
Totality versus Turing-Completeness?

Conor McBride

University of Strathclyde
conor@strictlypositive.org

Abstract. In this literate Agda paper, I show that general recursive defi-
nitions can be represented in the free monad which supports the ‘effect’ of
making a recursive call, without saying how these programs should be ex-
ecuted. Diverse semantics can be given by suitable monad morphisms. The
Bove-Capretta construction of the domain of a general recursive function
can be presented datatype-generically as an instance of this technique.

1 Introduction

Advocates of Total Functional Programming [17], such as myself, can prove prone
to a false confession, namely that the price of functions which function is the loss
of Turing-completeness. In a total language, to construct f : S → T is to promise a
canonical T eventually, given a canonical S. The alleged benefit of general recursion
is just to inhibit such strong promises. To make a weaker promise, simply construct
a total function of type S → G T where G is a suitable monad.

The literature and lore of our discipline are littered with candidates for G, and
this article will contribute another—the free monad with one operation f : S → T .
To work in such a monad is to write a general recursive function without prejudice
as to how it might be executed. We are then free, in the technical sense, to choose
any semantics for general recursion we like by giving a suitable monad morphism to
another notion of partial computation. For example, Venanzio Capretta’s partiality
monad [10], also known as the completely iterative monad on the operation yield :
1 → 1, which might never deliver a value, but periodically offers its environment
the choice of whether to interrupt computation or to continue.

Meanwhile, Ana Bove gave, with Capretta, a method for defining the domain
predicate of a general recursive function simultaneously with the delivery of a value
for every input satisfying that domain predicate [8]. Their technique gives a paradig-
matic example of defining a datatype and its interpretation by induction-recursion
in the sense of Peter Dybjer and Anton Setzer [11, 12]. Dybjer and Setzer further
gave a coding scheme which renders first class the characterising data for inductive-
recursive definitions. In this article, I show how to compute from the free monadic
presentation of a general recursive function the code for its domain predicate. By
doing so, I implement the Bove-Capretta method once for all, systematically deliv-
ering (but not, of course, discharging) the proof obligation required to strengthen
the promise from partial f : S → G T to the total f : S → T .

Total functional languages remain logically incomplete in the sense of Gödel.
There are termination proof obligations which we can formulate but not discharge
within any given total language, even though the relevant programs—notably the
language’s own evaluator—are total. Translated across the Curry-Howard corre-
spondence, the argument for general recursion asserts that logical inconsistency is
a price worth paying for logical completeness, notwithstanding the loss of the lan-
guage’s value as evidence. Programmers are free to maintain that such dishonesty
is essential to their capacity to earn a living, but a new generation of programming
technology enables some of us to offer and deliver a higher standard of guarantee.
Faites vos jeux!

2 The General Free Monad

Working (http://github.com/pigworker/Totality), in Agda, we may define a free
monad which is general, both in the sense of being generated by any strictly positive
functor, and in the sense of being suited to the modelling of general recursion.

data General (S : Set) (T : S → Set) (X : Set) : Set where
!! : X → General S T X

?? : (s : S) → (T s → General S T X) → General S T X
infixr 5 ??

At each step, we either output an X , or we make the request s ?? k , for some
s : S , where k explains how to continue once a response in T s has been received.
That is, values in General S T X are request-response trees with X -values at the
leaves; each internal node is labelled by a request and branches over the possible
meaningful responses. The key idea in this paper is to represent recursive calls as
just such request-response interactions, and recursive definitions by just such trees.

General datatypes come with a catamorphism, or ‘fold’ operator.1

fold : ∀ { l S T X } {Y : Set l } →
(X → Y) → ((s : S) → (T s → Y) → Y) →
General S T X → Y

fold r c (!! x) = r x
fold r c (s ?? k) = c s λ t → fold r c (k t)

The ‘bind’ operation for the monad General S T substitutes computations for
values to build larger computations. It is, of course, a fold.

>>=G : ∀ {S T X Y } →
General S T X → (X → General S T Y) → General S T Y

g >>=G k = fold k ?? g
infixl 4 >>=G

We then acquire what Gordon Plotkin and John Power refer to as a generic
effect [16]—the presentation of an individual request-response interaction:

call : ∀ {S T } (s : S) → General S T (T s)
call s = s ?? !!

Now we may say how to give a recursive definition for a function. For each argu-
ment s : S , we must build a request-response tree from individual calls, ultimately
delivering a value in T s. We may thus define the ‘general recursive Π-type’,

PiG : (S : Set) (T : S → Set) → Set
PiG S T = (s : S) → General S T (T s)

to be a type of functions delivering the recursive strategy for computing a T s from
some s : S .

For example, given the natural numbers,

data Nat : Set where
zero : Nat
suc : Nat → Nat

the following obfuscated identity function will not pass Agda’s syntactic check for
guardedness of recursion.

