
Black Hat 2016
Behind the Scenes with iOS Security

Ivan Krstić
Head of Security Engineering and Architecture, Apple

Decrypted Kernel Caches

iOS 10
Component Encryption

User data—No change to encryption
Image3 (pre-iPhone 5S)—iBoot, kernel caches, boot logos no longer encrypted
Image4 kernel caches—No longer encrypted
Changes made as part of wider set of performance optimizations
Encryption for these objects was no longer adding a lot of value
No impact to platform security or encryption of user data

Hardened WebKit JIT Mapping

Just-in-time compilation is necessary for high-performance JavaScript
iOS normally requires all executable pages to be signed
Code signing policy is relaxed in Safari through dynamic-codesigning entitlement to
support JIT compilation

Background
Hardened WebKit JIT Mapping

iOS 9
Hardened WebKit JIT Mapping

32MB RWX JIT memory region
Write-anywhere primitive sufficient for arbitrary code execution
Attacker can write shell code into JIT region and jump to it without ROP

Execute-only memory protection
Hardened WebKit JIT Mapping

Hardware support introduced in ARMv8
Kernel implementation added in iOS 10
Allows us to emit code containing secret data, not readable within the process

Split view
Hardened WebKit JIT Mapping

Create two virtual mappings to the same physical JIT memory
One executable, one writable
The location of the writable mapping is secret

Tying it all together
Hardened WebKit JIT Mapping

Writable mapping to JIT region is randomly located
Emit specialized memcpy with base destination address encoded as immediate values
Make it execute-only
Discard the address of the writable mapping
Use specialized memcpy for all JIT write operations

void initializeSeparatedWXHeaps(void* stubBase, size_t stubSize, void* jitBase,  
size_t jitSize)
{
 mach_vm_address_t writableAddr = 0;

 // 1. Create a second mapping of the JIT region at a random address.
 vm_prot_t cur, max;
 kern_return_t ret = mach_vm_remap(mach_task_self(), &writableAddr, jitSize, 0,
 VM_FLAGS_ANYWHERE | VM_FLAGS_RANDOM_ADDR,
 mach_task_self(), (mach_vm_address_t)jitBase, FALSE,
 &cur, &max, VM_INHERIT_DEFAULT);

 bool remapSucceeded = (ret == KERN_SUCCESS);
 if (!remapSucceeded)
 return;

 // 2. Assemble specialized memcpy function for writing into the JIT region.
 MacroAssemblerCodeRef writeThunk =
jitWriteThunkGenerator(reinterpret_cast<void*>(writableAddr), stubBase, stubSize);

 int result = 0;

#if USE(EXECUTE_ONLY_JIT_WRITE_FUNCTION)
 // 3. Prevent reading the memcpy code we just generated.
 result = mprotect(stubBase, stubSize, VM_PROT_EXECUTE_ONLY);
 RELEASE_ASSERT(!result);
#endif

 // 4. Prevent writing into the executable JIT mapping.

 // 4. Prevent writing into the executable JIT mapping.
 result = mprotect(jitBase, jitSize, VM_PROT_READ | VM_PROT_EXECUTE);
 RELEASE_ASSERT(!result);

 // 5. Prevent execution in the writable JIT mapping.
 result = mprotect((void*)writableAddr, jitSize, VM_PROT_READ | VM_PROT_WRITE);
 RELEASE_ASSERT(!result);

 // 6. Zero out writableAddr to avoid leaking the address of the writable mapping.
 memset_s(&writableAddr, sizeof(writableAddr), 0, sizeof(writableAddr));

 jitWriteFunction =
reinterpret_cast<JITWriteFunction>(writeThunk.code().executableAddress());
}

RWX

iOS 9

R-X RW-

iOS 10

- - X

R-X RW-

iOS 10

- - X

iOS 10

R-X RW-

- - X

mov x0, #0

iOS 10

R-X RW-

- - X

mov x0, #0mov x0, #0

iOS 10

R-X RW-

- - X

mov x0, #0mov x0, #0

iOS 10
Hardened WebKit JIT Mapping

Write-anywhere primitive now insufficient for arbitrary code execution
Attacker must subvert control flow via ROP or other means or find a way to call execute-
only JIT write function
Mitigation increases complexity of exploiting WebKit memory corruption bugs

