

Collaborative Diffusion: Programming Antiobjects
Alexander Repenning

AgentSheets Inc & University of Colorado
Boulder, Colorado, 80301
ralex@cs.colorado.edu

ABSTRACT
Object-oriented programming has worked quite well – so far.
What are the objects, how do they relate to each other? Once we
clarified these questions we typically feel confident to design and
implement even the most complex systems. However, objects can
deceive us. They can lure us into a false sense of understanding.
The metaphor of objects can go too far by making us try to create
objects that are too much inspired by the real world. This is a
serious problem, as a resulting system may be significantly more
complex than it would have to be, or worse, will not work at all.
We postulate the notion of an antiobject as a kind of object that
appears to essentially do the opposite of what we generally think
the object should be doing. As a Gedankenexperiment antiobjects
allow us to literally think outside the proverbial box or, in this
case outside the object. This article discusses two examples, a
Pacman game and a soccer simulation where antiobjects are
employed as part of a game AI called Collaborative Diffusion. In
Collaborative-Diffusion based soccer the player and grass tile
agents are antiobjects. Counter to the intuition of most
programmers the grass tile agents, on top of which all the players
are moving, are doing the vast majority of the computation, while
the soccer player agents are doing almost no computation. This
article illustrates that this role reversal is not only a different way
to look at objects but, for instance, in the case with Collaborative
Diffusion, is simple to implement, incremental in nature and more
robust than traditional approaches.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Object-oriented Programming

General Terms
Algorithms, Performance, Design, Reliability, Human Factors,
Languages, Theory.

Keywords
Object-Oriented Programming, Psychology of Programming,
Collaborative Agents, End-User Programming, Diffusion, Game
AI, Incremental AI, multi-agent architecture, Distributed Artificial
Intelligence.

1. INTRODUCTION
Overall, object oriented programming has worked very well. After
early concerns about performance the intuitive appeal of object-
oriented programming concepts has literally changed the way we
think about programming. Over time object orientation has
migrated from an art mastered only by early hacker type
programmers using object extensions to Lisp or using Smalltalk to
a more mature engineering discipline. Intangible design intuition
has been gradually replaced with more principled approaches
culminating in the unified modeling language (UML). All this has
led to a strong sense of what objects are and what they should be
doing. Once we know what the objects are and how they related to
each other we typically feel confident to design and implement
even the most complex systems. However, objects can deceive us.
They can lure us into a false sense of understanding. The
metaphor of objects can go too far by making us try to create
objects that are too much inspired by the real world. This is a
serious problem as a resulting system may be significantly more
complex that it would have to be, or worse, will not work at all.

In teaching we can observe the kind of thinking going on in
novice programmers learning about object-oriented programming.
I have been creating objected-oriented programming languages
[22], using and teaching object-oriented design long enough to get
a sense on how people conceptualize object-oriented
programming. In my game design and development courses
students are learning about game design and development by
building weekly games using AgentSheets [23]. We start with
classic applications including Frogger, Sokoban and Space
Invaders. Students have access to reference material including
detailed game descriptions found in the Wikipedia.

Sokoban is a simple game in which a person needs to push boxes
onto targets. What makes Sokoban interesting is that the person
cannot pull boxes. If a box is pushed into a corner the game is
lost. At advanced levels Sokoban can be surprisingly intricate
requiring players to carefully plan their moves. Figure 1 shows a
graduate student level 1 implementation of the game.

Figure 1. Sokoban Student Implementation. The Smiley

person can only push boxes. Boxes need to be moved onto
targets.

Part of the homework is to draw UML diagrams illustrating the
basic game action. The sequence diagram below shows one
situation in which the player is trying to push a box to the right
onto an empty tile. When asked about the homework – after
grading – some students indicate that drawing the UML diagrams
helped them thinking about the game but the large majority of the
students confesses that they made the UML diagrams after
finishing the game. A large percentage of the students in these
courses (computer science graduate and undergraduate students)
has taken Object-Oriented Design course. Interestingly, if they
have taken an OOD course played no significant role in their
decision to use UML diagrams either as thinking tools – before
programming – or as means of documentation, after
programming.

Figure 2. UML sequence diagram of person pushing box right

onto empty tile. The person makes the box check if it can
move. The box can move. It will move itself and the person.

Up to this point in the progression of increasingly complex games
object-oriented design techniques have worked well. Students had
a good intuition helping them to identify what the objects should
be and how these objects should interact with each other.

Next students need to implement a game in which agents are
pursuing each other through a complex world such as a maze. A
sophisticated version of a tracking-based game would be a game
like the Sims [32] where people agents are tracking other agents
such as food or other people agents. A much simpler version of
such a game would be Pacman where ghosts are trying to catch
the user-controlled Pacman. To test students design intuitions we
would show them a specific scenario in a Pacman game in which
a ghost agent would try to tackle the Pacman.

Figure 3. Ghost tries to pursue Pacman. Which way should it

go and how should we program this?

The ghost finds itself on the other side of the wall (Figure 3). In a
Euclidian sense the ghost is very close to the Pacman. In a
topological sense the ghost is far away. The question at this point
to the students is: how would you program this game? How can
the ghost track the Pacman. Here are the categorized answers
suggested by students:
1) Brownian Motion: the ghosts should move around randomly.

At each step in the game the ghost re-evaluates all the places
it could go that are one step away. It will then pick one place
randomly. Sooner or later they will find the Pacman. This is
a very simple strategy to implement. Many games actually
use this strategy. Problems: players will interpret the random
walk as such. The ghosts do not appear to be intelligent at all.

2) Point and Shoot: the ghost selects a random direction and
keeps moving in that direction until it hits an obstacle. At this
point it determines a new random direction. Problems: While
the ghost appears to be less random than in approach #1 it
still does not come across as intelligent because there is a
good chance it will move in obvious ways away from the
Pacman.

3) Incremental Approach: the ghost should try to move closer.
This also is done incrementally. At each step in the game the
ghost will explore all the places it could go and select the one
that is closest (in the Euclidian sense). Problems: This idea
does not take obstacles into account and as such can be
ineffective. In the situation in Figure 3 the ghost would be
stuck at its current location because moving left of right
would increase its distance to the Pacman.

A brief discussion of trade offs of each approach typically leads to
a discussion how these ideas could be combined:
2a) Smart Point and Shoot: The ghost selects a direction aiming

at the Pacman. If the ghost hits an obstacle it will re-evaluate
the direction to the Pacman again. Problems: If the direction
is the same as the current direction the ghost gets stuck.

3a) Incremental Approach with Trap Detector: If the ghost gets
stuck by minimizing Euclidian distance it should change its
strategy and pick a random direction. Problems: Without
remembering where the ghost has been it will be difficult to
make the decision when to switch back and forth between
incremental approach and random move.

