB 1 MB/chip 256 KB
L3 8 MB/chip — — —
Memory 16 GB 1 GB 1 GB 256 MB
SIMD AVX SSE NEON NEON
Area 216 mm2 66 mm2 70 mm2 60 mm2

Tech Node 32 nm 45 nm 45 nm 65 nm
Platform Desktop Dev Board Pandaboard Beagleboard
Products Desktop Netbook Galaxy S-III iPhone 4, 3GS

Lava Xolo Galaxy S-II Motorola Droid
Data from TI OMAP3530, TI OMAP4430, Intel Atom N450, and Intel

i7-2700 datasheets, www.beagleboard.org & www.pandaboard.org

Operating system: Across all platforms, we run the same
stable Linux 2.6 LTS kernel with some minor board-specific
patches to obtain accurate results when using the performance
counter subsystem. We use perf’s1 program sampling to find
the fraction of time spent in the kernel while executing the SPEC
benchmarks on all four boards; overheads were less than 5% for
all but GemsFDTD and perlbench (both less than 10%) and the
fraction of time spent in the operating system was virtually iden-
tical across platforms spanning ISAs.
Intent: Keep OS effects as similar as possible across platforms.
Compiler: Our toolchain is based on a validated gcc 4.4 based
cross-compiler configuration. We intentionally chose gcc so
that we can use the same front-end to generate all binaries. All
target independent optimizations are enabled (O3); machine-
specific tuning is disabled so there is a single set of ARM bi-
naries and a single set of x86 binaries. For x86 we target 32-bit
since 64-bit ARM platforms are still under development. For
ARM, we disable THUMB instructions for a more RISC-like
ISA. We ran experiments to determine the impact of machine-
specific optimizations and found that these impacts were less
than 5% for over half of the SPEC suite, and caused performance
variations of ±20% on the remaining with speed-ups and slow-
downs equally likely. None of the benchmarks include SIMD
code, and although we allow auto-vectorization, very few SIMD
instructions are generated for either architecture. Floating point
is done natively on the SSE (x86) and NEON (ARM) units. Ven-
dor compilers may produce better code for a platform, but we
use gcc to eliminate compiler influence. As seen in Table 12 in
Appendix I, static code size is within 8% and average instruction
lengths are within 4% using gcc and icc for SPEC INT, so we
expect that compiler does not make a significant difference.
Intent: Hold compiler effects constant across platforms.
3.3. Applications

Since both ISAs are touted as candidates for mobile clients,
desktops, and servers, we consider a suite of workloads that span

1perf is a Linux utility to access performance counters.

Table 3. Benchmark Summary.
Domain Benchmarks Notes

Mobile CoreMark Set to 4000 iterations
client WebKit Similar to BBench
Desktop SPECCPU2006 10 INT, 10 FP, test inputs
Server lighttpd Represents web-serving

CLucene Represents web-indexing
Database kernels Represents data-streaming and

data-analytics

these. We use prior workload studies to guide our choice, and
where appropriate we pick equivalent workloads that can run on
our evaluation platforms. A detailed description follows and is
summarized in Table 3. All workloads are single-threaded to
ensure our single-core focus.

Mobile client: This category presented challenges as mobile
client chipsets typically include several accelerators and careful
analysis is required to determine the typical workload executed
on the programmable general-purpose core. We used CoreMark
(www.coremark.org), widely used in industry white-papers,
and two WebKit regression tests informed by the BBench
study [19]. BBench, a recently proposed smartphone bench-
mark suite, is a “a web-page rendering benchmark comprising
11 of the most popular sites on the internet today” [19]. To avoid
web-browser differences across the platforms, we use the cross-
platform WebKit with two of its built-in tests that mimic real-
world HTML layout and performance scenarios for our study2.

Desktop: We use the SPECCPU2006 suite (www.spec.org)
as representative of desktop workloads. SPECCPU2006 is a
well understood standard desktop benchmark, providing insights
into core behavior. Due to the large memory footprint of the
train and reference inputs, we found that for many benchmarks
the memory constrained Cortex-A8, in particular, ran of mem-
ory and execution was dominated by system effects. Instead, we
report results using the test inputs, which fit in the Cortex-A8’s
memory footprint for 10 of 12 INT and 10 of 17 FP benchmarks.

Server: We chose server workloads informed by the Cloud-
Suite workloads recently proposed by Ferdman et al. [16]. Their
study characterizes server/cloud workloads into data analytics,
data streaming, media streaming, software testing, web search,
and web serving. The actual software implementations they
provide are targeted for large memory-footprint machines and
their intent is to benchmark the entire system and server clus-
ter. This is unsuitable for our study since we want to iso-
late processor effects. Hence, we pick implementations with
small memory footprints and single-node behavior. To represent
data-streaming and data-analytics, we use three database ker-
nels commonly used in database evaluation work [26, 23] that
capture the core computation in Bayes classification and data-
store3. To represent web search, we use CLucene (clucene.

2Specifically coreLayout and DOMPerformance.
3CloudSuite uses Hadoop+Mahout plus additional software infrastructure,

ultimately running Bayes classification and data-store; we feel this kernel ap-
proach is better suited for our study while capturing the domain’s essence.

www.beagleboard.org
www.pandaboard.org
www.coremark.org
www.spec.org
clucene.sourceforge.net
clucene.sourceforge.net
clucene.sourceforge.net
clucene.sourceforge.net
clucene.sourceforge.net

A version appears in the 19th IEEE Intl. Symposium on High Performance Computer Architecture (HPCA 2013) 5

Table 4. Infrastructure Limitations.
Limitation Implications

C
or

es

Multicore effects: coherence, locking... 2nd order for core design
No platform uniformity across ISAs Best effort
No platform diversity within ISAs Best effort
Design teams are different µarch effect, not ISA
“Pure” RISC, CISC implementations Out of scope

D
om

ai
n Ultra low power microcontrollers Out of scope

Server style platforms See server benchmarks
Why SPEC on mobile platforms? Tracks emerging uses
Why not SPEC JBB or TPC-C? CloudSuite more relevant

To
ol

s

Proprietary compilers are optimized gcc optimizations uniform
Arch. specific compiler tuning <10%
No direct decoder power measure Results show 2nd order
Power includes non-core factors 4-17%
Performance counters may have errors Validated use (Table 5)
Simulations have errors Validated use (Table 5)

Sc
al

in
g Memory rate effects cycles nonlinearly Second-order

Vmin limit effects frequency scaling Second-order
ITRS scaling numbers are not exact Best effort; extant nodes

sourceforge.net), an efficient, cross-platform indexing im-
plementation similar to CloudSuite’s Nutch. To represent web-
serving (CloudSuite uses Apache), we use the lighttpd server
(www.lighttpd.net) which is designed for “security, speed,
compliance, and flexibility”4. We do not evaluate the media-
streaming CloudSuite benchmark as it primarily stresses the I/O
subsystem. CloudSuite’s Software Testing benchmark is a batch
coarse-grained parallel symbolic execution application; for our
purposes, the SPEC suite’s Perl parser, combinational optimiza-
tion, and linear programming benchmarks are similar.
3.4. Tools

The four main tools we use in our work are described below
and Table 5 in Section 4 describes how we use them.
Native execution time and microarchitectural events: We
use wall-clock time and performance-counter-based clock-cycle
measurements to determine execution time of programs. We
also use performance counters to understand microarchitecture
influences on the execution time. Each of the processors has
different counters available, and we examined them to find com-
parable measures. Ultimately three counters explain much of
the program behavior: branch mis-prediction rate, Level-1 data-
cache miss rate, and Level-1 instruction-cache miss rate (all
measured as misses per kilo-instructions). We use the perf tool
for performance counter measurement.
Power: For power measurements, we connect a Wattsup
(www.wattsupmeters.com) meter to the board (or desktop)
power supply. This gives us system power. We run the bench-
mark repeatedly to find consistent average power as explained in
Table 5. We use a control run to determine the board power alone
when the processor is halted and subtract away this board power
to determine chip power. Some recent power studies [14, 21, 9]
accurately isolate the processor power alone by measuring the
current supply line of the processor. This is not possible for
the SoC-based ARM development boards, and hence we deter-
mine and then subtract out the board-power. This methodology

4Real users of lighttpd include YouTube.

allows us to eliminate the main memory and I/O power and ex-
amine only processor power. We validated our strategy for the
i7 system using the exposed energy counters (the only platform
we consider that includes isolated power measures). Across all
three benchmark suites, our WattsUp methodology compared to
the processor energy counter reports ranged from 4% to 17%
less, averaging 12%. Our approach tends to under-estimate core
power, so our results for power and energy are optimistic. We
saw average power of 800mW, 1.2W, 5.5W, and 24W for A8,
A9, Atom, and i7 (respectively) and these fall within the typical
vendor-reported power numbers.
Technology scaling and projections: Since the i7 processor
is 32nm and the Cortex-A8 is 65nm, we use technology node
characteristics from the 2007 ITRS tables to normalize to the
45nm technology node in two results where we factor out tech-
nology; we do not account for device type (LOP, HP, LSTP).
For our 45nm projections, the A8’s power is scaled by 0.8× and
the i7’s power by 1.3×. In some results, we scale frequency
to 1 GHz, accounting for DVFS impact on voltage using the
mappings disclosed for Intel SCC [5]. When frequency scal-
ing, we assume that 20% of the i7’s power is static and does
not scale with frequency; all other cores are assumed to have
negligible static power. When frequency scaling, A8’s power is
scaled by 1.2×, Atom’s power by 0.8×, and i7’s power by 0.6×.
We acknowledge that this scaling introduces some error to our
technology-scaled power comparison, but feel it is a reasonable
strategy and doesn’t affect our primary findings (see Table 4).
Emulated instruction mix measurement: For the x86 ISA,
we use DynamoRIO [11] to measure instruction mix. For the
ARM ISA, we leverage the gem5 [8] simulator’s functional em-
ulator to derive instruction mixes (no ARM binary emulation
available). Our server and mobile-client benchmarks use many
system calls that do not work in the gem5 functional mode.
We do not present detailed instruction-mix analysis for these,
but instead present high-level mix determined from performance
counters. We use the MICA tool to find the available ILP [20].
3.5. Limitations or Concerns

Our study’s limitations are classified into core diversity, do-
main, tool, and scaling effects. The full list appears in Table 4,
and details are discussed below. Throughout our work, we fo-
cus on what we believe to be the first order effects for perfor-
mance, power, and energy and feel our analysis and methodol-
ogy is rigorous. Other more detailed methods may exist, and we
have made the data publicly available at www.cs.wisc.edu/
vertical/isa-power-struggles to allow interested readers
to pursue their own detailed analysis.
Cores: We considered four platforms, two from each ISA. A
perfect study would include platforms at several performance
levels with matched frequency, branch predictors, other microar-
chitectural features, and memory systems. Further, a pure RISC
versus CISC study would use true RISC and CISC cores, while
ARM and x86’s ISA tweaks represent the current state-of-the-
art. Our selections reflect the available, well-supported imple-

clucene.sourceforge.net
www.lighttpd.net
www.wattsupmeters.com
www.cs.wisc.edu/vertical/isa-power-struggles
www.cs.wisc.edu/vertical/isa-power-struggles

A version appears in the 19th IEEE Intl. Symposium on High Performance Computer Architecture (HPCA 2013) 6

Table 5. Methodology Summary.
(a) Native Execution on Real Hardware

Measures Methodology

Execution time, ◦ Approach: Use perf tool to sample cycle performance counters; sampling avoids potential counter overflow.
Cycle counts ◦ Analysis: 5 - 20 trials (dependent on variance and benchmark runtime); report minimum from trials that complete normally.

◦ Validation: Compare against wall clock time.

Inst. count (ARM) ◦ Approach: Use perf tool to collect macro-ops from performance counters
◦ Analysis: At least 3 trials; report minimum from trials that complete normally.
◦ Validation: Performance counters within 10% of gem5 ARM simulation. Table 9 elaborates on challenges.

Inst. count (x86) ◦ Approach: Use perf to collect macro-ops and micro-ops from performance counters.
◦ Analysis: At least 3 trials; report minimum from trials that complete normally.
◦ Validation: Counters within 2% of DynamoRIO trace count (macro-ops only). Table 9 elaborates on challenges.

Inst. mix (Coarse) ◦ Approach: SIMD + FP + load/store performance counters.

Inst. length (x86) ◦ Approach: Wrote Pin tool to find length of each instruction and keep running average.

Microarch events ◦ Approach: Branch mispredictions, cache misses, and other uarch events measured using perf performance counters.
◦ Analysis: At least 3 trials; additional if a particular counter varies by > 5%. Report minimum from normal trials.

Full system power ◦ Set-up: Use Wattsup meter connected to board or desktop
(no network connection, peripherals on separate supply, kernel DVFS disabled, cores at peak frequency, single-user mode).

◦ Approach: Run benchmarks in loop to guarantee 3 minutes of samples (180 samples at maximum sampling rate).
◦ Analysis: If outliers occur, rerun experiment; present average power across run without outliers.

Board power ◦ Set-up: Use Wattsup meter connected to board or desktop
(no network connection, peripherals on separate supply, kernel DVFS disabled, cores at peak frequency, single-user mode).

◦ Approach: Run with kernel power saving enabled; force to lowest frequency. Issue halt; report power when it stabilizes.
◦ Analysis: Report minimum observed power.

Processor power ◦ Approach: Subtracting above two gives processor power.
◦ Validation: compare core power against energy performance counters and/or reported TDP and power draw.

(b) Emulated Execution

Measures Methodology

Inst. mix (Detailed) ◦ Approach (ARM): Use gem5 instruction trace and analyze using python script.
◦ Approach (x86): Use DynamoRIO instruction trace and analyze using python script.
◦ Validation: Compare against coarse mix from SIMD + FP + load/store performance counters.

ILP ◦ Approach: Pin based MICA tool which reports ILP with window size 32, 64, 128, 256.

mentations available to our group. The impact of higher per-
formance emerging cores is included in our synthetic processor
study.
Domain: We picked a representative set of workloads we feel
captures a significant subset of modern workloads. We do not
make broad domain-specific arguments, since that requires truly
representative inputs and IO subsystem control for the mobile
and server domains. Our study focused on single-core, and thus
intentionally avoids multi-core system issues (e.g., consistency
models, coherence, virtualization, etc.).
Measurement and tool errors: Our measurements are pri-
marily on real hardware, and therefore include real world errors.
We execute multiple runs and take a rigorous approach as de-
tailed in Table 5. Eliminating all errors is impractical, and our
final result trends are consistent and intuitive.
Analysis: We have presented our analysis of this rich data set,
and will release the data and our analysis scripts to allow inter-
ested readers to pursue their own detailed analysis.

