The first 10 years of Curve25519
Daniel J. Bernstein

University of lllinois at Chicago &
Technische Universiteit Eindhoven

2005.05.19: Seminar talk;
design-+software close to done.

2005.09.15: Software online.
2005.09.20: Invited talk at ECC.

2005.11.15: Paper online;
submitted to PKC 2006.


https://cr.yp.to/talks.html#2005.05.19
https://cr.yp.to/ecdh.html
https://cr.yp.to/talks.html#2005.09.20
https://cr.yp.to/papers.html#curve25519

Abstract: “This paper explains
the design and implementation

of a high-security elliptic-curve-
Dithie-Hellman function
achieving record-setting speeds:
e.g., 832457 Pentium Il cycles
(with several side benefits:

free key compression, free key
validation, and state-of-the-art
timing-attack protection),

more than twice as fast as other
authors’ results at the same
conjectured security level (with
or without the side benefits).”



Elliptic-curve computations
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Annals of Mathematics, 126 (1987), 649-673

Factoring integers with elliptic curves

By H. W. LENSTRA, ]R.

Abstract

This paper is devoted to the description and analysis of a new algorithm to
factor positive integers. It depends on the use of elliptic curves. The new method
is obtained from Pollard’s (p — 1)-method (Proc. Cambridge Philos. Soc. 76
(1974), 521-528) by replacing the multiplicative group by the group of points on
a random elliptic curve. It is conjectured that the algorithm determines a
non-trivial divisor of a composite number n in expected time at most
K(p)(log n)?, where p is the least prime dividing n and K is a function for
which log K(x) = /(2 + o(1))log x loglog x for x = co. In the worst case,
when n is the product of two primes of the same order of magnitude, this is
exp((1 + o(1))/log nloglog n) (for n — o0). There are several other factoring
algorithms of which the conjectural expected running time is given by the latter
formula. However, these algorithms have a running time that is basically
independent of the size of the prime factors of n, whereas the new elliptic curve
method is substantially faster for small p.
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1987 (distributed 1984) Lenstra:
ECM, the elliptic-curve method
of factoring integers.

1985 Bosma, 1986 Goldwasser—
Kilian, 1986 Chudnovsky—
Chudnovsky, 1988 Atkin: ECPP,
elliptic-curve primality proving.

1985/6 (distributed 1984) Miller,
and independently
1987 (distributed 1984) Koblitz:
ECC—use elliptic curves in DH

to avoid index-calculus attacks.
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for ECM4ECPP: analyze several
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optimize # field operations.
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1986 Chudnovsky—Chudnovsky,
for ECM4ECPP: analyze several
ways to represent elliptic curves;
optimize # field operations.

1987 Montgomery, for ECM:
best speed from y? = x3+Ax?+x,
preferably with (A — 2)/4 small.

Late 1990s: ANSI/IEEE/NIST
standards specify y2 = x3 —3x+ b
in Jacobian coordinates,

citing Chudnovsky—Chudnovsky.
Alleged motivation: “the fastest
arithmetic on elliptic curves’.
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Did Chudnovsky and Chudnovsky
actually recommend this?

What about Montgomery?
What about papers after 19877

Analyze all known options
for computing n, P — nP
on conservative elliptic curves.

Montgomery ladder is the fastest.

Problem: Elliptic-curve formulas
always have exceptional cases.
Montgomery derives formulas for
generic inputs; for crypto we need
algorithms that always work.



JOURNAL OF NUMBER THEORY 53, 229-240 (1995)

Complete Systems of Two Addition Laws
for Elliptic Curves

W. Bosma*

Department of Pure Mathematics, University of Sydney,
Svdney, New South Wales 2006, Australia

AND

H. W. LeEnsTRA, JR.F

Department of Mathematics, University of California,
Berkeley, California 94720-3840)

1AWS ON £ eXISLS. INaeed, 4 COmPpIEle sysiem Ol LNree aaailon 1aws, eacn con-
sisting of bihomogeneous polynomials of bidegree (2, 2), was exhibited
explicitly by Lange and Ruppert [ 2; ¢f. 1]. In the present paper we show that
there are complete systems consisting of two addition laws, and that both
addition laws in such a system are necessarily of bidegree (2, 2).

THEOREM 1. The smallest cardinality of a complete system of addition
laws on E equals two, and if two addition laws form a complete system then
each of them has bidegree (2, 2).