Object-oriented design just trapped us. The kind of discussion
mentioned above can last for quite some time. As the discussion
progresses it becomes clear to the students that while some
approaches work better than others none of these ideas work well.
After all, if there is a way from the ghost to the Pacman then the
ghost should be able to find it. Instead, ghosts will wander around
and get occasionally stuck. However, the direction of exploration
appears to be clear. Better solutions require more sophisticated
programming of the ghost. The ghost just needs to do a better
search by having a more complex state, more methods, and more
sophisticated ways to parse the scene. Perhaps all we need to do it
to add a few transitions to our current UML diagram – or perhaps
not.

The psychology of programming attempts to explain
programmer’s intuition. Syntonicity [31] is an introspective
behavior that makes us want to be the ghost in order to think
about what the ghost should do and how it should do it. More
generally, body syntonicity makes programmers explore ideas that
are compatible with their own feeling of being in a body. What
would I do if I were this ghost?

From the viewpoint of a problem solving design space we have
been lead to a local maximum. We found a solution that kind of
works just not very well. The Pacman example of course only
serves as illustration of the effect. After all, our goal is probably
not to make the world best Pacman game. However, even in game
design this more general pathway search problem is real and
important. Of course there are well known solutions to solve the
problem. A* algorithms [6] for instance do a good job at least to
find non-moving targets.

This breakdown prompts us to think about reconceptualizing the
problem. Perhaps it is not really the ghost agent that should be
doing the heavy lifting at all. Perhaps the background tiles, which
up to this point, we only considered to be passive background
objects, i.e., decoration, with no behavior whatsoever should help
somehow with the search. This is a case for antiobjects. As we
shall see later, by removing computation from the agents that
appear to do the search (the ghost) and redistributing it in a
parallel fashion to the agents that define the space to be searched
(the background tiles) we get a solution that is remarkably
effective yet simple to implement. The challenge to find this
solution is a psychological, not a technical one. An approach
called Collaborative Diffusion will be described in detail in the
following sections.

The ghost and floor tiles are examples of antiobjects. If there is
such as notion of background and foreground we tend to think of
the agents such as the floor tiles as background while the ghost
agents are part of the foreground. Yet, as antiobjects their roles
are reversed. The background does most of the work, the
foreground just needs to react in simple ways to the computation
of the background. This runs counter to our body syntonic
experience. When we think of the Pacman game and think about
objects such as floor tiles we do not envision any computation.
We know, floor tiles do not compute in the real world, why should
they in our game world? This is a hard question and perhaps the
simplest answer is because they can. If we would build a physical
embodiment of a Pacman game we would have a robot
representing the ghost. Even if we wanted to, in the physical
world we could not easily add computation to objects such as
floor tiles. All we can do is to make our ghost robot really smart
and equip it with good sensors.

In addition to reversing roles antiobject also distribute
computation differently. The apparent computational intelligence
of a single agent, for instance the ghost’s ability to track down a
moving target, is distributed to a potentially large set of agents.
Instead of having one ghost doing the work, all floor tiles need to
engage in highly parallel computation. As we shall see in the
Collaborative Diffusion based Pacman implementation the floor
tiles effectively diffuse the smell of the Pacman. All the floor tiles
participate in a highly parallel diffusion computation. Meanwhile,
the ghost agents can engage in simple hill climbing.
Computationally speaking the floor tile antiobjects are doing
practically all the work while the ghost antiobject is doing almost
none.

We will claim in this paper that antiobjects work very well for
Collaborative Diffusion, which is a general framework that can be
applied to many game applications. Beyond the many simulations
that we have built using Collaborative Diffusion ranging from AI
pathfinding, bridge construction design and soccer simulations to
the simulation of electric systems we have also successfully
taught the use of antiobject to students. We started with teaching

game design and development to graduate and undergraduate
computer science students. Each time we faced that difficult
moment to make the transition from what students intuition was to
how we need to reconceptuallize the problem completely in order
to solve it. Using UML diagrams did not help with this transition.
However, once student made this step they have created
wonderfully complex games with amazingly little effort. As we
keep teaching we gradually introduced new visualization
techniques to better illustrate the nature of antiobjects. Instead of
using traditional debugging techniques such as method tracing we
had to built tools that would be able to visualize in real time 3D
plots superimposed over the game world. Using these techniques
we tried to push the idea of antiobjects even further by trying to
have kids in middle school to build AI-based games involving
antiobjects. To our amazement that worked out well. Not only
were we able to teach 11 year old middle school kids to create
Collaborative Diffusion based games but the few kids that were
introduced to the technique showed their friends how to do the
same.

The following sections describe Collaborative Diffusion as an
example of programming antiobjects. Antiobjects are a means to
reconceptualizing computation. However, in addition to being
different we will show that in the context of Game AI antiobjects
exhibit a number of positive characteristics including
effectiveness, incrementalism and robustness. To be able to make
these points we will move from the more philosophical treatment
of objects in this introduction to a more technical discussion
comparing Collaborative Diffusion to related work in Artificial
Intelligence.

2. ANTIOBJECTS & GAME AI
For some time now games have served as an ideal test bed to
explore computational intelligence [24] and as motivational
context for object-oriented design classes. As many have pointed
out, the game industry is approaching the size of a multi-billion
dollar movie industry. Games such as Halo 2 and Doom III have
reached levels of colossal complexity. Hardware is advancing
quickly as well. One of the next generation game consoles, the
Sony PlayStation 3, is expected to deliver close to two Terra Flops
of computational power. However, most of the computational
power seems to be spent in either rendering complex scenes with
extremely large polygon counts or computing physics. Before
long, the rendering quality of games will produce photorealistic
images that will be hard to differentiate from reality. But, what
about Artificial Intelligence in games? The AI exhibited by many
modern games is considered weak AI [25] in the sense that it is
mostly concerned with practical engineering approaches to make
machines appear to be intelligent without necessarily employing
sophisticated computational schemes. Particularly weak are
current implementation schemes involving multiple agents
collaborating and competing with each other. This paper explores
why it is hard to build collaborative agents and introduces the
Collaborative Diffusion framework addressing these issues.
A quick survey of game developer resources indicates a rich
presence of AI related topics. Numerous books, e.g., AI for Game
Developers [3], and websites, e.g., gameai.com, are dedicated to
what is colloquially called Game AI. Discussions found there are
typically covering a spectrum ranging from simple state machine-
based AI, over path finding to learning. There is surprisingly little
coverage on general techniques that could be used to implement
collaborative and competitive multi agent games. One possible
explanation is that the apparent complexity of collaboration AI
schemes found in academic research is simply exceeding the

