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ABSTRACT

Fast-growing Internet applications like streaming medid tele-
phony prefer timeliness to reliability, making TCP a poor (fin-
fortunately, UDP, the natural alternative, lacks congestton-
trol. High-bandwidth UDP applications must implement cestipn
control themselves—a difficult task—or risk rendering ocestgd
networks unusable. We set out to ease the safe deploymdress t
applications by designing@ngestion-controlled unreliable trans-
port protocol. The outcome, the Datagram Congestion Control Pro-
tocol or DCCP, adds to a UDP-like foundation the minimum mech
anisms necessary to support congestion control. We thdhghké
mechanisms would resemble TCP’s, but without reliabilig zes-
pecially, cumulative acknowledgements, we had to recensid
most every aspect of TCP’s design. The resulting protocetish
light on how congestion control interacts with unreliabknsport,
how modern network constraints impact protocol design, taowd
TCP’s reliable bytestream semantics intertwine with iteeoimech-
anisms, including congestion control.

Categories and Subject Descriptors:

C.2.2 [Computer-Communication Networks]: Network Proto-
cols; C.2.6 Computer-Communication Networks]: Internet-
working—Standards (e.g., TCP/IP)

General Terms: Design, Standardization

Keywords: DCCP, congestion control, transport protocols, unre-
liable transfer, streaming media, Internet telephony, TCP

1 INTRODUCTION

Selecting the right set of functionality for a network probis sub-

tle and touches on issues of modularity, efficiency, fleitipibnd
fate-sharing. One of the best examples of getting this liglie
split of the original ARPAnet NCP functionality into TCP ail

We might argue about a few details, such as whether the port nu
bers should have been in IP rather than TCP, but the origimef
tional decomposition looks remarkably good even 25 yedes.la
The key omission from both TCP and IP was congestion control,
which was retrofitted to TCP, the main bandwidth consumer, in
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1988 [22]. Protocols other than TCP were appropriatelydkfhe:
TCP congestion control curbs the bandwidth usage of loregtli
sessions, such as file transfers, and is bound up with TCRis flo
control and reliable bytestream semantics; the TCP coiogesin-
trol mechanisms are thus irrelevant for connectionleseeliable
applications such as DNS over UDP.

However, recent years have seen a large increase in applica-
tions using UDP for long-lived flows. These applicationsjshtin-
clude streaming media, Internet telephony, videoconfengn and
games, all share a preference for timeliness over religbilhat
is, given a chance to retransmit an old packet or to transméva
packet, they often choose the new packet. By the time theaalkiqt
arrived, it would have been useless anyway: in media apfits
users often prefer bursts of static to choppy rebufferinigyden
games, only the latest position information matters. TC&8ligble
bytestream delivery can introduce arbitrary delay and ctbe told
to forget old data. An unreliable protocol is clearly moteelivhat
these applications want.

Applications generally doot want to implement TCP-friendly
congestion control themselves. This is not only becausgesn
tion control can constrain performance, but also becauspeply
implementing congestion control is very hard, as the lorggolny
of buggy TCP implementations makes clear [33, 34]. Appidreat
might be willing to subject themselves to congestion cdnimot
least for the good of the network, as long as it was easy tonge a
met their needs. A modular congestion control framework ld/ou
also make it easier to develop new applications, and to glemo-
gestion control advances across many applications at once.

After analyzing several alternatives [17], and motivateostly
by keeping the basic APl as simple as UDP’s, we set out to de-
sigh a new transport protocol providing a congestion-auie
flow of unreliable datagrams. The goal was a simple, minimal
protocol upon which other higher-level protocols could bétb-
UDP, plus just those mechanisms necessary to support conges
tion control. The result, the Datagram Congestion Controtdol
(DCCP) [14, 18, 24], is currently an IETF Proposed Standard.

We expected the design process to run smoothly: after ak-un
liability is simpler to provide than reliability, so surelynreliable
congestion control would be no harder to provide than rédiabn-
gestion control. That naive expectation was wrong, and #pro
col that should have been simple to design was not so simge af
all. The development process helped us appreciate the wasT
reliability, acknowledgement, flow control, and congestemntrol
mechanisms intertwine into an apparently seamless wholgar-
ticular, DCCP’s lack of retransmissions and cumulativenagl-
edgements forced us to rethink almost every issue involpatket
sequencing. Of course, TCP appears seamless only when you ig
nore its extensive evolution, and we still believe that areliable
protocol’'s simpler semantics form a better base for lagefimc-
tionality. We therefore discuss many of the issues we faneatkt
signing a modern transport protocol, including some thatfgP
designers did not face as squarely, such as robustnessteatsack.