4. Methodology
In this section, we describe how we use our tools and the

overall flow of our analysis. Section 5 presents our data and

analysis. Table 5 describes how we employ the aforementioned
tools and obtain the measures we are interested in, namely, ex-
ecution time, execution cycles, instruction-mix, microarchitec-
ture events, power, and energy.

Our overall approach is to understand all performance and
power differences and use the measured metrics to quantify the
root cause of differences and whether or not ISA differences
contribute, answering empirical questions from Section 2. Un-
less otherwise explicitly stated, all data is measured on real hard-
ware. The flow of the next section is outlined below.
4.1. Performance Analysis Flow
Step 1: Present execution time for each benchmark.
Step 2: Normalize frequency’s impact using cycle counts.
Step 3: To understand differences in cycle count and the influ-
ence of the ISA, present the dynamic instruction count measures,
measured in both macro-ops and micro-ops.
Step 4: Use instruction mix, code binary size, and average dy-
namic instruction length to understand ISA’s influence.
Step 5: To understand performance differences not attributable
to ISA, look at detailed microarchitecture events.
Step 6: Attribute performance gaps to frequency, ISA, or ISA-

A version appears in the 19th IEEE Intl. Symposium on High Performance Computer Architecture (HPCA 2013) 7

independent microarchitecture features. Qualitatively reason
about whether the ISA forces microarchitecture features.
4.2. Power and Energy Analysis Flow
Step 1: Present per benchmark raw power measurements.
Step 2: To factor out the impact of technology, present
technology-independent power by scaling all processors to
45nm and normalizing the frequency to 1 GHz.
Step 3: To understand the interplay between power and perfor-
mance, examine raw energy.
Step 4: Qualitatively reason about the ISA influence on microar-
chitecture in terms of energy.
4.3. Trade-off Analysis Flow
Step 1: Combining the performance and power measures, com-
pare the processor implementations using Pareto-frontiers.
Step 2: Compare measured and synthetic processor implemen-
tations using Energy-Performance Pareto-frontiers.

5. Measured Data Analysis and Findings
We now present our measurements and analysis of perfor-

mance, power, energy, and the trade-offs between them. We
conclude the section with sensitivity studies projecting perfor-
mance of additional implementations of the ARM and x86 ISA
using a simple performance and power model.

We present our data for all four platforms, often comparing
A8 to Atom (both dual-issue in-order) and A9 to i7 (both OOO)
since their implementations are pair-wise similar. For each step,
we present the average measured data, average in-order and OoO
ratios if applicable, and then our main findings. When our analy-
sis suggests that some benchmarks are outliers, we give averages
with the outliers included in parentheses.
5.1. Performance Analysis
Step 1: Execution Time Comparison

Data: Figure 2 shows execution time normalized to i7; av-
erages including outliers are given using parentheses. Average
ratios are in table below. Per benchmark data is in Figure 16 of
Appendix I.

Mobile SPEC INT SPEC FP Server
0

5

10

15

20

25

30

N
o
rm

a
liz

e
d
 T

im
e

(130) (72) (24) (344)

A8 Atom A9 I7

Figure 2. Execution Time Normalized to i7.

Ratio Mobile SPEC INT SPEC FP Server
A8 to Atom 3.4 (34) 3.5 4.2 (7.4) 3.7 (103)
A9 to i7 5.8 8.4 7.2 (23) 7.4

Outliers: A8 performs particularly poorly on WebKit tests
and lighttpd, skewing A8/Atom differences in the mobile and
server data, respectively; see details in Step 2. Five SPEC FP
benchmarks are also considered outliers; see Table 8. Where
outliers are listed, they are in this set.

Finding P1: Large performance gaps are platform and bench-
mark dependent: A9 to i7 performance gaps range from 5× to
102× and A8 to Atom gaps range from 2× to 997×.
Key Finding 1: Large performance gaps exist across the four
platforms studied, as expected, since frequency ranges from 600
MHz to 3.4 GHz and microarchitectures are very different.

Step 2: Cycle-Count Comparison

Data: Figure 3 shows cycle counts normalized to i7. Per
benchmark data is in Figure 7.

Mobile SPEC INT SPEC FP Server
0

2

4

6

8

10

N
o
rm

a
liz

e
d
 C

y
cl

e
s

(23) (13) (7) (61)

A8 Atom A9 I7

Figure 3. Cycle Count Normalized to i7.

Ratio Mobile SPEC INT SPEC FP Server
A8 to Atom 1.2 (12) 1.2 1.5 (2.7) 1.3 (23)
A9 to i7 1.7 2.5 2.1 (7.0) 2.2

Finding P2: Per suite cycle count gaps between out-of-order
implementations A9 and i7 are less than 2.5× (no outliers).

Finding P3: Per suite cycle count gaps between in-order im-
plementations A8 and Atom are less than 1.5× (no outliers).
Key Finding 2: Performance gaps, when normalized to cycle
counts, are less than 2.5× when comparing in-order cores to
each other and out-of-order cores to each other.

Step 3: Instruction Count Comparison

Data: Figure 4a shows dynamic instruction (macro) counts on
A8 and Atom normalized to Atom x86 macro-instructions. Per
benchmark data is in Figure 17a of Appendix I. Per benchmark
data for CPIs is in Table 11 in Appendix I.

Data: Figure 4b shows dynamic micro-op counts for Atom
and i7 normalized to Atom macro-instructions5. Per benchmark
data is in Figure 17b. of Appendix I

Mobile SPEC INT SPEC FP Server
0.0

0.5

1.0

1.5

2.0

N
o
rm

a
liz

e
d
 M

a
cr

o
-O

p
s

(3.2)

ARM

x86

(a) Macro-Ops
Mobile SPEC INT SPEC FP Server

0.0

0.5

1.0

1.5

2.0

N
o
rm

a
liz

e
d
 M

ic
ro

-O
p
s

(1.5)

Atom

i7

(b) Micro-Ops
Figure 4. Instructions Normalized to i7 macro-ops.

5For i7, we use issued micro-ops instead of retired micro-ops; we found that
on average, this does not impact the micro-op/macro-op ratio.

A version appears in the 19th IEEE Intl. Symposium on High Performance Computer Architecture (HPCA 2013) 8

Outliers: For wkperf and lighttpd, A8 executes more than
twice as many instructions as A96. We report A9 instruction
counts for these two benchmarks. For CLucene, x86 machines
execute 1.7× more instructions than ARM machines; this ap-
pears to be a pathological case of x86 code generation ineffi-
ciencies. For cactusADM, Atom executes 2.7× more micro-ops
than macro-ops; this extreme is not seen for other benchmarks.

Finding P4: Instruction count similar across ISAs. Implies
gcc picks the RISC-like instructions from the x86 ISA.

Finding P5: All ARM outliers in SPEC FP due to transcen-
dental FP operations supported only by x86.

Finding P6: x86 micro-op to macro-op ratio is often less than
1.3×, again suggesting gcc picks the RISC-like instructions.
Key Finding 3: Instruction and cycle counts imply CPI is less
on x86 implementations: geometric mean CPI is 3.4 for A8, 2.2
for A9, 2.1 for Atom, and 0.7 for i7 across all suites. x86 ISA
overheads, if any, are overcome by microarchitecture.

Step 4: Instruction Format and Mix

Data: Table 6a shows average ARM and x86 static binary
sizes, measuring only the binary’s instruction segment. Per
benchmark data is in Table 12a in Appendix I.

Data: Table 6b shows average dynamic ARM and x86 in-
struction lengths. Per benchmark data is in Table 12b in Ap-
pendix I.

Table 6. Instruction Size Summary.
(a) Binary Size (MB) (b) Instruction Length (B)

ARM x86 ARM x86

M
ob

ile Minimum 0.02 0.02 4.0 2.4
Average 0.95 0.87 4.0 3.3
Maximum 1.30 1.42 4.0 3.7

D
es

kt
op

IN
T Minimum 0.53 0.65 4.0 2.7

Average 1.47 1.46 4.0 3.1
Maximum 3.88 4.05 4.0 3.5

D
es

kt
op

FP

Minimum 0.66 0.74 4.0 2.6
Average 1.70 1.73 4.0 3.4
Maximum 4.75 5.24 4.0 6.4

Se
rv

er Minimum 0.12 0.18 4.0 2.5
Average 0.39 0.59 4.0 3.2
Maximum 0.47 1.00 4.0 3.7

Outliers: CLucene binary (from server suite) is almost 2×
larger for x86 than ARM; the server suite thus has the largest
span in binary sizes. ARM executes correspondingly few in-
structions; see outliers discussion in Step 3.

Finding P7: Average ARM and x86 binary sizes are simi-
lar for SPEC INT, SPEC FP, and Mobile workloads, suggesting
similar code densities.

Finding P8: Executed x86 instructions are on average up to
25% shorter than ARM instructions: short, simple x86 instruc-
tions are typical.

Finding P9: x86 FP benchmarks, which tend to have more
complex instructions, have instructions with longer encodings
(e.g., cactusADM with 6.4 Bytes/inst on average).

6A8 spins for IO, event-loops, and timeouts.

Data: Figure 5 shows average coarse-grained ARM and x86
instruction mixes for each benchmark suite7.

ARM x86 ARM x86 ARM x86 ARM x86

20%

40%

60%

80%

100%

P
e
rc

e
n
t

o
f

p
su

e
d
o
-µ

o
p
s

Load

Store

Branch

Other

Mobile SPEC INT SPEC FP Server

Figure 5. Instruction Mix (Performance Counters).

Data: Figure 6 shows fine-grained ARM and x86 instruction
mixes normalized to x86 for a subset of SPEC benchmarks7.

ARM x86 ARM x86 ARM x86 ARM x86
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fr
a
ct

io
n
 o

f
x
8

6
 p

se
u
d
o
-µ

o
p
s

gcc omnetpp soplex tonto

Load

Store

Branch

Move

ALU

Logical

Mul

Div

Special

Other

Figure 6. Selected Instruction Counts (Emulated).

Finding P10: Fraction of loads and stores similar across ISA
for all suites, suggesting that the ISA does not lead to significant
differences in data accesses.

Finding P11: Large instruction counts for ARM are due
to absence of FP instructions like fsincon, fyl2xpl, (e.g.,
tonto in Figure 6’s many special x86 instructions correspond
to ALU/logical/multiply ARM instructions).

Key Finding 4: Combining the instruction-count and mix-
findings, we conclude that ISA effects are indistinguishable be-
tween x86 and ARM implementations.

Step 5: Microarchitecture

Data: Figure 7 shows the per-benchmark cycle counts for
more detailed analysis where performance gaps are large. The
raw data for this figure is in the Cycles worksheet of our pub-
licly released spreadsheet [10].

Data: Table 7 compares the A8 microarchitecture to Atom,
and A9 to i7, focusing on the primary structures. These details
are from five Microprocessor Report articles8 and the A9 num-
bers are estimates derived from publicly disclosed information
on A15 and A9/A15 comparisons.

7x86 instructions with memory operands are cracked into a memory opera-
tion and the original operation.

8“Cortex-A8 High speed, low power” (Nov 2005), “More applications for
OMAP4” (Nov 2009), “ Sandybridge spans generations” (Sept 2010), “Intel’s
Tiny Atom” (April 2008), “Cortex A-15 Eagle Flies the Coop” (Nov 2010).

960 for A15.

A version appears in the 19th IEEE Intl. Symposium on High Performance Computer Architecture (HPCA 2013) 9

co
re

m
a
rk

w
k_

la
y
o
u
t

w
k_

p
e
rf

m
e
a
n

a
st

a
r

lib
q
u
a
n
tu

m

h
m

m
e
r

h
2

6
4

g
o
b
m

k
b
zi

p
2

sj
e
n
g

g
cc

p
e
rl

b
e
n
ch

o
m

n
e
tp

p
m

e
a
n

so
p
le

x

G
e
m

sF
D

T
D

ca
lc

u
lix

p
o
v
ra

y

to
n
to

n
a
m

d
le

sl
ie

3
D

m
ilc

ca
ct

u
sA

D
M

b
w

a
v
e
s

m
e
a
n

lu
ce

n
e

d
b
_k

e
rn

e
ls

lig
h
tt

p
d

m
e
a
n

0

2

4

6

8

10

12

14

N
o
rm

a
liz

e
d
 C

y
cl

e
s

15 25 3864 23 176 61

A8 Atom

(a) In-Order

w
k_

p
e
rf

w
k_

la
y
o
u
t

co
re

m
a
rk

m
e
a
n

a
st

a
r

h
m

m
e
r

lib
q
u
a
n
tu

m
g
o
b
m

k
sj

e
n
g

g
cc

p
e
rl

b
e
n
ch

h
2

6
4

b
zi

p
2

o
m

n
e
tp

p
m

e
a
n

so
p
le

x

G
e
m

sF
D

T
D

ca
lc

u
lix

n
a
m

d
p
o
v
ra

y

to
n
to

ca
ct

u
sA

D
M

m
ilc

le
sl

ie
3

D
b
w

a
v
e
s

m
e
a
n

lu
ce

n
e

lig
h
tt

p
d

d
b
_k

e
rn

e
ls

m
e
a
n

0

2

4

6

8

10

12

14

N
o
rm

a
liz

e
d
 C

y
cl

e
s

30

A9 i7

(b) Out-of-Order
Figure 7. Cycle Counts Normalized to i7.

co
re

m
a
rk

w
k_

la
y
o
u
t

w
k_

p
e
rf

m
e
a
n

a
st

a
r

lib
q
u
a
n
tu

m

h
m

m
e
r

h
2
6
4

g
o
b
m

k
b
zi

p
2

sj
e
n
g

g
cc

p
e
rl

b
e
n
ch

o
m

n
e
tp

p
m

e
a
n

so
p
le

x

G
e
m

sF
D

T
D

ca
lc

u
lix

p
o
v
ra

y

to
n
to

n
a
m

d
le

sl
ie

3
D

m
ilc

ca
ct

u
sA

D
M

b
w

a
v
e
s

m
e
a
n

lu
ce

n
e

d
b
_k

e
rn

e
ls

lig
h
tt

p
d

m
e
a
n

0

10

20

30

40

50

60

 B
ra

n
ch

 M
P
K

I

71373

A8 Atom

(a) In-Order

w
k_

p
e
rf

w
k_

la
y
o
u
t

co
re

m
a
rk

m
e
a
n

a
st

a
r

h
m

m
e
r

lib
q
u
a
n
tu

m
g
o
b
m

k
sj

e
n
g

g
cc

p
e
rl

b
e
n
ch

h
2
6
4

b
zi

p
2

o
m

n
e
tp

p
m

e
a
n

so
p
le

x

G
e
m

sF
D

T
D

ca
lc

u
lix

n
a
m

d
p
o
v
ra

y

to
n
to

ca
ct

u
sA

D
M

m
ilc

le
sl

ie
3
D

b
w

a
v
e
s

m
e
a
n

lu
ce

n
e

lig
h
tt

p
d

d
b
_k

e
rn

e
ls

m
e
a
n

0

10

20

30

40

50

60

B
ra

n
ch

 M
P
K

I A9 i7

(b) Out-of-Order
Figure 8. Branch Misses per 1000 ARM Instructions.