We can describe all addition laws of bidegree (2, 2). To do this, we omit
the zero addition law, for which «/l pairs P,, P, are exceptional, and we
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But wait, 1t's worse!

Crypto 1996 Kocher:
secret branches affect timing;
this leaks your secret key.



But wait, 1t's worse!

Crypto 1996 Kocher:
secret branches affect timing;
this leaks your secret key.

Briefly mentioned by Kocher
and by ESORICS 1998 Kelsey—
Schneier—-Wagner—Hall:

secret array indices can affect
timing via cache misses.

2002 Page, CHES 2003 Tsunoo—
Saito—Suzaki—Shigeri—Miyauchi:
timing attacks on DES.



“Guaranteed’ countermeasure:
load entire table into cache.



“Guaranteed’ countermeasure:
load entire table into cache.

2004.11/2005.04 Bernstein:
Timing attacks on AES.
Countermeasure isn't safe;

e.g., secret array indices can affect
timing via cache-bank collisions.
What /s safe: kill all data flow
from secrets to array indices.


https://cr.yp.to/antiforgery/cachetiming-20041121.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf

“Guaranteed’ countermeasure:
load entire table into cache.

2004.11/2005.04 Bernstein:
Timing attacks on AES.
Countermeasure isn't safe;

e.g., secret array indices can affect
timing via cache-bank collisions.
What /s safe: kill all data flow
from secrets to array indices.

2013 Bernstein—Schwabe

“A word of warning"

Cheaper countermeasure
recommended by Intel isn't safe.


https://cr.yp.to/antiforgery/cachetiming-20041121.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cryptojedi.org/peter/data/chesrump-20130822.pdf
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2016: OpenSSL didn't listen.
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CacheBleed: A Timing Attack on
OpenSSL Constant Time RSA

Yuval DEITE Nadia

Yarom Genkin Heninger

The University of
Adelaide and
NICTA

Technion and Tel University of
Aviv University Pennsylvania

Overview

CacheBleed is a side-channel attack that exploits information leaks through
cache-bank conflicts in Intel processors. By detecting cache-bank conflicts via
minute timing variations, we are able to recover information about victim
processes running on the same machine. Our attack is able to recover both
2048-bit and 4096-bit RSA secret keys from OpenSSL 1.0.2f running on Intel Sandy
Bridge processors after observing only 16,000 secret-key operations (decryption,
signhatures). This is despite the fact that OpenSSL's RSA implementation was
carefully designed to be constant time in order to protect against cache-based
(and other) side-channel attacks.

While the possibility of an attack based on cache-bank conflicts has long been
speculated, this is the first practical demonstration of such an attack. Intel's
technical documentation describes cache-bank conflicts as early as 2004.
However, these were not widely thought to be exploitable, and as a consequence
common cryptographic software developers have not implemented
countermeasures to this attack.

Paper

Latest version can be downloaded here.



https://cachebleed.info
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The Curve25519 paper

Avoid “all input-dependent
branches, all input-dependent array

Indices, and other instructions

with input-dependent timings’.

Choose a curve y? = x3 + Ax? + x

where A2 — 4 is not a square.
~25% of all elliptic curves.

Define Xg(x, y) = x; Xg(co0) = 0.
Transmit each point P as Xg(P).

Use the Montgomery ladder
without any extra tests.

Theorem: Output is Xg(nP).



x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
bit =1 & (n > i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,z3 = ((x2*%x3-z2%z3) "2,

x1* (x2*23-22%xx3) "2)
x2,z2 = ((x272-2z2"2) "2,
Axx2xz2*x (X272+A*x2%22+2272) )

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2*z2" (p-2)

12
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Montgomery has variable #£loops,
depending on top bit of n.

Curve25519: Change initialization
to allow leading O bits.
Use constant #loops.

Also define scalars n

to never have leading O bits,
so original Montgomery ladder
still takes constant time.
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13
Montgomery has variable #£loops,

depending on top bit of n.

Curve25519: Change initialization
to allow leading O bits.
Use constant #loops.

Also define scalars n

to never have leading O bits,
so original Montgomery ladder
still takes constant time.

Use arithmetic to compute
cswap In constant time.



"Hey, you forgot to check that
the input I1s on the curvel!”
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"Hey, you forgot to check that

the input I1s on the curvel!”