Related Work In the early days of Internet multimedia the re-
search community naturally assumed that congestion dambrdd

be an integral part of UDP applications, although much & work
targeted multicast [11, 29]. In the end, commercial sofemeen-
dors focused on unicast and omitted congestion controlefRB¢
applications such as Skype [41] have started to performseear
grained congestion adaptation to allow the use of highelityua
codecs when bandwidth permits, but not in a form that engmsa
interoperability.

as buffering multiple frames per packet causes audible/deSaich
small payloads pressure the transport layer to reduce sheader
overhead, which becomes a significant contributor to caimec
bandwidth. A codec may also save bandwidth by sending no data
during the silence periods when no one is talking, but exgtedm-
mediately return to its full rate as soon as speech resumasy ko
these issues are commoniteractive videoconferencing as well,
although that involves much higher bandwidth.

Sreaming media introduces a different set of tradeoffs. Unlike

Systems such as Time-lined TCP [32] retrofit some support for interactive media, several seconds of buffer can be usedatk m

time-sensitive data onto TCP, but do so using a specific aeadl
based policy. Real applications often have more compleicips|
For example, application-level messages may have difféegals

of importance and there may be interdependencies between th
the canonical example being MPEG’s key frames (I-frames) an
incremental frames (B/P-frames).

some rate variation, but since users prefer temporary \adifacts

to frequent rebuffering, even streaming media generalbfeps
timeliness to absolute reliability. Video encoding stawidaoften
lead to application datagrams of widely varying size. Foarex
ple, MPEG's key frames are many times larger than its increate
frames. An encoder may thus generate packets at a fixed tdte, b

SCTP supports multiple datagram streams in a single connec-with orders-of-magnitude size variation.

tion [46]. This improves timeliness for some applicatioas)ce

Finally, interactive games use unreliable transport to communi-

missing packets from one stream do not delay packets from cate position information and the like. Since they can dyiokake

any other stream. Nevertheless, SCTP’s reliability, lik€PTSs,
can introduce arbitrary delay. A partial reliability exséon, PR-
SCTP [45], attempts to overcome this by allowing a sender to
explicitly abandon outstanding messages. This requirdsast a
round-trip time; the suggested API resembles Time-line®§C

Another approach is to provide congestion control at a lager
low TCP or UDP, as with the Congestion Manager [3, 6]. While th
may have benefits for TCP, the benefits for unreliable UDPiegypl
tions are less clear. These applications must provide thairpro-
tocol mechanisms to detect and acknowledge losses. Thisriaf
tion is then fed to the Congestion Manager, which determiviesn
the application can send. The necessarily tight couplirtavéen
feedback style and the congestion control algorithm makées t
module breakdown rather unnatural. For example, addingtreo
rate-based algorithms such as TFRC [16] to the Congestiam Ma
ager (as an alternative to the basic abruptly-changing AlMD
gorithm) would require different feedback from the receivis
would then require a new kernel API to supply the necessay-fe
back to the new Congestion Manager module.

Related work on architectural and technical issues in the de
velopment of new transport protocols includes papers onPSCT
RTP [39], RTSP [38], and UDP-Lite [26]. A peripherally reddt
body of research on the development of new congestion dontro
mechanisms for high-bandwidth environments, or with moce e
plicit feedback from routers, highlights the need to be Bexito
accommodate future innovation.

2 APPLICATION REQUIREMENTS

Any protocol designed to serve a specific group of applicatio
should consider what those applications are likely to nakdough
this needs to be balanced carefully against a desire to besfut
proof and general.

One of DCCP's target applicationsligternet telephony. Interac-
tive speech codecs act like constant-bit-rate sourcedirgga fixed
number of frames per second. Users are extremely sensitilady
and quality fluctuation—even more so than to bursts of stasic
retransmissions are often useless: the receiver will hassqa the
playback point before the retransmission arrives. Quicpéation
to available bandwidth is neither necessary nor desirégpheny
demands a slower congestion response. The data rate isschbyg
adjusting the size of each compressed audio frame, eithadby
justing codec parameters or by switching codecs altogeftehe

use of available bandwidth, games may prefer a TCP-likeativt
congestion response to the slower response desired bymedia.