Table 7. Processor Microarchitecture Features.
(a) In-Order Cores

Pipeline Issue ALU/FP Br. Pred.
Depth Width Threads Units BTB Entries

A8 13 2 1 2/2 + NEON 512
Atom 16+2 2 2 2/2 + IMul 128

(b) Out-of-Order Cores
Issue Threads ROB Entries for
width Size LD/ST Rename Scheduler BTB

A9 4 1 - 9 -/4 56 20 512
i7 4(6) 2 64/36 160 168 54 8K - 16K

Finding P12: A9 and i7’s different issue widths (2 versus
4, respectively)10 explain performance differences up to 2×, as-
suming sufficient ILP, a sufficient instruction window and a well
balanced processor pipeline. We use MICA to confirm that our
benchmarks all have limit ILP greater than 4 [20].

Finding P13: Even with different ISAs and significant differ-
ences in microarchitecture, for 12 benchmarks, the A9 is within
2× the cycle count of i7 and can be explained by the difference
in issue width.

Data: Figures 8, 9, and 10 show branch mispredictions & L1
data and instruction cache misses per 1000 ARM instructions.
The raw data for these figures is in the Branch Misses, L1
Data Misses, and L1 Inst Misses worksheets, respectively,
of our publicly released spreadsheet [10].

10We assume the conventional wisdom that A9 is dual issue, although its
pipeline diagrams indicate it is quad-issue.

Finding P14: Observe large microarchitectural event count
differences (e.g., A9 branch misses are more common than i7
branch misses). These differences are not because of the ISA,
but rather due to microarchitectural design choices (e.g., A9’s
BTB has 512 entries versus i7’s 16K entries).

Finding P15: Per benchmark, we can attribute the largest
gaps in i7 to A9 performance (and in Atom to A8 performance)
to specific microachitectural events. In the interest of space,
we present example analyses for those benchmarks with gaps
greater than 3.0× in Table 8; bwaves details are in Appendix II.

Key Finding 5: The microarchitecture has significant impact on
performance. The ARM and x86 architectures have similar in-
struction counts. The highly accurate branch predictor and large
caches, in particular, effectively allow x86 architectures to sus-
tain high performance. x86 performance inefficiencies, if any,
are not observed. The microarchitecture, not the ISA, is respon-
sible for performance differences.

Step 6: ISA influence on microarchitecture

Key Finding 6: As shown in Table 7, there are significant dif-
ferences in microarchitectures. Drawing upon instruction mix
and instruction count analysis, we feel that the only case where
the ISA forces larger structures is on the ROB size, physical
rename file size, and scheduler size since there are almost the
same number of x86 micro-ops in flight compared to ARM in-
structions. The difference is small enough that we argue it is not
necessary to quantify further. Beyond the translation to micro-
ops, pipelined implementation of an x86 ISA introduces no addi-
tional overheads over an ARM ISA for these performance levels.

A version appears in the 19th IEEE Intl. Symposium on High Performance Computer Architecture (HPCA 2013) 10

co
re

m
a
rk

w
k_

la
y
o
u
t

w
k_

p
e
rf

m
e
a
n

a
st

a
r

lib
q
u
a
n
tu

m

h
m

m
e
r

h
2
6
4

g
o
b
m

k
b
zi

p
2

sj
e
n
g

g
cc

p
e
rl

b
e
n
ch

o
m

n
e
tp

p
m

e
a
n

so
p
le

x

G
e
m

sF
D

T
D

ca
lc

u
lix

p
o
v
ra

y

to
n
to

n
a
m

d
le

sl
ie

3
D

m
ilc

ca
ct

u
sA

D
M

b
w

a
v
e
s

m
e
a
n

lu
ce

n
e

d
b
_k

e
rn

e
ls

lig
h
tt

p
d

m
e
a
n

0

10

20

30

40

50

60

L1
 D

a
ta

 M
P
K

I

498

A8 Atom

(a) In-Order

w
k_

p
e
rf

w
k_

la
y
o
u
t

co
re

m
a
rk

m
e
a
n

a
st

a
r

h
m

m
e
r

lib
q
u
a
n
tu

m
g
o
b
m

k
sj

e
n
g

g
cc

p
e
rl

b
e
n
ch

h
2
6
4

b
zi

p
2

o
m

n
e
tp

p
m

e
a
n

so
p
le

x

G
e
m

sF
D

T
D

ca
lc

u
lix

n
a
m

d
p
o
v
ra

y

to
n
to

ca
ct

u
sA

D
M

m
ilc

le
sl

ie
3
D

b
w

a
v
e
s

m
e
a
n

lu
ce

n
e

lig
h
tt

p
d

d
b
_k

e
rn

e
ls

m
e
a
n

0

10

20

30

40

50

60

L1
 D

a
ta

 M
P
K

I A9 i7

(b) Out-of-Order
Figure 9. Data L1 Misses per 1000 ARM Instructions.

co
re

m
a
rk

w
k_

la
y
o
u
t

w
k_

p
e
rf

m
e
a
n

a
st

a
r

lib
q
u
a
n
tu

m

h
m

m
e
r

h
2
6
4

g
o
b
m

k
b
zi

p
2

sj
e
n
g

g
cc

p
e
rl

b
e
n
ch

o
m

n
e
tp

p
m

e
a
n

so
p
le

x

G
e
m

sF
D

T
D

ca
lc

u
lix

p
o
v
ra

y

to
n
to

n
a
m

d
le

sl
ie

3
D

m
ilc

ca
ct

u
sA

D
M

b
w

a
v
e
s

m
e
a
n

lu
ce

n
e

d
b
_k

e
rn

e
ls

lig
h
tt

p
d

m
e
a
n

0

10

20

30

40

50

60

In
st

 C
a
ch

e
 M

P
K

I

269

A8 Atom

(a) In-Order
w

k_
p
e
rf

w
k_

la
y
o
u
t

co
re

m
a
rk

m
e
a
n

a
st

a
r

h
m

m
e
r

lib
q
u
a
n
tu

m
g
o
b
m

k
sj

e
n
g

g
cc

p
e
rl

b
e
n
ch

h
2
6
4

b
zi

p
2

o
m

n
e
tp

p
m

e
a
n

so
p
le

x

G
e
m

sF
D

T
D

ca
lc

u
lix

n
a
m

d
p
o
v
ra

y

to
n
to

ca
ct

u
sA

D
M

m
ilc

le
sl

ie
3
D

b
w

a
v
e
s

m
e
a
n

lu
ce

n
e

lig
h
tt

p
d

d
b
_k

e
rn

e
ls

m
e
a
n

0

10

20

30

40

50

60

In
st

 C
a
ch

e
 M

P
K

I

A9 i7

(b) Out-of-Order
Figure 10. Instruction Misses per 1000 ARM Instructions.

5.2. Power and Energy Analysis
In this section, we normalize to A8 as it uses the least power.

Step 1: Average Power
Data: Figure 11 shows average power normalized to the A8.

Per benchmark data is in Figure 18 of Appendix I.

Mobile SPEC INT SPEC FP Server
0

5

10

15

20

25

30

35

40

N
o
rm

a
liz

e
d
 P

o
w

e
r

A8 Atom A9 I7

Figure 11. Raw Average Power Normalized to A8.

Ratio Mobile SPEC INT SPEC FP Server
Atom to A8 3.0 3.1 3.1 3.0
i7 to A9 20 17 20 21

Key Finding 7: Overall x86 implementations consume signifi-
cantly more power than ARM implementations.

Step 2: Average Technology Independent Power
Data: Figure 12 shows technology-independent average

power–cores are scaled to 1 GHz at 45nm (normalized to A8).
Per benchmark data is in Figure 19 of Appendix I.

Ratio Mobile SPEC INT SPEC FP Server
Atom to A8 0.6 0.6 0.6 0.6
i7 to A9 7.0 6.1 7.4 7.6

Finding E1: With frequency and technology scaling, ISA ap-
pears irrelevant for power optimized cores: A8, A9, and Atom
are all within 0.6× of each other (A8 consumes 29% more power
than A9). Atom is actually lower power than A8 or A9.

Mobile SPEC INT SPEC FP Server
0

1

2

3

4

5

6

7

8

N
o
rm

a
liz

e
d
 T

I
P
o
w

e
r

A8 Atom A9 I7

Figure 12. Tech. Independent Avg. Power Normalized to A8.

Finding E2: i7 is performance, not power, optimized. Per
suite power costs are 6.1× to 7.6× higher for i7 than A9 with
1.7× to 7.0× higher frequency-independent performance (Fig-
ure 3 cycle count performance).
Key Finding 8: The choice of power or performance optimized
core designs impacts core power use more than ISA.
Step 3: Average Energy

Data: Figure 13 shows energy (product of power and time).
Per benchmark data is in Figure 20 of Appendix I.

Mobile SPEC INT SPEC FP Server
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o
rm

a
liz

e
d
 E

n
e
rg

y

A8 Atom A9 I7

Figure 13. Raw Average Energy Normalized to A8.

A version appears in the 19th IEEE Intl. Symposium on High Performance Computer Architecture (HPCA 2013) 11

Table 8. Detailed Analysis for Benchmarks with A9 to i7 Gap Greater Than 3×.
Benchmark Gap Analysis

omnetpp 3.4 Branch MPKI: 59 for A9 versus only 2.0 for i7; I-Cache MPKI: 33 for A9 versus only 2.2 for i7.
db kernels 3.8 1.6× more instructions, 5× more branch MPKI for A9 than i7.
tonto 6.2 Instructions: 4× more for ARM than x86.
cactusADM 6.6 Instructions: 2.8× more for ARM than x86.
milc 8.0 A9 and i7 both experience more than 50 data cache MPKI. i7’s microarchitecture hides these misses more effectively.
leslie3D 8.4 4× as many L2 cache misses using the A8 than using the Atom explains the 2× A8 to Atom gap. On the A9, the data cache

MPKI is 55, compared to only 30 for the i7.
bwaves 30 324× more branch MPKI, 17.5× more instructions, 4.6× more instruction MPKI, and 6× more L2 cache misses on A8 than

Atom. A9 has similar trends, including 1000× more branch MPKI than the i7.

Ratio Mobile SPEC INT SPEC FP Server
A8 to Atom 0.8(0.1) 0.9 0.8 (0.6) 0.8(0.2)
i7 to A9 3.3 1.7 1.7 (1.0) 1.8

Finding E3: Despite power differences, Atom consumes less
energy than A8 and i7 uses only slightly more energy than A9
due primarily to faster execution times, not ISA.

Finding E4: For “hard” benchmarks with high cache miss
rates that leave the core poorly utilized (e.g., many in SPEC
FP), fixed energy costs from structures provided for high-
performance make i7’s energy 2× to 3× worse than A9.
Key Finding 9: Since power and performance are both primar-
ily design choices, energy use is also primarily impacted by de-
sign choice. ISA’s impact on energy is insignificant.

Step 4: ISA impact on microarchitecture.
Data: Table 7 outlined microarchitecture features.
Finding E5: The energy impact of the ISA is that it requires

micro-ops translation and an additional micro-ops cache. Fur-
ther, since the number of micro-ops is not significantly higher,
the energy impact of x86 support is small.

Finding E6: Other power-hungry structures like a large L2-
cache, highly associative TLB, aggressive prefetcher, and large
branch predictor seem dictated primarily by the performance
level and application domain targeted by the Atom and i7 pro-
cessors and are not necessitated by x86 ISA features.
5.3. Trade-off Analysis
Step 1: Power- Performance Trade-offs

Data: Figure 14 shows the geometric mean power-
performance trade-off for all benchmarks using technology node
scaled power. We generate a cubic curve for the power-
performance trade-off curve. Given our small sample set, a
core’s location on the frontier does not imply that it is optimal.

0 1 2 3 4 5 6

Performance (BIPS)

0

5

10

15

20

25

30

35

P
o
w

e
r

(W
)

A8 A9
Atom

i7
i7 - low perf

Figure 14. Power Performance Trade-offs.
Finding T1: A9 provides 3.5× better performance using 1.8×

the power of A8.

Finding T2: i7 provides 6.2× better performance using 10.9×
the power of Atom.

Finding T3: i7’s microarchitecture has high energy cost when
performance is low: benchmarks with the smallest performance
gap between i7 and A9 (star in Figure 14) 11 have only 6× better
performance than A9 but use more than 10× more power.
Key Finding 10: Regardless of ISA or energy-efficiency,
high-performance processors require more power than lower-
performance processors. They follow well established cubic
power/performance trade-offs.
Step 2: Energy-Performance Trade-offs

Data: Figure 15 shows the geometric mean energy-
performance trade-off using technology node scaled energy. We
generate a quadratic energy-performance trade-off curve. Again,
a core’s location on the frontier does not imply optimality. Syn-
thetic processor points beyond the four processors studied are
shown using hollow points; we consider a performance targeted
ARM core (A15) and frequency scaled A9, Atom, and i7 cores.
A15 BIPS are from reported CoreMark scores; details on syn-
thetic points are in Appendix III.

0 1 2 3 4 5 6

Performance (BIPS)

0

5

10

15

20

25

30

E
n
e
rg

y
 (

J)

Synthetic Points Are HollowA9 2 Ghz

A15 2 Ghz

Atom 1 Ghz

i7 2Ghz

A8

A9

Atom

i7

Figure 15. Energy Performance Trade-offs.

