
Implementing Regular Expressions

CS 121 Extra Lecture
November 17, 2000

Note: These slides were used for a supplemental lecture in Harvard’s introductory theory
of computation course. The topic of the lecture was implementing regular expressions a
la Ken Thompson. I quite enjoyed preparing and giving the talk, and I believe the other
teaching fellows who attended enjoyed listening to it. I’m not sure that many of the
students made it through to the end, though. Without the accompanying narrative, you’ll
definitely want a copy of the original paper at hand.

Perhaps the most useful part of these slides is the explanation of what the instructions
actually mean, as IBM 7094 information is ever harder to find!

A newer version of this talk, in written form, is athttp://swtch.com/~rsc/regexp/.
It builds the machines using C data structures instead of IBM 7094 machine code.
Perhaps some day I will build one using a more recent machine code. Also at that URL is
a standalone version of the IBM 7094 cheat sheet.

The original paper twice contains the instructionSCA NNODE, 0, which must behave as
thoughXR[0] is an alias for the constant zero. After consulting with Ken Thompson, I
originally believed it was a typo. However, looking at an actual copy of Thompson’s
QED in the CTSS sources suggests that it is not a typo but actually an undocumented use
of theSCA instruction.

Russ Cox
rsc@swtch.com
November 2005

January 2007 (updated text above)

1

Outline

History

Uses of regular expressions

Thompson’s algorithm in detail

Other algorithms in brief

2

History

Finite automata first introduced by McCullock and Pitts
(1943) to model neurons.

‘‘A logical calculus of ideas immanent in nervous
activity,’’ Bull. Math. Biophys. 5, pp. 115-133.

Formalized and cleaned up by Kleene.
‘‘Representation of events in nerve nets and finite
automata’’,Rand Research Memorandum, RM-704, 1951.
Also in Automata Studies (Princeton UP, 1956) pp. 129-
156.

Kleene proved that regular expressions and finite automata
describe the same languages.

3

Uses of Regular Expressions

Lots of text processing.

Most editors, scripting languages.

Mail routing.

Spam filtering.

When you’re processing alot of text, you have to do it
quickly.

4

Regular Expression Search Algorithm

Ken Thompson, ‘‘Regular Expression Search Algorithm’’,
CACM 11(6), June 1968, pp. 419-422.

The algorithm:

First, check regular expression for syntax, inserting. for
implicit concatenations.

Second, transform the regular expression into postfix notation,
using. for concatenation.

a(b|c)*d becomesabc|*.d.

Third, using a pushdown stack, put together an NDFA for the
regular expression.

The nodes in the NDFA are little pieces of machine code!

5

Creating the NDFA

Follow the construction given in L&P, really.

a +

d

+

b

c

Unlabeled nodes aree-transitions.

6

A digression: the IBM 7094

Popular high-end computer in the early 1960s.

Transistorized version of IBM 709.

Could add floating point numbers at 0.35 MIPS.

Cost approximately $3.5 million.

Base machine for the early time-shared operating system
CTSS at MIT.

In some sense, CTSS begat Multics, which begat Unix.

7

IBM 7094: Machine Layout

38-bit Accumulator (AC): 35 bit magnitude,
sign bit, extra bit for unsigned words, carry bit.
denote logical word byACl, signed word byACs

Memory (M[addr]): 32,768 36-bit words in main core.

Seven 15-bit index registers (XR[i]): usually held pointers.

Word layouts:

Instruction address
35 21

tag decrement
17 3

opcode
2 S

Unsigned (logical) word magnitude
35 S

Signed word magnitude
35 1

sign
S

8

IBM 7094: Instruction Set

ACL addr ‘‘add and carry logical word’’
AC ← AC + M[addr]

AXC addr, index ‘‘address to index, complement’’
XR[index] ← addr

CAL addr, index ‘‘clear and add, logical’’
AC ← 0; ACl ← ACl+M[addr+XR[index]]

CLA addr ‘‘clear and add’’
AC ← 0; ACs ← ACs+M[addr]

LAC addr, index ‘‘load complement of address in index’’
XR[index] ← 215 − M[addr]

9

IBM 7094: Instruction Set, II

PAC , index ‘‘place complement of address in index’’
XR[index] ← 215 − AC<35:21>

PCA , index ‘‘place complement of index in address’’
AC ← 0; AC<35:21> ← 215 − XR[index]

SCA addr, index ‘‘store complement of index in address’’
M[addr] ← 215 − XR[index]

SLW addr, index ‘‘store logical word’’ (seeCAL)
M[addr+XR[index]] ← ACl

10

IBM 7094: Instruction Set, III: Transfers

TRA label, index ‘‘transfer’’ (branch, jump)
IC ← label+XR[index]

TSX label, index ‘‘transfer and set index’’ (call)
XR[index] ← 215 − IC; IC ← label

TXI label, index, decr ‘‘transfer with index incremented’’
XR[index] ← XR[index] + decr; IC ← label

TXH label, index, decr ‘‘transfer on index high’’
if (decr < XR[index]) IC ← label

TXL label, index, decr ‘‘transfer on index low’’
if (decr >= XR[index]) IC ← label

11

Creating the NDFA

Follow the construction given in L&P, really.

a +

d

+

b

c

Unlabeled nodes aree-transitions.