Since retransmissions are not necessarily useful for ttese
sensitive applications, they have a great deal to gain fhenuse of
Explicit Congestion Notification [35], which lets congest®uters
mark packets instead of dropping them. However, ECN caipabil
must only be turned on for flows that react to congestion, lhic
requires a negotiation between the two endpoints to estathost
of these applications currently use UDP, but UDP’s lack qfiek
connection setup and teardown presents unpleasant di#ficud
network address translators and firewalls and complicaesian
establishment protocols such as SIP. Any new protocol shiow
prove on UDP’s friendliness to middleboxes.

2.1 Goals

Considering these requirements, the evolution of modamsport,
and our desire for protocol generality and minimality, werawally
arrived at the following primary goals for DCCP’s functidiba

1. Minimalism. We prefer a protocol minimal in both function-
ality and mechanism. Minimdlinctionality means that, in line with
the end-to-end argument and prior successful transpaxiqots in
the TCP/IP suite, DCCP should not provide functionalityt tten
successfully be layered above it by the application or aerinedi-
ate library. This helped determine what to leave out of tleeqmol;
for instance, applications can easily layer multiple streaf data
over a single unreliable connection. Mininmaéchanismmeans that
DCCP’s core protocol features should be few in number, lottiri
implication. Rather than solve protocol problems one atre tiwe
prefer to design more general mechanisms, such as thesdetail
sequence numbering, that can solve several problems at bfece
intended to design a simple protocol, but there are manyskafd
simplicity: minimal mechanism defines the type of simplicite
sought in DCCP. Minimal mechanism also helps us achieve-a sec
ondary goal, namely minimal (or at least smé&lader size. To be
adopted for small-packet applications such as Internepkeny,
DCCP headers should be reasonably compact even in the alifenc
header compression techniques. For example, eight bytesais
ceptable overhead for reporting a one-bit ECN Nonce. Headsr
head isn't critical for well-connected hosts, but we wanstipport
DCCP on ill-connected, low-powered devices such as celheso

2. Robustness.The network ecosystem has grown rich and
strange since the basic TCP/IP protocols were designed.demo

extreme, some speech codecs can compress 20 ms of audio dowprotocol must behave robustly in the presence of attaclevsed

to 64 bits of payload. (The packet rate, however, is hardadjast,

as network address translators, firewalls, and other nidetkes.



First, DCCP should be robust against data injection, cdioreclo-
sure, and denial-of-service attacks. Robustness doesmogver,
require cryptographic guarantees; as in TCP, we considesefi-
cient to protect against third-party attactsere the attacker cannot
guess valid connection sequence numbers [31]. If initial sequence
numbers are chosen sufficiently randomly [8], attackerst snmop
data packets to achieve any reasonable probability of sacEmw-
ever, we found a number of subtleties in applying sequeno&pu
security to an unreliable protocol; security conflicts dile with
some of our other goals, requiring a search for reasonatddleni
ground. Middlebox robustness and transparency led usrudinte
explicit connection setup and teardown, which ease theeémeh-
tation burden on firewalls and NATs, and required the digodol
separation of network-level information from transporfoima-
tion. For example, our mobility design never includes nekwad-
dresses in packet payloads or cryptographically-signéal da

3. A framework for modern congestion control. DCCP should
support many applications, including some whose needsra#fl-
ically from file transfer (telephony, streaming media). Twact de-

Client Server

Request
Response Connection
Ack Initiation
- Aack ]
]
]
. Data/Ack/DataAck—] Data
Transfer
—
CloseReq
Close Connection
Reset Termination

Figure 1: DCCP packet exchange overview.

fine-grained control over buffers and other tradeoffs betwem-
ing and reliability.

2.2 Deliberate omissions
Any design is determined as much by what is left out as by what i

velopers, DCCP should aim to meet application needs as nsich a included. During the lengthy DCCP design process, manyesgg

possible without grossly violating TCP friendliness. Glg®CCP
should support all the features of modern TCP congestion con
trol, including selective acknowledgements, explicitgestion no-
tification (ECN), acknowledgement verification, and so Hpras

well as obvious extensions hard to port to TCP, such as cenges

tion control of acknowledgements. More importantly, ccstgm
control algorithms continue to evolve to better supportliaption
needs. DCCP should encourage this evolution. Applicatzars
thus choose among varieties of congestion control: DCCHqgee
aframework for implementing congestion control, not a single fixed
algorithm. Currently, the choice is between TCP-like, wheaw-
tooth rates quickly utilize available bandwidth, and TFRIB]|
which achieves a steadier long-term rate. In future, DCCP wi
support experimentation with new congestion control meismas,

from low-speed TFRC variants to more radical changes such as

XCP [23]. Each of these variants may require different aekno
edgement mechanisms; for instance, TFRC’s acknowledgismen

tions were made to add functionality; most did not make thelou
some cases it is interesting to note why not.

