
LISP AND SYMBOLIC COMPUTATION: An International Journal, 5:4, 295–326, 1992
c© 1992 Kluwer Academic Publishers – Manufactured in The Netherlands

Syntactic Abstraction in Scheme∗

R. KENT DYBVIG (dyb@cs.indiana.edu)

ROBERT HIEB†

CARL BRUGGEMAN (bruggema@cs.indiana.edu)

Indiana University Computer Science Department
Bloomington, IN 47405

(Received: August, 1992)

(Revised: March, 1993)

Keywords: Syntactic Abstraction, Macros, Program Transformation, Hygienic Macros

Abstract. Naive program transformations can have surprising effects due to the inter-
action between introduced identifier references and previously existing identifier bindings,
or between introduced bindings and previously existing references. These interactions can
result in inadvertent binding, or capturing, of identifiers. A further complication is that
transformed programs may have little resemblance to original programs, making correla-
tion of source and object code difficult. This article describes an efficient macro system
that prevents inadvertent capturing while maintaining the correlation between source
and object code. The macro system allows the programmer to define program trans-
formations using an unrestricted, general-purpose language. Previous approaches to the
capturing problem have been inadequate, overly restrictive, or inefficient, and the prob-
lem of source-object correlation has been largely unaddressed. The macro system is based
on a new algorithm for implementing syntactic transformations and a new representation
for syntactic expressions.

1. Introduction

A fundamental problem with traditional Lisp macro systems is that they
do not respect lexical scoping. When one expression is substituted for
another, apparent bindings can be shadowed, resulting in unintended cap-
ture of identifier references. The capturing problem, which is the source of
many serious and difficult to find bugs, was first addressed by Kohlbecker,
Friedman, Felleisen, and Duba [17]. To solve the capturing problem, they
proposed a hygiene condition for macros and an elegant algorithm for en-

∗This material is based on work supported by the National Science Foundation under
grant number CCR-8803432.

†Robert Hieb died in an automobile accident in April 1992.

296 DYBVIG, HIEB, AND BRUGGEMAN

forcing this condition.
A problem of equal practical importance is that Lisp macro systems can-

not track source code through the macro-expansion process. Reliable corre-
lation of source code and macro-expanded code is necessary if the compiler,
run-time system, and debugger are to communicate with the programmer
in terms of the original source program. The effort invested in compilers
to correlate source and optimized object code [7, 14, 19] is wasted if the
macro expander loses the correlation of source and expanded code before
compilation begins. The correlation techniques applied to optimizing com-
pilers do not extend to macro processors because these techniques require
that the entire set of possible code transformations be known a priori.

This article presents a macro system for Scheme that enforces hygiene
automatically while maintaining the correlation between source and object
code. The macro system supports macros written in a general purpose pro-
gramming language (Scheme) as well as macros written in high-level pat-
tern languages such as extend-syntax [8, 15, 16] and syntax-rules [6].
Local macros are referentially transparent in the sense that free identifiers
appearing in the output of a local macro are scoped where the macro defini-
tion appears [5]. No keywords are reserved; keywords for core forms such as
lambda as well as macro keywords defined by the program can be rebound,
either as new macro keywords or as variables. The system supports a con-
trolled form of identifier capture that allows most common “capturing”
macros to be written without violating the spirit of hygiene. The system
is based on a new representation for syntactic expressions and a new algo-
rithm for implementing syntactic transformations. The algorithm has at its
core a modified version of the Kohlbecker, Friedman, Felleisen, and Duba
(KFFD) algorithm. Unlike the KFFD algorithm, the new algorithm adds
only constant overhead to the macro expansion process.

Other systems have been proposed that share some of the features listed
above; many of these systems are described in the following section. No
other system proposed to date, however,

• enforces hygiene with constant overhead for macros written in a full
general-purpose language,

• solves the source-object correlation problem for variables and con-
stants as well as structured expressions,

• supplies a hygiene-preserving mechanism for controlled identifier cap-
ture,

• maintains referential transparency for all local macros, or
• provides automatic syntax checking, input destructuring, and output

restructuring for low-level macros.
The remainder of this article is structured as follows. Section 2 discusses

related work. Section 3 describes the interface to our macro system and

SYNTACTIC ABSTRACTION IN SCHEME 297

examples of its use. Section 4 describes our algorithm. It begins with a vari-
ant of the KFFD algorithm applied to abstract syntax, demonstrates how
delaying part of the work of this algorithm reduces expansion overhead to a
constant, describes how controlled identifier captures are implemented, and
shows how the correlation between source and object code is maintained.
Section 5 summarizes the article and presents our conclusions.

2. Background

Inadvertent capturing of identifier references occurs in one of two ways.
First, an identifier binding introduced by a macro can capture references
to identifiers of the same name within the subexpressions of the macro call.
For example, consider the expression1

(let ((t “okay”))
(or2 #f t))

where or2 is a two-subexpression version of or to be expanded as follows

(or2 e1 e2) ⇒ (let ((t e1)) (if t t e2))

The expression should evaluate to “okay”. A naive expansion of the ex-
pression, however, produces

(let ((t “okay”))
(let ((t #f))

(if t t t)))

This evaluates to #f, since the reference to t in the macro call is captured
by the binding for t inserted during expansion.

Second, an identifier reference introduced by a macro can be captured
by identifier bindings for the same name within the context of the macro
call. For example, the expression

(let ((if #f))
(or2 if “okay”))

should also evaluate to “okay”2, but a naive expansion produces
1For readability, keywords are shown in boldface, variables in italic, and constants in

Roman.
2This example presumes that keywords, such as if, are not reserved.

298 DYBVIG, HIEB, AND BRUGGEMAN

(let ((if #f))
(let ((t if))

(if t t “okay”)))

This results in an attempt to apply the nonprocedure #f, causing a run-
time error.

Various ad hoc techniques have been developed to help prevent unin-
tended identifier captures. Capturing problems have been avoided by using
generated names, special naming conventions, or the careful use of lexi-
cal scoping combined with local procedure definitions. With each of these
techniques, the programmer must do something special to avoid captur-
ing, making capturing the default even though capturing is rarely desired.
What is worse, macros that can cause unintended captures often do not do
so immediately but lie dormant, waiting for an unsuspecting programmer
to insert just the right (wrong!) identifier name into a macro call or its
context.

This insidious problem was first addressed by Kohlbecker, Friedman,
Felleisen, and Duba [17], who present an algorithm in which the macro
system automatically renames bound variables to prevent inadvertent cap-
turing. The fundamental notion underlying the KFFD algorithm is alpha
equivalence, which equates terms that differ only in the names of bound
variables. Alpha equivalence is the basis of Barendregt’s variable conven-
tion, which assumes that the bound variables in terms used in definitions
and proofs are always chosen to be different from the free variables [2, page
26]. The KFFD algorithm respects the variable convention and thus is
said to be “hygienic.” It traverses each expression after it is rewritten in
order to give identifiers “time stamps,” which are used during alpha con-
version to distinguish identifiers that are introduced at different times in
the transformation process. Unfortunately, since the algorithm completely
traverses each expression after it is rewritten, the time complexity of the
macro expansion process increases from linear to quadratic with respect to
the number of expressions present in the source code or introduced during
macro expansion. This is a serious problem for large programs that make
heavy use of macros, i.e., nearly all large Scheme programs.

Clinger and Rees [5] present an algorithm for hygienic macro transfor-
mations that does not have the quadratic time complexity of the KFFD
algorithm. Their algorithm marks only the new identifiers introduced at
each iteration of the macro transformation process, rather than all of the
identifiers as in the KFFD algorithm. Their system, however, allows macros
to be written only in a restricted high-level specification language in which
it is easy to determine where new identifiers will appear in the output
of a macro. Since some macros cannot be expressed using this language,

SYNTACTIC ABSTRACTION IN SCHEME 299

they have developed a low-level interface that requires new identifiers to be
marked explicitly [4].

