
FizzBuzz in Haskell by Embedding
a Domain-Specific Language

by Maciej Piróg 〈maciej.adam.pirog@gmail.com〉

April 23, 2014

The FizzBuzz problem is simple but not trivial, which makes it a popular puzzle
during job interviews for software developers. The conundrum lies in a peculiar
but not unusual control-flow scenario: the default action is executed only if some
previous actions were not executed. In this tutorial, we ask if we can accomplish
this without having to check the conditions for the previous actions twice; in other
words, if we can make the control flow follow the information flow without loosing
modularity. The goal is to have the most beautiful code!

We deliver a rather non-standard, and a bit tongue-in-cheek solution. First, we
design a drastically simple domain-specific language (DSL), which we call, after the
three commands of the language, Skip-Halt-Print. For each natural number n, we
devise a Skip-Halt-Print program that solves FizzBuzz for n. Then, we implement
this in Haskell, and, through a couple of simple transformations, we obtain the final
program. The corollary is a reminder of the importance of higher-order functions
in every functional programmer’s toolbox.

The FizzBuzz problem

FizzBuzz is a simple game for children, and therefore a really hard nut to crack
for programmers and computer scientists. To quote the rules [1]:

Players generally sit in a circle. The player designated to go first says
the number ‘1’, and each player thenceforth counts one number in
turn. However, any number divisible by three is replaced by the word
fizz and any divisible by five by the word buzz. Numbers divisible by
both become fizzbuzz.

The Monad.Reader

In this tutorial, we focus on a single step of the game, that is to convert a natural
number n into fizz, buzz, fizzbuzz, or its string representation.

There are a lot of solutions floating around the Internet, but most of them are,
from our point of view, unsatisfactory. Exhibit A:

fizzbuzz :: Int → String
fizzbuzz n =
if n ‘mod ‘ 3 ≡ 0 ∧ n ‘mod ‘ 5 ≡ 0 then
"fizzbuzz"

else if n ‘mod ‘ 3 ≡ 0 then
"fizz"

else if n ‘mod ‘ 5 ≡ 0 then
"buzz"

else
show n

Exhibit B:

fizzbuzz :: Int → String
fizzbuzz n =
if n ‘mod ‘ 3 ≡ 0
then "fizz" ++ if n ‘mod ‘ 5 ≡ 0

then "buzz"

else ""

else if n ‘mod ‘ 5 ≡ 0
then "buzz"

else show n

Though both programs are correct with respect to the specification, Exhibit A, in
some cases, performs the ‘mod ‘3 and ‘mod ‘5 tests more than once, while Exhibit B
disperses the buzzing code into more than one place in the program. Meanwhile,
we want there to be at most one place that outputs fizz, buzz, or the string rep-
resentation, and each test to be performed only once. Outputting fizzbuzz should
be done by executing the (one and only) piece of code that outputs fizz, followed
by the (one and only) piece that outputs buzz. That is because fizzing and buzzing
are two separate activities – consider the FizzBuzzHissHowl problem, where hiss
and howl are printed for multiples of 7 and 11 respectively. The program design
of Exhibit A and B would lead to an explosion of code complexity.

We can examine the output itself, which gives us an opportunity for yet another
unsatisfactory attempt, Exhibit C:

(C) :: String → String → String
""C s = s

2

Maciej Piróg: FizzBuzz in Haskell by Embedding a Domain-Specific Language

a C s = a

fizzbuzz :: Int → String
fizzbuzz n = ((if n ‘mod ‘ 3 ≡ 0 then "fizz" else "")

++ if n ‘mod ‘ 5 ≡ 0 then "buzz" else "")
C show n

The problem with this solution is far more subtle: many might say this solution is
simple and elegant. Be that as it may, we do not like the fact that the C operator
has to check if its first argument is empty. After all, we have already checked
the conditions ‘mod ‘3 and ‘mod ‘5, so the third test (C’s pattern matching) seems
redundant from the information-flow point of view (compare Exhibit B, which
always performs only two tests).

So, is out there a program that reflects the information-flow structure as Ex-
hibit B, but, at the same time, is as modular as Exhibit C? Let’s find out!