Flow control. In a reliable protocol it makes no sense to trans-
mit packets that the receiver may discard. However, tinurigeal
applications may, under some circumstances, be unableit do-
ing so. Receivers may prefer to drop old data from their bbaffie
favor of new data as it arrives, or may prefer an applicasipeeific
policy difficult to express at the transport level. Flow aohts also
nontrivial to get right: likely-mistaken flow control lingthave been
observed to lower peak transfer rates [1, 48]. Thus, we dedicat
DCCP should not impose any flow control limitation separedenf
congestion control. This essentially extends support ifoing—
reliability tradeoffs to its logical endpoint. Of coursetmnal flow
control could easily be layered on top of DCCP if desired.

Selective reliability. Prioritizing timeliness over reliability does
not preclude retransmitting data, so long as the retrassonis
reach the receiver in time. Transport-layer selectivabélity might

are much more parsimonious than TCP's. Thus, DCCP supportsbe convenient for applications, but we've found no obvigusl

a range of acknowledgement types, depending on the selemted
gestion control method.

Another aspect concerns challenging links where loss and co
ruption unrelated to congestion are common, such as ceknid
wireless technologies. Although there is no wide agreeroetow
non-congestion loss and corruption should affect send @€ CP
should allow endpoints to declare when appropriate thakgiac
were lost for reasons unrelated to network congestion, aed ®
declare that delivery of corrupt data is preferred to loss.

4, Self-sufficiency.DCCP should provide applications with an
API as simple as that of UDP. Thus, as in TCP, a DCCP imple-
mentation should be able to manage congestion control utitqo
plication aid. DCCP receivers must detect congestion eveith-
out application intervention; DCCP senders must calcudatten-
force fair sending rates without application cooperatiBuarther-
more, congestion control parameters must be negotiatberid-

5. Support timing—reliability tradeoffs. Any API for sending
DCCP packets will support some buffering, allowing the agieg
system to smooth out scheduling bumps. However, when therbuf
overflows—the application’s send rate is more than congleston-
trol allows—a smart application may want to decide exacthjolr
packets should be sent. Some packets might be more valirole t
others (audio data might be preferred to video, for exampule)
newer packets preferred to older ones. DCCP should suppbrt n
only naive applications, but also advanced applicatioas wWant

preferable API for identifying those datagrams that shdddre-
transmitted; retransmission deadlines [32], maximumaremis-
sion counts, and buffer-based strategies all have advestag dis-
advantages. Since retransmissions are easily layere@ &0CP,
selective reliability was left out of the protocol itselfrfoow.

Streams.SCTP [46] provides applications withsaeam abstrac-
tion: sub-connection flows with independent sequence spdcte
benefit is that head-of-line blocking between streams isirhted.

For an unreliable protocol, though, there is no blockingopem,
as neither reliable nor in-order delivery is guaranteeis. titivial to
layer streams over DCCP where they are required.

Multicast. It would have been nice to support multi-party deliv-
ery in DCCP, but there doesn't appear to be any simple common
ground between the different possible uses of multicasgltne
between unicast and multicast. None of the main DCCP mecha-
nisms, be it connection setup, acknowledgements, or evegese
tion control, apply naturally to multicast, and even amongtivast
applications one size does not fit all [21]. We resisted thiptation
to generalize beyond what we believed we could do well.

3 DCCP OvERVIEW

DCCP is a unicast, connection-oriented protocol with lgiclional
data flow. Connections start and end with three-way hanéshals
shown in Figure 1; datagrams begin with the 16-byte geneaclar
shown in Figure 2. The Port fields resemble those in TCP and UDP



Data Offset measures the offset, in words, to the start ¥ggatata. . ————rrnr———————+7"+ - ———r+—+++
Since this field is 8 bits long, a DCCP header can contain niane t ., SourcePot |  DestinationPort
1000 bytes of option. The Type field gives the type of packed,ia Data Offset | CCVal CsCo Checksum
somewhat analogous to parts of the TCP flags field. The names in @ o ‘Ty‘pei . B 181eq}u<19nlce} Number
Figure 1 correspond to packet types, of which DCCP specHies t —_— —

Many packet types require additional information after gleeeric L L
header, but before options begin; this design choice awdigs | Reserved | Acknowledgement Number
tering the universal header with infrequently-used fiellgen the (b)
acknowledgement number is optional, potentially redudiagder . _ Acknowledgement Number (low bits)
overhead for unidirectional flows of data. There are no exjeits . ) . .