general scope of game AI. In other words, it may simply be too
hard to transfer academic research approaches dealing with
collaborative agents to the more pragmatic world of game AI
because of practicality issues. Additionally, it may also be
possible that game contexts may impose additional constraints and
cause scaling challenges difficult for existing AI approaches to
deal with. These concerns are the motivation behind our approach.
Instead of conceptualizing Game AI as the pragmatic cousin of AI
new frameworks directly relevant to games must be explored.
Despite this focus on games many of the findings will be relevant
to general AI. Games are more than just test beds for AI
approaches; they also become a conceptual development space
yielding new notions of computational intelligence that can be
transferred, for a change, from Game AI to regular AI.
Compared to rendering and physics simulation, Game AI has
much room for improvement. Players are beginning to demand
more refined game play based on sophisticated AI. Some of the
most frequently played games today are based on the idea that the
player is manipulating a game character, through first or third
person view, exploring some intricate space populated with
“enemy” agents. As part of a mission the player needs to reach a
variety of goals also located in that space. The enemy agents will
try to prevent the player from reaching said goals by trying to
block ways, wound or even kill the player. The player, in turn, has
a repertoire of weapons that can be used to eliminate enemies.
What is missing in this type of game is collaborative and
competitive behavior. The AI found in most is by no means
trivial. They can locate the player and put up the right level of
resistance making ultimately a game fun to play. However, their
behavior, with few exceptions, is overly autonomous. They are
typically not collaborating with other enemy agents in noticeable
ways. Collaborating enemy agents would make the game play
more interesting. The player will get the opportunity to deal with
more complex levels of behaviors not only at the level of
individual enemy agents but also at the level of group behaviors.
Especially in game contexts this collaboration-based enemy agent
advantage will have to be managed carefully. After all, a game
featuring agents that are so smart that they immediately beat the
player would be an aggravating game playing experience. To
balance game play again in favor of the player additional agents
could be introduced to a game collaborating with the player and
competing with enemy agents.
Collaborate Diffusion is a framework based on antiobjects that
can be used to build games with large numbers of agents
collaborating and competing with each other. One particularly
attractive characteristic of Collaborative Diffusion is how its
simple implementation results in sophisticated emergent behavior.
Figures 11-13 show collaborative behaviors in the context of a
soccer game. Players from the same team are truly collaborating
with each other and competing with all the members of the
opposite team. For instance, if there is a player in a better position
than a player covered by an opponent player, the covered player
will pass the ball to that other player of his team. An intriguing
aspect of this behavior is that it had not to be “programmed” into
the agents but, instead, was an emerging property of the soccer
Collaborative Diffusion process. The soccer game only serves as
an example exhibiting collaboration and competition. The
applicability of Collaborative Diffusion is not limited to soccer-
like games or even games in general. Collaborative Diffusion has
been applied to various complex optimization problems including
applications such as bridge design [23], mudslide, electrical
circuits, avalanche and traffic flow simulations. Common to all of
these applications is the process of diffusion.
Architecturally speaking, antiobjects and Collaborative Diffusion
grew out of some of our multi-agent scientific simulations running
on a Connection Machine CM-2. Powered by sixty four thousand

CPUs connected through a twelve dimensional hypercube the
Connection Machine achieved unprecedented performance of
about 2 Giga Flops. Much more important, from today’s point of
view, than computational performance were the conceptual
insights gained from using the Connection Machines. The idea of
massively parallel problem solving provides radically difference
perspectives that can lead to new conceptual frameworks.
Antiobjects, an example of such a framework, clash with
traditional notions of object-oriented design in the sense that
object-orient design does not help with the understanding or use
of these new computational frameworks.
Today, thanks to the rapid advance of hardware, these frameworks
can be implemented on more traditional sequential architectures.
Ultimately, CPU cycles will always become cheaper than
cognitive cycles. Just a couple of years ago Collaborative
Diffusion would not have been computationally feasible to build
consumer oriented games capable of running on desktop
computers. Now that a $400 PlayStation 3 roughly has the
floating-point power of 1000 Connection Machines we can allow
ourselves to reconceptualize computation.

3. BASIC DIFFUSION
Collaborative Diffusion is a versatile collaboration and
competition framework for building multi-agent games based on
antiobjects. Agents such as the ones used in AgentSheets [23] live
in a space (2D or 3D). Typically, the space is organized as a grid
similar to a spreadsheet. The grid contains agents representing
game characters, e.g., soccer players, but also the environment
containing these characters, e.g., the soccer playfield. Agents may
be stationary or mobile. To collaborate and compete with each
other, character agents, as well as environment agents, jointly
engage in one or more diffusion processes.
Game design patterns [2] help to conceptualize agent behaviors
for typical game applications. Common to many games is the
notion of pursuit and evasion. In Pacman ghost are pursuing
Pacman, in the Sims, Sims characters are pursuing other sims,
sources of food, entertainment, and so on. Agents participating in
pursuit can be categorized into the following roles:
1) Goal Agents: Goal agents are pursued by other agents. Goal

agents may be static or mobile. For instance, a refrigerator is
a static goal, typically located in a kitchen, pursued by an
agent representing a hungry person in a “The Sims”-like
game [32]. A soccer ball, in contrast, is a mobile goal
attracting soccer players.

2) Pursuer Agents: One or more pursuer agents may be
interested in certain goal agents. Multiple pursuer agents
sharing interest in the same goal may collaborate or compete
with each other. If there are multiple types of goals, such as
food, and entertainment, then the pursuer agent includes a
goal selection mechanism determining the priorities of goals
being pursued.

3) Path Environment Agents: A path environment agent
enables a pursuer agent to move towards a goal agent. In a
household simulation a path environment agent may
represent a kitchen tile, or a piece of carpet. A path
environment is an active agent participating computationally
in the diffusion process that is helping pursuer agents to
locate goal agents.

4) Obstacle Environment Agents: Like path environment
agents, obstacle environment agents are part of an
environment but they deter pursuer agents from reaching
their goals. Walls, closed doors, fires, fences, and rivers can
all interfere with the pursuer’s attempt to reach a goal.
Interference can be at different levels. A wall may

permanently prevent a pursuer from reaching its goal while a
piece of furniture in the middle of a room may just pose a
simple delay caused by the need to navigate around the
furniture.

This categorization scheme can be applied to nearly all arcade
style games ranging from early classics such as Space Invaders,
and Pacman to modern titles such as Halo 2 and Doom III.
Although the agent categorization scheme is mostly relevant to
games the Collaborative Diffusion framework can be applied to a
much wider domain of applications.