Conventional wisdom: Important
to check; otherwise broken by

Crypto 2000 Biehl-Meyer—Muller.

ESORICS 2015 Jager—Schwenk—
Somorovsky: Successful attacks!
Checking is easy to forget.

Elli Publications - Ruhr-U... % | &k
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LEHRSTUHL PRACTICAL INVALID CURVE ATTACKS ON TLS-ECDH
EEHRE Tibor Jager, Jérg Schwenlk, Juraj Somorovsky
Best Student Paper Award ESORICS 2015
HackerPraktikum ABSTRACT
HackPra Allstars Elliptic Curve Cryptography (ECC) is based on cyclic groups, where group elements are represented as points in a finite plane. All ECC

cryptosystems implicitly assume that only valid group elements will be processed by the differ- ent cryptographic algorithms. It is well-known
that a check for group membership of given points in the plane should be performed before processing.
courses Howewer, in several widely used cryptographic libraries we analyzed, this check was missing, in particular in the popular ECC implementations

Former speakers


https://www.nds.rub.de/research/publications/ESORICS15/
https://www.nds.rub.de/research/publications/ESORICS15/

Curve25519 paper:

“free key validation”
eliminates these attacks.
No cost for checking input;
no code to forget.
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Curve25519 paper:

“free key validation”
eliminates these attacks.
No cost for checking input;
no code to forget.

1. Montgomery naturally

follows 1986 Miller compression:
send only x-coordinate, not (x, y).
Forces input onto “curve’ or
“twist”. (Bonus: 32-byte keys!)

2. Montgomery ladder works
correctly for inputs on twist.

3. Choose twist-secure curve.

15
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paper: fast finite-field arithmetic,

improving on algorithm designs
from 1999-2004 Bernstein.



Longest section in Curve25519

paper: fast finite-fie
improving on algorit

d arithmetic,

nm designs

from 1999-2004 Bernstein.

Barely mentioned in

paper:

new programming language.
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Longest section in Curve25519

paper: fast finite-field arithmetic,

improving on algorithm designs
from 1999-2004 Bernstein.

Barely mentioned in paper:
new programming language.

New prime 2222 — 19.
Faster than NIST P-256 prime
2256 o 2224 4 2192 4+ 296 1

“Prime fields also have

the virtue of minimizing the
number of security concerns for
elliptic-curve cryptography.”
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Curve25519 paper specified a

multi-user DH system. See
1976 Diffie—Hellman; also, e.g.,
1999 Rescorla “static-static
mode”; 2006 NIST “C(0,2)".
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Curve25519 paper specified a

multi-user DH system. See

1976 Diffie—Hellman; also, e.g.,
1999 Rescorla “static-static

mode”

. 2006 NIST “C(0,2)".

Included security survey:

e Reductions: intolerably loose.

e Known attack ideas: rho etc.
e Multi-user batch attacks.
e Special-purpose hardware:

160-
e Sma

it ECC is breakable.

l-subgroup attacks,

invalid-curve attacks, etc.
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2015: Beware batch attacks.

Weak Diffie-Hellman and... ¥ | 4
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Weak Diffie-Hellman and the
Logjam Attack

Good News! Your browser is safe against the Logjam attack.

Diffie-Hellman key exchange is a popular cryptographic algorithm that
allows Internet protocols to agree on a shared key and negotiate a secure
connection. It is fundamental to many protocols including HTTPS, SSH,
|Psec, SMTPS, and protocols that rely on TLS.

We have uncovered several weaknesses in how Diffie-Hellman key
exchange has been deployed:

1. Logjam attack against the TLS protocol. The Logjam attack allows a
man-in-the-middle attacker to downgrade vulnerable TLS
connections to 512-bit export-grade cryptography. This allows the
attacker to read and modify any data passed over the connection.
The attack is reminiscent of the FREAK attack, but is due to aflaw in
the TLS protocol rather than an implementation vulnerability, and

attacks a Diffie-Hellman key exchange rather than an RSA key
exchange. The attack affects anv server that siinnorts DHF FXPORT



https://weakdh.org

Paper sketched common-sense
attack model, including

composition with subsequent
multi-user secret-key system
(as in, e.g., 2001 Bernstein

public-key authenticators” );

attacks on secret-key system
(the motivation given for
"Reveal” queries in PKC 2013
Freire—Hofheinz—Kiltz—Paterson);
dishonest key registrations