to TCP's receive window and urgent pointer fields or its PUSH a E'glgg gétzgg;pli%ﬁtdﬂgf gae(r:.k;'thteygeesn ﬁ]rg:yg%%dgaéﬁga?;;%ﬁz_every
URG flags, and TCP has no equivalent to CCVal (Section 6.2) or tion, such as (b) an acknowledgement number. The packeehémd
CsCov/Checksum Coverage (Section 6.5). Sequence andvelekno  followed by DCCP options, then payload; payload starts [Rftaet
edgement numbers are 48 bits long, although some packet type words into the datagram.

also permit a compact form to be used (see Section 4.5).

* Sequence Number (low bits)

(for instance, when a sender overflows the receiver’s recsin-
4 SEQUENCE NUMBERS dow), although this happens rarely in practice and may atdien
DCCP’s congestion control methods are modularly sepafebea attempt to subvert congestion control [37]. TCP’s congestion-
its core, allowing each application to choose a method itepse trol algorithms generally operate on these byte-oriensethbles in
The core itself is largely focused on connection management units of theexpected packet size, which can lead to anomalies [2].

setup, teardown, synchronization, feature negotiatind,so forth. TCP connections contain other features that must be acknowl
The simplicity of this core functionality turned out to be is-d edged, including connection setup and teardown, timestaBPN
tinctly mixed blessing. TCP, for example, is able to simpbme reports, and optional features like SACK. Connection setog

aspects of connection management by leveraging the versrsem teardown is handled elegantly: SYN and FIN bits occupy secgie
tics of reliability that it aims to provide. TCP’s flow contnmeans space, and are thus covered by the ackno. Each other feature,

that two live endpoints always remain synchronized, and'3 @R though, needs its own acknowledgement mechanism. Each time

liability means a single cumulative acknowledgement nunsioé- stamp option contains an acknowledgement; a TCP header bit

fices to describe a stream’s state. More generally, TCP qwalve- (CWR) acknowledges ECN congestion reports; support faooat

liability, conciseness of acknowledgement, and bytestreaman- features is acknowledged via options like SACK-Permitted.

tics in a tightly unified whole; when we tried to separate ehpsop- Pure acknowledgements, which contain neither data nor YN o

erties, its mechanisms fell apart. Sometimes the solutiemsie- FIN bits, do not occupy sequence space, and thus cannot be ac-

veloped in response seem as simple as TCP’s and sometinyes theknowledged conventionally. As a result, TCP cannot easififte

don't, but they are almost always different. ate the loss rate for pure acknowledgements or detect ot ft@ac
DCCP’s core connection management features all depend onreverse-path congestion, except as far as high acknowtezige

the most fundamental tool available, namebguence numbers. loss rates reduce the forward path’s rate as well.

We now know to consider sequence numbers carefully: sedyning
small changes to sequence number semantics have farmgadhi 4.2 DCCP sequence numbers

fects, changing everything up to the protocol state macfihe in- DCCP must be able to detect loss without application support
terlocking issues surrounding sequence numbers cokgtiorm Inevitably, then, DCCP headers must include sequence msmbe
the most surprising source of complexity in DCCP’s designwe Those sequence numbers should measure datagrams, nat bytes
explore them in some depth. since in accordance with the principles of Application Lialjeam-

ing [13], unreliable applications generally send and nexeiata-
4.1 TCP sequence numbers grams rather than portions of a byte stream. This also Siepthe
TCP uses 32-bit sequence numbers representing applicditan expression of congestion control algorithms, which geheweork
bytes. Each packet carries a sequence number, or segno,cand a in units of packets. (Some care is required to calculate estign

mulative acknowledgement number, or ackno. control using the average packet size.)

A cumulative ackno indicates that all sequence numbers up to  What, though, should be done with packets that don't carry ap
but not including, that ackno have been received. The recgivar- plication data? DCCP’s goals include applying congestiomtrol
antees that, absent a crash or application interventiosillide- to acknowledgements, negotiating congestion controlufeatin
liver the corresponding data to the application. Thus, ttkna band, and supporting explicit connection setup and teandde
succinctly summarizes the entire history of a connectidnis Suc- first goal requires detecting acknowledgement loss; therskte-

cinctness comes at a price, however: the ackno providesfas in  quires acknowledging each feature negotiation. A singleimmal-
mation about whethdater data was received. Several interlocking ist choice, motivated by TCP’s inclusion of SYN and FIN in se-

algorithms, including fast retransmit, fast recovery, Reamo, and guence space, seemed to address all three goals at oncedR,DC
limited transmit [5], help avoid redundant retransmissibwg infer- every packet, including pure acknowledgements, occupies seguen
ring or tentatively assuming that data has been receivech Ss- space and uses a hew sequence number.