[This slide is identical to one before, just for your memory.]

12

The NDFA as machine code

a

b

c

+

+

d

0 TRA CODE+1

1 TXL FAIL,1−’a’−1
TXH FAIL,1−’a’
TSX NNODE,4
TRA CODE+16

5 TXL FAIL,1−’b’−1
TXH FAIL,1−’b’
TSX NNODE,4
TRA CODE+16

9 TXL FAIL,1−’c’−1
TXH FAIL,1−’c’
TSX NNODE,4
TRA CODE+16

13 TSX CNODE,4
TRA CODE+9
TRA CODE+5

16 TSX CNODE,4
TRA CODE+13
TRA CODE+19

19 TXL FAIL,1−’d’−1
TXH FAIL,1−’d’
TSX NNODE,4
TRA FOUND

13

Reading the Machine Code NDFA

Read theTSX NNODE,4 instructions as ‘‘get a new letter’’.

Read theTSX CNODE,4 instructions as ‘‘non-deterministically
choose one of the next two instructions’’.

For each execution path from start to the end, you can read the
letters off the path to form a string generated by the regular
expression.

That’s basically what happens to do the match, except we run
the machine one step at a time, and keep track of all possible
states.

14

Running the Machine Code NDFA

We keep a listCLIST representing the current state set.

For each letter read, we processCLIST to produceNLIST, the
next state set. Then we copyCLIST=NLIST and emptyNLIST.

Each state on the list is represented by aTSX CODE+n
instruction, a ‘‘function call’’ into the machine code NDFA.

TSX NNODE,4 really means ‘‘append a jump to the next
instruction ontoNLIST and then return’’.

TSX CNODE,4 really means ‘‘append a jump to the next
instruction ontoCLIST and then continue with the instruction
after that’’.

TRA XCHG instruction terminatesCLIST.

XCHG copiesNLIST to CLIST, grabs the next letter, starts the
next step.

15

Running the NDFA on abdx: a, b part i

Now CLIST=<TSX CODE+0,2; TRA XCHG>. Loada into
XR[1].

RunningCODE+0 returns when we callNNODE to addTSX
CODE+4,2 to NLIST.

Now CLIST=<TSX CODE+4,2; TRA XCHG>. Loadb into
XR[1].

RunTSX CODE+4,2, jump to16: we callCNODE.

CNODE addsTSX CODE+17,2 to CLIST, returns to18.

At 18ff, we don’t have ad, so we jump toFAIL, return to
CLIST.

Now CLIST=<TSX CODE+0,2; TSX CODE+17,2; TRA XCHG>
and we’ve just returned from the first call.

16

Running the NDFA on abdx: b part ii

RunTSX CODE+17,2, jump to13: we callCNODE.

CNODE addsTSX CODE+14,2 to CLIST, returns to15.

15 jumps to5, we don’t have ab, jump toFAIL, return to
CLIST.

Now CLIST=<TSX CODE+0,2; TSX CODE+17,2;
TSX CODE+14,2; TRA XCHG>

and we’ve just returned from the second call.

RunTSX CODE+14,2, jump to9, we don’t have ac, jump to
FAIL, return toCLIST.

Now CLIST=<TSX CODE+0,2; TSX CODE+17,2;
TSX CODE+14,2; TRA XCHG>

and we’ve just returned from the third call.

NLIST=<TSX CODE+12,2>, copy it toCLIST, on tod.

17

Running the NDFA on abdx: d, x

Now CLIST=<TSX CODE+12,2; TRA XCHG>. Loadd into
XR[1].

RunTSX CODE+12,2, jump to16, do what we did forb.

We have ad so callNNODE from 21 and fail elsewhere.

Now CLIST=<TSX CODE+22,2; TRA XCHG>. Loadx into
XR[1].

RunTSX CODE+22,2, jump toFOUND. Match!

Note that match signal was delayed one letter.

18

NNODE

TSXCMD TSX 1,2 return to one instruction past caller

To be used later.