1 Whenever I intend a monoidal accumulation, I say ‘crush’, not ‘fold’.

fusc : Nat → Nat
fusc zero = zero

fusc (suc n) = suc (fusc (fusc n))

However, we can represent its definition without such controversy.

fusc : PiG Nat λ → Nat
fusc zero = !! zero
fusc (suc n) = call n >>=G λ fn → call fn >>=G λ ffn → !! (suc ffn)

Each call is only a placeholder for a recursive call to fusc. The latter tells us just how
to expand the recursion once. Note that fusc’s nested recursive calls make use of the
way >>=G allows values from earlier effects to influence the choice of later effects.
Using only a free applicative functor would exactly exclude nested recursion.

Even so, it is fair to object that the ‘monadified’ definition is ugly compared
to its direct but not obviously terminating counterpart, with more intermediate
naming. Monadic programming is ugly in general, not just in General! Languages
like Bauer and Pretnar’s Eff [6] show us that we can solve this problem, working
in direct style for whatever effectful interface is locally available, but meaning the
computation delivered by the appropriate Moggi-style translation into an explicitly
monadic kernel [15]. There is no need to consider monadic style a just punishment,
whatever your impurity.

By choosing the General monad, we have not committed to any notion of ‘infinite
computation’. Rather, we are free to work with a variety of monads M which might
represent the execution of a general recursive function, by giving a monad morphism
from General S T to M , mapping each request to something which tries to deliver
its response. Correspondingly, we shall need to define these concepts more formally.

3 Monads and Monad Morphisms, More or Less

This section is a formalisation of material which is largely standard. The reader
familiar with monad morphisms should feel free to skim for notation without fear
of missing significant developments.

Let us introduce the notion of a Kleisli structure on sets, as Altenkirch and Reus
called it, known to Altenkirch, Chapman and Uustalu as a ‘relative’ monad [5, 4].

record Kleisli {i j } (M : Set i → Set j) : Set (lsuc (i t j)) where
field

return : ∀ {X } → X → M X
>>= : ∀ {A B } → M A → (A → M B) → M B

� : ∀ {A B C : Set i } →
(B → M C) → (A → M B) → (A → M C)

(f � g) a = g a >>= f
infixl 4 >>= �

Although the ‘notion of computation’ is given by a mapping on value sets, that
mapping need not be an endofunctor. We shall later find use for this flexibility when
we interpret small computations as large descriptions of datatypes. The upshot is
that we are obliged to work polymorphically in our set-theoretic magnitude. Given
the fields return and >>=, we may equip ourselves with Kleisli composition in the
usual way, replacing each value emerging from g with the computation indicated by
f . Of course, we have

GeneralK : ∀ {S T } → Kleisli (General S T)
GeneralK = record {return = !!; >>= = >>=G }

The ‘Monad laws’ amount to requiring that return and � give us a category.

record KleisliLaws {i j } {M : Set i → Set j } (KM : Kleisli M)
: Set (lsuc (i t j)) where
open Kleisli KM
field
.idLeft : ∀ {A B } (g : A → M B) → return � g ≡ g
.idRight : ∀ {A B } (f : A → M B) → f � return ≡ f
.assoc : ∀ {A B C D }

(f : C → M D) (g : B → M C) (h : A → M B) →
(f � g) � h ≡ f � (g � h)

The dots before the field names make those fields unavailable for computational pur-
poses. Correspondingly, I have little compunction about postulating an extensional
equality and reasoning by transforming functions.

postulate
.ext : ∀ {i j } {A : Set i } {B : A → Set j } {f g : (a : A) → B a } →

((a : A) → f a ≡ g a) → f ≡ g

In order to improve the readability of proofs, I expose the reflexivity, symmetry
and transitivity of equality in a way that lets us show our steps.

=[〉= : ∀ { l } {X : Set l } (x : X) {y z } → x ≡ y → y ≡ z → x ≡ z
x =[refl 〉= q = q

=〈]= : ∀ { l } {X : Set l } (x : X) {y z } → y ≡ x → y ≡ z → x ≡ z
x =〈 refl]= q = q

� : ∀ { l } {X : Set l } (x : X) → x ≡ x
x � = refl
infixr 2 � =[〉= =〈]=

I also make use of the way applicative forms respect equality.

d e : ∀ { l } {X : Set l } (x : X) → x ≡ x
dx e = refl

=$= : ∀ {i j } {S : Set i } {T : Set j } {f g : S → T } {x y : S } →
f ≡ g → x ≡ y → f x ≡ g y

refl =$= refl = refl

infixl 9 =$=

E.g., we may show that the usual law for iterating >>= is basically associativity.

.binds : ∀ {A B C } (a : M A) (f : B → M C) (g : A → M B) →
a >>= (f � g) ≡ a >>= g >>= f

binds a f g = assoc f g (const a) =$= d〈〉e

Let us warm up to the proofs of the KleisliLaws with some basic properties of
fold. Firstly, anything satisfying the defining equations of a fold is a fold.