(as in, e.g., Eurocrypt 2008
Cash—Kiltz—=Shoup);

keys as strings (allows modeling,
e.g., 2000 Biehl-Meyer—Miiller).


https://groups.google.com/group/sci.crypt/msg/ec5c18b23b11d82c
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PKC 2005

9th INTERNATIONAL CONFERENCE ON THEORY AND PRACTICE OF

PUBLIC KEY GRYPTOGRAPHY

NEW YCRK

APRIL 24-26

The International Conference on Theory and Practice of Public-Key
Cryptography (PKC) has been the main IACR annual workshop focusing

on all aspects of public-key cryptography. PKC has attracted papers from
world-renowned scientists in the area. The Proceedings of PKC'06 will be

published by Springer-Verlag in the Lecture Notes in Computer Science

(LNCS) series.

PKC'06 will be hosted by Columbia University and will take place at the
Davis Auditorium on the 4th floor (campus level) of the Schapiro CEPSR

Building at Columbia University, in New York City.

[_Sponsors ]
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Email from program chairs:

It is my pleasure to inform you
that your paper "Curve2b5519:
new Diffie-Hellman speed
records" was accepted to

PKC’06. Congratulations!

21
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Email from program chairs:

It is my pleasure to inform you
that your paper "Curve2b5519:
new Diffie-Hellman speed
records" was accepted to

PKC’06. Congratulations!

Below please find the reviewers’
comments on your paper
"Curve25519: new Diffie-
Hellman speed records"

that was submitted to PKC 2006.
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Reviewer #£1:

While I think (frankly) that
this 1s a nice engineering work,
I think that this 1is not a
"real" research paper.

I don’t question the

correctness but I qQuestion

the appropriateness of the

paper to the conference.

So engineering isn't research?
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Reviewer #2:

benefits including protection
against timing attacks, no
apparrent patent infringements,

and very good speed.

On the negative side, the paper
does not 1ntroduce novel ideas,
nor does 1t attempt to prove
things rigorously (the word
"conjecture" 1s used repeatedly
throughout). It is principally
a considerable engineering

achievement.
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e.g. "Breaking the Curve25519

function—for example, computing
the shared secret from the two
public keys—is conjectured to be

extremely difficult. Every known
attack I1s more expensive than
performing a brute-force search

on a typical 128-bit secret-key
cipher. ... Curves of this shape
have order divisible by 4, requiring
a marginally larger prime for the
same conjectured security level,

but this is outweighed by the
extra speed of curve operations.”



Reviewer #3:

The curve and the field are
hardwired into the program,
which leaves little flexibility
1if changes are someday needed.

My main concerns about the
paper are that it comes across
as low on useful content (it’s
mostly about one curve), and is
very strangely written, and
therefore unpleasant to read

The paper 1s written in what

25
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comes across as a rambling

incoherent style. ... The
rewriting that would be required
to make this paper readable 1is
significant (though easy for
someone willing to do it), and
I’m not optimistic that i1t would
be done by the deadline, or that
the content (I can’t say
"results" since there aren’t any
stated results, other than a
trivial mathematical result) is

significant enough to justify



27
acceptance. ... The "Conjectured

Curve25519 security level"
section should be omitted; or 1if
there’s useful and new content
in 1t, that should be made
clear. ... Most of the
appendices should be removed.
For example, the irrelevant
discussion of patents should
either be removed, or rephrased
to be a purely scientific
discussion and not a patent

discussion, and the appendix



28
that shows that 3 numbers are

prime should be removed.

The paper will be of greatest
interest to those implementing
Diffie-Hellman with elliptic
curves. But the limitations on
the exponent (and the lack of a
y-coordinate) prevent it from
being used by El1 Gamal and other
ECC protocols.



28

that shows that 3 numbers are
prime should be removed.

The paper will be of greatest
interest to those implementing
Diffie-Hellman with elliptic
curves. But the limitations on
the exponent (and the lack of a
y-coordinate) prevent it from
being used by El1 Gamal and other
ECC protocols. ... The paper 1is
remarkably free of grammatical

errors.




2016: Counterfeit “primes’.