Skip-Halt-Print and contexts

If one feels overwhelmed by the number of (better or worse) possible ways to
solve such a simple problem as FizzBuzz in Haskell, they can start with a simpler
language. The one we propose is called Skip-Halt-Print, and it is very imperative.

A program in Skip-Halt-Print is a (possibly empty) list of commands, which are
executed sequentially. There are only three different commands:

I Skip is an idle instruction; it does nothing at all;
I Halt stops the computation; the rest of the program is not executed;
I Print s prints out the string s.

More formally, the syntax is given by the following grammar, where c denotes
commands, p denotes programs, and ε is the empty program:

c ::= Skip | Halt | Print s

p ::= c; p | ε

For brevity, we will give s also as an integer literal with implicit conversion. For
example, the command Print 42 is meant to print out the string of characters 42.

The formal semantics can be given by a denotation function [[−]] : p → String,
where String is the set of all strings of characters. In the following, ++ denotes
concatenation and "" denotes the empty string.

[[Skip; p]] = [[p]]

[[Halt; p]] = [[ε]] = ""

[[Print s; p]] = s++ [[p]]

3

The Monad.Reader

For example:

[[Print "studio"; Skip; Print 54]] = studio54

[[Print "nuts"; Halt; Print "and bolts"]] = nuts

For every natural number n, we construct a Skip-Halt-Print program that solves
FizzBuzz for n. The building blocks for this construction are called contexts – they
are programs with holes (one hole per context). We denote contexts by putting
angle brackets 〈−〉 around the programs, while holes are denoted by the • symbol.
For example:

〈Print "keep"; •; Print "calm"〉

A hole is a place in which we can stick another program and get a new program
as a result. We denote this operation by juxtaposition:

〈Print "keep"; •; Print "calm"〉 (Print "nervous and never")

= Print "keep"; Print "nervous and never"; Print "calm"

Two contexts can be composed, and for that we use the ◦ symbol:

〈Skip; •; Print 0〉 ◦ 〈Halt; •〉
= 〈Skip; Halt; •; Print 0〉

What does the FizzBuzz program do? Essentially, it prints out n, unless some-
thing else (like fizzing or buzzing) happens. This behaviour is captured by the
following context:

base(n) = 〈•; Print n〉

What about fizzing? If only n is divisible by 3, it prints out fizz, but it also needs
to prevent the default action from happening by Halt-ing the computation. In
between Print-ing and Halt-ing anything (like buzzing) can happen:

fizz(n) =

{
〈Print "fizz"; •; Halt〉 if nmod 3 = 0

〈•〉 otherwise

The context for buzzing is analogous:

buzz(n) =

{
〈Print "buzz"; •; Halt〉 if nmod 5 = 0

〈•〉 otherwise

4

Maciej Piróg: FizzBuzz in Haskell by Embedding a Domain-Specific Language

The program that solves FizzBuzz for n, which we call fb(n), is a composition
of all these contexts, which we cork with Skip:

fb(n) = (base(n) ◦ fizz(n) ◦ buzz(n)) Skip

Examples:

fb(1) = Skip; Print 1

fb(3) = Print "fizz"; Skip; Halt; Print 3

fb(5) = Print "buzz"; Skip; Halt; Print 5

fb(15) = Print "fizz"; Print "buzz"; Skip; Halt; Halt; Print 15

Exercise 1. For any natural number n, give a Skip-Halt-Print program that solves
the FizzBuzzHissHowl problem for n.

Exercise 2. What is the formal definition of the operations on contexts described
above? Show that contexts with composition form a monoid; that is, ◦ is associa-
tive, (f ◦ g) ◦ h = f ◦ (g ◦ h), and 〈•〉 is its left and right unit, 〈•〉 ◦ f = f and
f ◦ 〈•〉 = f respectively.

Haskell implementation

Now, to solve FizzBuzz in Haskell, we implement Skip-Halt-Print, both syntax and
semantics, together with the language of contexts. For each n, we construct the
right composition of contexts as described above and then execute the resulting
program.

Then, we apply a series of algebraic transformations that simplify the code into
our proposed solution. By “algebraic”, we mean transformations that depend only
on local properties of the components, without the actual understanding of the
implemented algorithm. In other words, something that can be deduced solely
from the shape of the code, like the fold pattern, and applied by simple equational
calculation.