sumptions can be avoided if the sender is told exactly whatwas This choice had several unintended consequences. (For-exam
received, a more explicit approach implemented by TCP s8edec  ple, a single sequence space now contains both data pacickts a
acknowledgements (SACK) [10]. acknowledgements. Often this should be separated: TCPrites

TCP sequence numbers generally correspond to individuasby  reduce a sender’s rate when an acknowledgement it sendst,is lo
of application data, and variables measured in sequencéersm so neither should DCCP.) The obvious TCP-like choice woaleeh
such as receive and congestion windows, use units of daés.byt been to assign pure acknowledgements the same sequence num-
Thus, an endpoint may acknowledgart of a packet's contents  bers as preceding data packets; only connection handshakkes
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Figure 3: Recovering synchronization after bursts of loss.

data would gain new sequence numbers. Of course, featue neg
tiation and connection synchronization would then reqailehoc
acknowledgement mechanisms. Another alternative woutd lre
troduce a secondary sequence number space for non-daetgpack
In the end, though, we believe that despite its warts, thémailist
path we chose is as simple as or simpler than these altezpativ

packets occupy sequence space, would not have helpedciExpli
synchronization with unique packet types seems now likeotiig
working solution.

The details are nevertheless subtle, and formal modeling re
vealed problems even late in the process. For example dmrtbie
ackno on a Sync packet. In the normal case, this ackno shquid e

Most DCCP packets carry an acknowledgement number as well the seqgno of the out-of-range packet, allowing the othepeimd to

as a sequence number. This led to another critical desigih dec
sion: To which packet should the ackno correspond? Curmalat-
knowledgements don’t make sense in an unreliable protobelev
the transport layer never retransmits data. DCCP’s ackus tté-
ports thd atest packet received, rather than the earliest not received.
This decision, which still seems inevitable, has tremesdmnse-
guences, since without a cumulative acknowledgemente tilsero
succinct summary of a connection’s history. Additional gestion
control-specific options provide information about paskateced-
ing the ackno. The most detailed option, Ack Vector, repexs
actly which packets were received, and exactly which packete
received ECN-marked, using a run-length-encoded byty;ageeh
Ack Vector byte represents up to 64 packets.

4.3 Synchronization

When a TCP connection is interrupted by network failurepitsbe
packets are retransmissions, and use expected sequenbersum
But in retransmissionless DCCP, each packet sent duringizge
uses a new sequence number. When connectivity is restael, e
endpoint might have reached a sequence number wildly differ
from what the other expects. Thus, large bursts of loss cere fo
endpoints out of sync, a problem surprisingly difficult tdveo

recognize the ackno as in its expected range. However, ttieaisin
is different when the out-of-range packet is a Reset, siftez a
Resethe other endpoint is closed. If a Reset had a bogus sequence
number (due maybe to an old segment), and the resulting Sync
echoed that bogus sequence number, then the endpoints tnamled
Syncs and Resets until the Reset’'s sequence number rosthénto
expected sequence number window (Figure 3(b)). Insteagina S
sent in response to a Reset must set its ackno to the segne of th
latest valid packet received,; this allows the closed entgoijump
directly into the expected sequence number window (Fig(cy.3
As another example, an endpoint in the initk#QUEST state—
after sending the connection-opening Request packet, dforeéd
receiving the Response—responds to Sync packets with Rexet
SyncAck. This helps clean up half-open connections, wher o
endpoint closes and reopens a connection without the otler e
point’s realizing.

TCP senders’ natural fallback to the known-synchronizedwcu
lative ackno trivially avoids many of these problems, alifjio sub-
tlety is still required to deal with half-open connections.

4.4 Acknowledgements
A TCP acknowledgement requires only a bounded amount of

We cannot eliminate expected-sequence-number windows, asstate, namely the cumulative ackno. Although other SACKesta

they are the main line of defense protecting connectioms fittack
(see Section 4.6). Instead, DCCP suppexgsicit synchronization.

An endpoint receiving an unexpected sequence or acknoededg
ment number sends a Sync packet asking its partner to alidat
that sequence number. (TCP in this situation would sendet.jes
The other endpoint processes the Sync and replies with a¥8knc
packet. When the original endpoint receives a SyncAck withlial
ackno, it updates its expected sequence number windowd base
that SyncAck’s seqno; see Figure 3(a) for an example.