@ Crypto flaw was sog... X | 4

rstechnica.com/security/2016/02/crypto-flaw-was-so-glaring-it-may-be-intentional-eavesdrop  EJ

ars technica

A  MAIN MENU MY STORIES: 25 .  FORUMS SUBSCRIB JOBS

RISK ASSESSMENT

Crypto flaw was so glaring it may be
intentional eavesdropping backdoor

Network tool contained hard-coded prime number that wasn't prime after all.

by Dan Goodin - Feb 2, 2016 1:16pm CST




With reviews like these,
how did PKC accept Curve255197
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With reviews like these,

how did PKC accept Curve255197

Reviewer #4 was positive.

Maybe reviewer #4 convinced
other people as part of discussion.
Or program chairs liked paper.

Maybe someone thought the title
“Oth International Conference on
Theory and Practice in Public-
Key Cryptography” justified

an occasional paper like this.
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With reviews like these,

how did PKC accept Curve255197

Reviewer #4 was positive.

Maybe reviewer #4 convinced
other people as part of discussion.
Or program chairs liked paper.

Maybe someone thought the title
“Oth International Conference on
Theory and Practice in Public-
Key Cryptography” justified

an occasional paper like this.

Note to young cryptographers:
Don't let referees discourage you.
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Edwards curves

2007 Edwards “A
normal form for elliptic curves’:

X112 X0
X3 — :
c(1+ x1xoy1y2)
O YIY2 — X1X2
Y3 =

c(1 — x1x2y1y2)
generically defines addition law

(x1,y1) + (%2, y2) = (x3, y3)
on any elliptic curve of the form

Euler4+Gauss defined this law
for one curve: ¢c* = —1.


http://www.ams.org/journals/bull/2007-44-03/S0273-0979-07-01153-6/home.html
http://www.ams.org/journals/bull/2007-44-03/S0273-0979-07-01153-6/home.html

32
2007 Bernstein—Lange “Faster

addition and doubling on elliptic
curves : Edwards addition law
easily generalizes to

3 — X1y2 + X2y1
1+ dxixoy1yo
V1Y — X1X2
Y3 =

1 —dxixoy1y2
on any elliptic curve of the form
X2 +y? =1+dx°y°

d = c* is original Edwards.
d = 0 i1s circle, non-elliptic.


https://cr.yp.to/papers.html#newelliptic
https://cr.yp.to/papers.html#newelliptic
https://cr.yp.to/papers.html#newelliptic
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2007 Bernstein—Lange “Faster

addition and doubling on elliptic
curves : Edwards addition law
easily generalizes to

3 — X1y2 + X2y1
1+ dxixoy1yo
V1Y — X1X2
Y3 =

1 —dxixoy1y2
on any elliptic curve of the form
X2 +y? =1+dx°y°

d = c* is original Edwards.

d = 0 i1s circle, non-elliptic.
Surprise for non-square d:
this addition law i1s complete!


https://cr.yp.to/papers.html#newelliptic
https://cr.yp.to/papers.html#newelliptic
https://cr.yp.to/papers.html#newelliptic

By easy change of coordinates
can write y? = x3 + Ax? + x

with non-square A% — 4

as a complete Edwards curve.

In particular: Curve255109.
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By easy change of coordinates
can write y? = x3 + Ax? + x

with non-square A% — 4

as a complete Edwards curve.

In particular: Curve255109.

Curve arithmetic is very fast.

(After various followup papers:
even faster!)

Almost as fast as Montgomery
for n, P — nP in DH.

New speed records for
m, n P Q— mP 4+ nQ
and other signature operations.

33



The Ed25519 signature system

CHES 2011 Bernstein—Duif—
Lange—Schwabe—Yang:

Start from Schnorr signatures.
Skip signature compression.
Support batch verification.
Use double-size H output, and

include public key A as input:
SB=R+ H(R,A M)A.

Generate R deterministically
as a secret hash of M.
= Avoid PlayStation disaster.

Use Curve25519 in complete
“—1-twisted” Edwards form.

34


https://ed25519.cr.yp.to
https://ed25519.cr.yp.to

Optimizations for more platforms

2007 Gaudry—Thomé: Core 2.
2009 Costigan—Schwabe: Cell.
2011 Bernstein—Duif-Lange—

Schwabe—Yang: Nehalem.