.foldUnique : ∀ { l S T X } {Y : Set l } (f : General S T X → Y) r c →
(∀ x → f (!! x) ≡ r x) → (∀ s k → f (s ?? k) ≡ c s (f · k)) →
f ≡ fold r c

foldUnique f r c rq cq = ext help where
help : (g :) →
help (!! x) = f (!! x) =[rq x 〉= r x �

help (s ?? k) = f (s ?? k) =[cq s k 〉=
c s (f · k) =[dc s e =$= ext (λ t → help (k t)) 〉=
c s (fold r c · k) �

An immediate consequence is that fold-ing the constructors gives the identity.

.foldId : ∀ {S T X } → fold !! ?? ≡ id { } {General S T X }
foldId = fold !! ?? =〈 foldUnique id !! ?? (λ → refl) (λ → refl)]=

id �

With a further induction, we can establish a fusion law for fold after >>=.

.foldFusion : ∀ { l S T X Y } {Z : Set l }
(r : Y → Z) (c : (s : S) → (T s → Z) → Z) (f : X → General S T Y) →
(fold r c · fold f ??) ≡ fold (fold r c · f) c

foldFusion r c f = ext help where
help : (g :) →
help (!! x) = refl
help (s ?? k) =

c s (fold r c · fold f ?? · k) =[dc s e =$= ext (λ t → help (k t)) 〉=
c s (fold (fold r c · f) c · k) �

That is enough to establish the KleisliLaws for GeneralK.

.GeneralKLaws : ∀ {S T } → KleisliLaws (GeneralK {S } {T })
GeneralKLaws = record
{ idLeft = λ g → d(λ k → k · g)e =$= foldId; idRight = λ → refl
; assoc = λ f g h →

(f � g) � h =〈 d(λ k → k · h)e =$= foldFusion f ?? g]=
f � (g � h) �
} where open Kleisli GeneralK

Now, let us consider when a polymorphic function m : ∀ {X } → M X → N X
is a monad morphism in this setting. Given Kleisli M and Kleisli N , m · − should
map return and � from M to N .

record Morphism {i j k } {M : Set i → Set j } {N : Set i → Set k }
(KM : Kleisli M) (KN : Kleisli N)

(m : ∀ {X } → M X → N X) : Set (lsuc (i t j t k)) where
module −M = Kleisli KM ; module −N = Kleisli KN
field
.respI : {X : Set i } →

m · returnM {X } ≡ returnN {X }
.respC : {A B C : Set i } (f : B → M C) (g : A → M B) →

m · (f �M g) ≡ (m · f) �N (m · g)

The proofs, idMorph and compMorph, that monad morphisms are closed under
identity and composition, are left as straightforward exercises for the reader.

Now, General S T is the free monad on the functor Σ S λ s → T s → − which
captures a single request-response interaction. It is a free construction, turning
functors into monads, in the sense that it is left adjoint to the forgetful map which
turns monads back into functors. In other words, the monad morphisms from a free
monad to M are exactly given by the polymorphic functions from the underlying
functor to M . In our case, the monad morphisms

m : ∀ {X } → General S T X → M X

are given exactly by the functions of type

∀ {X } → (Σ S λ s → T s → X) → M X ∼=
(s : S) → ∀ {X } → (T s → X) → M X ∼= (s : S) → M (T s)

That is, the monad morphisms from General S T to M are exactly given by the
‘M -acting versions’ of our function.

morph : ∀ { l S T } {M : Set → Set l } (KM : Kleisli M)
(h : (s : S) → M (T s))
{X } → General S T X → M X

morph KM h = fold return (>>= · h) where open Kleisli KM

Let us show that morph makes Morphisms.

morphMorphism : ∀ { l S T } {M : Set → Set l }
(KM : Kleisli M) (KLM : KleisliLaws KM) →
(h : (s : S) → M (T s)) →
Morphism (GeneralK {S } {T }) KM (morph KM h)

morphMorphism { } {S } {T } KM KLM h =
let module −G = Kleisli (GeneralK {S } {T })

module −M = Kleisli KM ; open KleisliLaws KLM
in record
{respI = refl
; respC = λ f g → morph KM h · (f �G g) =[refl 〉=

fold returnM (>>=M · h) · fold f ?? · g
=[d(λ k → k · g)e =$= (

Expanding �G and focusing our attention before the · g , we find a fusion opportunity.

fold returnM (>>=M · h) · fold f ??
=[foldFusion returnM (>>=M · h) f 〉=

fold (morph KM h · f) (>>=M · h)
=〈 morphFusion KM KLM (morph KM h · f) h]=

(morph KM h · f) �M morph KM h �

We find that foldFusion leaves us with an operation which is almost the definition
morph KM h, except that where we want fold returnM , we have fold of something
else which we ought to be able to move after the fold by another fusion law, to be
established forthwith. Meanwhile, plugging the · g back on the right, we are done.

) 〉= (morph KM h · f) �M (morph KM h · g) �}

The lemma we need allows us to fuse any f �M morph KM h into a single fold.