3.1 Single Diffusion
A game is built by defining the four kinds of agents described
above and arranging instances of them in a grid-structured
worksheet. The worksheet shown in Figure 4 contains a matrix
consisting of 9 rows x 9 columns of floor tiles serving as
environment path agents. All examples, including the diffusion
visualizations shown here are built in AgentSheets [23].
A single Pacman will be the single goal agent located in the center
of the worksheet. The Pacman is a user-controlled agent pursued
by all the autonomous ghost agents.

Figure 4. Worksheet with 9 x 9 floor tile agents and one

Pacman agent in the center. The Pacman “scent” is diffused
by the tile agents. The diffused value is shown as logarithmic

plot over the worksheet area.
Diffusion is a gradual process in which physical and conceptual
matter, such as molecules, heat, light, gas, sound, and ideas are
spread over an N-dimensional physical or conceptual space over
time. Alan Turing was one of the first researchers to note the
broad impact of diffusion processes onto chemical and biological
phenomena and became the first serious user of an electronic
computer in order to model these diffusion processes [30]. He was
interested in mathematically capturing reaction-diffusion systems
and defined diffusion to occur when “each [chemical agent]
moves from regions of greater to regions of less concentration.”
Agent-based diffusion has been used in a number of applications
including image feature extraction [14] and more recently
distributed optimization [29]. Collaborative Diffusion does not
diffuse discrete objects, i.e., agents, but uses agents to diffuse,
track and modulate continuous diffusion values.
Diffusion values are used to spread the “scent” of the Pacman
goal agent in the worksheet. The Pacman agent is given an
attribute called p short for Pacman scent with an arbitrary but

constant value. This value represents the desirability of a goal.
High desirability is captured with a large value (e.g., 1000).
Desirability may also assume negative values. Pursuer agents will
actively avoid goals with negative desirability. This attribute will
be diffused through the floor tile agents using a discrete version of
the well-known general diffusion equation [8]:

Equation 1: Diffusion Equation

!

u
0,t+1 = u

0,t
+ D (u

i,t
" u

0,t
)

i=1

n

where:
n = number of neighboring agents used as input for

the diffusion equation
u0,t = diffusion value of center agent
ui,t = diffusion value of neighbor agent (i > 0)
D = diffusion coefficient [0..0.5]

The diffusion coefficient controls the speed of diffusion. A larger
value will result in quick diffusion. In material science each
material has a specific heat diffusion coefficient. Silver, for
instance, has a much larger heat diffusion coefficient than a
thermal insulator such as wood. Consequently Silver will spread
heat much more rapidly than wood.
In a two-dimensional application the input is limited to the four
immediate neighbors defined by the von Neumann neighborhood
[28]. The Environment Path agents consisting of all the floor tiles
will now each compute the diffused values of Pacman scent p.
Figure 1 shows a logarithmic 3D plot of the p values over the area
of the entire worksheet. The peek in the middle correlates with the
position of the Pacman and has a value of 1000.
In the two-dimensional case, and with von Neumann
neighborhood, a diffusion coefficient value of 0.25 represents a
special case that further simplifies the diffusion equation. For
D=0.25 a new diffusion value u will simply become the average
value of its neighbors without even the need to refer to its own
previous value. This is useful for quick spreadsheet-based
experimentation.
Using a simple hill-climbing [7] approach, the pursuer agents
track down the Pacman. Each pursuer agent compares the
diffusion values of its four von Neumann neighbors and moves to
the neighbor cell with the largest value.
So far this approach would not provide a significant advantage to
more traditional tracking approaches. For instance, a pursuer
agent could have determined the location of the most promising
neighbor by computing the Euclidian distance from each of the
neighbors to the goal and then selecting the neighbor with the
smallest distance. However, in the presence of walls and other
kinds of environment obstacle agents these simplistic Game AI
approaches fail quickly. Figure 5, shows a complete playable
version of a Pacman game.
Through the diffusion of the Pacman scent the ghost will find the
correct solution. The important part is to understand how
environment obstacles agents interact with the diffusion values.
The walls, which are also represented by agents, will not diffuse
the Pacman scent. Consequently, they will clamp down diffusion
values. This clamping results in complex diffusion landscapes
that, again, can be plotted in 3D (Figure 5). Conceptually these
landscapes overlap with Axelrod’s Landscape theory [1] but are
better suited for dynamic schemes that include mobile agents. As
the Pacman and the ghosts are moving around in this world, the
landscape is continuously changing. But no matter where they are,
the ghost will be able to track down the Pacman, as long as there
is a path for a ghost to reach the Pacman.

The same approach works for tracking multiple goals. If multiple
goal agents have the same value then the pursuers agent will track
the closest goal agent. Goal agents may have different values
representing desirability of the goal. For instance, if really good
deli food is represented with a high “food” value, whereas some
old sandwich is represented with a significantly lower “food”
value then a pursuer agent is likely to pursue the more attractive
source of food even if it is located further away. The desirability
can also be a dynamic function. If, for instance, a pursuer agent
reaches food, it may eat some or all of the food resulting in a
decrease of the food’s desirability.
Collaborative Diffusion shifts a great deal of the computational
intelligence into the environment. Although, to the observer, the
ghosts appear to be the intelligent entities because they can track
the Pacman incredibly efficiently, in reality, most of the
intelligence is in the environment. The environment becomes a
computational reflection of the game topology, including the
player location and their states.
Today low-end desktop computers are sufficiently powerful to
compute diffusion of moderately sized worksheets. The Pacman
implementation had to be dramatically slowed down to make it
playable by a human. Without slowing it down, the ghosts will
instantly track the Pacman leaving a human player no chance. All
the examples shown in this paper run in real time. This includes
the sub-symbolic, symbolic processing, agent animation, and the
visualization of the 3D diffusion surface plots. All the Figures in
this paper are unedited screen dumps showing running games with
real-time 3D visualization enabled.

Figure 5. Collaborative Pacman Game. The user controlled
Pacman is in the upper left corner. The Pacman “scent” is

diffused over the entire worksheet. Diffusion values are
plotted logarithmically. The plot is intersected by the

worksheet. Walls are obstacle agents with a zero diffusion
value.