2012 Bernstein—Schwabe: NEON.
2014 Langley—Moon: newer Intel.

2014 Mahé—Chauvet: GPUs.
2014 Sasdrich—Guneysu: FPGAs.
2015 Chou: newer Intel.

2015 Dull-Haase—Hinterwalder—
Hutter—Paar-Sanchez—Schwabe:

microcontrollers.
2015 Hutter-Schilling—Schwabe—
Wieser: ASICs.

35


http://www.loria.fr/~gaudry/publis/mpfq.pdf
https://cryptojedi.org/papers/celldh-20090331.pdf
https://ed25519.cr.yp.to/papers.html
https://ed25519.cr.yp.to/papers.html
https://cr.yp.to/papers.html#neoncrypto
https://github.com/floodyberry/ed25519-donna
https://eprint.iacr.org/2014/198
https://www.hgi.rub.de/hgi/publikationen/curve25519/
https://www.win.tue.nl/~tchou/papers/sandy2x.pdf
http://link.springer.com/article/10.1007/s10623-015-0087-1/fulltext.html
http://link.springer.com/article/10.1007/s10623-015-0087-1/fulltext.html
https://cryptojedi.org/papers/#naclhw
https://cryptojedi.org/papers/#naclhw
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Next-generation crypto library

NaCl: Networking and
Cryptography library provides
very simple new API for public-
key authenticated encryption.

All-in-one crypto_box function
uses Curve25519 for DH,
Salsa20 for encryption,
Poly1305 for authentication.

More on NaCl design: see

2011 Bernstein—Lange—Schwabe
“The security impact of a

new cryptographic library" .


https://nacl.cr.yp.to
https://nacl.cr.yp.to
https://cr.yp.to/papers.html#coolnacl
https://cr.yp.to/papers.html#coolnacl

Simplicity

Curve25519 paper
advertised “short code.”

2013 Bernstein—Janssen—

Lange—Schwabe: TweetNaCl,

reimplementing NaCl in 100
tweets. Does speed matter?

37


https://twitter.com/tweetnacl

Simplicity

Curve25519 paper
advertised “short code.”

2013 Bernstein—Janssen—
Lange—Schwabe: TweetNaCl,
reimplementing NaCl in 100
tweets. Does speed matter?

Largest chunk of code: The hash

function used inside signatures!

37


https://twitter.com/tweetnacl

37
Simplicity

Curve25519 paper
advertised “short code.”

2013 Bernstein—Janssen—
Lange—Schwabe: TweetNaCl,
reimplementing NaCl in 100
tweets. Does speed matter?

Largest chunk of code: The hash

function used inside signatures!

2014 Bernstein—van Gastel—
Janssen—Lange—Schwabe—
Smetsers: formal verification of

some TweetNaCl properties.


https://twitter.com/tweetnacl
https://tweetnacl.cr.yp.to
https://tweetnacl.cr.yp.to
https://tweetnacl.cr.yp.to
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2014 Chen—Hsu—Lin—Schwabe-

Tsai-Wang—Yang—Yang “Verifying
Curve25519 software”: formal
verification of correctness of

two high-speed asm main loops.

Newer work ongoing: e.g., 2015
Russinoff “A computationally
surveyable proof of the

Curve25519 group axioms'; 2015
Bernstein—Schwabe gfverif.

Single-curve code helps speed
and is the most promising avenue
towards bug-free ECC software.


http://cryptojedi.org/papers/#verify25519
http://cryptojedi.org/papers/#verify25519
http://www.russinoff.com/papers/group.pdf
http://www.russinoff.com/papers/group.pdf
http://www.russinoff.com/papers/group.pdf
http://gfverif.cryptojedi.org
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2012: Apple deploys Curve25519

@ i0S_Security_Octl2.... x | <

= | @ Apple Inc. (US) | https://www.apple.com/br/ipad/business/docs/iOS_Security _Oct12.pdf c 3-':-1 Search -, wBea U 3 a4 0 =

Protected Unless Open

(NSFileProtectionCompleteUnlessOpen): Some files may need to be written while
the device is locked. A good example of this is a mail attachment downloading in the
background. This behavior is achieved by using asymmetric elliptic curve cryptography
(ECDH over Curve25519). Along with the usual per-file key, Data Protection generates
a file public/private key pair. A shared secret is computed using the file’s private key
and the Protected Unless Open class public key, whose corresponding private key is
protected with the user’s passcode and the device UID. The per-file key is wrapped
with the hash of this shared secret and stored in the file's metadata along with the
file’s public key; the corresponding private key is then wiped from memory. As soon
as the file is closed, the per-file key is also wiped from memory. To open the file again,
the shared secret is re-created using the Protected Unless Open class's private key and |
the file's ephemeral public key; its hash is used to unwrap the per-file key, which is
then used to decrypt the file.