Finding T4: Regardless of ISA, power-only or performance-
only optimized cores have high energy overheads (e.g., A8 and
i7).

Finding T5: Balancing power and performance leads to
energy-efficient cores, regardless of the ISA: A9 and Atom pro-
cessor energy requirements are within 24% of each other and
use up to 50% less energy than other cores.

11Seven SPEC, all mobile, and the non-database server benchmarks.

A version appears in the 19th IEEE Intl. Symposium on High Performance Computer Architecture (HPCA 2013) 12

Finding T6: DVFS and microarchitectural techniques can
provide high energy-efficiency to performance-optimized cores,
regardless of the ISA: i7 at 2 GHz provides 6× performance at
the same energy level as an A9.

Finding T7: We consider the energy-delay metric (ED) to
capture both performance and power. Cores designed balancing
power and performance constraints show the best energy-delay
product: A15 is 46% lower than any other design we considered.

Finding T8: When weighting the importance of performance
only slightly more than power, high-performance cores seem
best suited. Considering ED1.4, i7–a performance optimized
core–is best (lowest product, and 6× higher performance). Con-
sidering ED2, i7 is more than 2× better than the next best design.
See Appendix IV for more details.
Key Finding 11: It is the microarchitecture and design method-
ologies that really matter.

6. Challenges
During this study, we encountered infrastructure and system

challenges, missteps, and software/hardware bugs. Table 9 out-
lines these issues as a potentially useful guide for similar studies,
and we describe them in more detail below.

Board cooling: The A8 and A9 boards lack active cooling,
and repeatedly rebooted due to over-heating while under test. A
fan-based laptop cooling pad fixed the problem.

Network over USB: The ssh connection to the A8 and A9
boards used up to 20% of the CPU, which was unsuitable for
performance benchmarking. We instead used a serial terminal
to access these boards. The Atom board does not support USB
networking; we used the Atom as a stand-alone terminal.

Microprocessor PMU infrastructure: The performance
counters on the ARM processor are poorly supported on
community-supported boards. We backported over 150 TI
patches to the Linux kernel to support performance counters and
PMU interrupts.

Compilation: gcc works remarkably well as a cross-platform
compiler for simple benchmarks like SPEC which relies on
libc. However, for the ARM environment, the compiler often
fails when compiling complex code bases that have not been rig-
orously tested on Linux, due to dependences on over 100 pack-
ages. Overcoming these linking errors is a tremendously tedious
process. We either carefully choose equivalent highly portable
workloads (e.g., lighttpd) or worked through the errors (e.g.,
CLucene and WebKit).

Tracing and debugging: ARM open-source tracing infras-
tructure is limited, and lacks dynamic binary translation tools
like Pin or DynamoRIO. ptrace based approaches were too
slow; QEMU correctly emulated, but its JIT obfuscated the in-
struction stream. We used gem5 for ARM traces; gem5 does not
support all benchmarks (e.g., lighttpd).

Table 9. Summary of Challenges.
Challenge Description

Board Cooling (ARM) No active cooling leading to failures
Fix: use a fan-based laptop cooling pad

Networking (ARM) ssh connection used up to 20% of CPU
Fix: use a serial terminal

Networking (Atom) USB networking not supported
Fix: use as standalone terminal

Perf Counters (ARM) PMU poorly supported on selected boards
Fix: backport over 150 TI patches

Compilation (ARM) Failures due to dependences on > 100 packages
Fix 1: pick portable equivalent (lighttpd)
Fix 2: work through errors (CLucene & WebKit)

Tracing (ARM) No dynamic binary emulation
Fix: Use gem5 to generate instruction traces

Table 10. Summary of Findings.
Finding Support Representative

Data: A8/Atom

Pe
rf

or
m

an
ce

1 Large performance gaps exist Fig-2 2× to 997×

2 Cycle-count gaps are less than 2.5× Fig-3 ≤ 2.5×(A8 to Atom, A9 to i7)

3 x86 CPI < ARM CPI: Fig-3 & 4 A8: 3.4
x86 ISA overheads hidden by µarch Atom: 2.2

4 ISA performance effects indistinguishable Table-6 inst. mix same
between x86 and ARM Fig-5 & 6 short x86 insts

5 µarchitecture, not the ISA, responsible Table-8 324× Br MPKI
for performance differences 4× L2-misses

6 Beyond micro-op translation, x86 ISA Table-7introduces no overheads over ARM ISA

Po
w

er

1 x86 implementations draw more power Fig-11 Atom/A8 raw
than ARM implementations power: 3×

2 Choice of power or perf. optimization Fig-12 Atom/A8 power
impacts power use more than ISA @1 GHz: 0.6×

3 Energy use primarily a design choice; Fig-13 Atom/A8 raw
ISA’s impact insignificant energy: 0.8×

Tr
ad

e-
of

fs 1 High-perf processors require more power Fig-14 A8/A9: 1.8×
than lower-performance processors i7/Atom: 10.9×

2 It is the µ-architecture and design Fig-15
ED: i7@2GHz<A9

methodology that really matters A15 best for ED
i7 best for ED1.4

7. Conclusions
In this work, we revisit the RISC vs. CISC debate consid-

ering contemporary ARM and x86 processors running modern
workloads to understand the role of ISA on performance, power,
and energy.Our study suggests that whether the ISA is RISC or
CISC is irrelevant, as summarized in Table 10, which includes
a key representative quantitative measure for each analysis step.
We reflect on whether there are certain metrics for which RISC
or CISC matters, and place our findings in the context of past
ISA evolution and future ISA and microarchitecture evolution.

Considering area normalized to the 45nm technology node,
we observe that A8’s area is 4.3mm2, AMD’s Bobcat’s area
is 5.8mm2, A9’s area is 8.5 mm2, and Intel’s Atom is 9.7
mm2 [4, 25, 27]. The smallest, the A8, is smaller than Bob-
cat by 25%. We feel much of this is explained by simpler core
design (in-order vs OOO), and smaller caches, predictors, and
TLBs. We also observe that the A9’s area is in-between Bobcat

A version appears in the 19th IEEE Intl. Symposium on High Performance Computer Architecture (HPCA 2013) 13

and Atom and is close to Atom’s. Further detailed analysis is
required to determine how much the ISA and the microarchitec-
ture structures for performance contribute to these differences.

A related issue is the performance level for which our re-
sults hold. Considering very low performance processors, like
the RISC ATmega324PA microcontroller with operating fre-
quencies from 1 to 20 MHz and power consumption between
2 and 50mW [3], the overheads of a CISC ISA (specifically the
complete x86 ISA) are clearly untenable. In similar domains,
even ARM’s full ISA is too rich; the Cortex-M0, meant for low
power embedded markets, includes only a 56 instruction subset
of Thumb-2. Our study suggests that at performance levels in
the range of A8 and higher, RISC/CISC is irrelevant for perfor-
mance, power, and energy. Determining the lowest performance
level at which the RISC/CISC ISA effects are irrelevant for all
metrics is interesting future work.

While our study shows that RISC and CISC ISA traits are
irrelevant to power and performance characteristics of mod-
ern cores, ISAs continue to evolve to better support exposing
workload-specific semantic information to the execution sub-
strate. On x86, such changes include the transition to Intel64
(larger word sizes, optimized calling conventions and shared
code support), wider vector extensions like AVX, integer crypto
and security extensions (NX), hardware virtualization exten-
sions and, more recently, architectural support for transactions
in the form of HLE. Similarly, the ARM ISA has introduced
shorter fixed length instructions for low power targets (Thumb),
vector extensions (NEON), DSP and bytecode execution exten-
sions (Jazelle DBX), Trustzone security, and hardware virtual-
ization support. Thus, while ISA evolution has been continuous,
it has focused on enabling specialization and has been largely
agnostic of RISC or CISC. Other examples from recent research
include extensions to allow the hardware to balance accuracy
and reliability with energy efficiency [15, 13] and extensions to
use specialized hardware for energy efficiency [18].

It appears decades of hardware and compiler research has
enabled efficient handling of both RISC and CISC ISAs and
both are equally positioned for the coming years of energy-
constrained innovation.
Acknowledgments

We thank the anonymous reviewers, the Vertical group, and
the PARSA group for comments. Thanks to Doug Burger, Mark
Hill, Guri Sohi, David Wood, Mike Swift, Greg Wright, Jichuan
Chang, and Brad Beckmann for comments on the paper and
thought-provoking discussions on ISA impact. Thanks for vari-
ous comments on the paper and valuable input on ISA evolution
and area/cost overheads of implementing CISC ISAs provided
by David Patterson. Support for this research was provided by
NSF grants CCF-0845751, CCF-0917238, and CNS-0917213,
and the Cisco Systems Distinguished Graduate Fellowship.

References

[1] ARM on Ubuntu 12.04 LTS battling Intel x86? http:

//www.phoronix.com/scan.php?page=article&item=
ubuntu_1204_armfeb&num=1.

[2] The ARM vs x86 wars have begun: In-depth power analysis
of Atom, Krait & Cortex A15 http://www.anandtech.com/
show/6536/arm-vs-x86-the-real-showdown/.

[3] Atmel Datasheet, http://www.atmel.com/Images/
doc2503.pdf.

[4] chip-architect, http://www.chip-architect.com/news/
AMD_Ontario_Bobcat_vs_Intel_Pineview_Atom.jpg.

[5] M. Baron. The single-chip cloud computer. Microprocessor Re-
port, April 2010.

[6] D. Bhandarkar. RISC versus CISC: a tale of two chips. SIGARCH
Comp. Arch. News, 25(1):1–12, Mar. 1997.

[7] D. Bhandarkar and D. W. Clark. Performance from architecture:
comparing a RISC and a CISC with similar hardware organiza-
tion. In ASPLOS ’91.

[8] N. Binkert, B. Beckmann, G. Black, S. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. Hill, and D. Wood. The gem5
simulator. SIGARCH Comp. Arch. News, 39(2), Aug. 2011.

[9] W. L. Bircher and L. K. John. Analysis of dynamic power man-
agement on multi-core processors. In ICS ’08.

[10] E. Blem, J. Menon, and K. Sankaralingam. Data to accompany
a detailed analysis of contemporary arm and x86 architectures,
www.cs.wisc.edu/vertical/isa-power-struggles, 2013.

[11] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure
for adaptive dynamic optimization. In CGO ’03.

[12] R. Colwell, C. Y. Hitchcock, III, E. Jensen, H. Brinkley Sprunt,
and C. Kollar. Instruction sets and beyond: Computers, complex-
ity, and controversy. Computer, 18(9):8–19, Sept. 1985.

[13] M. de Kruijf, S. Nomura, and K. Sankaralingam. Relax: An ar-
chitectural framework for software recovery of hardware faults.
In ISCA ’10.

[14] H. Esmaeilzadeh, T. Cao, Y. Xi, S. Blackburn, and K. McKinley.
Looking back on the language and hardware revolutions: mea-
sured power, performance, and scaling. In ASPLOS ’11.

[15] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Archi-
tecture support for disciplined approximate programming. In AS-
PLOS ’12.

[16] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Fal-
safi. Clearing the clouds: a study of emerging scale-out work-
loads on modern hardware. In ASPLOS ’12.

[17] M. J. Flynn, C. L. Mitchell, and J. M. Mulder. And now a case
for more complex instruction sets. Computer, 20(9), 1987.

[18] V. Govindaraju, C.-H. Ho, and K. Sankaralingam. Dynamically
specialized datapaths for energy efficient computing. In HPCA
’11.

[19] A. Gutierrez, R. G. Dreslinski, T. F. Wenisch, T. Mudge, A. Saidi,
C. Emmons, and N. Paver. Full-system analysis and characteri-
zation of interactive smartphone applications. In IISWC ’11.

[20] K. Hoste and L. Eeckhout. Microarchitecture-independent work-
load characterization. Micro, IEEE, 27(3):63 –72, 2007.

[21] C. Isci and M. Martonosi. Runtime power monitoring in high-end
processors: Methodology and empirical data. In MICRO ’03.

[22] C. Isen, L. John, and E. John. A tale of two processors: Revisiting
the RISC-CISC debate. In 2009 SPEC Benchmark Workshop.

[23] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen,
N. Satish, J. Chhugani, A. Di Blas, and P. Dubey. Sort vs. Hash
revisited: fast join implementation on modern multi-core CPUs.
VLDB ’09.

[24] D. A. Patterson and D. R. Ditzel. The case for the reduced in-
struction set computer. SIGARCH Comp. Arch. News, 8(6), 1980.

[25] G. Quirk. Improved ARM core, other changes in TI mobile
app processor, http://www.cs.virginia.edu/~skadron/
cs8535_s11/arm_cortex.pdf.

[26] J. Rao and K. A. Ross. Making B+- trees cache conscious in main
memory. In SIGMOD ’00.

[27] W. Wang and T. Dey. http://www.cs.virginia.edu/
~skadron/cs8535_s11/ARM_Cortex.pdf.

http://www.phoronix.com/scan.php?page=article&item=ubuntu_1204_armfeb&num=1
http://www.phoronix.com/scan.php?page=article&item=ubuntu_1204_armfeb&num=1
http://www.phoronix.com/scan.php?page=article&item=ubuntu_1204_armfeb&num=1
http://www.anandtech.com/show/6536/arm-vs-x86-the-real-showdown/
http://www.anandtech.com/show/6536/arm-vs-x86-the-real-showdown/
http://www.atmel.com/Images/doc2503.pdf
http://www.atmel.com/Images/doc2503.pdf
http://www.chip-architect.com/news/AMD_Ontario_Bobcat_vs_Intel_Pineview_Atom.jpg
http://www.chip-architect.com/news/AMD_Ontario_Bobcat_vs_Intel_Pineview_Atom.jpg
www.cs.wisc.edu/vertical/isa-power-struggles
http://www.cs.virginia.edu/~skadron/cs8535_s11/arm_cortex.pdf
http://www.cs.virginia.edu/~skadron/cs8535_s11/arm_cortex.pdf
http://www.cs.virginia.edu/~skadron/cs8535_s11/ARM_Cortex.pdf
http://www.cs.virginia.edu/~skadron/cs8535_s11/ARM_Cortex.pdf

A version appears in the 19th IEEE Intl. Symposium on High Performance Computer Architecture (HPCA 2013) 14

Appendices
All raw data mentioned below can be found in the attached to this document (right click on link to save).