Data Protection with the  
Secure Enclave Processor

Goals
Data Protection

User data protected by strong cryptographic master key derived from user passcode
No offline attack on user passcode—Hardware-bound master key derivation
No brute force—Hard limit on number of passcode attempts
Hardware keys for master key derivation not directly exposed to any mutable software
Secure support for alternative unlock mechanisms (Touch ID, Auto Unlock)

Goals—Sidestep AP attack surface
Data Protection

Authentication policy enforcement even under adversarial AP
Master (long-term) key material never exposed to AP
Non-master key material exposed to AP must be ephemeral and session-bound

Secure Enclave Processor

Overview
Secure Enclave Processor

Dedicated SoC core provides trusted environment for handling cryptographic material
Arbitrates all user data access
Hardware accelerators for AES, EC, SHA
Manages its own encrypted memory and communicates with the AP using mailboxes
Factory-paired secure channels to Touch ID sensor and Secure Element

Background
Device UID Key

Each SEP has reference access to a unique private key (UID)
UID generated by SEP itself immediately after fabrication, using its own free-running
oscillator TRNG
Available for cryptographic operations via commands exposed by the Secure ROM
No access to UID key material from SEP or other mutable software after fuses blown

Background
User Keybags

Sets of keys generated for each user to protect their data at rest
Keys wrapped by master key derived from user passcode and SEP UID
After 10 incorrect passcode entries, SEP will not process any further attempts
Different policy associated with each keybag key—Usage, availability

Class keys
User Keybags

Class Description

A (256-bit AES) Only available while the device is unlocked

B (Curve 25519) Public key always available, private key only available when device is unlocked

C (256-bit AES) Available after the user unlocked the phone at least once after boot

D (256-bit AES) Always available

00000000 44 41 54 41 00 00 05 ca 56 45 52 53 00 00 00 04 |DATA....VERS....|
00000010 00 00 00 04 54 59 50 45 00 00 00 04 00 00 00 00 |....TYPE........|
00000020 55 55 49 44 00 00 00 10 4a 99 c1 fd 7e 55 44 43 |UUID....J...~UDC|
00000030 96 96 30 36 42 3a 42 0c 48 4d 43 4b 00 00 00 28 |..06B:B.HMCK...(|
00000040 49 78 be cb 61 71 ed c8 70 4e fc 3d 01 2b 10 bf |Ix..aq..pN.=.+..|
00000050 4e d4 c4 19 83 dc d1 97 82 3c e1 2f de 9b 51 53 |N........<./..QS|
00000060 d3 d2 be d1 e2 55 ef 40 57 52 41 50 00 00 00 04 |.....U.@WRAP....|
00000070 00 00 00 01 53 41 4c 54 00 00 00 14 7e f0 23 95 |....SALT....~.#.|
00000080 ee 44 89 d1 c8 47 9a d7 75 2f 07 49 54 74 d0 cc |.D...G..u/.ITt..|
00000090 49 54 45 52 00 00 00 04 00 00 c3 50 47 52 43 45 |ITER.......PGRCE|
...
000004e0 47 47 bc 18 6b 92 f3 fa cc 94 43 4c 41 53 00 00 |GG..k.....CLAS..|
000004f0 00 04 00 00 00 02 57 52 41 50 00 00 00 04 00 00 |......WRAP......|
00000500 00 03 4b 54 59 50 00 00 00 04 00 00 00 01 57 50 |..KTYP........WP|
00000510 4b 59 00 00 00 28 a2 dd c7 83 56 45 21 bb 1f 70 |KY...(....VE!..p|
00000520 70 07 79 5f 6e ed 42 05 2e a0 2f e2 6f a5 14 4e |p.y_n.B.../.o..N|
00000530 a2 7f 3c c0 4c 38 bd 5f 1a ce 45 a1 06 ca 50 42 |..<.L8._..E...PB|
00000540 4b 59 00 00 00 20 03 b1 b1 6e aa 7a 59 25 b5 43 |KY... ...n.zY%.C|
00000550 83 7c d1 2c d7 28 f9 d3 48 c1 41 cc 50 47 38 53 |.|.,.(..H.A.PG8S|
00000560 00 ae f7 b5 7b 51 55 55 49 44 00 00 00 10 50 ba |....{QUUID....P.|
00000570 b5 bc cd cb 42 e6 93 ed dd 1a 18 3e fb f4 43 4c |....B......>..CL|
00000580 41 53 00 00 00 04 00 00 00 01 57 52 41 50 00 00 |AS........WRAP..|
00000590 00 04 00 00 00 03 4b 54 59 50 00 00 00 04 00 00 |......KTYP......|
000005a0 00 00 57 50 4b 59 00 00 00 28 45 9c 2c 38 0c f1 |..WPKY...(E.,8..|
000005b0 2a 37 2c 9e 39 b0 90 74 f4 e4 21 f8 b3 c1 48 44 |*7,.9..t..!...HD|
000005c0 eb 36 17 42 16 6b 74 13 15 b2 72 c8 a9 1d 17 f5 |.6.B.kt...r.....|
000005d0 af aa 53 49 47 4e 00 00 00 14 db 7a 1e 3c 39 56 |..SIGN.....z.<9V|
000005e0 b4 f8 70 88 b1 8a c4 cc 4b ea a6 fb df 65 |..p.....K....e|
000005ee