Bawden and Rees [3] approach the capturing problem from a different
angle. Rather than providing automatic hygiene, their system forces the
programmer to make explicit decisions about the resolution of free iden-
tifier references and the scope of identifier bindings. Borrowing from the
notion that procedures can be represented by closures that encapsulate lex-
ical environments, they allow the programmer to create syntactic closures
that encapsulate syntactic environments. The result is a system that allows
the programmer to avoid unwanted capturing. Unlike traditional closures,
however, syntactic closures and their environments must be constructed
explicitly. As a result, the mechanism is difficult to use and definitions cre-
ated using it are hard to understand and verify. Hanson [13] alleviates this
problem somewhat by demonstrating that the restricted high-level specifi-
cation language supported by Clinger and Rees can be built on top of an
extended version of syntactic closures.

For a large class of macros, those that cannot be written in this high-
level specification language, both the Clinger/Rees and syntactic closures
approaches place responsibility for enforcing hygiene on the macro writer
rather than on the underlying transformation algorithm. Furthermore, the
pattern matching, destructuring, and restructuring facilities provided by
the specification language must be completely abandoned for the same class
of macros. Both low-level interfaces are completely different in style and
usage from the high-level specification language.

Macros defined in the high-level specification language are referentially
transparent [18] in the sense that a macro-introduced identifier refers to the
binding lexically visible where the macro definition appears rather than to
the top-level binding or to the binding visible where the macro call appears.
This extends hygiene to local macros, which were not supported by the
KFFD algorithm. Like automatic hygiene, this transparency is not present
in either the syntactic closures or the Clinger/Rees low-level interfaces.

Griffin [12] describes a theory of syntactic definitions in the context of
interactive proof development systems. He supports high-level definitions
of derived notations in such a way that the definitions have certain formal
properties that make them easy to reason about. As a result, however, his
system is very restrictive with respect to the sort of macros that can be
defined.

Dybvig, Friedman, and Haynes [10, 11] address the source-object correla-
tion problem, demonstrating that their proposed macro expansion protocol,
expansion-passing style, is capable of maintaining source-object correlation
even in the presence of arbitrary user-defined macros. Their mechanism,
however, does not enforce hygiene and handles only structured expressions;

300 DYBVIG, HIEB, AND BRUGGEMAN

in particular, it does not handle variable references.
The Revised4 Report on Scheme [6] includes an appendix that contains a

proposed macro system for Scheme. The high-level system (syntax-rules)
described therein is a version of Kohlbecker’s extend-syntax [8, 15, 16]
with the same restrictions imposed by Clinger and Rees [5]. The revised-
report appendix also describes a low-level system that, although it auto-
matically preserves hygiene and referential transparency, requires manual
destructuring of the input and restructuring of the output. The low-level
system described in the revised-report appendix was proposed by the au-
thors of this article and is the predecessor of the system described here. The
new system provides only a high-level pattern language, similar to the one
provided by syntax-rules, which is nonetheless powerful enough to pro-
vide the functionality of a “low-level” system while maintaining automatic
hygiene, referential transparency, and source-object correlation.

3. The language

The macro system supports the set of syntactic forms and procedures shown
in Figure 1. Each of these forms and procedures is described in this section.

All extended syntactic forms, or macro calls, take the form

(keyword subform . . .)

where keyword is an identifier that names a macro. The syntax of each
subform is determined by the macro and can vary significantly from macro
to macro3. When the macro expander encounters a macro call, the macro
call expression is passed to the associated transformer to be processed. The
expansion process is repeated for the result returned by the transformer
until no macro calls remain.

New syntactic forms, or macros, are defined by associating keywords with
transformation procedures, or transformers. Top-level syntactic definitions
are created using define-syntax.

(define-syntax keyword transformer-expression)

transformer-expression must be an expression that evaluates to a trans-
former.

The scope of syntactic definitions can be limited by using the lexical bind-
ing forms let-syntax and letrec-syntax4. In both cases keyword denotes

3Although not shown, macro calls can also take the form of improper lists.
4Also, internal define-syntax forms may appear wherever internal define forms are

permitted, in which case the definitions behave as if introduced by letrec-syntax.

SYNTACTIC ABSTRACTION IN SCHEME 301

Macro calls:
(keyword subform . . .)

Macro definition and binding:
(define-syntax keyword transformer-expression)
(let-syntax ((keyword transformer-expression) . . .) body)
(letrec-syntax ((keyword transformer-expression) . . .) body)

Destructuring and restructuring:
(syntax-case input-expression (literal . . .)

(pattern fender expression)
. . .)

(syntax template)
(syntax-object->datum syntax-object)
(datum->syntax-object identifier datum)

Predicates:
(identifier? object)
(free-identifier=? identifier1 identifier2)
(bound-identifier=? identifier1 identifier2)

Figure 1: Syntactic forms and procedures provided by the macro system.

new syntax in body; for letrec-syntax the binding scope also includes each
transformer-expression.

(let-syntax ((keyword transformer-expression) . . .) body)
(letrec-syntax ((keyword transformer-expression) . . .) body)

At the language level, the fundamental characteristic of the macro sys-
tem is the abstract nature of the arguments passed to macro transformers.
The argument to a macro transformer is a syntax object. A syntax ob-
ject contains contextual information about an expression in addition to its
structure. This contextual information is used by the expander to maintain
hygiene and referential transparency. Traditional Lisp macro systems use
ordinary list-structured data to represent syntax. Although such list struc-
tures are convenient to manipulate, crucial syntactic information cannot be
maintained. For example, the ability to distinguish between different iden-
tifiers that share the same name is of paramount importance. Information
to allow these distinctions to be drawn is contained within each abstract
syntax object, so that transformers can compare identifiers according to
their intended use as free identifiers, bound identifiers, or symbolic data.

302 DYBVIG, HIEB, AND BRUGGEMAN

Syntax objects may contain other syntactic information that is not of
direct interest to the macro writer. In our system, for example, syntax
objects can contain source annotations that allow the evaluator to correlate
the final object code with the original source code that produced it. Or,
as discussed in Section 4, syntax objects may contain information that for
efficiency reasons has not yet been fully processed.

Transformers decompose their input using syntax-case and rebuild their
output using syntax. A syntax-case expression takes the following form:

(syntax-case input-expression (literal . . .) clause . . .)

Each clause takes one of the following two forms:

(pattern output-expression)
(pattern fender output-expression)

syntax-case first evaluates input-expression, then attempts to match the
resulting value with the pattern from the first clause. This value is usually a
syntax object, but it may be any Scheme list structure. If the value matches
the pattern, and there is no fender present, output-expression is evaluated
and its value returned as the value of the syntax-case expression. If the
value does not match the pattern, the value is compared against the next
clause, and so on. An error is signaled if the value does not match any of
the patterns.

Patterns consist of list structures, identifiers, and constants. Each iden-
tifier within a pattern is either a literal, a pattern variable, or an ellipsis.
The identifier ... is an ellipsis. Any identifier other than ... is a literal
if it appears in the list of literals (literal . . .) in the syntax-case expres-
sion; otherwise it is a pattern variable. Literals serve as auxiliary keywords,
such as else in case and cond expressions. List structure within a pat-
tern specifies the basic structure required of the input, pattern variables
specify arbitrary substructure, and literals and constants specify atomic
pieces that must match exactly. Ellipses specify repeated occurrences of
the subpatterns they follow.