.morphFusion : ∀ { l S T X Y }
{M : Set → Set l } (KM : Kleisli M) (KLM : KleisliLaws KM)
(f : X → M Y) (h : (s : S) → M (T s)) →
let open Kleisli KM in

f � morph KM h ≡ fold { } {S } {T } f (>>= · h)
morphFusion KM KLM f h = ext help where

open Kleisli KM ; open KleisliLaws KLM
help : (g :) →
help (!! x) = (f � return) x =[idRight f =$= dx e 〉= f x �
help (s ?? k) = (f � morph KM h) (s ?? k)

=[refl 〉= h s >>= (morph KM h · k) >>= f

=〈 binds (h s) f (morph KM h · k)]=
h s >>= (f � (morph KM h · k))

=[d >>= (h s)e =$= ext (λ t → help (k t)) 〉=
fold f (>>= · h) (s ?? k) �

Let us check that morph give us the only monad morphisms from General S T ,
using the uniqueness of fold.

.morphOnly : ∀ { l S T }
{M : Set → Set l } (KM : Kleisli M) (KLM : KleisliLaws KM) →
(m : {X : Set} → General S T X → M X) → Morphism GeneralK KM m →
{X : Set} → m {X } ≡ morph KM (m · call) {X }

morphOnly KM KLM m mm = foldUnique m returnM (>>=M · m · call)
(λ x → m (!! x) =[respIm =$= dx e 〉= returnM x �)
(λ s k → m (s ?? k) =[refl 〉=

(m · (k �G const (call s))) 〈〉 =[respCm k (const (call s)) =$= d〈〉e 〉=
m (call s) >>=M (m · k) �)

where
module −G = Kleisli GeneralK
module −M = Kleisli KM ; open KleisliLaws KLM
module −m = Morphism mm

4 General Recursion with the General Monad

General strategies are finite: they tell us how to expand one request in terms of a
bounded number recursive calls. The operation which expands each such request
is a monad endomorphism—exactly the one generated by our f : PiG S T itself,
replacing each call s node in the tree by the whole tree given by f s.

expand : ∀ {S T X } → PiG S T → General S T X → General S T X
expand f = morph GeneralK f

You will have noticed that call : PiG S T , and that expand call just replaces
one request with another, acting as the identity. As a recursive strategy, taking
f = λ s → call s amounts to the often valid but seldom helpful ‘definition’:

f s = f s

By way of example, let us consider the evolution of state machines. We shall
need Boolean values:

data Bool : Set where tt ff : Bool

if then else : {X : Set} → Bool → X → X → X
if tt then t else f = t
if ff then t else f = f

Now let us construct the method for computing the halting state of a machine,
given its initial state and its one-step transition function.

halting : ∀ {S } → (S → Bool) → (S → S) → PiG S λ → S
halting stop step start with stop start
... | tt = !! start
... | ff = call (step start)

For Turing machines, S should pair a machine state with a tape, stop should
check if the machine state is halting, and step should look up the current state and
tape-symbol in the machine description then return the next state and tape. We
can clearly explain how any old Turing machine computes without stepping beyond
the confines of total programming, and without making any rash promises about
what values such a computation might deliver.

5 The Petrol-Driven Semantics

It is one thing to describe a general-recursive computation but quite another to
perform it. A simple way to give an arbitrary total approximation to partial com-
putation is to provide an engine which consumes one unit of petrol for each recursive
call it performs, then specify the initial fuel supply. The resulting program is prim-
itive recursive, but makes no promise to deliver a value. Let us construct it as a
monad morphism. We shall need the usual model of finite failure, allowing us to
give up when we are out of fuel.

data Maybe (X : Set) : Set where
yes : X → Maybe X
no : Maybe X

Maybe is monadic in the usual failure-propagating way.

MaybeK : Kleisli Maybe
MaybeK = record {return = yes

; >>= = λ {(yes a) k → k a; no k → no}}

The proof MaybeKL : KleisliLaws MaybeK is a matter of elementary case analysis,
so let us not dwell on it.

We may directly construct the monad morphism which executes a general re-
cursion impatiently.

already : ∀ {S T X } → General S T X → Maybe X
already = morph MaybeK λ s → no

That is, !! becomes yes and ?? becomes no, so the recursion delivers a value only if
it has terminated already. Now, if we have some petrol, we can run an engine which
expands the recursion for a while, beforehand.

engine : ∀ {S T } (f : PiG S T) (n : Nat) {X } → General S T X → General S T X
engine f zero = id
engine f (suc n) = engine f n · expand f

We obtain the petrol-driven (or step-indexed, if you prefer) semantics by composi-
tion.

petrol : ∀ {S T } → PiG S T → Nat → (s : S) → Maybe (T s)
petrol f n = already · engine f n · f

If we consider Nat with the usual order and Maybe X ordered by no < yes x , we
can readily check that petrol f n s is monotone in n: supplying more fuel can only
(but sadly not strictly) increase the risk of successfully delivering output.