3.2 Collaboration by Goal Obfuscation
Even the simple version of diffusion introduced so far, not
including any explicit notion of collaboration, can lead to
emergence [10]. The Pacman game serves as an example of an
emerging collaboration called Collaboration by Goal
Obfuscation.
Ghosts tracking down a Pacman can collaborate with each other
by interacting with their environment. Consider the case where
two ghosts are tracking a single Pacman that tries to hide in a
corner of a maze (Figure 6 left). The two – or more – ghosts will
always split up making it impossible for the Pacman to escape.
The first ghost will select the shortest path, which is usually a

good approximation of a human walking path [4]. No matter
which path the first ghost takes the second one will select the
other path (Figure 6 right). Through the environment the first
ghost collaborates with the second one essentially
communicating: “I will take care of this path, you take care of the
other one.”
Just how do the two ghost collaborate with each other? In contrast
to spreadsheets where each cell only contains one value, an
AgentSheets cell contains a stack of agents, e.g., a ghost agent on
top of a pill agent on top of a floor tile agent. An agent evaluating
a diffusion equation referring to a diffusion value of one of its
neighboring cells will “see” the value of the agent on top of that
stack. If that agent does not have a matching attribute it will return
0. Consequently, if a ghost agent does not compute its own
Pacman diffusion value it will contribute a zero value to Pacman
diffusions surrounding it. In narrow, single cell, corridors such as
the ones found in Figure 3 the Pacman scent is blocked as it
cannot flow around the ghost. This results in optimal collaboration
cornering the Pacman as efficiently as possible.

Figure 6. Two ghosts collaborate. They enter the maze (left),

and split up to slay the Pacman (right).
This collaboration scheme is an emergent one in the sense that
there is no code explicitly responsible to orchestrate a group of
pursuing agents. There is no notion of collaboration neither at the
sub-symbolic diffusion level nor at the symbolic goal selection
level. Somewhat astoundingly, the same scheme generalizes to
more complex cases such as the one described below (Figure 4).
Five pursuers attack a single goal. Again without the use of
centralized scheme the ghosts manage to spread out perfectly
sending each pursuer into a unique path leaving the Pacman no
chance (Figure 7 right). This behavior is optimal because it tracks
the Pacman as efficiently as possible. If even just two ghost agents
would follow each other in the same path they would leave the
Pacman a path to escape.

Figure 7. Five ghosts collaborate. They start grouped up (left),
and distribute into all five paths (right) leaving the Pacman no

route to escape.
Depending on the starting conditions, it is possible that initially
two pursuing agents will end up in the same path because the only
path left over may be far away, making a nearby but already
handled path relatively attractive. But even in this case the
redundant pursuer agent will recognize its mistake quickly, turn
around and move to a path not yet featuring a pursuer agent.
Traditional AI search approaches such as A*, including
incremental extensions such as LPA* [12], would have been
efficient in a sequential scenario where only one pursuer gets sent
at a time. In the parallel scenario each pursuer agent would have
to restart its path finding search after each step. This parallelism is
likely to impair the plan of each pursuer agent. Additionally the

goal agent may be moving as well. The net effect is that
incremental heuristic searches such as LPA* are likely to loose
most of their incrementalism when attempting to deal with
collaboration. To make things worse, the computational cost
becomes proportional to the number of pursuer agents.
Collaborative Diffusion, in contrast, remains incremental and has
constant computational cost.

4. COLLABORATIVE DIFFUSION
Up to this point I have shown how multiple pursuers can track
down one or more goals by using sophisticated path finding and
simple collaboration. How can one add more explicit
collaboration and competition control mechanisms to diffusion
and deal with more complex goal structures? Soccer is a game
that includes additional challenges pushing the idea of
Collaborative Diffusion to the next level.

In its simplest incarnation one can define a soccer game as a
simulation of two teams with a certain number of players in each
team. This particular implementation of this game was developed
for the 2002 World Cup Soccer championship and demonstrated
in Tokyo. Our soccer players have a two level goal structure.
Initially, if they are away from the ball then they will try to track
down the ball. Players from both teams track the same ball. Once
they reach that goal they will have opposing objectives regarding
where to kick the ball.

Figure 5 below shows a complete soccer game simulation with
eleven players in each team. The red team is playing from left to
right, and the blue team is playing from right to left. The ball, the
left, and the right goals, are the Goal Agents. The red and blue
team agents are the Pursuer Agents tracking the ball and the goals.

Figure 8. Soccer simulation of Germany versus Brazil.

The playground is covered with about 500 playground agents
serving as Environment Path Agents. Playground agents diffuse
three different diffusion values (ball, left goal, and right goal)
using equation 1. In order to express collaboration and
competition the player agents will also diffuse these values but
will modulate the surfaces using the Collaborative Diffusion
equation 2.

Equation 2: Collaborative Diffusion

!

u
0,t+1 = " u

0,t
+ D (u

i,t
u

0,t
)

i=1

n

$
%

&
'

(

)
*

λ > 1: collaboration
λ < 1: competition
n = number of neighboring agents used as input

for the diffusion equation
u0,t = diffusion value of center agent
ui,t = diffusion value of neighbor agent (i > 0)
D = diffusion coefficient [0..0.5]

When diffusing the Left Goal value, the blue agents use a λ > 1 to
express collaboration, and the red agents use λ < 1 to express
competition. Collaboration and competition manifest themselves
as positive and negative dents on the Left Goal diffusion surface
(Figure 6).

Figure 9. Left Goal diffusion. The peak of the diffusion

correlates to the position of the left goal. The dents in the
diffusion surface correspond to collaborating and competing

players modulating the surface.

Symmetrically, when diffusing the Right Goal value the blue
agents use a λ < 1 to express competition, and the red agents use λ
> 1 to express collaboration. For an agent A to collaborate with an
agent B with respect to a goal G means that B will have a positive
effect on the diffusion surface representing G at the location of B.
If A and B are soccer players from the same team, and A is in the
possession of the ball, but B is in a better position to kick the ball
towards the goal then A is collaborating with B by deciding to
pass B the ball instead of trying to kick it toward the goal itself.
The degree of collaboration and competition is controlled via λ. λ
values (table 1) close to 1 denote small collaboration and
competition versus λ values that are significantly larger or smaller
than 1 represent a more pronounced collaboration and
competition.
A λ value of 1 denotes the lack of collaboration or, in other
words, total autonomy. Large λ values yield exaggerated
collaboration manifesting itself, for instance, in players sending
each other passes when they should have attempted to just kick
directly toward the goal. Analogously, very small λ values result
in extreme competition.

The ability to control agent interaction through λ anywhere
between extreme competition, competition, autonomy,
collaboration, and extreme collaboration (Table 1) makes λ an
important parameter of the sub-symbolic computational
intelligence. At the symbolic level rules can be used to modify λ
in real time. This is useful to implement dynamic collaboration
schemes where the degree and quality of collaborations may
change over time.

Table 1. Agent Interaction
λ Agent Interaction

>> 1 Extreme Collaboration
> 1 Collaboration

= 1 Autonomy

< 1 Competition
<< 1 Extreme Competition

The values used for λ in the soccer simulation shown here are
1.08 for collaboration and 0.8 for competition. These values often
need to be determined empirically. Through the end-user
programming interface, developers can control λ values at the
level of an entire simulation, agent classes, or individual agents in
order to simulate different kinds of players.