Keybag version 4

KDF Salt

Iteration Count

Key Identifier: Class B
Key Type: Curve25519
Wrapped Private Key Bytes

Public Key Bytes

Key Identifier: Class A
Key Type: AES
Wrapped Private Key Bytes

Master Key Derivation

SEPUserland

KDFPasscode

Timed Iterations (100-150ms)Salt

Master KeyMki = KDF2(E(UID, MKi-1))

Overview
Filesystem Data Protection

File blocks are encrypted using AES-XTS with 128-bit keys
Each file on the user partition is encrypted using a unique random key chosen by SEP
Raw file keys are never exposed to the AP
• Wrapped with a key from the user keybag for long-term storage
• Wrapped with an ephemeral key while in use, bound to boot session

Filesystem Data Protection

SEPKernelUser

Hardware

HFS

NVME Driver

Key Store

AES Engine

Storage
Controller NAND

open(“foo.txt”, …)

Ephemeral Key
established on boot

Cipher Text

Clear Text

1. Fetch wrapped
file_key from
metadata

4. Send IO
command with
ephemerally
wrapped  
file_key

2. Unwrap file_key
using keybag key

3. Wrap file_key using
ephemeral_key,
return ephemerally
wrapped file_key  
to kernel

SEP UIDclass D
class D

master key + SEP UID

SKS memory

class A 
class B (priv) 

class C

class B (public) 
class D

SKS keyring

10) class keys cannot be decrypted until we get the passcode
11) launchd permits userspace to start loading

9) keybag loaded into sks memory, class B public loaded into keyring3) decrypt class D key, load into keyring

1) kernel boots (system partition)

4) decrypt HFS metadata with media key

5) launchd mounts user partition

6) launchd starts keybagd

2) AppleKeyStore loads D key (before user partition is mounted)

8) decrypts keybag
with prot key from
effaceable

7) keybagd loads system keybag (class D key available)

contains the device keybag

HFS
SEP endpoint to SKS

AppleKeyStore Effaceable
media key 

keybag prot key 
Class D

SKS

Userspace

XNU (Kernel)

SEP

gets prot key from effaceable
loads device keybag into SEP

keybagd systembag.kb
/var/keybags/systembag.kb
encrypted with the keybag

prot key

boot

SKS SBIO

MobileKeybag.framework

SpringBoard

first unlock

7) first unlock notification sent

1) SpringBoard acquires the passcode

master key + SEP UID

SKS memory

class A 
class B (priv) 

class C

master key

class A 
class B (priv) 

class B (public)  
class C 
class D

SKS keyring

2) generate master key

random secret
master key random secret

SBIO memory

4) encrypt master key with random secret – this encrypted master key never leaves SKS