Appendix I: Detailed Counts

Data: Figure 16 shows execution time normalized to i7. The raw data for this figure is in the Time worksheet of our publicly
released spreadsheet [10].

co
re

m
a
rk

w
k_

la
y
o
u
t

w
k_

p
e
rf

m
e
a
n

a
st

a
r

lib
q
u
a
n
tu

m

h
m

m
e
r

h
2

6
4

g
o
b
m

k
b
zi

p
2

sj
e
n
g

g
cc

p
e
rl

b
e
n
ch

o
m

n
e
tp

p
m

e
a
n

so
p
le

x

G
e
m

sF
D

T
D

ca
lc

u
lix

p
o
v
ra

y

to
n
to

n
a
m

d
le

sl
ie

3
D

m
ilc

ca
ct

u
sA

D
M

b
w

a
v
e
s

m
e
a
n

lu
ce

n
e

d
b
_k

e
rn

e
ls

lig
h
tt

p
d

m
e
a
n

0

5

10

15

20

25

30

35

T
im

e

40 54 54 75 86 142213 72363 130 997 344

A8 Atom

(a) In-Order

w
k_

p
e
rf

w
k_

la
y
o
u
t

co
re

m
a
rk

m
e
a
n

a
st

a
r

h
m

m
e
r

lib
q
u
a
n
tu

m
g
o
b
m

k
sj

e
n
g

g
cc

p
e
rl

b
e
n
ch

h
2

6
4

b
zi

p
2

o
m

n
e
tp

p
m

e
a
n

so
p
le

x

G
e
m

sF
D

T
D

ca
lc

u
lix

n
a
m

d
p
o
v
ra

y

to
n
to

ca
ct

u
sA

D
M

m
ilc

le
sl

ie
3

D
b
w

a
v
e
s

m
e
a
n

lu
ce

n
e

lig
h
tt

p
d

d
b
_k

e
rn

e
ls

m
e
a
n

0

5

10

15

20

25

30

35

T
im

e

102

A9 i7

(b) Out-of-Order
Figure 16. Execution Time Normalized to i7.

Data: Figure 17a shows dynamic instruction (macro) counts on A8 and Atom normalized to Atom x86 macro-instructions. The
raw data for this figure is in the Macro-ops worksheet of our publicly released spreadsheet [10].

Data: Figure 17b shows dynamic micro-op counts for Atom and i7 normalized to Atom macro-instructions12. The raw data for
this figure is in the Micro-ops worksheet of our publicly released spreadsheet [10]. Note: for icc results, preprocessor directives
changed so that gcc and icc use the same alignment and compiler hints.

w
k_

p
e
rf

w
k_

la
y
o
u
t

co
re

m
a
rk

m
e
a
n

a
st

a
r

h
m

m
e
r

lib
q
u
a
n
tu

m
g
o
b
m

k
sj

e
n
g

g
cc

p
e
rl

b
e
n
ch

h
2

6
4

b
zi

p
2

o
m

n
e
tp

p
m

e
a
n

so
p
le

x
G

e
m

sF
D

T
D

ca
lc

u
lix

n
a
m

d
p
o
v
ra

y
to

n
to

ca
ct

u
sA

D
M

m
ilc

le
sl

ie
3

D
b
w

a
v
e
s

m
e
a
n

lu
ce

n
e

lig
h
tt

p
d

d
b
_k

e
rn

e
ls

m
e
a
n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
a
cr

o
-O

p
s

4.7 17

ARM x86

(a) In-Order

w
k_

p
e
rf

w
k_

la
y
o
u
t

co
re

m
a
rk

m
e
a
n

a
st

a
r

h
m

m
e
r

lib
q
u
a
n
tu

m
g
o
b
m

k
sj

e
n
g

g
cc

p
e
rl

b
e
n
ch

h
2

6
4

b
zi

p
2

o
m

n
e
tp

p
m

e
a
n

so
p
le

x

G
e
m

sF
D

T
D

ca
lc

u
lix

n
a
m

d
p
o
v
ra

y

to
n
to

ca
ct

u
sA

D
M

m
ilc

le
sl

ie
3

D
b
w

a
v
e
s

m
e
a
n

lu
ce

n
e

lig
h
tt

p
d

d
b
_k

e
rn

e
ls

m
e
a
n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ic

ro
-O

p
s

Atom i7

(b) Out-of-Order
Figure 17. Instruction Counts Normalized to i7 macro-ops.

Data: Table 11 shows CPIs. This data is also in the CPI worksheet of our publicly released spreadsheet [10].
Table 11. Cycles per Instruction (CPI) Per Benchmark.

Mobile SPEC INT SPEC FP Server

co
re

m
ar

k

w
k

-l
ay

ou
t

w
k

-p
er

f

as
ta

r

lib
qu

an
tu

m

hm
m

er

h2
64

go
bm

k

bz
ip

2

sj
en

g

gc
c

pe
rl

be
nc

h

om
ne

tp
p

so
pl

ex

G
em

sF
D

T
D

ca
lc

ul
ix

po
vr

ay

to
nt

o

na
m

d

le
sl

ie
3D

m
ilc

ca
ct

us
A

D
M

bw
av

es

lu
ce

ne

db
ke

rn
el

lig
ht

tp
d

ARM 0.02 1.3 1.3 0.6 0.6 0.9 1.7 2.1 0.5 0.6 3.9 1.9 2.0 1.4 1.3 2.7 2.0 4.8 0.9 0.9 0.7 1.7 0.8 0.4 0.47 0.1
x86 0.02 1.4 1.4 0.7 0.7 0.9 1.5 2.1 0.7 0.7 4.1 1.7 1.7 1.5 1.3 2.6 1.8 5.2 0.9 0.9 0.7 1.5 0.8 1.0 0.6 0.2

12For i7, we use issued micro-ops instead of retired micro-ops; we found that on average, this does not impact the micro-op/macro-op ratio.

Index

		Data to accompany

				“Power Struggles: Revisiting the RISC vs. CISC Debate

						on Contemporary ARM and x86 Architectures”, HPCA 2013.

		Additional details on data are in the accompanying technical report:

				 “A Detailed Analysis of Contemporary ARM and x86 Architetures,” UW-Madison, 2013.

		For questions/comments, please contact the authors:

						Emily Blem (blem@cs.wisc.edu),

						Jai Menon (menon@cs.wisc.edu)

						Karu Sankaralingam (karu@cs.wisc.edu).

		Cores:

				Abbreviation		Description

				A8		Cortex-A8 on a Beagleboard, OMAP3530

				A9		Cortex-A9 on a PandaBoard, OMAP4430

				Atom		Atom N450 on an N450 Development Kit Board

				i7		I7-2700 in a desktop configuration

		Each worksheet contains one set of data:

				Category		Description

				Time		Time to complete benchmark

				Cycles		Cycles to complete benchmark

				Macro-ops		Instructions retired

				Micro-ops		Micro-ops executed

				CPI		Cycles per macro-op instructions

				Code Size		Binary text segment size, in bytes

				Inst Length		Average instruction length in bytes, over issued instructions

				Inst Mix		Rough instruction mix from performance counters

				Branch Misses		Number of branch misses

				L1 Data Misses		Number of L1 Data cache misses

				L1 Inst Misses		Number of L1 Instruction cache misses

				Avg Power		Average power

				Avg TI Power		Average technology independent power (normalized to same frequency and tech node)

				Energy		Total energy required

&"Times New Roman,Regular"&12&A	

&"Times New Roman,Regular"&12Page &P	

mailto:blem@cs.wisc.edumailto:menon@cs.wisc.edumailto:karu@cs.wisc.edu

Time

		Methodology:

				Source:		hardware cycle count performance counters + processor frequency

				Validation:		Compare against wall clock time using time

				Analysis: 		5-20 trials (dependent on variance and benchmark runtime);

						report minimum from trials that complete normally.

		Units:		nanoseconds

		Data:

		Suite		Benchmark		A8		A9		Atom		i7

		MOBILE		web_kit_perf		1.72E+11		2.63E+09		1.82E+09		4.74E+08

		MOBILE		web_kit_layout		1.30E+10		4.59E+09		3.03E+09		7.78E+08

		MOBILE		coremark		5.61E+10		3.70E+10		2.46E+10		6.19E+09

		SPEC_INT		astar		9.69E+10		4.65E+10		3.01E+10		8.19E+09

		SPEC_INT		libquantum		5.95E+08		3.01E+08		2.33E+08		4.46E+07

		SPEC_INT		hmmer		4.94E+10		1.86E+10		1.62E+10		2.82E+09

		SPEC_INT		h264		2.58E+11		1.41E+11		8.13E+10		1.47E+10

		SPEC_INT		gobmk		2.73E+11		1.18E+11		7.05E+10		1.54E+10

		SPEC_INT		bzip2		1.13E+11		6.51E+10		4.33E+10		6.26E+09

		SPEC_INT		sjeng		6.08E+10		2.71E+10		1.64E+10		3.31E+09

		SPEC_INT		gcc		2.16E+10		8.53E+09		5.62E+09		1.01E+09

		SPEC_INT		perlbench		1.18E+10		4.44E+09		3.52E+09		4.99E+08

		SPEC_INT		omnetpp		1.24E+10		4.13E+09		2.80E+09		3.60E+08

		SPEC_FP		soplex		2.08E+08		1.03E+08		8.42E+07		1.76E+07

		SPEC_FP		GemsFDTD		2.66E+10		1.02E+10		1.51E+10		1.58E+09

		SPEC_FP		calculix		8.58E+08		2.44E+08		1.80E+08		3.64E+07

		SPEC_FP		povray		2.16E+10		5.46E+09		4.31E+09		5.36E+08

		SPEC_FP		tonto		4.41E+10		1.74E+10		5.67E+09		8.28E+08

		SPEC_FP		namd		6.58E+11		8.58E+10		1.09E+11		1.22E+10

		SPEC_FP		leslie3D		5.73E+11		2.20E+11		1.07E+11		7.68E+09

		SPEC_FP		milc		3.90E+11		1.23E+11		6.53E+10		4.54E+09

		SPEC_FP		cactusADM		1.41E+11		2.24E+10		1.72E+10		9.90E+08

		SPEC_FP		bwaves		1.17E+12		5.61E+11		6.15E+10		5.49E+09

		SERVER		lucene		1.40E+10		5.19E+09		7.72E+09		1.31E+09

		SERVER		db_kernel		1.44E+09		7.48E+08		2.28E+08		5.85E+07

		SERVER		lighttpd		4.73E+10		2.61E+08		3.21E+08		4.74E+07

&"Times New Roman,Regular"&12&A	

&"Times New Roman,Regular"&12Page &P	

Cycles

		Methodology:

				Source:		hardware cycle count performance counters

				Validation:		Compare against wall clock time using time

				Analysis: 		5-20 trials (dependent on variance and benchmark runtime);

						report minimum from trials that complete normally.

		Units:		cycles

		Data:

		Suite		Benchmark		A8		A9		Atom		i7

		MOBILE		web_kit_perf		1.03E+11		2630774988		2910931371		1610935572

		MOBILE		web_kit_layout		7810926128		4585824636		4845930335		2646709951

		MOBILE		coremark		33647003197		37029372743		39288437692		21047912081

		SPEC_INT		astar		58128788395		46474113958		48124390702		27838895636

		SPEC_INT		libquantum		356754030		300803738		373251990		151744002

		SPEC_INT		hmmer		29622030779		18622740647		25873309805		9604946554

		SPEC_INT		h264		154902254879		141206444604		130057964339		50071050560

		SPEC_INT		gobmk		163608537726		118036838917		112738811096		52315832245

		SPEC_INT		bzip2		67996913045		65142722641		69218508410		21277020386

		SPEC_INT		sjeng		36466012339		27056105646		26190846528		11237565264

		SPEC_INT		gcc		12938380649		8528971745		8999328938		3437699805

		SPEC_INT		perlbench		7063905405		4437563858		5631149672		1697306983

		SPEC_INT		omnetpp		7463521218		4132326106		4480694232		1222981988

		SPEC_FP		soplex		124701147		102583243		134787888		59967566

		SPEC_FP		GemsFDTD		15937190260		10181369049		24129733554		5376939509

		SPEC_FP		calculix		514911604		244090595		288339393		123918395

		SPEC_FP		povray		12948141675		5456063650		6893167972		1823628692

		SPEC_FP		tonto		26445901269		17439270578		9065518021		2814310382

		SPEC_FP		namd		394558223447		85762151019		174231777811		41449616280

		SPEC_FP		leslie3D		344007343621		220455092388		171976468925		26117239913

		SPEC_FP		milc		233716289013		123255138018		104543403285		15446470627

		SPEC_FP		cactusADM		84464570270		22358589610		27459985576		3364575336

		SPEC_FP		bwaves		701011049697		561196531850		98368262456		18660520152

		SERVER		lucene		8385408432		5185032663		12348748833		4450188258

		SERVER		db_kernel		861353288		748384692		365365616		199055423

		SERVER		lighttpd		28361707532		260507810		513617961		161152265

&"Times New Roman,Regular"&12&A	

&"Times New Roman,Regular"&12Page &P	

Macro-Ops

		Methodology:

				Source:		hardware instruction count performance counters

				Validation:		gem5 ARM simulation and DynamoRio emulation counts

				Analysis: 		at least 3 trials

						report minimum from trials that complete normally.