An input form F matches a pattern P if and only if

• P is a pattern variable; or
• P is a literal identifier and F is an identifier with the same binding;

or
• P is a pattern list (P1 . . . Pn) and F is a list of n forms that match

P1 through Pn, respectively; or
• P is an improper pattern list (P1 P2 . . . Pn . Pn+1) and F is a list or

improper list of n or more forms that match P1 through Pn, respec-
tively, and whose nth “cdr” matches Pn+1; or

SYNTACTIC ABSTRACTION IN SCHEME 303

• P is of the form (P1 . . . Pn Pn+1 ...) where F is a proper list of at
least n elements, the first n of which match P1 through Pn, respec-
tively, and each remaining element of F matches Pn+1; or

• P is a pattern datum5 and F is equal to P in the sense of the equal?
procedure.

If the optional fender is present, it serves as an additional constraint on
acceptance of a clause. If the value of input-expression matches the pattern
for a given clause, the corresponding fender is evaluated. If fender evaluates
to a true value, the clause is accepted; otherwise the clause is rejected as
if the input had failed to match the pattern. Fenders are logically a part
of the matching process, i.e., they specify additional matching constraints
beyond the basic structure of an expression.

Pattern variables contained within a clause’s pattern are bound to the cor-
responding pieces of the input value within the clause’s fender (if present)
and output-expression. Pattern variables occupy the same name space as
program variables and keywords; bindings created by syntax-case can
shadow (and be shadowed by) program variable and keyword bindings as
well as other pattern variable bindings. Pattern variables, however, can
be referenced only within syntax expressions. Scheme syntax expressions
have the following form:

(syntax template)

A syntax form returns a Scheme object in much the same way as quote
or quasiquote, with two important differences: the values of pattern vari-
ables appearing within template are inserted into template, and contextual
syntactic information contained within template is retained. All list struc-
ture within template remains ordinary list structure in the output, and all
other items (including identifiers that do not represent pattern variables)
are inserted without further interpretation. Contextual information asso-
ciated with the values of inserted pattern variables and any nonlist items
from the template is retained in the output.

A template is a pattern variable, a literal identifier, a pattern datum, a
list of subtemplates (S1 . . . Sn), or an improper list (S1 S2 . . . Sn . T). Each
subtemplate Si is either a template or a template followed by an ellipsis.
The final element T of an improper subtemplate list is a template.

A subtemplate followed by an ellipsis expands into zero or more occur-
rences of the subtemplate. The subtemplate must contain at least one
pattern variable that was in a subpattern followed by an ellipsis in the in-
put. (Otherwise, the expander could not determine how many times the

5A pattern datum is any nonlist, nonsymbol datum.

304 DYBVIG, HIEB, AND BRUGGEMAN

subform should be repeated in the output.) This generalizes in a natural
way to nested ellipses [8]. There is one exception to this rule: the spe-
cial template (... ...) expands into This is used by macro-defining
macros to introduce ellipses into the defined macros. (See the definition of
be-like-begin later in this section.)

A pattern variable that occurs in a syntax template is replaced by the
subform it matched in the syntax-case expression that established the
pattern variable’s binding. Pattern variables that occur in subpatterns
followed by one or more ellipses may occur only in subtemplates that are
followed by (at least) as many ellipses. These pattern variables are replaced
in the output by the subforms they matched in the input, distributed as
specified.

The definition for or below demonstrates the use of define-syntax,
syntax-case, and syntax.

(define-syntax or
(lambda (x)

(syntax-case x ()
(() (syntax #f))
((e) (syntax e))
((e1 e2 e3 ...)
(syntax (let ((t e1)) (if t t (or e2 e3 ...))))))))

The input patterns specify that the input must consist of the keyword6

and zero or more subexpressions. If there is more than one subexpression
(third clause), the expanded code must both test the value of the first
subexpression and return the value if it is not false. In order to avoid
evaluating the expression twice, the macro introduces a binding for the
temporary variable t. Because the expansion algorithm maintains hygiene
automatically, this binding is visible only within code introduced by the
macro and not within subforms of the macro call.

The combined expressive power of syntax-case, syntax, and pattern
variables renders a low-level macro system unnecessary. Unlike restricted
rewrite-rule systems such as the Revised4 Report on Scheme syntax-rules
system, input patterns are associated with output expressions rather than
output templates. Arbitrary transformations may be performed since an
output expression may be any Scheme expression. The only restriction is

6An underscore, which is an ordinary pattern variable, is used by convention for the
keyword position to remind the macro writer and anyone reading the macro definition
that the keyword position never fails to contain the expected keyword and need not be
matched.

SYNTACTIC ABSTRACTION IN SCHEME 305

that “raw” symbols cannot appear in the output of a transformer; identi-
fiers must be introduced using syntax (or datum->syntax-object, which is
described later). Unlike other low-level proposals, syntax-case relieves the
programmer of the tedium of pattern matching, destructuring, and restruc-
turing expressions, and it provides a level of syntax checking that macro
programmers usually do not provide.

The functionality of syntax-rules is subsumed by syntax-case. In fact,
syntax-rules is easily defined as a macro:

(define-syntax syntax-rules
(lambda (x)

(syntax-case x ()
(((i ...) ((keyword . pattern) template) ...)
(syntax (lambda (x)

(syntax-case x (i ...)
((dummy . pattern) (syntax template))
...)))))))

The unreferenced pattern variable dummy is used in place of each keyword
since the Revised4 Report on Scheme requires that the first position of each
syntax-rules pattern be ignored. Just as the binding for t was not visible
in e2 e3 ... in or above, the pattern variable binding for dummy is not
visible within template.

Although the examples in this article employ syntax-case rather than
syntax-rules, some could use syntax-rules, and the choice of which to
use in those cases is a matter of taste.

Local macro definitions are referentially transparent in the sense dis-
cussed in Section 2. Identifiers within a syntax expression, like ordinary
identifier references, refer to the closest enclosing lexical binding. For ex-
ample,

(let ((/ +))
(let-syntax ((divide (lambda (x)

(syntax-case x ()
((e1 e2) (syntax (/ e1 e2)))))))

(let ((/ ∗)) (divide 6 3))))

returns 9 since the / inserted by the macro divide refers to the outer let
binding, rather than 2, as would be the case if the reference were made
global, or 18, as would be the case if the reference were captured by the
inner let binding.

306 DYBVIG, HIEB, AND BRUGGEMAN

It is an error to generate a reference to an identifier that is not present
within the context of a macro call, which can happen if the “closest enclos-
ing lexical binding” for an identifier inserted into the output of a macro
does not also enclose the macro call. For example,

(let-syntax ((divide (lambda (x)
(let ((/ +))

(syntax-case x ()
((e1 e2) (syntax (/ e1 e2))))))))

(let ((/ ∗)) (divide 2 1)))

results in an “invalid reference” error, since the occurrence of / in the
output of divide is a reference to the variable / bound by the let expression
within the transformer.

Symbolic names alone do not distinguish identifiers unless the identi-
fiers are used only as symbolic data. The predicates free-identifier=? and
bound-identifier=? are used to compare identifiers according to their in-
tended use as free references or bound identifiers in a given context. The
predicate free-identifier=? is used to determine whether two identifiers
would be equivalent if they appeared as free identifiers in the output of a
transformer. Because identifier references are lexically scoped, this means
(free-identifier=? id1 id2) is true if and only if the identifiers id1 and id2

refer to the same lexical or top-level binding7. Literal identifiers appearing
in syntax-case patterns (such as else in case and cond) are matched
using free-identifier=?.