Figure 10. Ball diffusion. Peak indicates the location of the

ball.
Player agents do not diffuse the ball value. This results in effects
similar to the Collaboration by Goal Obfuscation presented
previously in the Pacman example. The consequential ball
diffusion surface becomes very complex (Figure 10). If the player
agents would also diffuse the ball value then the ball would
immediately attract all the players resulting in one large cluster
including all the players.

Goal Selection
To adapt to different situations, sub-symbolic diffusion processes
need to be controlled via a goal selection mechanism. This is an
opportunity for end-user programming allowing users to create
rules determining when and how agents select goals. A soccer
player agent that is not next to the ball will initially pursue the ball
as goal. Because of the Collaboration by Goal Obfuscation effect,
the urge to track the ball will decrease if the ball is already
surrounded by a large number of players. As a result of that, after
a while some of the players will spread out on the play field.
Some will stay behind in defending positions while others move
beyond the ball in an attacking posture ready to receive passes
from their fellow players (Figure 8).
Once a player reaches the ball, a new goal is selected. The new
goal is to kick the ball, in accordance to the corresponding goal
diffusion function, towards the opponent’s goal. The
Collaborative Diffusion again shifts the intelligence into the
environmental computation consisting of the Left Goal, Ball, and

Right Goal diffusions. Goal selection becomes simple. All the
player has to do is to make the ball hill climb, one step, towards
the opponent’s goal.
More generally a goal selection can be implemented using
different approaches ranging from simple computational models
such as state machines, goal stacks and goal queues to more
complex neurologically inspired approaches such as Subsumption
architectures [15] or psychological approaches such as Maslow’s
hierarchy of needs [16]. Furthermore, goal selection can be done
fully autonomously, user controlled or in a mixed user + system
mode. An example of a mixed mode goal selection mechanism
can be found in The Sims [32] where users select from actions
(e.g., go and eat something) that are put into a goal queue but at
the same time the system may add important actions based on the
current state of a Sim.

Scenarios
The ensuing game simulation is highly complex because every
player from each team influences the decision of every other
player. In other worlds, through the Collaborative Diffusion all
the players communicate with each other through the
environment. The consequences of this collaboration/competition
scheme are best illustrated through simplified scenarios. Scenarios
are created by manually moving players and the ball into specific
situations in “AI debugging” mode. In debugging mode players
will not move around nor actually kick the ball. Instead, the scene
will be visually annotated with information indicating the
intentions of players. For instance, the visualization will show a
little arrow pointing in the direction in which a player would have
kicked a ball. Without this tool it can become extremely difficult
to track agent interactions especially when running the game in
real-time.
Passing: The red player possessing the ball (Figure 11) is getting
close to the blue goal with only one defending blue player. The
little red arrow indicates the intended ball kick direction. The
player is not kicking the ball straight to the goal but instead is
sending it as a pass to a second player closer to the goal from the
red team.

Figure 11. Collaborate by passing ball.

Sending such a pass is emerging behavior that was not
programmed in any way. The system has no rules for sending a
ball from one player to another. The passing behavior emerges
from the collaboration/competition modulation. Sending the ball
to a second player that is not covered by a player from the

opposite team is a good idea despite the fact that the total distance
the ball has to travel is longer than a straight shot.
Path of less opponent coverage: Three red players attack blue
goal (Figure 12), which is defended by three blue players. The
kicking red player sends a pass to the lower red player, which is
only covered by one blue player.

Figure 12. Player passes ball to less covered player.

Straight shot: With one more blue player making the situation
symmetrical (Figure 13), both other red players are covered by
two blue players each. The kicking red player decides to attempt a
straight shoot towards to goal instead of sending a pass to either of
his colleagues because both of them are covered well.

Figure 13. Players from same team are well covered. Player

kicks ball straight towards goal.

5. DISCUSSION
This section describes the main characteristics of Collaborative
Diffusion and discusses extensions and experiences.
Robust. One of the main goals of this research is to create a
robust AI framework for developing real-time multi-agent game
applications. The collaboration aspect of the framework should be
robust in the sense that it should be independent of the context in
which it is used and should work with a highly variable number of
agents. Higher-level intelligence, including collaboration, should
emerge from the interaction of simple agents. This degree of
robustness is unlikely to result from symbolic-only AI
approaches. This robustness can be achieved through a hybrid

architecture fusing sub-symbolic with symbolic AI approaches. At
the sub-symbolic level, diffusion processes are employed to
compute complex collaboration goal functions. At the symbolic
level, a rule-based language, called Visual AgenTalk [23], is used
to control these diffusion processes. Game developers will be able
to benefit from end-user programming [5, 11, 13, 17, 19, 23] and
end-user development [20] to control the behavior of rule-based
agents. End-user programming allows developers to easily define
agent goal selection and to adjust sub-symbolic collaboration and
competition parameters. Finally, a robust framework aimed at
end-user developers requires the integration of specialized
debugging tools capable of illustrating the complex interaction
emerging from collaborative multi-agent applications. An initial
step in this direction is the integration of real-time 3D
visualizations in the diffusion process.
It has been somewhat surprising to see the robustness resulting
from the combination of symbolic AI and sub-symbolic AI in
Collaborative Diffusion. The soccer game got exposed to a
number of elementary and middle school kids in the USA and
Japan. Many of these kids created outrageous configurations of
soccer games. Some tried extreme team size ratios (e.g., two
against fifty); others explored the behavior of players when given
multiple balls. In some cases there were more balls than players.
Others eliminated goals temporarily, moved the goals to
unconventional positions or even added multiple goals. In all of
these situations the players kept “happily” playing by engaging in
what at least appeared reasonable strategies to deal with
unanticipated game modifications.
Environmental. Traditionally, Artificial Intelligence projects
computational “intelligence” into the components of a simulation
that most people would perceive to be intelligent. In the case of
the soccer game the AI would be presumed to reside inside the
agents representing soccer players. Collaborative Diffusion, in
sharp contrast, projects most of the computational intelligence
onto the environment. In the case of the soccer game that would
be the soccer field. In the spirit of antiobjects, Collaborative
Diffusion swaps the computational roles of active foregrounds and
passive backgrounds. For instance to simulate flocking birds [9,
26, 27], traditional AI puts the birds into the foreground by
projecting computational intelligence into agents modeling the
behavior of birds. Collaborative Diffusion puts what is
traditionally considered the background, e.g. the environment
containing the birds, into the computational foreground. Simon’s
notion of embedding artifice in nature [26] is highly related. He
employs the parable of an ant to explain the psychology of
thinking: “An ant, viewed as a behavior system, is quite simple.
The apparent complexity of its behavior over time is largely a
reflection of the complexity of the environment in which it finds
itself.” Antiobjects in Collaborative Diffusion go one step further
by not only shifting the perception of intelligence from the agent
to its environment but also by shifting the computational
intelligence itself from the agent to its environment. The artifice,
to use Simon’s term, now becomes a fully computational entity
itself. An intrinsic limitation of this framework is that it applies
only to the world of the artificial where computation is at the
discretion of the developer and can be put anywhere. There is no
equivalent in the real world. Soccer fields and the air surrounding
birds do not participate in any kind of computation accessible to
us. For instance, Collaborative Diffusion is not directly relevant to
robotics because in robotics there is no other way than putting all
the computational intelligence inside the robots.
Parallel. In contrast to the typical kinds of problem solving
approaches discussed in symbolic Artificial Intelligence for games
such as checkers and chess, Collaborative Diffusion is concerned
with the parallel execution of autonomous agents. Approaches
such as game trees and minimax procedures make a number of