An amusing possibility in a system such as Agda, supporting the partial evalua-
tion of incomplete expressions, is to invoke petrol with ? as the quantity of fuel. We
are free to refine the ? with suc ? and resume evaluation repeatedly for as long as

we are willing to wait in expectation of a yes. Whilst this may be a clunky way to
signal continuing consent for execution, compared to the simple maintenance of the
electricity supply, it certainly simulates the conventional experience of executing a
general recursive program.

What, then, is the substance of the often repeated claim that a total language
capable of this construction is not Turing-complete? Just this: there is more to
delivering the run time execution semantics of programs than the pure evaluation
of expressions. The language might thus be described as Turing-incomplete, even
though the system by which you use it allows you to execute arbitrary recursive
computations for as long as you are willing to tolerate. Such a pedantic quibble
deserves to be taken seriously inasmuch as it speaks against casually classifying
a language as Turing-complete or otherwise, without clarifying the variety of its
semanticses and the relationships between them.

Whilst we are discussing the semanticses of total languages, it is worth remem-
bering that we expect dependently typed languages to come with at least two: a
run time execution semantics which computes only with closed terms, and an eval-
uation semantics which the typechecker applies to open terms. It is quite normal
for general recursive languages to have a total typechecking algorithm.

6 Capretta’s Coinductive Semantics, via Abel and Chapman

Coinduction in dependent type theory remains a vexed issue: we are gradually mak-
ing progress towards a presentation of productive programming for infinite data
structures, but we can certainly not claim that we have a presentation which com-
bines honesty, convenience and compositionality. The state of the art is the current
Agda account due to Andreas Abel and colleagues, based on the notion of copat-
terns [3] which allow us to define lazy data by specifying observations of them, and
on sized types [1] which give a more flexible semantic account of productivity at the
cost of additional indexing.

Abel and Chapman [2] give a development of normalization for simply typed λ-
calculus, using Capretta’s Delay monad [10] as a showcase for copatterns and sized
types. I will follow their setup, then construct a monad morphism from General. The
essence of their method is to define Delay as the data type of observations of lazy
computations, mutually with the record type, Delay∞, of those lazy computations
themselves.

mutual
data Delay (i : Size) (X : Set) : Set where

now : X → Delay i X
later : Delay∞ i X → Delay i X

record Delay∞ (i : Size) (X : Set) : Set where
coinductive; constructor 〈 〉
field force : {j : Size < i } → Delay j X

open Delay∞

Abel explains that Size, here, characterizes the observation depth to which one may
iteratively force the lazy computation. Corecursive calls must reduce this depth, so
cannot be used for the topmost observation. Pleasingly, they need not be rigidly
guarded by constructors, because their sized types document their legitimate use.
For example, we may define the anamorphism, or unfold, constructing a Delay X
from a coalgebra for the underlying functor X + −.

data + (S T : Set) : Set where
inl : S → S + T
inr : T → S + T

[,] : {S T X : Set} → (S → X) → (T → X) → S + T → X
[f , g] (inl s) = f s
[f , g] (inr t) = g t

mutual
unfold : ∀ {i X Y } → (Y → X + Y) → Y → Delay i X
unfold f y = [now, later · unfold∞ f] (f y)

unfold∞ : ∀ {i X Y } → (Y → X + Y) → Y → Delay∞ i X
force (unfold∞ f y) = unfold f y

Based on projection, copatterns favours products over sum, which is why most of
the motivating examples are based on streams. As soon as we have a choice, mutual
recursion becomes hard to avoid. Thus equipped, we can build a Delay X value by
stepping a computation which can choose either to deliver an X or to continue.

Capretta explored the use of Delay as a monad to model general recursion, with
the >>= operator concatenating sequences of laters. By way of example, he gives an
interpretation of the classic language with an operator seeking the minimum number
satisfying a test. Let us therefore equip Delay with a >>= operator. It can be given
as an unfold, but the direct definition with sized types is more straightforward. Abel
and Chapman give us the following definition.

mutual
>>=D : ∀ {i A B } →

Delay i A → (A → Delay i B) → Delay i B
now a >>=D f = f a
later a ′ >>=D f = later (a ′ >>=∞

D f)
>>=∞

D : ∀ {i A B } →
Delay∞ i A → (A → Delay i B) → Delay∞ i B

force (a ′ >>=∞
D f) = force a ′ >>=D f

and hence our purpose will be served by taking

DelayK : {i : Size} → Kleisli (Delay i)
DelayK = record {return = now; >>= = >>=D }

Abel and Chapman go further and demonstrate that these definitions satisfy the
monad laws up to strong bisimilarity, which is the appropriate notion of equality
for coinductive data but sadly not the propositional equality which Agda makes
available. I shall not recapitulate their proof.

It is worth noting that the Delay monad is an example of a completely iterative
monad, a final coalgebra ν Y . X + F Y , where the free monad, General, is an initial
algebra [14]. For Delay, take F Y = Y , or isomorphically, F Y = 1 × 1 → Y ,
representing a trivial request-response interaction. That is Delay represents pro-
cesses which must always eventually yield, allowing their environment the choice of
whether or not to resume them. We have at least promised to obey control-C!