Protected Until First User Authentication
(NSFileProtectionCompleteUntilFirstUserAuthentication): This class behaves in
the same way as Complete Protection, except that the decrypted class key is not
removed from memory when the device is locked. The protection in this class has
similar properties to desktop full-disk encryption, and protects data from attacks
that involve a reboot.

No Protection

(NSFileProtectionNone): This class key is protected only with the UID, and is kept

in Effaceable Storage. This is the default class for all files not otherwise assigned to a
Data Protection class. Since all the keys needed to decrypt files in this class are stored
on the device, the encryption only affords the benefit of fast remote wipe. If a file is

nnt accinnad a2 Nata PDratactinn ~lace it ic ctill ctarad in ancrnintad farm (ac ic all Aata



https://www.apple.com/br/ipad/business/docs/iOS_Security_Oct12.pdf
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2013: Signal deploys Curve25519

() Migrate to Curve255... % | =

= | @ GitHub, Inc. (US) | https://github.com/WhisperSystems/Signal-Android/commit/c 3c6fd2d4fc62c8a365 c ||C939&rch %8 @ & & ©

GitH“b This repository Explo

WhisperSystems / Signal-Android

<> Code ) Issues 613 Pull requests 28 Wiki Pulse

Migrate to Curve25519.

1) Generate a Curve25519 identity key.
2) Use Curve25519 ephemerals and identities for v2 3DHE agreeme
3) Initiate v2 key exchange messages.
4) Accept vl key exchange messages.

5) TOFU Curve25519 identities.

& moxie0 committed on Nov 10, 2013

Showing 57 changed files with 2,194 additions and 495 deletions.



https://github.com/WhisperSystems/Signal-Android/commit/c3c6fd2d4fc62c8a3690712eef623a0255169fd6
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2014: OpenSSH deploys Curve25519

& http:/fwww...lease-6.5 % | 4

www.openssh.com/txt/release-6.5 E1|l ¢ Search A U 3 & @

Changes since OpenSSH 6.4

This is a feature-focused release.

New features:

*

ssh(1l), sshd(8): Add support for key exchange using elliptic-curve
Diffie Hellman in Daniel Bernstein's Curve25519. This key exchange
method is the default when both the client and server support it.

ssh(1l), sshd(8): Add support for Ed25519 as a public key type.
Ed25519 is a elliptic curve signature scheme that offers

better security than ECDSA and DSA and good performance. It may be
used for both user and host keys.

Add a new private key format that uses a bcrypt KDF to better
protect keys at rest. This format is used unconditionally for
Ed25519 keys, but may be requested when generating or saving
existing keys of other types via the -o ssh-keygen(1l) option.
We intend to make the new format the default in the near future.
Details of the new format are in the PROTOCOL.key file.

ssh(1l), sshd(8): Add a new transport cipher
"chacha20-polyl305@openssh.com" that combines Daniel Bernstein's
ChaCha20 stream cipher and Polyl305 MAC to build an authenticated
encryption mode. Details are in the PROTOCOL.chacha20polyl305 file.

ssh(1l), sshd(8): Refuse RSA keys from old proprietary clients and
servers that use the obsolete RSA+MD5 signature scheme. It will
still be possible to connect with these clients/servers but only
DSA keys will be accepted, and OpenSSH will refuse connection
entirely in a future release.

ssh(1l), sshd(8): Refuse old proprietary clients and servers that
use a weaker key exchange hash calculation.



http://www.openssh.com/txt/release-6.5

2015.10: IRTF CFRG settles on
EdDSA—Ed25519 and Ed448—

for signatures. Already selected
X25519 and X448 for DH.

2015.10: NIST reopens its
ECC standards for comment,
paving way for new curves.

2015.11: BoringSSL adds
X25519 and Ed25519.

These are just some highlights.

Many more: ianix.com/pub
/curve25519-deployment .html
and /ed25519-deployment.html.
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http://ianix.com/pub/curve25519-deployment.html
http://ianix.com/pub/curve25519-deployment.html
http://ianix.com/pub/ed25519-deployment.html