NNODE AXC **,7 XR[7] ← n

Note thatn is a ‘constant’ in the first instruction.

PCA ,4 AC<21:35> ← 215−XR[4]
ACL TSXCMD ACl ← ACl+M[TSXCMD]
SLW NLIST,7 M[NLIST+XR[7]] ← ACl

StoreTSX ra+1,2 into NLIST[n].

TXI *+1,7,−1 XR[7] −= −1; ‘‘jump’’ to next line
SCA NNODE,7 M[NNODE]<addr bits> ← XR[7]

Incrementn and store itback into the instruction stream.

TRA 1,2

Return toCODE’s caller.

Note ‘‘calling conventions’’: calls fromCODE put return
address inXR[4], calls fromXCHG put return address inXR[2].
No stack.

19

FAIL

FAIL TRA 1,2

Return toCODE’s caller.

20

CNODE

CNODE AXC **,7 XR[7] ← **
CAL CLIST,7 ACl ← M[CLIST+XR[7]]
SLW CLIST+1,7 M[CLIST+1+XR[7]] ← ACl

EffectivelyCLIST[n+1] ← CLIST[n].

PCA ,4 AC<35:21> ← 215−XR[4]
ACL TSXCMD ACl ← ACl+M[TSXCMD]
SLW CLIST,7 M[CLIST+XR[7]] ← ACl

StoreTSX ra,2 into CLIST[n].

TXI *+1,7,−1 XR[7] −= −1; ‘‘jump’’ to next line
SCA CNODE,7 M[CNODE]<addr bits> ← XR[7]

Incrementn in the instruction stream.

TRA 2,4

Return to two instructions past our caller.

Remember calling conventions: calls fromCODE put return
address inXR[4], calls fromXCHG put return address inXR[2].

21

XCHG, I

TRACMD TRA XCHG

For later.

XCHG LAC NNODE,7 XR[7] ← n (from NNODE)
AXC 0,6 XR[6] ← 0

X1 TXL X2,7,0 if (X[7] <= 0) goto X2
TXI *+1,7,1 XR[7] −= 1
CAL NLIST,7 ACl ← M[NLIST+XR[7]]
SLW CLIST,6 M[CLIST+XR[6]] ← ACl
TXI X1,6,−1 XR[6] += 1; goto X1

CopyNLIST ontoCLIST, note that it reverses.

X2 CAL TRACMD ACl ← M[TRACMD]
SLW CLIST,6 CLIST[XR[6]] ← ACl
SCA CNODE,6 n from CNODE ← XR[6]
SCA NNODE,0 n from NNODE ← 0 (how?)

TerminateCLIST with TRA XCHG, store list counts into
instruction stream.

22

XCHG, II

TSX GETCHA,4
PAC ,1 XR[1] ← 215−AC<35:21>

Fetch next character.

TSX CODE,2
TRA CLIST

Start new search here, continue old search.

23

INIT

INIT SCA NNODE,0
TRA XCHG

Set up emptyNLIST, jump into the exchanger.

24

Points of note

No stack. (Explicit return address registers.)

No loop. (ExplicitTRA XCHG added toCLIST.)

Hardly ‘‘reentrant’’. (Modification of instruction stream.)

25

Backreferences

With backreferences,(.*)\1 matchescatcat or dogdog but
notdogcat.

No longer describing a regular language, as you showed
earlier in the course.

Matching with backreferences takes exponential time in all
current implementations.

Matching with backreferences is NP-complete, a fact you will
probably prove!

SGI’ssed sucks even without backreferences:
abcdefghi abcdefgh abcdefg abcdef abcde abcd abc ab a
abcdefghi abcdefgh abcdefg abcdef abcde abcd abc ab a

Match 1000 lines of this against.*a*.*, .*a*.*b*.*, etc.

Takes 0.5 seconds for the first, 41 seconds for
.*a.*b.*c.*d.*e.*f.*g.*h.*i.*.

Seems to be about 1.7n seconds wheren is the number of
letters.

26

Current Implementations

When performance really matters, compile to a DFA:awk
(855 lines of C),lex.

Some editors still use Thompson’s NDFA simulation (sam,
acme).

If you want to know which pieces of the matched text were
matched by various parts of the regexp, it’s not hard to
augment the lists with ‘‘parentheses’’ information.

Many scripting languages (Perl, sed, etc.) and editors (vi,
emacs) run an exhaustive search on the paths through the
NDFAs. This allows backreferences and other irregularities.

Tcl seems to combine all of these and more, picking a good
one for the task at hand. (8677 lines of C).