6) securely destroy raw master key

bio unlock token only created if bio unlock is enabled steps 4 & 5

5) send random secret to
SBIO, destroy it in SKS

3) decrypt class keys, add to keyring

Userspace

XNU (Kernel)

SEP

SEP Endpoint to SKS

AppleKeyStore

Darwin lock/unlock
Notifications

UserEventAgent

SEP Endpoint to SKS

AppleKeyStore

Darwin lock/unlock
Notifications

UserEventAgent

lock

3) send lock notification

1) device locks

2) purge class A and class B priv keys

master key + SEP UID

SKS memory

class A 
class B (priv) 

class C

class B (public)  
class C 
class D

SKS keyring

Userspace

XNU (Kernel)

SEP
SKS

MobileKeybag.framework

SpringBoard

Darwin lock/unlock
Notifications

UserEventAgent

random secret
master key

SKS SBIO Touch ID
Sensor

SEP endpoint to SKS

AppleKeyStore

Touch ID unlock

7) send unlock notification

4) decrypt
master key

master key

master key + SEP UID

SKS memory

class A 
class B (priv) 

class C

class A 
class B (priv) 

class B (public) 
class C 
class D

SKS keyring

random secret

bio memory

SEP endpoint to SBIO

AppleMesa

5) decrypt class keys, add to keyring

6) securely destroy master key

2) template match sent to SBIO

1) pressing home button starts Touch ID sensor

3) upon successful match send
random secret to SKS

Userspace

XNU (Kernel)

SEP

MobileKeybag.framework

SpringBoard

Unattended Update—Install Later

Boot

20 min commit timer

8 hr persist timer

First
Unlock

prompt for passcode
OTUT creation enabled

1:00 PM

Notify
Update Lock

OTUT created

Last
Unlock
Before
Update

10:00 PM

OTUT persist
enabled

Software
Update

10:15 PM

OTUT persisted

Lock

10:30 PM

OTUT committed
reboot

Update
Window

3:00 AM

Demotion
SoC Security Mode

Production devices can be “demoted” to enable some debugging features like JTAG and
loading development software on the AP (but not the SEP)
Requires full OS erase and device explicitly authorized by the personalization server
Forces a different UID on the SEP, no access to existing user data after demotion

SoC mode AP status SEP status SEP UID

Development fused Development Development Development

Production fused Production Production Production

AP demoted Development Production Development

Goals
Data Protection

User data protected by strong cryptographic master key derived from user passcode

No offline attack on user passcode—hardware-bound master key derivation

Hardware keys for master key derivation not directly exposed to any mutable software

Secure support for alternative unlock mechanisms (Touch ID, Auto Unlock)

Sidesteps AP attack surface, SEP policy enforced under adversarial AP

Synchronizing Secrets

Uses
Synchronizing Secrets

Passwords and credit card information available on all of a user’s devices
Auto Unlock cryptographic keys shared between Apple Watch and Mac
HomeKit cryptographic keys available on all devices

Traditional approaches
Synchronizing Secrets

Wrap user secrets with strong random key
• User has to take care of a printed “sock drawer key” and enter it on each device
• If printed key is lost, losing devices means loss of secrets

Wrap user secrets with KDF-derived key from their password
• Account provider backend is privileged, can intercept or brute-force account password
• If user resets their account password, must prompt for old password to recover secrets
• Anyone else in possession of wrapped user secrets can launch a brute-force attack

“Humans are incapable of securely storing
high-quality cryptographic keys, and they
have unacceptable speed and accuracy
when performing cryptographic operations.”