Similarly, the predicate bound-identifier=? is used to determine if two
identifiers would be equivalent if they appeared as bound identifiers in the
output of a transformer. In other words, if bound-identifier=? returns true
for two identifiers, then a binding for one will capture references to the other
within its scope. In general, two identifiers are bound-identifier=? only if
both are present in the original program or both are introduced by the
same macro application (perhaps implicitly; see datum->syntax-object be-
low). The predicate bound-identifier=? can be used for detecting duplicate
identifiers in a binding construct, or for other preprocessing of a binding
construct that requires detecting instances of the bound identifiers.

Two identifiers that are bound-identifier=? are also free-identifier=?, but
two identifiers that are free-identifier=? may not be bound-identifier=?.
An identifier introduced by a macro transformer may refer to the same
enclosing binding as an identifier not introduced by the transformer, but
an introduced binding for one will not capture references to the other.

7All variables are assumed to have top-level bindings, whether defined (yet) or not.

SYNTACTIC ABSTRACTION IN SCHEME 307

The definition for a simplified version of cond8 below demonstrates how
an auxiliary keyword, in this case else, is handled using the literals list of
syntax-case:

(define-syntax cond
(lambda (x)

(syntax-case x (else)
(((else e1 e2 ...)) (syntax (begin e1 e2 ...)))
(((e0 e1 e2 ...)) (syntax (if e0 (begin e1 e2 ...))))
(((e0 e1 e2 ...) c1 c2 ...)
(syntax (if e0 (begin e1 e2 ...) (cond c1 c2 ...)))))))

The definition above is equivalent to the following, which looks for else
using free-identifier=? within a fender:

(define-syntax cond
(lambda (x)

(syntax-case x ()
(((e0 e1 e2 ...))
(and (identifier? (syntax e0))

(free-identifier=? (syntax e0) (syntax else)))
(syntax (begin e1 e2 ...)))

(((e0 e1 e2 ...)) (syntax (if e0 (begin e1 e2 ...))))
(((e0 e1 e2 ...) c1 c2 ...)
(syntax (if e0 (begin e1 e2 ...) (cond c1 c2 ...)))))))

The predicate identifier?, used prior to the free-identifier=? check in the
fender, returns true if and only if its argument is an identifier.

With either definition for cond, else is not recognized as an auxiliary
keyword if an enclosing lexical binding for else exists. For example,

(let ((else #f))
(cond (else (display “oops”))))

does not print “oops”, since else is bound locally and is therefore not
free-identifier=? to the identifier else appearing in the definition for cond.

8The simplified version requires at least one output expression per clause and does
not support the auxiliary keyword =>.

308 DYBVIG, HIEB, AND BRUGGEMAN

The following definition for unnamed let uses bound-identifier=? to de-
tect duplicate identifiers:

(define-syntax let
(lambda (x)

(define unique-ids?
(lambda (ls)

(or (null? ls)
(and (let notmem? ((x (car ls)) (ls (cdr ls)))

(or (null? ls)
(and (not (bound-identifier=? x (car ls)))

(notmem? x (cdr ls)))))
(unique-ids? (cdr ls))))))

(syntax-case x ()
((((i v) ...) e1 e2 ...)
(if (unique-ids? (syntax (i ...)))

(syntax ((lambda (i ...) e1 e2 ...) v ...))
(error (syntax-object->datum x)

“duplicate identifier found”))))))

For this macro to be completely robust, it should also ensure that the
bound variables are indeed identifiers using the predicate identifier?. With
the definition for let above, the expression

(let ((a 3) (a 4)) (+ a a))

causes a “duplicate identifier found” error, whereas

(let-syntax ((dolet (lambda (x)
(syntax-case x ()

((b) (let ((a 3) (b 4)) (+ a b)))))))
(dolet a))

evaluates to 7, since the identifier a introduced by dolet and the identifier
a extracted from the macro call are not bound-identifier=?.

It is also possible to compare identifiers intended to be used as symbolic
data. The procedure syntax-object->datum strips all syntactic information
from a syntax object and returns the corresponding Scheme “datum.” Iden-
tifiers stripped in this manner are converted to their symbolic names, which
can then be compared with eq?. Thus, symbolic-identifier=? might be de-
fined as follows:

SYNTACTIC ABSTRACTION IN SCHEME 309

(define symbolic-identifier=?
(lambda (x y)

(eq? (syntax-object->datum x)
(syntax-object->datum y))))

Two identifiers that are free-identifier=? are symbolic-identifier=?; in order
to refer to the same binding, two identifiers must have the same name. The
converse is not always true.

It is occasionally useful to define macros that introduce bindings for iden-
tifiers that are not supplied explicitly in each macro call. For example, we
might wish to define a loop macro that binds the variable exit to an es-
cape procedure within the loop body. Strict automatic hygiene, however,
would prevent an introduced binding for exit from capturing references to
exit within the loop body. Previous hygienic systems have provided mecha-
nisms for explicit capturing, typically by allowing a macro to insert a symbol
into an expansion as if it were part of the original source program [17]. Un-
fortunately, this means that macros cannot reliably expand into macros
that use explicit capturing.

Our system provides a more consistent way to accommodate such macros.
A macro may construct implicit identifiers that behave as if they were
present in the macro call. Implicit identifiers are created by providing the
procedure datum->syntax-object with a template identifier and a symbol.
The template identifier is typically the macro keyword itself, extracted
from the input, and the symbol is the symbolic name of the identifier to
be constructed. The resulting identifier behaves as if it were introduced
when the template identifier was introduced. For example, the loop macro
mentioned above may be defined as follows:

(define-syntax loop
(lambda (x)

(syntax-case x ()
((k e1 ...)
(with-syntax ((exit-id (datum->syntax-object

(syntax k)
’exit)))

(syntax (call-with-current-continuation
(lambda (exit-id)

(let f () e1 ... (f))))))))))

(The with-syntax form is like let but introduces pattern variable bindings
rather than program variable bindings within the scope of its body. Its
definition is shown later.)

310 DYBVIG, HIEB, AND BRUGGEMAN

This same mechanism may be used to create aggregate identifier names
typically required when defining structure-definition constructs such as
Common Lisp’s defstruct [1] as macros. The procedure below constructs
an implicit identifier using an aggregate name of the form “〈structure
name〉-〈field name〉,” from a structure name identifier s-id and a field name
identifier f-id:

(define aggregate-identifier
(lambda (s-id f-id)

(let ((s-sym (symbol->string (syntax-object->datum s-id)))
(f-sym (symbol->string (syntax-object->datum f-id))))

(let ((sym (string->symbol (string-append s-sym “-” f-sym))))
(datum->syntax-object s-id sym)))))

A defstruct form would expand into a set of definitions, including accessors
for each field whose names are constructed using aggregate-identifier.

As its name implies, datum->syntax-object can convert an arbitrary da-
tum into a syntax object, i.e., the second argument need not be a sym-
bol. Converting a nonsymbol datum into a syntax object has the effect of
treating each symbol contained within the datum as an implicit identifier.
The convenience of this feature is illustrated by the following definition for
include, an expand-time version of load. (include “filename”) expands
into a begin expression containing the expressions found in the file named
by “filename”.

(define-syntax include
(lambda (x)

(define read-file
(lambda (fn k)

(let ((p (open-input-file fn)))
(let f ((x (read p)))

(if (eof-object? x)
(begin (close-input-port p) ’())
(cons (datum->syntax-object k x)

(f (read p))))))))
(syntax-case x ()

((k filename)
(let ((fn (syntax-object->datum (syntax filename))))

(with-syntax (((exp ...) (read-file fn (syntax k))))
(syntax (begin exp ...))))))))