Direct definition

The commands of Skip-Halt-Print are implemented as a three-constructor data
type Cmd , and the program is, of course, a list of commands. We call the [[−]]
function interp.

data Cmd = Skip | Halt | Print String
type Program = [Cmd]

5

The Monad.Reader

interp :: Program → String
interp (Skip : xs) = interp xs
interp (Halt : xs) = ""

interp (Print s : xs) = s ++ interp xs
interp [] = ""

Contexts are more tricky. Instead of specifying their syntax and operations, we
encode them as functions from programs to programs (this technique is sometimes
called higher-order abstract syntax). In this case, sticking the program in a context
becomes Haskell’s function application, and the composition of contexts becomes
simply Haskell’s ◦. However, note that not every Haskell function of the type
Program → Program is a valid context in the sense specified in the previous
section.

type Cont = Program → Program

fizz , buzz , base :: Int → Cont
fizz n | n ‘mod ‘ 3 ≡ 0 = λx → [Print "fizz"] ++ x ++ [Halt]

| otherwise = id
buzz n | n ‘mod ‘ 5 ≡ 0 = λx → [Print "buzz"] ++ x ++ [Halt]

| otherwise = id
base n = λx → x ++ [Print (show n)]

fb :: Int → Program
fb n = (base n ◦ fizz n ◦ buzz n) [Skip]

fizzbuzz :: Int → String
fizzbuzz n = interp (fb n)

Interpretation is a fold

To solve FizzBuzz for n, we first build a program (a datastructure) and then
interpret it (by traversing the datastructure). This calls for some deforestation –
the removal of the intermediate structures! First, we notice a known pattern here:
interp is a fold. We can rewrite it as follows:

step :: Cmd → String → String
step Skip t = t
step Halt t = ""

step (Print s) t = s ++ t

interp = foldr step ""

Additionally, foldr has the following property (see Exercise 3):

6

Maciej Piróg: FizzBuzz in Haskell by Embedding a Domain-Specific Language

foldr step "" p = foldr (◦) id (fmap step p) ""

So, instead of writing programs like

[Skip,Halt ,Print "c"]

and interpreting them by folding with step, we can write programs like

[step Skip, step Halt , step (Print "c")]

and interpret them by folding ◦. Also, we can inline the definition of step:

[step Skip, step Halt , step (Print "c")]

= [λt → t , λt → "", λt → "c" ++ t]

= [id , const "", ("c"++)]

Why build and then interpret? We can manually deforest the situation by fusing
the two: instead of

foldr (◦) id [id , const , ("c"++)]

we write

id ◦ const ◦ ("c"++)

In summary, we can define the next version of Skip-Halt-Print commands as fol-
lows:

type Program = String → String

skip, halt :: Program
skip = id
halt = const ""

print :: String → Program
print = (++)

Now, our programs look like this:

print "hello" ◦ skip ◦ print "world" ◦ halt

To execute them, we apply them to an empty string, for example:

(print "hello" ◦ skip ◦ print "world" ◦ halt) "" = "helloworld"

We need to accordingly adjust the bodies of our contexts:

7

The Monad.Reader

type Cont = Program → Program

fizz , buzz , base :: Int → Cont
fizz n | n ‘mod ‘ 3 ≡ 0 = λx → print "fizz" ◦ x ◦ halt

| otherwise = id
buzz n | n ‘mod ‘ 5 ≡ 0 = λx → print "buzz" ◦ x ◦ halt

| otherwise = id
base n = λx → x ◦ print (show n)

fizzbuzz :: Int → String
fizzbuzz n = (base n ◦ fizz n ◦ buzz n) skip ""

Notice that ◦ is now overloaded: it composes both programs from commands (as
in the bodies of functions fizz , buzz , and base) and contexts (as in the body of
fizzbuzz).