fundamental assumptions including: two-person game, turn
taking, and perfect information [7]. There is no turn taking in a
game like soccer. Also, all the players are acting – to a degree –
autonomously and in parallel. The information is not perfect
because, for instance, balls kicked may not end up where they
were supposed to go.
Increasingly, as CPUs can only live up to Moore’s Law buy using
multi-core chips [21], we need better ways to map computation
onto parallel architectures. Traditional, for instance thread-based,
parallelism has only a limited capability to optimally benefit from
parallel architectures because distributed computation is often
offset by the need to deal with additional communication and
synchronization challenges. Collaborative Diffusion is not only
suitable for parallel AI problems but its computational nature also
lends itself to simple parallel implementations. There is no need
for a 64 thousand CPU Connection Machine with a 12
dimensional hypercube bus. Most Collaborative Diffusion game
applications will only need two or three dimensional diffusion
arrays. Segmenting the diffusion space and distributing it onto
multiple CPUs achieves efficient data parallelism. This will result
in near linear acceleration on multi-CPU or multi-core desktop
computers.
Acceleration through parallelism is most pronounced on next
generation game consoles combining multi CPU and multi core
options. For even larger hardware acceleration the diffusion
process can be executed on programmable Graphical Processing
Units (GPU), which are common on modern desktop computers.
Harris et al. [8] report a speedup of nearly 25 (CPU Pentium 4,
GPU GeForce 4) for running very large diffusion processes with
one million data points on graphics hardware. These are strong
indicators that Collaborative Diffusion is computationally
scalable. Even on a single CPU and without hardware acceleration
it can be used to implement sophisticated collaborations based on
a few hundreds or thousands of agents. The kind of acceleration
possible on next generation game consoles allows Collaborative
Diffusion with millions of agents were each agent could
participate, simultaneously, in a large number of diffusion layers.
Incremental. The computation used in searching strategies is not
well suited for frame-based, real-time games [18]. Most search-
based strategies will, at each turn in the game, re-process the
entire state of the game, that is, the positions of all the chess
pieces, and compute a set of separate data structures such as
and/or graphs consisting of extrapolated variants of the current
game state. These graphs are searched and pruned using
evaluation functions and pruning heuristics to cope with the
complexity of analysis. However, and this is what makes these
approaches non-incremental, all the computation states get
completely discharged after each turn. At each turn the game
board is treated like a completely new game board despite the fact
that in most games – including chess – game boards only evolve
incrementally from one move to another. In the Collaborative
Diffusion framework the agents representing the game players and
the environment will retain the game information and will
compute game evaluation functions incrementally. In a frame-
based game environment this means that the current computation
will benefit from all the computation preceding it. The net effect
is that less computation will be necessary for each frame allowing
complete collaboration and competition AI to be computed in real
time. Incremental AI approaches are beginning to gain interest.
Koenig et al. [12] advocate the use of incremental heuristic search
approaches for route planning in traffic and game applications. In
contrast to Collaborative Diffusion incremental heuristic searches
such as Lifelong Planning A* do not scale well to multi agent
scenarios and do not include notions of collaboration and
competition.

Lessons learned from Teaching
Collaborative Diffusion has been created at AgentSheets Inc. and
been used in teaching at the University of Colorado, Computer
Science Department, in several courses including Artificial
Intelligence, Object-Oriented Design, and Gamelet Design for
Education.
When learning to make AI-based games students generally did not
have problems at a conceptual level after overcoming the initial
transition from objects to antiobjects. That is, most students
quickly grasped the idea of diffusion and its application to AI.
Showing the real-time 3D diffusion visualization in class turned
out to be rather important. It was especially important to convey
the ideas of value distribution resulting from different topologies
including complex mazes. Additionally, seeing the dynamic
aspect of diffusion also helped. For instance, the use of different
diffusion coefficients becomes highly apparent when visualized in
real-time while observing moving targets. With small coefficients
the resulting shape change are reminiscent of high viscosity oil
whereas with large coefficients the shape change will be nearly
instant. Coefficients approaching the critical value of 0.5 will also
become apparent as numerical instabilities will manifest
themselves as highly dynamic noise. Not all versions of
AgentSheets included 3D real-time plotting capability. It became
clear that students using a software version of AgentSheets not
including 3D real-time plotting were much more likely to either
get stuck due to even small errors in their diffusion equations or
more likely to produce simple games that were only trivial
extensions of the examples given to them. All this can be
interpreted as early evidence that the real-time visualization is an
important aspect of the AI development process. Originally, we
assumed that the use of real-time 3D visualization would only be
important for us, the framework developers, but our experiences
with students indicate that game developers gain perhaps even
larger benefits from using real-time 3D visualization to “debug”
their AI applications.
One of the largest teaching challenges for Collaborative Diffusion
was the transition from objects to antiobjects itself. Few computer
science students had a concrete sense of what diffusion is. Even
fewer students had any kind of previous exposure to
computational interpretations of diffusion. Nonetheless, by using
relevant examples diffusion is quickly explained. Using an end-
user programmable application such as a spreadsheet or
AgentSheets helps to illustrate the computational aspects of
diffusion. Equations 1 and 2 presented in this paper are non-
intimidating to computer science students especially when viewed
as spreadsheet formula expression. More challenging, by far, was
the notion of environmental computation. The idea that the
computational intelligence is put into the environment, e.g., the
soccer field between the soccer players or the air between the
flocking birds, is non-intuitive. Student’s previous exposure to AI
concepts neither helped nor hindered their initial comprehension
of antiobjects or Collaborative Diffusion. However, students with
AI background could quicker relate to the affordances of
Collaborative Diffusion because they appreciated the unwieldy
complexity that would have likely resulted from using more
traditional AI approaches such as rule-based AI to implement
collaborative behaviors.
We were surprised by the variety and depth of some of the student
developed games. Although many students created relatively
minimal games that, by in large, were permutations of Pacman-
like games, others created sophisticated games. A number of
students built functionally complete, but artistically simple, Sims
games including complex house layouts and diffusion layers such
as hunger, entertainment, hygiene and relaxation.