By way of connecting the Capretta semantics with the petrol-driven variety, we
may equip every Delay process with a monotonic engine.

engine : Nat → ∀ {X } → Delay X → Maybe X
engine (now x) = yes x
engine zero (later) = no
engine (suc n) (later d) = engine n (force d)

Note that engine n is not a monad morphism unless n is zero.

engine 1 (later 〈now tt〉 >>= λ v → later 〈now v 〉) = no
engine 1 (later 〈now tt〉) >>= λ v → engine 1 (later 〈now v 〉) = yes tt

Meanwhile, given a petrol-driven process, we can just keep trying more and more
fuel. This is one easy way to write the minimization operator.

tryMorePetrol : ∀ {i X } → (Nat → Maybe X) → Delay i X
tryMorePetrol { } {X } f = unfold try zero where

try : Nat → X + Nat
try n with f n
... | yes x = inl x
... | no = inr (suc n)

minimize : (Nat → Bool) → Delay Nat
minimize test = tryMorePetrol λ n → if test n then yes n else no

Our request-response characterization of general recursion is readily mapped
onto Delay. Sized types allow us to give the monad morphism directly, corecursively
interpreting each recursive call.

mutual
delay : ∀ {i S T } (f : PiG S T) {X } → General S T X → Delay i X
delay f = morph DelayK λ s → later (delay∞ f (f s))
delay∞ : ∀ {i S T } (f : PiG S T) {X } → General S T X → Delay∞ i X
force (delay∞ f g) = delay f g

We can now transform our General functions into their coinductive counterparts.

lazy : ∀ {S T } → PiG S T → (s : S) → Delay (T s)
lazy f = delay f · f

7 A Little λ-Calculus

By way of a worked example, let us implement the untyped λ-calculus. We can
equip ourselves with de Bruijn-indexed terms in the usual way. I have taken the
liberty of parametrizing these terms by a type of inert constants X

data Fin : Nat → Set where
zero : {n : Nat} → Fin (suc n)
suc : {n : Nat} → Fin n → Fin (suc n)

data Λ (X : Set) (n : Nat) : Set where
κ : X → Λ X n
: Fin n → Λ X n
λ : Λ X (suc n) → Λ X n

$: Λ X n → Λ X n → Λ X n
infixl 5 $

In order to evaluate terms, we shall need a suitable notion of environment. Let
us make sure they have the correct size to enable projection.

data Vec (X : Set) : Nat → Set where
〈〉 : Vec X zero

‘
: {n : Nat} → Vec X n → X → Vec X (suc n)

proj : ∀ {X n } → Vec X n → Fin n → X
proj (

‘
x) zero = x

proj (γ
‘

) (suc n) = proj γ n

Correspondingly, a value is either a constant applied to other values, or a function
which has got stuck for want of its argument.

data Val (X : Set) : Set where
κ : X → {n : Nat} → Vec (Val X) n → Val X
λ : {n : Nat} → Vec (Val X) n → Λ X (suc n) → Val X

Now, in general, we will need to evaluate closures—open terms in environments.

data Closure (X : Set) : Set where
` : {n : Nat} → Vec (Val X) n → Λ X n → Closure X

infixr 4 `

We can now give the evaluator, J K as a General recursive strategy to compute
a value from a closure. Application is the fun case. When evaluating the argument
and the function—subterms of the application—we may use J K itself, rather than
call. However, when a β-redex starts a further evaluation, call is called for.

J K : {X : Set} → PiG (Closure X) λ → Val X
J γ ` κ x K = !! (κ x 〈〉)
J γ ` # i K = !! (proj γ i)
J γ ` λ b K = !! (λ γ b)
J γ ` f $ s K =

J γ ` s K >>=G λ v → J γ ` f K >>=G λ {
(κ x vs) → !! (κ x (vs

‘
v)) ;

(λ δ b) → call (δ
‘

v ` b) }

Thus equipped, lazy J K is the Delayed version. Abel and Chapman give a Delayed
interpreter (for typed terms) directly, exercising some craft in negotiating size and
mutual recursion [2]. The General construction makes that craft systematic.

8 An Introduction or Reimmersion in Induction-Recursion

I have one more semantics for general recursion to show you, constructing for any
given f : PiG S T its domain. The domain is an inductively defined predicate,
classifying the arguments which give rise to call trees whose paths are finite. As
Ana Bove observed, the fact that a function is defined on its domain is a structural
recursion—the tricky part is to show that the domain predicate holds [7]. However,
to support nested recursion, we need to define the domain predicate and the re-
sulting output mutually. Bove and Capretta realised that such mutual definitions
are just what we get from Dybjer and Setzer’s notion of induction-recursion [8,
12], giving rise to the ‘Bove-Capretta method’ of modelling general recursion and
generating termination proof obligations.