Some early versions of this mechanism synchronized usist ex
ing packet types, namely pure acknowledgements. Howeweu-
ally unsynchronized endpoints can never resync in such a design,
there is no way to distinguish normal out-of-sync traffiafroesyn-
chronization attempts—both types of packet have eitherrax-u
pected segno or an unexpected ackno. We considered usiciglspe
options to get back into sync, but endpoints would have ttallgr
parse options on possibly-invalid packets, a troublesoegglire-
ment. We considered preventing endpoints from sendingvadaga
they were at risk of getting out of sync, but this seemed feagi
imposed an artificial flow control limitation, and, since eyaobe

may be stored, that state is naturally pruned by successtul r
transmissions. On the other hand, a DCCP acknowledgemant co
tains potentially unbounded state. Ack Vector options cgort
every packet back to the beginning of the connection, badinde
only by the maximum header space allocated for options.eSinc
there are no retransmissions, the receiver—the endpgiottieg
these acknowledgements—needs explicit help to prune this.s
Thus,pure acknowledgements must occasionally be acknowledged.
Specifically, the sender must occasionally acknowledgeeitsipt

of an acknowledgement packet; at that point, the receiverdis
card the corresponding acknowledgement information.

We seem to be entering an infinite regression—must acknowl-
edgements of acknowledgements themselves be acknowfedged
Luckily, no: an acknowledgement number indicating that idi@a-
lar acknowledgement was received suffices to clean up stéte a
receiver, and this, being a single sequence number, usesibédu
state at the sender. Furthermore, some types of acknowlengs
use bounded state, and thus never need to be acknowledged.

Unreliability also affects the semantics of acknowledgetin
DCCP, an acknowledgemenéver guarantees that a packet’s data
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Figure 4: DCCP header with short sequence numbers. See also Fig. 2.

will be delivered to the application. This supports tradaffjtime-
liness against reliability (Goal 5). Consider a streamirggdia re-
ceiver that prefers new data to old. If the receiver blockafanhile,

it may find on resuming computation that more packets ardljoca
enqueued than it can handle in the allotted time. It is dekdrfor
the application, as part of the timeliness—reliabilitydeaff, to be
able to drop the old data.

For many reasons, however, this data should have been akknow
edged already. Acknowledging packets only on applicatiivery
would distort round-trip time measurements and unaccéptis
lay option processing; acknowledgement options shouidcdno-
gestion control purposes, report only losses and markshiduat
pened in the network proper. To avoid muddying the semanties
separate these concerns at the expense of a little efficib@gP
acknos and acknowledgement options repestler acknowledge-
ment: a packet was received, processed, and found valaptitsns
were processed, and its data was enqueued for possible figur
livery to the application. A separate option called Data piped
indicates when an acknowledged packet’s data was not detive
for example, when that data was dropped in the receive buffer

4.5 Sequence number length

The solution, once found, was relatively clean. AlthoughdiC
sequence numbers are 48 bits long, some packet types may leav
off the upper 24 bits (Figure 4). The receiver will infer tedsits’
values using an expected 48-bit sequence number. The fofjlow
procedure takes a 24-bit vals@and an expected sequence number
r and returns's 48-bit extension. It includes two types of compari-
son, absolute (writterr) and circular mod 2* (written Q).

Mow :=1 mod 24 rpgn = [r/2%4];

if (Flow © S < TNow) I/ sincremented past 224 — 1
return((rhign+ 1) mod 24) x 224 4 s;

elseif 6Q riow <9 /I s decremented past O (reordering)
return((rhigh+ 224 — 1) mod 24) x 224+ s,

else
returnryigh x 224+ s,

Connection initiation, synchronization, and teardownkess al-
ways use 48-bit sequence numbers. This ensures that theietsdp
agree on sequence numbers’ full values, and greatly redtees
probability of success for some serious attacks. But dathaan
knowledgement packets—exactly those packets that willemak
the bulk of the connection—may, if the endpoints approve, 24
bit sequence numbers instead, trading maximum speed ared inc
mental attack robustness for lower overhead. Although glesise-
guence number length would be cleaner, we feel the shoresegqu
number mechanism is one of DCCP’s more successful features.
Good control over overhead is provided at moderate comtplexi
cost without opening the protocol unduly to attack.