The definition for include uses datum->syntax-object to place the expres-
sions read from “filename” into the proper lexical context so that identifier

SYNTACTIC ABSTRACTION IN SCHEME 311

references and definitions within those expressions are scoped where the
include form appears. For example, if the file “f-def.ss” contains the ex-
pression (define f (lambda () x)), the expression

(let ((x “okay”))
(include “f-def.ss”)
(f))

evaluates to “okay”.
The with-syntax expression used in the loop and include examples

above is the most convenient mechanism for establishing pattern variable
bindings when no syntax matching is required. syntax-case can always be
used instead, although doing so results in less readable code as illustrated
by the following version of loop:

(define-syntax loop
(lambda (x)

(syntax-case x ()
((k e1 ...)
(syntax-case (datum->syntax-object (syntax k) ’exit) ()

(exit-id (syntax (call-with-current-continuation
(lambda (exit-id)

(let f () e1 ... (f)))))))))))

Given that syntax-case can be used in this manner, it is not surprising
that with-syntax can be defined as a macro in terms of syntax-case:

(define-syntax with-syntax
(lambda (x)

(syntax-case x ()
((((p e0) ...) e1 e2 ...)
(syntax (syntax-case (list e0 ...) ()

((p ...) (begin e1 e2 ...))))))))

A local macro may be written in terms of an existing syntactic form or
procedure of the same name using let-syntax. The following shows how
one might restrict if expressions within a given expression to require the
“else” (alternative) part:

312 DYBVIG, HIEB, AND BRUGGEMAN

(let-syntax ((if (lambda (x)
(syntax-case x ()

((e1 e2 e3) (syntax (if e1 e2 e3)))))))
(if 1 2 3))

The expression above evaluates to 2. If the body were (if 1 2), however, a
syntax error would be reported.

Although the definition above looks simple enough, there are a few sub-
tle ways in which an attempt to write this macro might go wrong. If
letrec-syntax were used in place of let-syntax, the identifier if inserted
into the local macro’s output would refer to the local if rather than the
top-level if, and expansion would loop indefinitely. If the definition were
specified as

(let-syntax ((if (lambda (x)
(syntax-case x ()

((if e1 e2 e3) (syntax (if e1 e2 e3)))))))
(if 1 2 3))

expansion would again loop indefinitely. The identifier if appearing at the
start of the pattern is treated as a pattern variable, since it is not listed
in the literals list of the syntax-case expression. Thus, it is bound to the
corresponding identifier if from the input expression, which denotes the
local binding of if. Placing if in the list of literals in an attempt to patch
up the latter version does not work either:

(let-syntax ((if (lambda (x)
(syntax-case x (if)

((if e1 e2 e3) (syntax (if e1 e2 e3)))))))
(if 1 2 3))

This causes syntax-case to compare the literal if in the pattern, which
is scoped outside of the let-syntax expression, with the if in the input
expression, which is scoped inside the let-syntax. Since they do not refer
to the same binding, they are not free-identifier=?, and a syntax error
results.

The conventional use of underscore () in place of the macro keyword
helps the macro writer to avoid situations like these in which the wrong
identifier is matched against or inserted by accident.

It is sometimes necessary for a macro that generates a macro definition
to insert one or more ellipses into the generated macro definition. This is
done using the “escape sequence” (... ...), as the simple example below
demonstrates:

SYNTACTIC ABSTRACTION IN SCHEME 313

(define-syntax be-like-begin
(lambda (x)

(syntax-case x ()
((name)
(syntax (define-syntax name

(lambda (x)
(syntax-case x ()

((e0 e1 (... ...))
(syntax (begin e0 e1 (... ...))))))))))))

With be-like-begin defined in this manner, (be-like-begin sequence)
would have the same effect as

(define-syntax sequence
(lambda (x)

(syntax-case x ()
((e0 e1 ...)
(syntax (begin e0 e1 ...))))))

That is, a sequence expression would be equivalent to a begin expression.
Additional syntax-case examples appear in [9].

4. The algorithm

4.1. Traditional macro systems

Traditional Lisp macro systems rely on programs and data having the same
representation, both textually and as internal structures. This shared rep-
resentation is exploited not only for macro expansion but also for program
evaluation; most Lisp systems provide an evaluation procedure so that pro-
grams can construct and execute programs. Consequently, the concrete
syntax of Lisp is best seen as consisting of internal data structures rather
than text. We assume a concrete syntax of expressions (e ∈ Exp) defined as
a data type consisting of an unspecified set of constants (c ∈ Const), sym-
bols (s ∈ Sym), and structures built by pairing. The following signature
specifies the abstract data type Exp:

Sym ⊂ Exp
Const ⊂ Exp
cons : Exp× Exp → Exp
car : Exp → Exp
cdr : Exp → Exp

pair? : Exp → Bool
sym? : Exp → Bool

314 DYBVIG, HIEB, AND BRUGGEMAN

expand : Exp× Env → ExpandedExp

expand(e, r) =
case parse(e, r) of:

constant(c) → symbolic-data(c),
variable(s) → variable(s),

application(e1, e2) → application(expand(e1, r), expand(e2, r)),
symbolic-data(e) → symbolic-data(e),

function(s, e) → function(s, expand(e, r[s := Variable])),
macro-application(s, e) → expand(t(e), r) where t = r(s)

Figure 2: A traditional macro-expansion algorithm.

The subset Sym (symbols) of Exp are atomic elements. Const includes such
traditional Lisp constants as booleans, numbers and the empty list. The
variables e, s, and c range over Exp, Sym and Const , respectively. The
usual equations for elements of Exp hold:

car(cons(e1, e2)) = e1

cdr(cons(e1, e2)) = e2

pair? (cons(e1, e2)) = True
sym? (cons(e1, e2)) = False

pair? (s) = False
sym? (s) = True
pair? (c) = False
sym? (c) = False

Figure 2 shows a traditional expansion algorithm for a simplified lan-
guage. The expander is assumed to be part of a standard evaluation process
where the value of a program e is obtained by eval(expand(e, rinit)). The
symbols quote and lambda are bound to Special in the initial expansion
environment rinit; all other symbols are bound to Variable.

r ∈ Env = Sym → Transformer + {Variable}+ {Special}
t ∈ Transformer = Exp → Exp

Macro expansion and parsing are inextricably intertwined in Lisp. Al-
though Figure 2 shows the expander driving the parser, the relationship
could just as well be reversed. The parser is shown in Figure 3. Pattern
matching is used to hide the details of accessing the expression parts. The
constructors (such as symbolic-data) used to communicate the output of the
parser to the expander are not fully specified (their definition is trivial).

SYNTACTIC ABSTRACTION IN SCHEME 315

parse : Exp× Env → ParsedExp

parse([[c]], r) = constant(c)
parse([[s]], r) = variable(s) if r(s) = Variable

parse([[(e1 e2)]], r) = application(e1, e2) if e1 /∈ Sym
parse([[(s e)]], r) = application(s, e) if r(s) = Variable
parse([[(s e)]], r) = macro-application(s, e) if r(s) ∈ Transformer

parse([[(quote e)]], r) = symbolic-data(e) if r([[quote]]) = Special
parse([[(lambda s e)]], r) = function(s, e) if r([[lambda]]) = Special

Figure 3: A traditional macro-expansion parser.

The constructors of ExpandedExp are used to communicate the output of
the expander to the evaluator.

This expansion algorithm clearly has serious hygiene problems. It does
not prevent free identifiers inserted by a macro application from being cap-
tured by program bindings, nor does it prevent bindings introduced by
macros from capturing free identifiers in the program.

4.2. A substitution-based macro system

In the λ-calculus, alpha conversion is used to circumvent hygiene problems
caused by program transformations. Since the actual name of a bound vari-
able is immaterial, a binding expression can be converted into an equivalent
expression in which different names are used for the bound variables. Our
algorithm uses alpha conversion to preserve hygiene during macro expan-
sion.