We can make the Bove-Capretta method generic, via the universe encoding for
(indexed) inductive-recursive sets presented by Dybjer and Setzer. The idea is that
each node of data is a record with some ordinary fields coded by σ, and some places
for recursive substructures coded by δ, with ι coding the end.

data IR { l } {S : Set} (I : S → Set l) (O : Set l) : Set (l t lsuc lzero) where
ι : (o : O) → IR I O
σ : (A : Set) (T : A → IR I O) → IR I O
δ : (B : Set) (s : B → S)

(T : (i : (b : B) → I (s b)) → IR I O) → IR I O

Now, in the indexed setting, we have S sorts of recursive substructure, and for
each s : S , we know that an ‘input’ substructure can be interpreted as a value

of type I s. Meanwhile, O is the ‘output’ type in which we must interpret the
whole node. I separate inputs and outputs when specifying individual nodes, but
the connection between them will appear when we tie the recursive knot. When
we ask for substructures with δ branching over B , we must say which sort each
must take via s : B → S , and then we will learn the interpretations of those
substructures before we continue. Eventually, we must signal ‘end of node’ with
ι and specify the output. As you can see, σ and δ pack up Sets, so IR codes are
certainly large: the interpretation types I and O can be still larger.

Now, to interpret these codes as record types, we shall need the usual notion of
dependent pair types. We shall need Σ for nothing larger than Set, because although
IR types can have large interpretations, the types themselves are small.

record Σ (S : Set) (T : S → Set) : Set where
constructor ,
field fst : S ; snd : T fst

open Σ

By way of abbreviation, let me also introduce the notion of a sort-indexed family
of maps, between sort-indexed families of sets.

→̇ : ∀ { l } {S : Set} (X : S → Set) (I : S → Set l) → Set l
X →̇ I = ∀ {s } → X s → I s

If we know what the recursive substructures are and how to interpret them, we
can say what nodes consist of.

J KSet : ∀ { l S I O } (T : IR { l } I O) (X : S → Set) (i : X →̇ I)
→ Set

J ι o KSet X i = 1
J σ A T KSet X i = Σ A λ a → J T a KSet X i
J δ B s T KSet X i = Σ ((b : B) → X (s b)) λ r → J T (i · r) KSet X i

Moreover, we can read off their output.

J Kout : ∀ { l S I O } (T : IR { l } I O) (X : S → Set) (i : X →̇ I)
→ J T KSet X i → O

J ι o Kout X i 〈〉 = o
J σ A T Kout X i (a, t) = J T a Kout X i t
J δ B s T Kout X i (r , t) = J T (i · r) Kout X i t

Now we can tie the recursive knot. Again, I make use of Abel’s sized types to
be precise about why decode terminates.

mutual

data µ { l } {S } {I } (F : (s : S) → IR { l } I (I s)) (j : Size) (s : S) : Set
where 〈 〉 : {k : Size < j } → J F s KSet (µ F k) decode → µ F j s

decode : ∀ { l } {S } {I } {F } {j } → µ { l } {S } {I } F j →̇ I
decode {F = F } {s = s } 〈 n 〉 = J F s Kout (µ F) decode n

Of course, you and I can see from the definition of J Kout that the recursive uses of
decode will occur only at substructures, but without sized types, we should need to
inline J Kout to expose that guardedness to Agda.

Now, as Ghani and Hancock observe, IR I is a (relative) monad [13].2 Indeed,
it is the free monad generated by σ and δ. Its >>= operator is perfectly standard,
concatenating dependent record types. I omit the unremarkable proofs of the laws.

2 They observe also that J KSet and J Kout form a monad morphism.

IRK : ∀ { l } {S } {I : S → Set l } → Kleisli (IR I)
IRK { l } {S } {I } = record {return = ι; >>= = >>=I)} where

>>=I) : ∀ {X Y } → IR I X → (X → IR I Y) → IR I Y
ι x >>=I K = K x
σ A T >>=I K = σ A λ a → T a >>=I K
δ B s T >>=I K = δ B s λ f → T f >>=I K

Now, the Bove-Capretta method amounts to a monad morphism from General S T
to IR T . That is, the domain predicate is indexed over S , with domain evidence
for a given s decoded in T s. We may generate the morphism as usual from the
treatment of a typical call s, demanding the single piece of evidence that s is also
in the domain, then returning at once its decoding.

callInDom : ∀ { l S T } → (s : S) → IR { l } T (T s)
callInDom s = δ 1 (const s) λ t → ι (t 〈〉)
DOM : ∀ {S T } → PiG S T → (s : S) → IR T (T s)
DOM f s = morph IRK callInDom (f s)

Now, to make a given f : PiG S T total, it is sufficient to show that its domain
predicate holds for all s : S .

total : ∀ {S T } (f : PiG S T) (allInDom : (s : S) → µ (DOM f) s) →
(s : S) → T s

total f allInDom = decode · allInDom

The absence of σ from callInDom tells us that domain evidence contains at most zero
bits of data and is thus ‘collapsible’ in Edwin Brady’s sense [9], thus enabling total f
to be compiled for run time execution exactly as the näıve recursive definition of f .