C. Kaufman, R. Perlman, M. Speciner

Goals—Inspired by Data Protection
Synchronizing Secrets

Selected user secrets available on all of the user’s devices
Synchronization protected with strong cryptographic keys
User can recover secrets even if they lose all their devices
User secrets not exposed to Apple
No brute-force—backend not in a privileged position

Approach
iCloud Keychain

Each device locally generates iCloud Keychain synchronization key pair
User explicitly approves new devices joining the sync circle from a device already in it
Sync circle uses Apple cloud backend for storage and message passing
• No data is accessible to Apple
• Backend not in a privileged position since key pair is strong and random

What if all devices are lost, or need to configure new device without access to old one?

Premise
iCloud Keychain Backup

New credential—iCloud Security Code (commonly device passcode),  
unknown to Apple
Generate strong random backup (“escrow”) key, wrap with KDF-derived key from iCSC
Back up copy of iCloud Keychain secrets to the Apple cloud, encrypted with escrow key
Send wrapped escrow key to Apple
In case of device loss or new device, user can recover secrets with their iCloud password
and the iCSC

Goals—Inspired by Data Protection
Synchronizing Secrets

Selected user secrets (passwords, credit cards, …) available on all of the user’s devices

Synchronization protected with strong cryptographic keys

User can recover secrets even if they lose all their devices

User secrets not exposed to Apple

Backend not in a privileged position to brute-force keys protecting user secrets

Backend attack surface
iCloud Keychain Backup

In naive implementation, backend could brute force the iCSC to access escrow key
Just like with SEP, need to enforce policy over escrow key
No brute–force—Want hard limit on escrow recovery attempts under adversarial cloud
What if escrow key unwrapping only took place in Hardware Security Modules?

Overview
Cloud Key Vault

HSMs running custom secure code connected to Apple cloud
Key vault fleet operates its own CA, private key never leaves the hardware
Each iOS device hardcodes key vault fleet CA cert

Unit
Cloud Key Vault

HSMHost

HSM keys
Cloud Key Vault

Key Description

CSCIK RSA-2048, allows signing custom secure code to run on the HSM

AK 256-bit for HMAC-SHA-256, to authenticate messages between vault units

CA RSA-2048, to certify service key (SK)

SK RSA-2048, allows unwrapping escrow records

Escrow record generated on iOS device
Cloud Key Vault

SRP verifier for iCSC

Maximum failure count

User’s escrow key 🔐
encrypted to

public service key

Understanding the design
Cloud Key Vault

A kind of SEP Data Protection approach for escrow records
Vault service private key material not available to mutable software, just like SEP UID key
User attempting escrow recovery sends previous escrow record, establishes SRP session
Vault unwraps escrow record, SRP with user device against iCSC verifier in the record,
return escrow key if successful
If SRP fails due to incorrect iCSC, vault unit bumps a secure counter
• If maximum failure count (10) is exceeded for the record, record is marked terminal

Redundancy and attack surface
Cloud Key Vault

Users can’t escrow to only a single vault unit, need redundancy
Escrowing to multiple units means multiplying the maximum failure count providing
more opportunity for brute force attack

Club
Cloud Key Vault

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

Club
Cloud Key Vault

Group of five vault units that share a single SK—Service Key
User generates escrow record for a particular club, certified by the fleet CA
Solves redundancy, but not the brute force limiting problem
Club members would still be subject to partitioning attacks

Quorum commit
Cloud Key Vault

Each club member maintains its own failure count for each escrow record
Escrow recovery prompts a vote, majority quorum required to proceed
Provides redundancy and breaks membership partitioning attacks

Fleet
Cloud Key Vault

…

Authenticated object
storage

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

HSMHost

iCloud escrow service

Escrow Recovery Transaction
Cloud Key Vault

1. Proposal
2. Vote
3. Schedule
4. Ack
5. Perform
6. Confirm

HSMHost

HSMHost

HSMHost

HSMHost
HSMHost

“I propose an update. Please give me your failure count for this record.”

Escrow Recovery Transaction
Cloud Key Vault

1. Proposal
2. Vote
3. Schedule
4. Ack
5. Perform
6. Confirm

HSMHost

HSMHost

HSMHost

HSMHost
HSMHost

“My counter is 4. I vote yes to update since I’m not in another transaction.”