		Units:		nanoseconds

		Data:

		Suite		Benchmark		A8		A9		Atom		i7

		MOBILE		web_kit_perf		1345721150		1345721150		1336779601		2062200672

		MOBILE		web_kit_layout		2299639244		2280605018		2012948274		3158414139

		MOBILE		coremark		29109525622		34288267463		32536986741		40447525019

		SPEC_INT		astar		24894580946		24894580946		23603521901		23647182507

		SPEC_INT		libquantum		398910924		398910924		393037083		404910879

		SPEC_INT		hmmer		19246644454		19246644454		17591030783		17610359628

		SPEC_INT		h264		117884983347		117884983347		92018482339		91764324045

		SPEC_INT		gobmk		70312217487		70312217487		58703752940		58496988011

		SPEC_INT		bzip2		31551603791		31551603791		33497823172		33534770088

		SPEC_INT		sjeng		18238117887		18238117887		15961342506		15829329551

		SPEC_INT		gcc		4845714993		4845714993		4716056059		3443192024

		SPEC_INT		perlbench		2464917640		2464917640		2422201224		2344294526

		SPEC_INT		omnetpp		2199910365		2199910365		2083744382		2100037839

		SPEC_FP		soplex		64133097		64133097		59579602		71705542

		SPEC_FP		GemsFDTD		6612753325		6612753325		7152336215		7260422708

		SPEC_FP		calculix		197370112		197370112		177981822		191815315

		SPEC_FP		povray		3128172020		3128172020		2947111067		2948863403

		SPEC_FP		tonto		16013703579		16013703579		3392448248		3409500890

		SPEC_FP		namd		52608257905		52608257905		74248246785		74324213274

		SPEC_FP		leslie3D		63489731123		63489731123		41934244774		41974653927

		SPEC_FP		milc		23050092830		23050092830		30059758316		30353054400

		SPEC_FP		cactusADM		14766822028		14766822028		5294150895		5323501256

		SPEC_FP		bwaves		509125856965		509125856965		29137166488		29258257206

		SERVER		lucene		3833040102		3898674292		6294939547		6375121403

		SERVER		db_kernel		633622000		633535534		387417318		396025210

		SERVER		lighttpd		149502691		149502691		120487052		128213396

Micro-Ops

		Methodology:

				Source:		x86: performance counters

						ARM: gem5 simulation

				Validation:		comparison to macro-op counts

				Analysis: 		5-20 trials (dependent on variance and benchmark runtime);

						report minimum from trials that complete normally.

		Units:		nanoseconds

		Data:

		Suite		Benchmark		A8		A9		Atom		i7

		MOBILE		web_kit_perf		0		0		32925116488		3.88E+10

		MOBILE		web_kit_layout		0		0		1400829493		2.56E+09

		MOBILE		coremark		0		0		2100740768		4.00E+09

		SPEC_INT		astar		26072801451		26072801451		23953188908		57046758790

		SPEC_INT		libquantum		491342440		491342440		397600721		443249532

		SPEC_INT		hmmer		19772785732		19772785732		18598620740		25553096551

		SPEC_INT		h264		0		0		95341291900		1.08E+11

		SPEC_INT		gobmk		0		0		61203104956		89014068422

		SPEC_INT		bzip2		32388240203		32388240203		33763771774		43211016589

		SPEC_INT		sjeng		20101954069		20101954069		16368657889		21208722616

		SPEC_INT		gcc		6123968744		6123968744		4979262230		6285066882

		SPEC_INT		perlbench		257697925		257697925		2655138244		2891546184

		SPEC_INT		omnetpp		2847146139		2847146139		2299938511		2551698003

		SPEC_FP		soplex		62991619		62991619		76928274		119709783

		SPEC_FP		GemsFDTD		7473322076		7473322076		11062929809		9133709727

		SPEC_FP		calculix		217516724		217516724		204503469		244220064

		SPEC_FP		povray		4345389839		4345389839		3591129761		4077455082

		SPEC_FP		tonto		19463914566		19463914566		4551302706		4899169619

		SPEC_FP		namd		52890883480		52890883480		89865067720		94070398811

		SPEC_FP		leslie3D		64252156572		64252156572		69756631565		51349827727

		SPEC_FP		milc		21912846805		21912846805		37033021080		33743135824

		SPEC_FP		cactusADM		15649218738		15649218738		14509586481		5842945947

		SPEC_FP		bwaves		0		0		33431916507		34917797939

		SERVER		lucene		0		0		6862267818		8.17E+09

		SERVER		db_kernel		0		0		411479253		3.45E+08

		SERVER		lighttpd		0		0		151331047		1.76E+08

CPI

		Methodology:

				Source:		Time and Cycles tables

				Validation:		N/A

				Analysis: 		N/A

		Units:		N/A

		Data:

		Suite		Benchmark		A8		A9		Atom		i7

		MOBILE		web_kit_perf		76.65926927		2.177570161		1.954918363		0.781173042

		MOBILE		web_kit_layout		3.396587595		2.407379463		2.010793013		0.837986988

		MOBILE		coremark		1.15587604		1.207500805		1.079942951		0.520375773

		SPEC_INT		astar		2.334997666		2.038864831		1.866836564		1.177260573

		SPEC_INT		libquantum		0.894320031		0.949661002		0.754062423		0.374759015

		SPEC_INT		hmmer		1.539075076		1.470823974		0.967583762		0.54541456

		SPEC_INT		h264		1.314011764		1.413389583		1.197832333		0.545648334

		SPEC_INT		gobmk		2.32688633		1.92047025		1.678752899		0.894333777

		SPEC_INT		bzip2		2.155101639		2.066358403		2.064640615		0.634476406

		SPEC_INT		sjeng		1.999439447		1.640892457		1.483492201		0.709920482

		SPEC_INT		gcc		2.670066372		1.908231969		1.76010594		0.998404905

		SPEC_INT		perlbench		2.865777457		2.324806716		1.800288896		0.724016101

		SPEC_INT		omnetpp		3.392647872		2.150308968		1.87840658		0.582361882

		SPEC_FP		soplex		1.944411744		2.262316019		1.59953671		0.836303085

		SPEC_FP		GemsFDTD		2.410068768		3.37368558		1.539656562		0.740582157

		SPEC_FP		calculix		2.608863109		1.620049676		1.236715086		0.646029724

		SPEC_FP		povray		4.139203852		2.338957649		1.744169955		0.618417486

		SPEC_FP		tonto		1.651454402		2.672264205		1.089021693		0.825431778

		SPEC_FP		namd		7.499929463		2.346611339		1.630203212		0.55768658

		SPEC_FP		leslie3D		5.418314703		4.101098514		3.472295259		0.622214538

		SPEC_FP		milc		10.13949448		3.477852423		5.347272956		0.508893452

		SPEC_FP		cactusADM		5.719888146		5.18685359		1.514109777		0.632023019

		SPEC_FP		bwaves		1.37689147		3.376040786		1.102274662		0.637786455

		SERVER		lucene		2.187665198		1.961694587		1.329947637		0.698055453

		SERVER		db_kernel		1.359411902		0.943080237		1.181282899		0.502633211

		SERVER		lighttpd		189.7070035		4.262847771		1.742495792		1.256906611

Code Size

		Methodology:

				Source:		ELF text segment size

				Validation:		N/A

				Analysis: 		N/A

		Units:		MB

		Data:

		Suite		Benchmark		ARM		x86 - gcc		x86 - icc

		MOBILE		web_kit_perf		1.30E+00		1.4		1.5

		MOBILE		web_kit_layout		1.3		1.4		1.5

		MOBILE		coremark		0.02		0.02		0.6

		SPEC_INT		astar		0.6		0.7		0.7

		SPEC_INT		libquantum		0.6		0.7		0.7

		SPEC_INT		hmmer		0.9		0.9		1

		SPEC_INT		h264		1.7		1.5		1.3

		SPEC_INT		gobmk		2.1		2.1		2.2

		SPEC_INT		bzip2		0.5		0.7		0.7

		SPEC_INT		sjeng		0.7		0.7		0.8

		SPEC_INT		gcc		3.9		4.1		4.3

		SPEC_INT		perlbench		1		1.7		1.9

		SPEC_INT		omnetpp		2		1.7		2.2

		SPEC_FP		soplex		1.4		1.5		1.5

		SPEC_FP		GemsFDTD		1.3		1.3		1.7

		SPEC_FP		calculix		2.7		2.6		3.1

		SPEC_FP		povray		2		1.8		2.2

		SPEC_FP		tonto		4.8		5.2		6.8

		SPEC_FP		namd		0.9		0.9		1

		SPEC_FP		leslie3D		0.9		0.9		1.4

		SPEC_FP		milc		0.7		0.7		0.8

		SPEC_FP		cactusADM		1.7		1.5		2

		SPEC_FP		bwaves		0.8		0.8		N/A

		SERVER		lucene		0.4		1		1.4

		SERVER		db_kernel		0.47		0.6		1.8

		SERVER		lighttpd		1.4		1.8		0.2

Inst Length

		Methodology:

				Source:		x86: pin tool to find running average of executed instruction lengths

						ARM: not using THUMB instructions, so fixed length

				Validation:		N/A

				Analysis: 		N/A

		Units:		Bytes

		Data:

		Suite		Benchmark		ARM - gcc		x86 - gcc		x86 - icc

		MOBILE		web_kit_perf		4.00E+00		3.7		3.2

		MOBILE		web_kit_layout		4.00E+00		3.7		3.2

		MOBILE		coremark		4.00E+00		2.4		2.5

		SPEC_INT		astar		4.00E+00		2.9		3.2

		SPEC_INT		libquantum		4.00E+00		3		2.9

		SPEC_INT		hmmer		4.00E+00		3		3.6

		SPEC_INT		h264		4.00E+00		3.5		3.3

		SPEC_INT		gobmk		4.00E+00		3.1		3.3

		SPEC_INT		bzip2		4.00E+00		3.6		3.4

		SPEC_INT		sjeng		4.00E+00		3.5		3.6

		SPEC_INT		gcc		4.00E+00		2.8		2.9

		SPEC_INT		perlbench		4.00E+00		2.9		3.2

		SPEC_INT		omnetpp		4.00E+00		2.7		2.8

		SPEC_FP		soplex		4.00E+00		2.7		3.1

		SPEC_FP		GemsFDTD		4.00E+00		3.4		3.6

		SPEC_FP		calculix		4.00E+00		2.9		3.3

		SPEC_FP		povray		4.00E+00		2.6		3.5

		SPEC_FP		tonto		4.00E+00		3.4		4.2

		SPEC_FP		namd		4.00E+00		3.3		4.9

		SPEC_FP		leslie3D		4.00E+00		4.1		5

		SPEC_FP		milc		4.00E+00		2.6		4.1

		SPEC_FP		cactusADM		4.00E+00		6.4		6.1

		SPEC_FP		bwaves		4.00E+00		3		N/A

		SERVER		lucene		4.00E+00		3.7		2.7

		SERVER		db_kernel		4.00E+00		2.6		2.7

		SERVER		lighttpd		4.00E+00		3.7		2.8

Inst Mix

		Methodology:

				Source:		SIMD, FP, load/store, branch performance counters

				Validation:		N/A

				Analysis: 		N/A

		Units:		count

		Data:				A9														i7

		Suite		Benchmark		Branch Instructions		Total Instructions		L1 Data Accesses		Loads		Stores		Other				Suite		Benchmark		Total Instructions		Branch Instructions		L1 loads		L1 stores		Other

		INT		astar		2.34E+09		1.47E+10		1.03E+10		8.15E+09		1.91E+09		2.06E+09				INT		astar		5.71E+10		3.92E+09		1.12E+10		3.95E+09		3.81E+10

		INT		bzip2		2.11E+09		2.41E+10		1.11E+10		8.36E+09		3.48E+09		1.09E+10				INT		bzip2		42549030865		4720005919		1.33E+10		5.03E+09		1.95E+10

		INT		gcc		5.73E+08		5.61E+09		1.75E+09		1.07E+09		6.28E+08		3.29E+09				INT		hmmer		2.57E+10		1.36E+09		7.85E+09		2.43E+09		1.41E+10

		INT		gobmk		6.14E+09		5.75E+10		2.40E+10		1.46E+10		4.12E+09		2.73E+10				INT		gcc		6.29E+09		9.53E+08		1.39E+09		8.87E+08		3.06E+09

		INT		hmmer		7.92E+08		1.56E+10		7.99E+09		6.54E+09		2.83E+09		6.84E+09				INT		gobmk		8.93E+10		1.08E+10		1.94E+10		1.20E+10		4.71E+10

		INT		h264		5.86E+09		1.06E+11		5.42E+10		3.23E+10		1.11E+10		4.62E+10				INT		h264		1.09E+11		7.76E+09		5.10E+10		2.02E+10		3.01E+10

		INT		libquantum		4.58E+07		3.97E+08		6.10E+07		3.22E+07		4.63E+07		2.90E+08				INT		libquantum		4.18E+08		5.52E+07		1.64E+08		2.85E+07		1.70E+08

		INT		omnetpp		3.12E+08		2.67E+09		9.12E+08		5.16E+08		2.37E+08		1.45E+09				INT		omnetpp		2.55E+09		4.17E+08		7.29E+08		5.45E+08		8.58E+08

		INT		perlbench		2.87E+08		2.69E+09		1.08E+09		6.62E+08		2.49E+08		1.32E+09				INT		perlbench		2.91E+09		5.03E+08		7.55E+08		4.66E+08		1.19E+09

		INT		sjeng		1.54E+09		1.34E+10		7.33E+09		5.26E+09		1.83E+09		4.51E+09				INT		sjeng		2.11E+10		3.11E+09		4.80E+09		2.32E+09		1.08E+10

		FP		bwaves		5.18E+10		3.84E+11		6.43E+10		5.26E+09		1.83E+09		2.68E+11				FP		bwaves		3.41E+10		1.09E+09		1.75E+10		5.72E+09		9.77E+09

		FP		cactusADM		5.33E+07		1.02E+10		4.23E+09		5.26E+09		1.83E+09		5.94E+09				FP		cactusADM		1.05E+10		3.71E+07		5.79E+09		1.95E+09		2.70E+09

		FP		calculix		2.19E+07		2.07E+08		6.61E+07		5.26E+09		1.83E+09		1.19E+08				FP		calculix		2.47E+08		3.18E+07		6.06E+07		3.11E+07		1.24E+08

		FP		GemsFDTD		6.30E+08		6.94E+09		2.92E+09		5.26E+09		1.83E+09		3.39E+09				FP		GemsFDTD		1.08E+10		9.98E+08		3.15E+09		1.45E+09		5.22E+09

		FP		leslie3D		3.05E+09		4.92E+10		2.36E+10		9.66E+08		1.83E+09		2.25E+10				FP		leslie3D		6.25E+10		3.09E+09		2.21E+10		8.02E+09		2.93E+10

		FP		milc		8.99E+08		1.38E+10		1.06E+10		5.26E+09		1.83E+09		2.25E+09				FP		milc		3.29E+10		7.19E+08		1.06E+10		4.53E+09		1.70E+10

		FP		namd		1.54E+09		4.35E+10		1.55E+10		5.26E+09		1.83E+09		2.64E+10				FP		namd		9.38E+10		3.25E+09		2.39E+10		7.04E+09		5.96E+10