9 Discussion

We have seen how to separate the business of saying what it is to be a recursive
definition from the details of what it means to run a recursive program. The former
requires only that we work in the appropriate free monad to give us an interface per-
mitting the recursive calls we need to make. Here, I have considered only recursion
at a fixed arity, but the method should readily extend to partially applied recursive
calls, given that we need only account for their syntax in the first instance. It does
not seem like a big stretch to expect that the familiar equational style of recursive
definition could be translated monadically, much as we see in the work on algebraic
effects.

The question, then, is not what is the semantics for general recursion, but rather
how to make use of recursive definitions in diverse ways by giving appropriate monad
morphisms—that is, by explaining how each individual call is to be handled. We
have seen a number of useful possibilities, not least the Bove-Capretta domain
construction, by which we can seek to establish the totality of our function and
rescue it from its monadic status.

However, the key message of this paper is that the status of general recursive
definitions is readily negotiable within a total framework. There is no need to give
up on the ability either to execute potentially nonterminating computations or to
be trustably total. There is no difference between what you can do with a partial
language and what you can do with a total languge: the difference is in what you
can know. The time for wilful ignorance is over.

References

1. Andreas Abel. Type-based termination: a polymorphic lambda-calculus with sized
higher-order types. PhD thesis, Ludwig Maximilians University Munich, 2007.

2. Andreas Abel and James Chapman. Normalization by evaluation in the delay monad:
A case study for coinduction via copatterns and sized types. In P. Levy and N. Krish-
naswami, editors, Workshop on Mathematically Structured Functional Programming
2014, volume 153 of EPTCS, pages 51–67, 2014.

3. Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. Copatterns:
programming infinite structures by observations. In R. Giacobazzi and R. Cousot,
editors, ACM Symposium on Principles of Programming Languages, POPL ’13, pages
27–38. ACM, 2013.

4. Thorsten Altenkirch, James Chapman, and Tarmo Uustalu. Monads need not be
endofunctors. In C.-H. Luke Ong, editor, Foundations of Software Science and Com-
putational Structures, 13th International Conference, FOSSACS 2010, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS 2010,
Paphos, Cyprus, March 20-28, 2010. Proceedings, volume 6014 of LNCS, pages 297–
311. Springer, 2010.

5. Thorsten Altenkirch and Bernhard Reus. Monadic presentations of lambda terms using
generalized inductive types. In J. Flum and M. Rodŕıguez-Artalejo, editors, Computer
Science Logic, 13th International Workshop, CSL ’99, 8th Annual Conference of the
EACSL, Madrid, Spain, September 20-25, 1999, Proceedings, volume 1683 of LNCS,
pages 453–468. Springer, 1999.

6. Andrej Bauer and Matija Pretnar. Programming with algebraic effects and handlers.
J. Log. Algebr. Meth. Program., 84(1):108–123, 2015.

7. Ana Bove. Simple general recursion in type theory. Nordic Journal of Computing,
8(1):22–42, 2001.

8. Ana Bove and Venanzio Capretta. Nested general recursion and partiality in type
theory. In R.J. Boulton and P.B. Jackson, editors, TPHOLs, volume 2152 of LNCS,
pages 121–135. Springer, 2001.

9. Edwin Brady, Conor McBride, and James McKinna. Inductive families need not store
their indices. In S. Berardi, M. Coppo, and F. Damiani, editors, Types for Proofs and
Programs 2003, volume 3085 of LNCS, pages 115–129. Springer, 2003.

10. Venanzio Capretta. General recursion via coinductive types. Logical Methods in Com-
puter Science, 1(2), 2005.

11. Peter Dybjer and Anton Setzer. A finite axiomatization of inductive-recursive defini-
tions. In J.-Y. Girard, editor, Typed Lambda Calculi and Applications 1999, volume
1581 of LNCS, pages 129–146. Springer, 1999.

12. Peter Dybjer and Anton Setzer. Indexed induction-recursion. In R. Kahle,
P. Schroeder-Heister, and R. F. Stärk, editors, Proof Theory in Computer Science
2001, volume 2183 of LNCS, pages 93–113. Springer, 2001.

13. Neil Ghani and Peter Hancock. Containers, monads and induction recursion. Mathe-
matical Structures in Computer Science, FirstView:1–25, 2 2015.

14. Neil Ghani, Christoph Lüth, Federico De Marchi, and John Power. Algebras, coal-
gebras, monads and comonads. Electr. Notes Theor. Comput. Sci., 44(1):128–145,
2001.

15. Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings of the
Fourth Annual Symposium on Logic in Computer Science (LICS ’89), Pacific Grove,
California, USA, June 5-8, 1989, pages 14–23. IEEE Computer Society, 1989.

16. Gordon D. Plotkin and John Power. Algebraic operations and generic effects. Applied
Categorical Structures, 11(1):69–94, 2003.

17. D.A. Turner. Total functional programming. Journal of Universal Computer Science,
10(7):751–768, 2004.