Escrow Recovery Transaction
Cloud Key Vault

1. Proposal
2. Vote
3. Schedule
4. Ack
5. Perform
6. Confirm

HSMHost

HSMHost

HSMHost

HSMHost
HSMHost

“We have majority quorum and no one’s record is terminal,  
prepare to update failure count to 5.”

Escrow Recovery Transaction
Cloud Key Vault

1. Proposal
2. Vote
3. Schedule
4. Ack
5. Perform
6. Confirm

HSMHost

HSMHost

HSMHost

HSMHost
HSMHost

“OK, I’ve verified majority quorum and stand ready to increase failure count to 5.”

Escrow Recovery Transaction
Cloud Key Vault

1. Proposal
2. Vote
3. Schedule
4. Ack
5. Perform
6. Confirm

HSMHost

HSMHost

HSMHost

HSMHost
HSMHost

“Please proceed with increasing failure count to 5 for this record.”

Escrow Recovery Transaction
Cloud Key Vault

1. Proposal
2. Vote
3. Schedule
4. Ack
5. Perform
6. Confirm

HSMHost

HSMHost

HSMHost

HSMHost
HSMHost

“OK, my failure count is now 5 for this record.”

Who watches the watchers?
Cloud Key Vault

A given vault fleet runs code signed by its CSCIK (custom secure code signing key)
Use of this signing key requires a quorum of physical vault admin smart cards
Admin cards are created in a secure ceremony when fleet is commissioned, stored in
separate physical safes in custody of three different organizations at Apple in tamper-
proof evidence bags

Who watches the watchers?
Cloud Key Vault

If someone got their hands on all the admin cards…
Couldn’t they sign a malicious custom secure code image that can brute-force iCSC for
arbitrary escrow records?

No.

Before a fleet goes into production
Cloud Key Vault

Members of all three admin card-carrying organizations meet in a secure facility
Cross-check serial numbers on evidence bags and on cards
Attestations
• Card carriers present at creation of the admin cards
• No other cards were created
• Evidence bags remained sealed since creation
• Cards present today are the ones originally created

Physical One-Way Hash Function

(We Run the Cards Through a Blender)

Final attestation
Cloud Key Vault

All admin cards originally created are now destroyed
The cards were not used to sign any other custom secure code that can be loaded
No other mechanism is known for changing custom secure code or loading new code
This enables us to make the unequivocal commitment that user secrets are not exposed
to Apple

Some News

Apple Security Bounty

Apple Security Bounty

Great help from researchers in improving iOS security all along
iOS security mechanisms continue to get stronger
Feedback from Apple Red Team and external researchers: as iOS security has advanced,
increasingly difficult to find the most critical security issues

Apple Security Bounty

Rewards researchers who share critical issues with Apple
We make it a priority to resolve confirmed issues as quickly as possible
Provide public recognition, unless asked otherwise

Initial Categories

Category Max. Payment

Secure boot firmware components $200,000

Extraction of confidential material protected by the Secure Enclave Processor $100,000

Execution of arbitrary code with kernel privileges $50,000

Unauthorized access to iCloud account data on Apple servers $50,000

Access from a sandboxed process to user data outside of that sandbox $25,000

Payments
Apple Security Bounty

We require a clear report and working proof of concept
Vulnerability must affect latest shipping iOS, and where relevant, latest hardware
Exact payment amount determined after review by engineering team, criteria include
novelty and likelihood of exposure/degree of user interaction required
Researcher can elect to donate reward to charity of their choice, Apple will consider
matching 1:1

Apple Security Bounty

Few dozen initially invited researchers
If vulnerabilities that would be covered under the program are submitted by researchers
outside of the program, we will review the submission and, if the work merits it, invite
researcher into the program and reward the vulnerability

September

product-security@apple.com
Thank You!

mailto:product-security@apple.com?subject=

TM and © 2016 Apple Inc. All rights reserved.