Early user experiments were conducted at a middle school to
establish the boundary conditions of usability. Would it be
possible to convey the notion of diffusion to 12 year old middle
school students allowing them to make their own games based on
diffusion? To teach diffusion it was necessary to have one-on-one
tutoring sessions that took about 20 minutes each. Compared to
the computer science undergraduate and graduate students the
middle school students’ comprehension of diffusion was much
more shallow. In cookbook style fashion they had quickly learned
how to setup agents with diffusion equations so that they could
build AI-based games. Nonetheless, the students not only picked
up diffusion but also built some of the most creative games.

6. CONCLUSIONS
Object-oriented design can be deceiving by luring us into
computational ideas that are too much inspired by our own
experiences in the physical world. Based on these experiences we
make decisions regarding in which objects computation should
reside. In applications such as Artificial Intelligence this can be
particularly detrimental as it may result in solutions that are
inefficient or, worse, may not work at all. Antiobjects seemingly
defy current expectations of what objects are supposed to do.
They challenge our intuition regarding where computation should
be. When implemented as antiobjects, object that we assumed to
be complex turn out to be simple and have little computation.
Objects we assumed to be passive, such as non-functional
background objects, turn out to host most of the computation.
In this paper we have shown an example application of antiobjects
called Collaborative Diffusion. Collaborative Diffusion is a
versatile collaboration and competition framework for building
multi-agent games. Antiobjects are not only a way to think
differently about computation but, as illustrated in the case of
Collaborative Diffusion, they can make applications more
effective, incremental and robust.

7. ACKNOWLEDGMENTS
This material is based in part upon work supported by the
National Science Foundation under Grants Numbers 0349663 and
0205625. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National
Science Foundation.

8. REFERENCES
1. Axelrod, R.M. The Complexity of Cooperation.

Princeton University Press, 1997.
2. Bjork, S. and Holopainen, J. Patterns in Game Design.

Charles River Media, Hingham, Massachusetts, 2005.
3. Bourg, D.M. and Seemann, G. AI for Game Developers.

O'Reilly, 2004.
4. Brogan, D.C. and Johnson, N.L. Realistic Human

Walking Paths. Proceedings of the 16th International
Conference on Computer Animation and Social Agents
(CASA 2003) (2003).

5. Cypher, A. Watch What I Do: Programming by
Demonstration. The MIT Press, Cambridge, MA, 1993.

6. Gelperin, D. On the Optimality of A*. AI, 8 (1977). 69-
76.

7. Genesereth, M.R. and Nilson, N.J. Logical Foundations
of Artificial Intelligence. Morgan Kaufman Publishers,
Inc., Los Altos, 1987.

8. Harris, M., Coombe, G., Scheuermann, T. and Lastra,
A., Physically-Based Visual Simulation on Graphics
Hardware. in Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, (Saarbrucken, Germany, 2002),
Eurographics Association.

9. Jadbabaie, A., Lin, J. and Morse, A.S. Coordination of
Groups of Mobile Autonomous Agents Using Nearest
Neighbor Rules. IEEEE Transactions On Automatic
Control, 48 (2003). 988-1001.

10. Johnson, S. Emergence: The Connected Lives of Ants,
Brains, Cities, and Software. Touchstone, New York,
2002.

11. Jones, C. End-user programming. IEEE Computer, 28
(1995). 68-70.

12. Koenig, S., Likhachev, M., Liu, Y. and Furcy, D.
Incremental Heuristic Search in Artificial Intelligence.
AI Magazine (2004).

13. Lieberman, H. Your Wish Is My Command:
Programming by Example. Morgan Kaufmann
Publishers, San Francisco, CA, 2001.

14. Liu, J., Tang, Y.Y. and Cao, Y.C. An Evolutionary
Autonomous Agents Approach to Image Feature
Extraction IEEE Transactions on Evolutionary
Computation, 1 (1997). 141-158.

15. Maes, P. Designing Autonomous Agents. MIT Press,
Cambridge, MA, 1990.

16. Maslow, A.H. A Theory of Human Motivation.
Psychological Review (1943). 370-396.

17. Nardi, B. A Small Matter of Programming. MIT Press,
Cambridge, MA, 1993.

18. Nareyek, A., Intelligent Agents for Computer Games. in
Second International Conference on Computers and
Games, (Hamamatsu, Japan, 2000), Springer-Verlag,
London, UK.

19. Papert, S. The Children's Machine. Basic Books, New
York, 1993.

20. Paternò, F. D1.2 Research Agenda: End-User
Development: Empowering people to flexibly employ
advanced information and communication technology,
EUD-Net: End-User Development Network of
Excellence, 2003, 17.

21. Patterson, D.A. Computer Science Education in the 21st
Century. Communications of the ACM, 49 (2006). 27-
30.

22. Repenning, A. Repräsentation von graphischen
Objekten, Asea Brown Boveri Research Center,
Artificial Intelligence group, Daetwill 5405,
Switzerland, 1987.

23. Repenning, A. and Ioannidou, A. Agent-Based End-
User Development. Communications of the ACM, 47
(2004). 43-46.

24. Schaeffer, J. A Gamut of Games. AI Magazine, 22
(2001). 29-46.

25. Searle, J.R. Minds, brains, and programs. Behavioral
and Brain Sciences, 3 (1980). 417-457.

26. Simon, H.A. The Sciences of the Artificial. MIT Press,
Cambridge, MA, 1981.

27. Spears, W.M., Spears, D.F., J.C. Hamann and Heil, R.
Distributed, Physics-Based Control of Swarms of
Vehicles. Autonomous Robots, 17 (2004). 137–162.

28. Toffoli, T. and Margolus, N. Cellular Automata
Machines. The MIT Press, Cambridge, MA, 1987.

29. Tsui, K.C. and Liu, J., Multiagent Diffusion and
Distributed Optimization. in Proceedings of the second
international joint conference on Autonomous agents
and multiagent systems, (Melbourne, Australia, 2003),
ACM Press, New York, NY, USA, 169 - 176.

30. Turing, A.M. The Chemical Basis Of Morphogenesis.
Philosophical Transactions of the Royal Society of
London, 237 (1952). 37-72.

31. Watt, S., Syntonicity and the Psychology of
Programming. in Proceedings of the Tenth Annual
Meeting of the Psychology of Programming Interest
Group, (Milton Keenes, UK, 1998), Knowledge Media
Instritute, 75-86.

32. Wright, W. The Sims, http://thesims.ea.com/, 2001.