Inlining

The truth is that we do not need to implement the entire Skip-Halt-Print language
to solve FizzBuzz – our three contexts suffice. Thus, we inline the definitions of
base, skip, halt , and print in fizzbuzz . We also put fizz and buzz as local definitions,
so that we don’t have to pass n around:

fizzbuzz :: Int → String
fizzbuzz n = (fizz ◦ buzz) id (show n)
where

fizz | n ‘mod ‘ 3 ≡ 0 = λx → const ("fizz" ++ x "")
| otherwise = id

buzz | n ‘mod ‘ 5 ≡ 0 = λx → const ("buzz" ++ x "")
| otherwise = id

Final polishing

As the last step, we abstract over the divisor and the printed message in fizz and
buzz :

fizzbuzz :: Int → String
fizzbuzz n = (test 3 "fizz" ◦ test 5 "buzz") id (show n)
where

test d s x | n ‘mod ‘ d ≡ 0 = const (s ++ x "")
| otherwise = x

What is going on in this program? The (higher-order) function test has the
following, longish type:

8

Maciej Piróg: FizzBuzz in Haskell by Embedding a Domain-Specific Language

test :: Int → String → (String → String)→ String → String

To understand its logic, it is convenient to name the last argument and rewrite the
function to the following equivalent definition:

test d s x v | n ‘mod ‘ d ≡ 0 = s ++ x ""

| otherwise = x v

The argument v ::String represents the default value of the function (originally set
by the function fizzbuzz to the string representation of n), while x ::String → String
represents a continuation – the rest of the computation parametrised by a new
default value. If the modulus test fails, we change neither the continuation nor
the default value. If the test succeeds, we print out the string s , but also change
the default value to the empty string, so that the string representation of n is not
printed out.

Exercises

Exercise 3. Prove that for f :: t → s → s and a :: s , the following equality holds:

foldr f a xs = foldr (◦) id (fmap f xs) a

Exercise 4. In the “Inlining” step, we silently performed some cleaning-up. In
reality, a bald inlining of base and skip in fizzbuzz yields

((λx → x ◦ (++) (show n)) ◦ fizz ◦ buzz) id ""

Show that it is equal to (fizz ◦ buzz) id (show n).

Exercise 5. Adjust the final solution to the FizzBuzzHissHowl problem. Do you
have to go through the entire derivation once more, or is the final solution modular?

Summary

To solve a trivial problem, we went through a bit of a hassle: formal language
design and semantics, embedded DSLs, interpreters, higher-order abstract syntax
to implement contexts, algebra of programming in the form of reasoning about
folds. One might also argue that the obtained solution is not too intuitive. Do we
really need such heavy artillery to solve FizzBuzz?

Though this tutorial is not meant to be dead serious and is mostly a pretext
for some fun with the functional programming technologies listed above – also,
going through this derivation might be a risky move during a job interview –

9

The Monad.Reader

there is a small point it wants to convey: Functional programmers! Remember
higher-order functions! They are your tool to express programs with non-trivial
structure, to follow the information-flow more closely, to dynamically build your
programs in runtime. A harsh, cantankerous functional programming pedagogue
might say that they are such a basic tool that the final FizzBuzz program shouldn’t
appear complicated at all (and could be easily written by hand) if one knows their
paradigm.

Closing remarks

The Skip-Halt-Print language is based on Edsger W. Dijkstra’s Skip-Abort, which
can be found in his textbook A Discipline of Programming [2, Chapter 4] (I am
grateful to Tomasz Wierzbicki for the reference.) However, one needs to be aware of
a difference in semantics between Halt and Abort: the former peacefully ends
the computation (like return in C -like languages), while the latter atrociously
breaks it (like Haskell’s error function).

I would also like to thank Jeremy Gibbons for his comments. The first idea for
this tutorial sparkled in my head after Laurence E. Day’s Facebook post:

I can write doctoral level Haskell without so much as missing a beat,
but I’d have a genuinely hard time writing a FizzBuzz program in Java.

The main point of this tutorial is that FizzBuzz is not at all trivial, but, many
thanks to higher-order functions in Haskell, solvable. I don’t know about Java.

References

[1] Wikipedia. http://en.wikipedia.org/wiki/Fizz_buzz.

[2] Edsger W. Dijkstra. A discipline of programming. Prentice-Hall series in automatic
computation, Prentice-Hall, Incorporated (1976).

10

http://en.wikipedia.org/wiki/Fizz_buzz