Whether an identifier is being used as symbolic data or as a program vari-
able, pattern variable, or keyword cannot be determined until after macro
expansion. Since the name of an identifier used as symbolic data is impor-
tant, naive alpha conversion is not viable in traditional macro expansion
algorithms. Our algorithm makes alpha conversion possible by abandoning
the traditional Lisp identification of variables and symbols. Instead, we in-
troduce a new type of object, the identifier, which maintains both symbolic
names and binding names until an identifier’s role in a program is deter-
mined. Alpha conversion is accomplished by replacing only the binding
names of bound identifiers.

Figure 4 shows the substitution-based macro-expansion algorithm. The
parser, shown in Figure 5, has been modified to operate on identifiers rather
than symbols and to recognize several new forms: let-syntax, letrec-
syntax, syntax, and plambda. To simplify the presentation, let-syntax

316 DYBVIG, HIEB, AND BRUGGEMAN

expand : Exp× Env → ExpandedExp

expand(e, r) =
case parse(e, r) of:

variable(i) → variable(resolve(i)),
application(e1, e2) → application(expand(e1, r), expand(e2, r)),
symbolic-data(e) → symbolic-data(strip(e)),

syntax-data(e) → symbolic-data(e),
function(i, e) → function(s, expand(subst(e, i, s), r′))

where r′ = r[s := Variable] and s is fresh,
pfunction(i, e) → function(s, expand(subst(e, i, s), r′))

where r′ = r[s := PVariable] and s is fresh,
macro-application(i, e) → expand(mark(t(mark(e,m)),m), r)

where t = r(resolve(i)) and m is fresh,
syntax-binding(i, e1, e2) → expand(subst(e2, i, s), r[s := t])

where t = eval(expand(e1, r)) and s is fresh,
rec-syntax-binding(i, e1, e2) → expand(subst(e2, i, s), r[s := t])

where t = eval(expand(subst(e1, i, s), r))
and s is fresh

Figure 4: A substitution-based macro-expansion algorithm.

and letrec-syntax are each restricted to a single binding. We have also
restricted the subform of a syntax expression to a single identifier. If the
identifier is a pattern variable, the syntax form evaluates to the value of
the pattern variable; otherwise, the result is the identifier itself. The un-
restricted version is a straightforward generalization. We have also chosen
to add plambda, which binds a single pattern variable within it’s body,
rather than syntax-case, which can be defined in terms of plambda and
expose, which is defined later. Pattern variables are bound to PVariable in
the expansion environment.

Env = Sym → Transformer + {Variable}+ {PVariable}+ {Special}

The function resolve is used by expand to complete alpha substitution
and determine the actual binding name of an identifier. The binding name
is used in the output for program variables and to look up transformers for
syntactic keywords. When expanding a binding expression, subst replaces
the binding name of the bound identifier with a fresh binding name. To
distinguish new identifiers introduced by a transformer, both input to the
transformer and output from the transformer are freshly marked. Since
identical marks cancel each other, only new syntax retains the mark9. The

9For the simplified language considered here it would be adequate to mark only the

SYNTACTIC ABSTRACTION IN SCHEME 317

parse : Exp× Env → ParsedExp

parse([[c]], r) = symbolic-data(c)
parse([[i]], r) = variable(i) if r(resolve(i)) = Variable

parse([[(e1 e2)]], r) = application(e1, e2) if e1 /∈ Sym
parse([[(i e)]], r) = application(i, e)

if r(resolve(i)) = Variable
parse([[(i e)]], r) = macro-application(i, e)

if r(resolve(i)) ∈ Transformer
parse([[(quote e)]], r) = symbolic-data(e) if r([[quote]]) = Special

parse([[(lambda i e)]], r) = function(i, e) if r([[lambda]]) = Special
parse([[(plambda i e)]], r) = pfunction(i, e)

if r([[plambda]]) = Special
parse([[(syntax i)]], r) = syntax-data(i)

if r(resolve(i)) 6= PVariable
parse([[(syntax i)]], r) = variable(i) if r(resolve(i)) = PVariable

parse([[(let-syntax (i e1) e2)]], r) = syntax-binding(i, e1, e2)
if r([[let-syntax]]) = Special

parse([[(letrec-syntax (i e1) e2)]], r) = rec-syntax-binding(i, e1, e2)
if r([[letrec-syntax]]) = Special

Figure 5: A substitution-based macro-expansion parser.

expander handles two sorts of data, symbolic (introduced by quote expres-
sions) and syntactic (introduced by syntax expressions). Symbolic data is
stripped of identifier substitutions and markings, whereas syntactic data is
left intact.

Since mark and subst both generate elements of Exp, they can be treated
as constructors in an extended Exp algebra.

mark : Exp×Mark → Exp
subst : Exp× Ident × Sym → Exp

Marks (m ∈ Mark) can be any countably infinite set. Identifiers (i ∈ Ident)
are a subset of the expanded Exp domain. An identifier is a symbol that
has been subjected to zero or more marking and substitution operations.
That is, an identifier is a symbol s, a marked identifier mark(i,m), or a
substitution subst(i1, i2, s). The intent of subst(e, i, s) is to replace the
binding name of the identifier i in the expression e with the symbol s.

input to the transformer. This approach, however, would not work for more complex
language constructs in which internal definitions are expanded separately and then re-
combined into a binding expression. It would also cause complexity problems for the
delayed substitution mechanism described in Section 4.4.

318 DYBVIG, HIEB, AND BRUGGEMAN

Since marking and substitution operations are of interest only insofar as
they affect identifiers, it is convenient to think of them as identity operations
on constants and as being immediately propagated to the components of a
pair. For now, we assume that this is the case, although later we abandon
this assumption in order to avoid complexity problems.

mark(c,m) = c (1)
subst(c, i, s) = c (2)

mark(cons(e1, e2),m) = cons(mark(e1,m),mark(e2,m)) (3)
subst(cons(e1, e2), i, s) = cons(subst(e1, i, s), subst(e2, i, s)) (4)

The function resolve is used to determine the binding name of an identi-
fier. It resolves substitutions using the criterion that a substitution should
take place if and only if both identifiers have the same marks and the same
binding name.

resolve : Ident → Sym
resolve(s) = s

resolve(mark(i,m)) = resolve(i)

resolve(subst(i1, i2, s)) =


s if marksof (i1) = marksof (i2)

and resolve(i1) = resolve(i2)
resolve(i1) otherwise

The auxiliary function marksof determines an identifier’s mark set:

marksof : Ident → MarkSet
marksof (s) = ∅

marksof (mark(i, m)) = marksof (i) ∪× {m}
marksof (subst(i1, i2, s)) = marksof (i1)

The operator ∪× forms an exclusive union, which cancels identical marks.
The function strip simply undoes marking and substitution operations:

strip : Exp → Exp
strip(s) = s
strip(c) = c

strip(cons(e1, e2)) = cons(strip(e1), strip(e2))
strip(mark(e,m)) = strip(e)
strip(subst(e, i, s)) = strip(e)

Two identifiers i1 and i2 are free-identifier=? if and only if resolve(i1) =
resolve(i2). Two identifiers i1 and i2 are bound-identifier=? if and only if
resolve(subst(i1, i2, s)) = s for a fresh symbol s.