		FP		povray		3.07E+08		3.55E+09		1.42E+09		5.26E+09		1.83E+09		1.82E+09				FP		povray		4.00E+09		4.03E+08		1.11E+09		6.21E+08		1.87E+09

		FP		soplex		1.45E+05		1.27E+06		3.70E+05		5.26E+09		1.83E+09		7.56E+05				FP		soplex		1.18E+08		1.28E+07		2.31E+07		1.04E+07		7.19E+07

		FP		tonto		1.30E+09		1.30E+10		2.97E+09		5.26E+09		1.83E+09		8.72E+09				FP		tonto		4.88E+09		3.46E+08		1.32E+09		6.07E+08		2.60E+09

		WEB		coremark		4.46E+09		2.14E+10		8.49E+09		6.52E+09		1.86E+09		8.47E+09				WEB		coremark		2.91E+11		5.78E+10		5.16E+10		1.38E+10		1.67E+11

		WEB		wk_perf		1.37E+08		1.35E+09		3.89E+08		2.61E+08		1.28E+08		8.20E+08				WEB		wk_perf		8.27E+09		8.94E+08		2.73E+09		9.44E+08		3.70E+09

		WEB		wk_layout		2.41E+08		2.28E+09		6.97E+08		4.62E+08		2.34E+08		1.34E+09				WEB		wk_layout		9.81E+10		1.00E+10		3.28E+10		1.22E+10		4.31E+10

		SERVER		lucene		5.92E+08		3.90E+09		2.55E+09		9.31E+08		3.88E+08		7.52E+08				SERVER		lucene		6.38E+09		1.09E+09		2.73E+09		1.40E+09		1.16E+09

		SERVER		db kernels		3.58E+07		6.34E+08		9.47E+07		1.23E+06		5.87E+05		5.03E+08				SERVER		db kernels		3.96E+08		1.37E+08		1.35E+08		2.55E+07		9.80E+07

		SERVER		litehttp		1.42E+07		1.50E+08		4.33E+07		2.71E+07		1.62E+07		9.19E+07				SERVER		litehttp		1.65E+11		2.90E+10		5.25E+10		4.20E+10		4.12E+10

Branch Misses

		Methodology:

				Source:		hardware branch misprediction count performance counters

				Validation:		N/A

				Analysis: 		At least 3 trials; additional if a particular counter varies by more than 5%

						report minimum from trials that complete normally.

		Units:		count

		Data:

		Suite		Benchmark		A8		A9		Atom		i7

		MOBILE		web_kit_perf		5.02E+08		33273774		15147086		7347188

		MOBILE		web_kit_layout		74386093		67440742		32905104		15532640

		MOBILE		coremark		490549249		554702701		487955082		20266447.8666667

		SPEC_INT		astar		842894161		782998058		674859220		518264219

		SPEC_INT		libquantum		618330		1176627		507655		200739

		SPEC_INT		hmmer		66062114		81201363		71920297		47408964

		SPEC_INT		h264		1142788088		1088371550		227776703		101263201

		SPEC_INT		gobmk		1811737940		2280327966		1684379432		757586039

		SPEC_INT		bzip2		179423993		209220094		181560800		138490267

		SPEC_INT		sjeng		485023996		635640374		402853282		124584932

		SPEC_INT		gcc		134584883		147592346		96894594		29987536

		SPEC_INT		perlbench		90924643		80099816		54178684		10431128

		SPEC_INT		omnetpp		118400947		129298908		39619822		4458724

		SPEC_FP		soplex		1225941		71182		1130675		650227

		SPEC_FP		GemsFDTD		119081385		112407722		25921514		5068274

		SPEC_FP		calculix		3085733		3113289		1462896		838125

		SPEC_FP		povray		167400763		79757947		31302651		8688474

		SPEC_FP		tonto		260070960		259986769		13172551		4941188

		SPEC_FP		namd		167400763		124551496		132237982		102962593

		SPEC_FP		leslie3D		107263724		68561515		63909062		9357047

		SPEC_FP		milc		70920148		42389795		7410240		618761

		SPEC_FP		cactusADM		16085171		5834187		1935578		399854

		SPEC_FP		bwaves		6439897669		6436192876		19824969		2781340

		SERVER		lucene		79047063		84480909		61338902		16276771

		SERVER		db_kernel		4115845		2947785		478034		395129

		SERVER		lighttpd		10978141		6133302		2700333		323632

L1 Data Misses

		Methodology:

				Source:		hardware L1 data cache miss performance counters

				Validation:		N/A

				Analysis: 		At least 3 trials; additional if a particular counter varies by more than 5%

						report minimum from trials that complete normally.

		Units:		count

		Data:

		Suite		Benchmark		A8		A9		Atom		i7

		MOBILE		web_kit_perf		670405736		11231488		5363718		19004654

		MOBILE		web_kit_layout		23790796		20146494		10540157		28721291

		MOBILE		coremark		1205541		53091		20777		252842.933333333

		SPEC_INT		astar		398969332		502552483		23891383		851145644

		SPEC_INT		libquantum		5661056		3554786		12288		2585267

		SPEC_INT		hmmer		65905122		91353456		96048		83227550

		SPEC_INT		h264		383452721		505537024		65397408		406366395

		SPEC_INT		gobmk		618638813		493766029		64363749		591203197

		SPEC_INT		bzip2		318241665		541192953		334252135		628115213

		SPEC_INT		sjeng		163548216		62612467		14672790		51075353

		SPEC_INT		gcc		50976016		46293303		8015713		42869839

		SPEC_INT		perlbench		31864439		17695123		6786864		17066998

		SPEC_INT		omnetpp		24977346		4967210		102163		2009374

		SPEC_FP		soplex		1120980		11916		56729		1769228

		SPEC_FP		GemsFDTD		42616971		39581665		98122383		233098641

		SPEC_FP		calculix		1246991		915213		66841		1245389

		SPEC_FP		povray		1134509389		31186624		936457		36460825

		SPEC_FP		tonto		21252715		18539702		234887		13632571

		SPEC_FP		namd		1134509389		721437830		3082129		757304810

		SPEC_FP		leslie3D		1868931807		3336841400		211903247		1892489205

		SPEC_FP		milc		580120057		1146589584		433768633		1031984595

		SPEC_FP		cactusADM		100793123		174391752		39154913		82052965

		SPEC_FP		bwaves		2421841734		1458688855		75549201		693509297

		SERVER		lucene		27183095		15570844		2163284		19950787

		SERVER		db_kernel		2567362		4785256		149763		3001966

		SERVER		lighttpd		4160425		1088000		476197		3682247

L1 Inst Misses

		Methodology:

				Source:		hardware L1 instruction cache miss performance counters

				Validation:		N/A

				Analysis: 		At least 3 trials; additional if a particular counter varies by more than 5%

						report minimum from trials that complete normally.

		Units:		count

		Data:

		Suite		Benchmark		A8		A9		Atom		i7

		MOBILE		web_kit_perf		361721781		30782208		9609348		10152444

		MOBILE		web_kit_layout		38972719		63096295		30611784		28519939

		MOBILE		coremark		3463858		1291911		2939345		325929.066666667

		SPEC_INT		astar		7537788		2138063		4671982		472031

		SPEC_INT		libquantum		129346		131328		62298		78411

		SPEC_INT		hmmer		5131990		1244191		2781241		206825

		SPEC_INT		h264		232003495		145816216		60223477		31859099

		SPEC_INT		gobmk		1807666832		1555464771		606914478		295711241

		SPEC_INT		bzip2		7366772		1586807		3753184		296518

		SPEC_INT		sjeng		277346901		159742570		40622983		10018319

		SPEC_INT		gcc		91357726		99225154		42935063		22642404

		SPEC_INT		perlbench		73642466		92940562		46540379		25432888

		SPEC_INT		omnetpp		92122757		72008590		15895065		5175579

		SPEC_FP		soplex		419220		87517		192140		129215

		SPEC_FP		GemsFDTD		82146497		72075717		15064629		3719811

		SPEC_FP		calculix		2407310		2278682		399961		202689

		SPEC_FP		povray		47212501		44840366		15775042		5262714

		SPEC_FP		tonto		32819652		21054469		7205026		4364575

		SPEC_FP		namd		47212501		3783800		12276561		598559

		SPEC_FP		leslie3D		39087839		15954298		19430180		5398616

		SPEC_FP		milc		35490700		10173632		10817061		1862631

		SPEC_FP		cactusADM		18004415		2333538		3949022		504837

		SPEC_FP		bwaves		127829910		47618117		4547056		480554

		SERVER		lucene		32887524		26971962		37232824		24701581

		SERVER		db_kernel		350275		263535		86700		100020

		SERVER		lighttpd		8304933		8721892		4942735		5119376

Avg Power

		Methodology:

				Source:		over 300 WattsUp samples measuring board power

				Validation:		i7 compared to energy counter numbers, A8 compared to TI spreadsheet

				Analysis: 		over 300 samples, check that there are no large shifts in measures

		Units:		W

		Data:				Board Power								Active Power

		Suite		Benchmark		A8		A9		Atom		i7		A8		A9		Atom		i7

				Idle Power		1.49		4.80		14.80		43.40		0.00		0.00		0.00		0.00

		MOBILE		web_kit_perf		2.71		6.58		17.36		66.22		1.22		1.78		2.56		22.82

		MOBILE		web_kit_layout		2.72		6.55		17.17		69.98		1.23		1.75		2.37		26.58

		MOBILE		coremark		2.79		6.55		16.99		68.09		1.30		1.75		2.19		24.69

		SPEC_INT		astar		2.24		6.00		17.37		65.12		0.75		1.20		2.57		21.72

		SPEC_INT		libquantum		2.25		5.83		17.12		64.67		0.76		1.03		2.32		21.27

		SPEC_INT		hmmer		2.23		6.20		17.18		65.31		0.74		1.40		2.38		21.91

		SPEC_INT		h264		2.30		6.10		17.31		65.21		0.81		1.30		2.51		21.81

		SPEC_INT		gobmk		2.25		6.01		17.30		65.34		0.76		1.21		2.50		21.94

		SPEC_INT		bzip2		2.28		5.93		17.71		65.62		0.79		1.13		2.91		22.22

		SPEC_INT		sjeng		2.24		6.08		17.31		65.50		0.75		1.28		2.51		22.10

		SPEC_INT		gcc		2.30		6.04		16.88		62.79		0.81		1.24		2.08		19.39

		SPEC_INT		perlbench		2.40		5.47		16.90		46.34		0.91		0.67		2.10		2.94

		SPEC_INT		omnetpp		2.22		5.92		17.09		67.45		0.73		1.12		2.29		24.05

		SPEC_FP		soplex		2.35		5.72		16.85		64.72		0.86		0.92		2.05		21.32

		SPEC_FP		GemsFDTD		2.15		6.15		17.26		68.17		0.66		1.35		2.46		24.77

		SPEC_FP		calculix		2.35		5.36		16.86		64.56		0.86		0.56		2.06		21.16

		SPEC_FP		povray		2.35		5.56		16.93		66.44		0.86		0.76		2.13		23.04

		SPEC_FP		tonto		2.25		6.01		17.06		64.01		0.76		1.21		2.26		20.61

		SPEC_FP		namd		2.15		5.93		17.29		64.95		0.66		1.13		2.49		21.55

		SPEC_FP		leslie3D		2.31		5.90		17.71		64.52		0.82		1.10		2.91		21.12

		SPEC_FP		milc		2.26		5.85		18.02		66.99		0.77		1.05		3.22		23.59

		SPEC_FP		cactusADM		2.28		6.22		17.21		67.89		0.79		1.42		2.41		24.49

		SPEC_FP		bwaves		2.26		6.24		17.28		70.03		0.77		1.44		2.48		26.63

		SERVER		lucene		2.72		6.43		17.36		68.61		1.23		1.63		2.56		25.21

		SERVER		db_kernel		2.73		6.37		17.17		63.06		1.24		1.57		2.37		19.66

		SERVER		lighttpd		2.65		6.39		16.99		67.97		1.16		1.59		2.19		24.57

Avg TI Power

		Methodology:

				Source:		avg power

				Validation:		N/A

				Analysis: 		N/A

		Units:		W

		Conversion Factors:				A8		A9		Atom		i7

		to 45 nm				0.8		1		1		1.3

		to 1 Ghz				1.2		1		0.8		0.6

		Data:

		Suite		Benchmark		A8		A9		Atom		i7

		MOBILE		web_kit_perf		1.18		1.78		2.05		20.17

		MOBILE		web_kit_layout		1.19		1.75		1.90		23.50

		MOBILE		coremark		1.25		1.75		1.75		21.83

		SPEC_INT		astar		0.72		1.20		2.06		19.20

		SPEC_INT		libquantum		0.73		1.03		1.86		18.80

		SPEC_INT		hmmer		0.71		1.40		1.90		19.37

		SPEC_INT		h264		0.78		1.30		2.01		19.28

		SPEC_INT		gobmk		0.73		1.21		2.00		19.39

		SPEC_INT		bzip2		0.76		1.13		2.33		19.64

		SPEC_INT		sjeng		0.72		1.28		2.01		19.54

		SPEC_INT		gcc		0.78		1.24		1.66		17.14

		SPEC_INT		perlbench		0.88		0.67		1.68		2.60

		SPEC_INT		omnetpp		0.71		1.12		1.83		21.26

		SPEC_FP		soplex		0.83		0.92		1.64		18.85

		SPEC_FP		GemsFDTD		0.64		1.35		1.97		21.90

		SPEC_FP		calculix		0.83		0.56		1.65		18.71

		SPEC_FP		povray		0.83		0.76		1.70		20.37

		SPEC_FP		tonto		0.73		1.21		1.81		18.22

		SPEC_FP		namd		0.64		1.13		1.99		19.05

		SPEC_FP		leslie3D		0.79		1.10		2.33		18.67

		SPEC_FP		milc		0.74		1.05		2.58		20.85

		SPEC_FP		cactusADM		0.76		1.42		1.93		21.65

		SPEC_FP		bwaves		0.74		1.44		1.98		23.54

		SERVER		lucene		1.19		1.63		2.05		22.29

		SERVER		db_kernel		1.19		1.57		1.90		17.38

		SERVER		lighttpd		1.12		1.59		1.75		21.72

Energy

		Methodology:

				Source:		cycle counts and avg power

				Validation:		N/A

				Analysis: 		N/A

		Units:		nJ

		Data:

		Suite		Benchmark		A8		A9		Atom		i7

		MOBILE		web_kit_perf		2.11E+11		4.68E+09		4.49E+09		1.08E+10

		MOBILE		web_kit_layout		1.61E+10		8.03E+09		6.92E+09		2.07E+10

		MOBILE		coremark		7.32E+10		6.48E+10		5.18E+10		1.53E+11

		SPEC_INT		astar		7.31E+10		5.58E+10		7.45E+10		1.78E+11

		SPEC_INT		libquantum		4.55E+08		3.10E+08		5.22E+08		9.49E+08

		SPEC_INT		hmmer		3.68E+10		2.61E+10		3.71E+10		6.19E+10

		SPEC_INT		h264		2.10E+11		1.84E+11		1.97E+11		3.21E+11

		SPEC_INT		gobmk		2.08E+11		1.43E+11		1.70E+11		3.38E+11

		SPEC_INT		bzip2		9.00E+10		7.36E+10		1.21E+11		1.39E+11

		SPEC_INT		sjeng		4.59E+10		3.46E+10		3.96E+10		7.30E+10

		SPEC_INT		gcc		1.76E+10		1.06E+10		1.13E+10		1.96E+10

		SPEC_INT		perlbench		1.08E+10		2.97E+09		7.12E+09		1.47E+09

		SPEC_INT		omnetpp		9.14E+09		4.63E+09		6.18E+09		8.65E+09

		SPEC_FP		soplex		1.80E+08		9.44E+07		1.66E+08		3.76E+08

		SPEC_FP		GemsFDTD		1.77E+10		1.37E+10		3.58E+10		3.92E+10

		SPEC_FP		calculix		7.42E+08		1.37E+08		3.58E+08		7.71E+08

		SPEC_FP		povray		1.87E+10		4.15E+09		8.84E+09		1.24E+10

		SPEC_FP		tonto		3.37E+10		2.11E+10		1.23E+10		1.71E+10

		SPEC_FP		namd		4.37E+11		9.69E+10		2.61E+11		2.63E+11

		SPEC_FP		leslie3D		4.73E+11		2.43E+11		3.01E+11		1.62E+11

		SPEC_FP		milc		3.02E+11		1.29E+11		2.03E+11		1.07E+11

		SPEC_FP		cactusADM		1.12E+11		3.17E+10		3.99E+10		2.42E+10

		SPEC_FP		bwaves		9.05E+11		8.08E+11		1.47E+11		1.46E+11

		SERVER		lucene		1.73E+10		8.45E+09		1.90E+10		3.30E+10

		SERVER		db_kernel		1.79E+09		1.17E+09		5.22E+08		1.15E+09

		SERVER		lighttpd		5.50E+10		4.14E+08		6.78E+08		1.16E+09

A version appears in the 19th IEEE Intl. Symposium on High Performance Computer Architecture (HPCA 2013) 15

Data: Table 12a shows average ARM and x86 static binary sizes, measuring only the binary’s instruction segment. Note that
bwaves fails to run due incorrect code produced by ifort. This data is also in the Code Size worksheet of our publicly released
spreadsheet [10].

Data: Table 12b shows average dynamic ARM and x86 instruction lengths. This data is also in the Inst Length worksheet of our
publicly released spreadsheet [10].

Table 12. Instruction Size Details: (a) Static Binary (MB), (b) Average Dynamic Instruction (B).
Mobile SPEC INT SPEC FP Server

co
re

m
ar

k

w
k

-l
ay

ou
t

w
k

-p
er

f

as
ta

r

lib
qu

an
tu

m

hm
m

er

h2
64

go
bm

k

bz
ip

2

sj
en

g

gc
c

pe
rl

be
nc

h

om
ne

tp
p

so
pl

ex

G
em

sF
D

T
D

ca
lc

ul
ix

po
vr

ay

to
nt

o

na
m

d

le
sl

ie
3D

m
ilc

ca
ct

us
A

D
M

bw
av

es

lu
ce

ne

db
ke

rn
el

lig
ht

tp
d

B
in ARM 0.02 1.3 1.3 0.6 0.6 0.9 1.7 2.1 0.5 0.6 3.9 1.9 2.0 1.4 1.3 2.7 2.0 4.8 0.9 0.9 0.7 1.7 0.8 0.4 0.47 0.1

x86 - gcc 0.02 1.4 1.4 0.7 0.7 0.9 1.5 2.1 0.7 0.7 4.1 1.7 1.7 1.5 1.3 2.6 1.8 5.2 0.9 0.9 0.7 1.5 0.8 1.0 0.6 0.2
x86 - icc 0.6 1.5 1.5 0.7 0.7 1.0 1.3 2.2 0.7 0.8 4.3 1.9 2.2 1.5 1.7 3.1 2.2 6.8 1.0 1.4 0.8 2.0 — 1.4 1.8 0.2

In
st ARM 4.0

x86 - gcc 2.4 3.7 3.7 2.9 3.0 3.0 3.5 3.1 3.6 3.5 2.8 2.9 2.7 2.7 3.4 2.9 2.6 3.4 3.3 4.1 2.6 6.4 3.0 3.7 2.6 3.7
x86 - icc 2.5 3.2 3.2 3.2 2.9 3.6 3.3 3.3 3.4 3.6 2.9 3.2 2.8 3.1 3.6 3.3 3.5 4.2 4.9 5.0 4.1 6.1 — 2.7 2.7 2.8

Data: Figure 18 shows average power normalized to the A8. The raw data for this figure is in the Avg Power worksheet of our
publicly released spreadsheet [10].

co
re

m
a
rk

w
k_

la
y
o
u
t

w
k_

p
e
rf

m
e
a
n

a
st

a
r

lib
q
u
a
n
tu

m

h
m

m
e
r

h
2
6
4

g
o
b
m

k
b
zi

p
2

sj
e
n
g

g
cc

p
e
rl

b
e
n
ch

o
m

n
e
tp

p
m

e
a
n

so
p
le

x

G
e
m

sF
D

T
D

ca
lc

u
lix

p
o
v
ra

y

to
n
to

n
a
m

d
le

sl
ie

3
D

m
ilc

ca
ct

u
sA

D
M

b
w

a
v
e
s

m
e
a
n

lu
ce

n
e

d
b
_k

e
rn

e
ls

lig
h
tt

p
d

m
e
a
n

0

5

10

15

20

25

30

35

40

A
v
e
ra

g
e
 P

o
w

e
r A8 Atom

(a) In-Order

w
k_

p
e
rf

w
k_

la
y
o
u
t

co
re

m
a
rk

m
e
a
n

a
st

a
r

h
m

m
e
r

lib
q
u
a
n
tu

m
g
o
b
m

k
sj

e
n
g

g
cc

p
e
rl

b
e
n
ch

h
2
6
4

b
zi

p
2

o
m

n
e
tp

p
m

e
a
n

so
p
le

x

G
e
m

sF
D

T
D

ca
lc

u
lix

n
a
m

d
p
o
v
ra

y

to
n
to

ca
ct

u
sA

D
M

m
ilc

le
sl

ie
3
D

b
w

a
v
e
s

m
e
a
n

lu
ce

n
e

lig
h
tt

p
d

d
b
_k

e
rn

e
ls

m
e
a
n

0

5

10

15

20

25

30

35

40

A
v
e
ra

g
e
 P

o
w

e
r A9 i7

(b) Our-of-Order
Figure 18. Average Power Normalized to A8.

Data: Figure 19 shows technology-independent average power–cores are scaled to 1 GHz at 45 nm (normalized to A8). The raw
data for this figure is in the Avg TI Power worksheet of our publicly released spreadsheet [10].

co
re

m
a
rk

w
k_

la
y
o
u
t

w
k_

p
e
rf

m
e
a
n

a
st

a
r

lib
q
u
a
n
tu

m

h
m

m
e
r

h
2
6
4

g
o
b
m

k
b
zi

p
2

sj
e
n
g

g
cc

p
e
rl

b
e
n
ch

o
m

n
e
tp

p
m

e
a
n

so
p
le

x

G
e
m

sF
D

T
D

ca
lc

u
lix

p
o
v
ra

y

to
n
to

n
a
m

d
le

sl
ie

3
D

m
ilc

ca
ct

u
sA

D
M

b
w

a
v
e
s

m
e
a
n

lu
ce

n
e

d
b
_k

e
rn

e
ls

lig
h
tt

p
d

m
e
a
n

0

2

4

6

8

10

A
v
e
ra

g
e
 P

o
w

e
r A8 Atom

(a) In-Order

w
k_

p
e
rf

w
k_

la
y
o
u
t

co
re

m
a
rk

m
e
a
n

a
st

a
r

h
m

m
e
r

lib
q
u
a
n
tu

m
g
o
b
m

k
sj

e
n
g

g
cc

p
e
rl

b
e
n
ch

h
2
6
4

b
zi

p
2

o
m

n
e
tp

p
m

e
a
n

so
p
le

x

G
e
m

sF
D

T
D

ca
lc

u
lix

n
a
m

d
p
o
v
ra

y

to
n
to

ca
ct

u
sA

D
M

m
ilc

le
sl

ie
3
D

b
w

a
v
e
s

m
e
a
n

lu
ce

n
e

lig
h
tt

p
d

d
b
_k

e
rn

e
ls

m
e
a
n

0

2

4

6

8

10

A
v
e
ra

g
e
 P

o
w

e
r A9 i7

(b) Out-of-Order
Figure 19. Technology Independent Average Power Normalized to A8.

A version appears in the 19th IEEE Intl. Symposium on High Performance Computer Architecture (HPCA 2013) 16

Data: Figure 20 shows raw energy (power and time). The raw data for this figure is in the Energy worksheet of our publicly
released spreadsheet [10].

co
re

m
a
rk

w
k_

la
y
o
u
t

w
k_

p
e
rf

m
e
a
n

a
st

a
r

lib
q
u
a
n
tu

m

h
m

m
e
r

h
2
6

4
g
o
b
m

k
b
zi

p
2

sj
e
n
g

g
cc

p
e
rl

b
e
n
ch

o
m

n
e
tp

p
m

e
a
n

so
p
le

x

G
e
m

sF
D

T
D

ca
lc

u
lix

p
o
v
ra

y

to
n
to

n
a
m

d
le

sl
ie

3
D

m
ilc

ca
ct

u
sA

D
M

b
w

a
v
e
s

m
e
a
n

lu
ce

n
e

d
b
_k

e
rn

e
ls

lig
h
tt

p
d

m
e
a
n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
n
e
rg

y
 (

J)

A8 Atom

(a) In-Order

w
k_

p
e
rf

w
k_

la
y
o
u
t

co
re

m
a
rk

m
e
a
n

a
st

a
r

h
m

m
e
r

lib
q
u
a
n
tu

m
g
o
b
m

k
sj

e
n
g

g
cc

p
e
rl

b
e
n
ch

h
2
6

4
b
zi

p
2

o
m

n
e
tp

p
m

e
a
n

so
p
le

x

G
e
m

sF
D

T
D

ca
lc

u
lix

n
a
m

d
p
o
v
ra

y

to
n
to

ca
ct

u
sA

D
M

m
ilc

le
sl

ie
3
D

b
w

a
v
e
s

m
e
a
n

lu
ce

n
e

lig
h
tt

p
d

d
b
_k

e
rn

e
ls

m
e
a
n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
n
e
rg

y
 (

J)

A9 i7

(b) Out-of-Order
Figure 20. Energy Normalized to A8.

Appendix II: Detailed bwaves Analysis
As noted in Section 5, the bwaves benchmark performed significantly worse (up to 30× more cycles) on ARM cores than on x86
cores. Contributing to this gap, we found that ARM cores executed 17.5× more instructions than x86 cores. We believe that most
of the ARM to x86 gap for bwaves can be explained by this large differences in the number of instructions required to complete the
same amount of work.

We performed detailed analysis to find the source of the instruction count discrepancies. To begin, we found from the execution
profile that complex double floating point operations which the compiler translates to longer instruction sequences for ARM than for
x86 are a significant source of additional instructions: 37% of all cycles for ARM cores are spent in aeabi dadd and 29% of all
cycles are spent in aeabi dmul, while neither of these routines appear in the x86 summary).

We use flags to force gcc to compile floating point instructions to SSE 2 (x86) and NEON (ARM) instructions. This decision is the
most fair in general, since ARM’s VFP unit is known to be significantly slower than the NEON unit for single precision floating point
operations. However, unlike the VFP unit, the NEON unit is not IEEE754 compliant, and double precision operations are mapped to
library calls. The result is that for ARM architectures, gcc—in the absence of FP relaxation—compiles double-precision floating point
arithmetic to library calls which add significant overhead compared to short instruction sequences on x86. One solution to bwave’s
outlier status would be to use different compiler flags for benchmarks with significant amounts of double precision arithmetic.

A version appears in the 19th IEEE Intl. Symposium on High Performance Computer Architecture (HPCA 2013) 17

Appendix III: Synthetic Points
A15: Using reported Coremark scores (Coremarks/MHz) and mW/MHz from Microprocessor Reports and ARM documentation, we
assume a 2GHz operating frequency and compute the Coremark score and energy. We then scale A9 BIPS results by the ratio of the
A15 Coremark score to the A9 Coremark score to get an A15 performance projection.
Frequency scaled cores: For frequency scaled cores, we project performance by assuming a linear relationship between performance
and frequency. We scale energy projections as detailed in the Technology scaling and projections paragraph of Section 3.4.

Appendix IV: EDx Analysis

Data: Figure 21 shows the impact of the exponent x on the product EDx. Note that a lower product is better. When x is greater than
1.4, i7 outperforms all other cores.

2-1 20 21 22

Exponent (x)

100
101
102
103
104
105
106
107
108
109

1010
1011
1012

P
ro

d
u
ct

 (
E
D
x

)

A8
A9

Atom
i7

A15
i7 @ 2GHz

Figure 21. Impact of exponent, x, on product EDx.

	. Introduction
	. Framing Key Impacts of the ISA
	. Infrastructure
	. Implementation Rationale and Challenges
	. Implementation Platforms
	. Applications
	. Tools
	. Limitations or Concerns

	. Methodology
	. Performance Analysis Flow
	. Power and Energy Analysis Flow
	. Trade-off Analysis Flow

	. Measured Data Analysis and Findings
	. Performance Analysis
	. Power and Energy Analysis
	. Trade-off Analysis

	. Challenges
	. Conclusions