SYNTACTIC ABSTRACTION IN SCHEME 319

So far the Exp algebra has been considered abstractly. A concrete alge-
bra must ensure that the primitive accessors behave as specified. By virtue
of equations (1)–(4), constants and pairs can use traditional representa-
tions. Identifiers can be represented as distinguished triples of the form
〈s1, s2, {m . . .}〉, where s1 is the symbolic name, s2 is the binding name,
and {m . . .} is a (possibly empty) set of marks. This representation takes
advantage of strip requiring only the symbolic name of an identifier and
resolve requiring only the final binding name of an identifier. Intermedi-
ate substitutions and substitutions that cannot succeed can be discarded
without affecting the behavior of the accessors. The mark set for an identi-
fier i is just marksof (i). Marks can be represented as integers. Given this
representation of identifiers, implementation of the primitive operators is
straightforward. mark(i, m) adds its mark to the mark field of i unless it
is already present, in which case it removes it. subst(i1, i2, s) replaces the
binding name field of i1 with s if the binding names and the marks of i1
and i2 are the same, otherwise it leaves the identifier unchanged. strip(i)
extracts the symbolic name of an identifier, whereas resolve(i) extracts the
binding name of an identifier.

For example, consider the expansion of the expression

(let ((if #f)) (or2 if t))

where or2 is the two-subexpression version of or from Section 2, defined
as follows:

(define-syntax or2
(lambda (x)

(syntax-case x ()
((e1 e2)
(syntax (let ((t e1)) (if t t e2)))))))

The expression should evaluate to the top-level value of the variable t, as-
suming that t is bound at top-level. As the expansion unfolds, observe how
substitution and marking prevent the binding for if in the source expression
from interfering with the macro’s use of if and the macro’s binding for t
from interfering with the source expression’s reference to t.

For simplicity, we assume that let is handled directly by the expander;
with a little more tedium we could first expand it into the corresponding
lambda application.

As described above, identifiers are represented as ordered triples:

320 DYBVIG, HIEB, AND BRUGGEMAN

〈original name, binding name, {mark . . . }〉

The original input is thus

(〈let, let, {}〉 ((〈if, if, {}〉 #f))
(〈or2, or2, {}〉 〈if, if, {}〉 〈t, t, {}〉))

On the first step, since let has no binding other than its original bind-
ing in the top-level environment, the bound variable from the outer let
expression is replaced with the generated name G1, and the occurrence of
the identifier within the scope of the let expression is replaced with a new
identifier that contains both the generated and original names:

(let ((G1 #f))
(〈or2, or2, {}〉 〈if,G1, {}〉 〈t, t, {}〉))

Existence of this binding for G1 is also recorded in the lexical expand-time
environment. Next, the transformer for or2 is invoked, with identifiers in
its input marked by mark m1:

(〈or2, or2, {m1}〉 〈if,G1, {m1}〉 〈t, t, {m1}〉)

The transformer for or2 produces

(〈let, let, {}〉 ((〈t, t, {}〉 〈if,G1, {m1}〉))
(〈if, if, {}〉 〈t, t, {}〉 〈t, t, {}〉 〈t, t, {m1}〉))

Next, within the output from the or2 transformer, identifiers not marked
with m1 are so marked while the m1 mark is removed from the others (since
identical marks cancel).

(〈let, let, {m1}〉 ((〈t, t, {m1}〉 〈if,G1, {}〉))
(〈if, if, {m1}〉 〈t, t, {m1}〉 〈t, t, {m1}〉 〈t, t, {}〉))

Only the binding name is relevant when an identifier’s binding is determined
in the expand-time environment, so even though the mark m1 has been
attached to the identifier let, it still resolves to the top-level definition for
let. Therefore, the bound identifier is replaced with a generated name and
occurrences of the identifier (with the same binding name and marks) are
replaced with a new identifier within the scope of the let expression:

SYNTACTIC ABSTRACTION IN SCHEME 321

(let ((G2 〈if,G1, {}〉))
(〈if, if, {m1}〉 〈t,G2, {m1}〉 〈t,G2, {m1}〉 〈t, t, {}〉))

Existence of this binding for G2 is also recorded in the lexical expand-time
environment, which still also holds a record of the binding for G1.

Since G1 is recorded as a lexically bound variable in the expand-time
environment, the occurrence of 〈if,G1, {}〉 expands into a reference to G1.
Thus, the output expression so far consists of

(let ((G1 #f))
(let ((G2 G1))

(〈if, if, {m1}〉 〈t,G2, {m1}〉 〈t,G2, {m1}〉 〈t, t, {}〉)))

with the last line as yet unexpanded. Since the binding name of the iden-
tifier 〈if, if, {m1}〉 is if, the last line is recognized as an if expression:

(let ((G1 #f))
(let ((G2 G1))

(if 〈t,G2, {m1}〉 〈t,G2, {m1}〉 〈t, t, {}〉)))

Only the three variable references within this if expression remain to be
expanded. The binding name, G2, for the first and second of these is
recorded as a lexical variable in the expand-time environment so both sim-
ply expand into G2. The binding name for the third is t, which has no
binding in the lexical expand-time environment; therefore it expands into
a top-level reference to t. Thus, the final output from the expander is

(let ((G1 #f))
(let ((G2 G1))

(if G2 G2 t)))

4.3. Capturing

The procedure datum->syntax-object must construct “implicit identifiers”
that behave as if they had appeared in place of the template identifier when
the template identifier was first introduced. That is, if datum->syntax-object
is called with an identifier i1 and a symbol s2, where the symbolic name
of i1 is s1, datum->syntax-object should create the identifier i2 that would
have resulted had s2 appeared in place of s1 in the original input. The
following definition for imp-id captures this semantics:

322 DYBVIG, HIEB, AND BRUGGEMAN

imp-id : Ident × Sym → Ident
imp-id(s1, s2) = s2

imp-id(mark(i, m), s) = mark(imp-id(i, s),m)
imp-id(subst(i1, i2, s1), s2) = subst(imp-id(i1, s2), i2, s1)

Supporting imp-id means that the representation of identifiers cannot
omit failed substitutions, since the new accessor imp-id can observe them.
Intermediate substitutions are still unimportant, however, and substitu-
tions that fail because of mismatched marks can still be discarded. Thus
the representation of identifiers as triples can be adapted by replacing the
binding name in an identifier triple with an environment that maps Sym
to Sym. resolve must then apply the environment to the symbolic name
to get the binding name. imp-id(i, s) simply builds a new identifier triple
from s and the environment and marks from i.

4.4. A lazy substitution-based macro system

The substitution-based macro system has the virtue of providing an in-
tuitive, alpha substitution-based solution to the hygiene problem. Unfor-
tunately, its implementation as suggested above is too expensive. The
expense arises from the desire to make pairs transparent to hygiene opera-
tions. To maintain this transparency, every mark or substitution operation
must be propagated immediately to all the identifiers in an expression.
Consequently, the overhead incurred by the hygienic algorithm at each ex-
pansion step that uses these operations is proportional to the size of the
expression, compared to constant overhead in a traditional system. This is
precisely the source of the complexity problem for the KFFD algorithm.

We solve this problem by making substitutions and markings “lazy” on
structured expressions. Eventually, the work of propagating identifier op-
erations must be done. If Exp were being used only as syntax, it would be
reasonable to let structure accessors do the work. For instance, we could
have

car(mark(cons(e1, e2),m)) = mark(e1,m).

Rather than alter the definitions of car and other accessors, however, we
provide an accessor that exposes the outermost structure of an expression
by pushing identifier information down to its constituent parts:

expose : Exp → Exp
expose(i) = i

expose(mark(cons(e1, e2),m)) = cons(mark(e1,m),mark(e2,m))
etc.

SYNTACTIC ABSTRACTION IN SCHEME 323

The functionality of expose is required only by syntax-case, which uses
expose to destructure the input value as far as necessary to match against
the input patterns.

It remains to construct a concrete Exp algebra. Expressions with pending
substitutions or marks can be represented as distinguished triples (wrapped
expressions) of the form 〈e, u, {m . . .}〉, where e is an expression, u is an
environment mapping Ident to Sym, and {m . . .} is a set of zero or more
marks. Pushing a substitution onto a wrapped expression involves updating
the wrapped expression’s environment with the new substitution. Mark-
ing a wrapped expression involves adding the mark to the mark set of the
wrapped expression or removing it if the mark is already in the set. Marking
also requires adding (removing) the mark to (from) the mark sets of each
identifier in the wrapped expression’s environment. Pairs, symbols, and
constants can use traditional representations. To avoid complexity prob-
lems, additional constraints must be imposed. In particular, the expression
component of a wrapped expression must not be another wrapped expres-
sion. This property can be maintained by having expose combine mark
sets and environments when it pushes a wrapping onto another wrapped
expression. Since marks “stick” only to new elements introduced by macro
transformers, a wrapped expression will have more than one mark only if it
is generated by a macro whose definition was itself generated by a macro.
In practice the mark field of a wrapped expression rarely has more than one
mark. Consequently, handling marks is cheap and the complexity problems
caused by “eager” mark propagation are avoided.

4.5. Source-object correlation

The lazy substitution model can be adapted easily to support source-object
correlation. We allow an expression to be annotated with information about
its source by extending Exp with an additional constructor:

source : Exp×Annotation → Exp

An annotation (a ∈ Annotation) is an unspecified data structure that pro-
vides information about the source of an expression, such as its location in
a file.

Source annotations can be passed along by the expander to the evaluator,
where they can be used to provide debugging information. Thus we might
add to the definition of expand :

expand(source(e, a), r) = source(expand(e, r), a)

The expander can also use source annotations to report errors it detects.

324 DYBVIG, HIEB, AND BRUGGEMAN

Otherwise, operations ignore or drop source annotations. For instance:

expose(source(e, a)) = expose(e)
mark(source(e, a),m) = source(mark(e,m), a)

id? (source(e, a)) = id? (e)
resolve(source(i, a)) = resolve(i)

Since expose drops annotations, they are invisible to procedures that need
to examine the structure of an expression. Previously constants were the
sole class of expressions unaffected by syntactic operations. Since constants
can also be annotated, however, they too must be “exposed” before they can
be examined. Source annotations can be implemented by adding another
field to the wrapped expression structure of Section 4.4.

5. Conclusions

The macro system described in this article, syntactic closures as augmented
by Hanson [3, 13], and the Clinger and Rees “explicit renaming” sys-
tem [4, 5] are all compatible with the “high-level” facility (syntax-rules)
described in the Revised4 Report on Scheme [6]. Thus, the three systems
differ primarily in the treatment of “low-level” macros. Our system extends
automatic hygiene and referential transparency to the low level, whereas
the other systems require explicit renaming of identifiers or construction of
syntactic closures, which is tedious and error-prone. In addition, we have
extended the automatic syntax checking, input destructuring, and output
restructuring previously available only to high-level macros to the low level.
In fact, our system draws no distinction between high- and low-level macros,
so there is never a need to completely rewrite a macro originally written
in a high-level style because it needs to perform some low-level operation.
We have also provided a mechanism for correlating source and object code
and introduced a hygiene-preserving mechanism for controlled identifier
capture, both of which are unique to our system.

An important aspect of our work is its thoroughgoing treatment of identi-
fiers. Since identifiers cannot be treated as simple symbolic data in hygienic
systems, the macro writer must be given tools that respect their essential
properties. We provide tools for introducing new identifiers in a hygienic
and referentially-transparent manner, for constructing macros that implic-
itly bind or reference identifiers, and for comparing identifiers according to
their intended use as free identifiers, bound identifiers, or symbolic data.

Although our work is designed to provide a macro system with automatic
hygiene for Scheme and other Lisp dialects, it could be adapted to languages
in which programs and data do not share the same structure. An abstract
syntax object representing each syntactic construct in the language must

SYNTACTIC ABSTRACTION IN SCHEME 325

be provided, along with appropriate accessors and constructors. Accessors
would be responsible for propagating identifier information to the subpieces
of an abstract syntax object.

The macro system described in this article has been implemented and
the implementation is available via “ftp” from cs.indiana.edu. Contact the
first author for details.

Acknowledgements: The authors would like to thank Dan Friedman and
an anonymous reviewer for their helpful comments on earlier versions of
this article.

References

1. Steele Jr., Guy L. Common Lisp, the Language. Digital Press, second
edition (1990).

2. Barendregt, H. P. The Lambda Calculus: Its Syntax and Semantics.
Elsevier Science Publishers, revised edition (1984).

3. Bawden, Alan and Rees, Jonathan. Syntactic closures. In Proceedings
of the 1988 ACM Conference on Lisp and Functional Programming
(July 1988) 86–95.

4. Clinger, William. Hygienic macros through explicit renaming. LISP
Pointers, 4, 4 (1991).

5. Clinger, William and Rees, Jonathan. Macros that work. In Conference
Record of the Eighteenth Annual ACM Symposium on Principles of
Programming Languages (January 1991) 155–162.

6. Clinger, William, Rees, Jonathan, et al. The revised4 report on the
algorithmic language Scheme. LISP Pointers, 4, 3 (1991).

7. Coutant, D., Meloy, S., and Ruscetta, M. DOC: A practical approach
to source-level debugging of globally optimized code. In Proceedings of
the SIGPLAN ’88 Conference on Programming Language Design and
Implementation (July 1988) 125–134.

8. Dybvig, R. Kent. The Scheme Programming Language. Prentice-Hall
(1987).

9. Dybvig, R. Kent. Writing Hygienic Macros in Scheme with Syntax-
Case. Technical Report 356, Indiana Computer Science Department
(June 1992).

326 DYBVIG, HIEB, AND BRUGGEMAN

10. Dybvig, R. Kent, Friedman, Daniel P., and Haynes, Christopher T.
Expansion-passing style: Beyond conventional macros. In Proceedings
of the 1986 ACM Conference on Lisp and Functional Programming
(1986) 143–150.

11. Dybvig, R. Kent, Friedman, Daniel P., and Haynes, Christopher T.
Expansion-passing style: A general macro mechanism. Lisp and Sym-
bolic Computation, 1, 1 (1988) 53–75.

12. Griffin, Timothy G. Definition and Top-Down Refinement for Inter-
active Proof Development Systems. PhD thesis, Cornell University
(August 1988).

13. Hanson, Chris. A syntactic closures macro facility. LISP Pointers, 4, 4
(1991).

14. Hennessy, J. Symbolic debugging of optimized code. ACM Transac-
tions on Programming Languages and Systems, 4, 3 (July 1982) 323–
344.

15. Kohlbecker, Eugene. Syntactic Extensions in the Programming Lan-
guage Lisp. PhD thesis, Indiana University, Bloomington (August
1986).

16. Kohlbecker, Eugene and Wand, Mitchell. Macro-by-example: Deriv-
ing syntactic transformations from their specifications. In Conference
Record of the Fourteenth Annual ACM Symposium on Principles of
Programming Languages (1987) 77–84.

17. Kohlbecker, Eugene, Friedman, Daniel P., Felleisen, Matthias, and
Duba, Bruce. Hygienic macro expansion. In Proceedings of the 1986
ACM Conference on Lisp and Functional Programming (1986) 151–161.

18. Stoy, Joseph E. Denotational Semantics: The Scott-Strachey Approach
to Programming Language Theory. MIT Press (1977).

19. Zellweger, P. An interactive high-level debugger for control-flow op-
timized programs. In Proceedings of the ACM Software Engineering
Symposium on High-Level Debugging (August 1983) 159–171.