4.6 Robustness against attack

Robustness against attack is now a primary protocol desigh g
Attackers should find it no easier to violate a new protocotis-
nection integrity—Dby closing a connection, injecting dat@ving a

How big should the sequence space be? Short sequence nUMbersynnection to another address, and so forth—than to vidlaR's

lead to smaller headers, less bandwidth, and less endpaiet s
On the other hand, they wrap more frequently—that is, |avedl
connections must quickly reuse sequence numbers, rurtmémigk
that old delayed packets might be accepted as new—and make co
nections more vulnerable to attack.

TCP’s 32-bit per-byte sequence numbers already have wrgppi
problems at gigabit network speeds (a problem addressetieby t
timestamp option). Despite this, DCCP originally used sBdrbit
sequence numbers. We reasoned that fast connections veoolid f
fewer large packets over many small packets, leaving paekes
low. This was, of course, a mistake. A datagram protocol eann
force its users to use large packet sizes, but absent paigthl
restrictions, 24 bits are too few: a 10 Gb/s flow of 1500-bytekets
will send 24 packets in just 20 seconds.

We considered several solutions. The header could be rear-

ranged, albeit painfully, to allow 32-bit sequence numpleus this
doesn’t provide enough cushion to avoid the issue. TCP’g-tim
stamp option is a bad model—verbose, complex, and stillerain
ble to attack. Even a more concise and consistent timestaufglw
force implementations to parse the options area beforerditieg
whether the packet had a valid sequence number.

The simplest and best solution was simply to lengthen seguen
numbers to 48 bits (64 would have crowded out other headedsjiel
A connection using 1500-byte packets would have to send more
than 14 petabits a second before wrapping 48-bit sequemabars
unsafely fast (that is, in under 2 minutes).

However,forcing the resulting overhead on all packets was con-
sidered unacceptable; consider speech codecs, in whigte§ay-
loads are not atypical. Endpoints should be able to chodsecka
short and long sequence numbers.

connection integrity. Unfortunately, this is not a high.bar

TCP guaranteesequence number security. Successful connec-
tion attacks require that the attacker know (1) each endpaid-
dress and port and (2) valid sequence numbers for each erndpoi
Assuming initial sequence numbers are chosen well (thaars,
domly) [8], reliably guessing sequence numbers require®sn
ing on traffic. Snooping also suffices: any eavesdropper asn e
ily attack a TCP connection [31]. Applications desiring feion
against snooping attacks must use some form of cryptographiz
as IPsec or TCP’s MD5 option.

Of course, a non-snooping attacker can always try their aick
guessing sequence numbers. If an attacker sdhdftack pack-
ets distributed evenly over a space lofsequence numbers (the
best strategy), then the probability that one of these laftack-
ets will hit a windowW sequence numbers wideWN/L; if the
attacker must guess both a sequence number and an acknewledg
ment number, with validity windowd/4 andWs, the success proba-
bility is WVWWN/L2. In TCP, data injection attacks require guessing
both sequence and acknowledgement numbers, but conneetion
set attacks are easier—a SYN packet will cause connectiet re
if its sequence number falls within the relevant window. {#is
lar, recently-publicized attack with RST packets is somavwédas-
ier to defend against.) Recent measurements report a madian
vertised window of approximately 32 kB [30]; wit = 32768
bytes, this attack will succeed with more than 50% probighithen
N = 65536. This isn't very high, and as networks grow faster, re-
ceive window widths are keeping pace, leading to easiecksta

DCCP’s 48-bit sequence numbers and support for explicit syn
chronization make reset attacks much harder to execute=xaon-
ple, DCCP is immune to TCP’s SYN attack; if a Request packet



hits the sequence window of an active connection, the rieggiv
endpoint simply responds with a Sync. The easiest reseflifack

is to send a Sync packet with random sequence and acknowledge
ment numbers. If the ackno by chance hits the relevant window
the receiver will update its other window to the attackeasdom
sequence number. In many cases another round of synchiioniza
with the true endpoint will restore connectivity, but luckgtacks
will lead to long-term loss of connectivity, since the akad end-
point will think all of its true partner’s packets are old. tBeven
given a large window oV = 2000 packets (nearly 3 MB worth of
1500-byte packets), an attacker must send more th¥hgskets

to get 50% chance of success.

Unfortunately, the goal of reducing overhead conflicts veigh
curity. DCCP Data packets may use 24-bit sequence numbwets, a
contain no acknowledgement number. As a result, it is qaisy €0
inject data into a connection that allows 24-bit sequencabars:
given the default window oV = 100 packets, an attacker must send
N ~ 83000 Data packets to get 50% chance of success. An appli-
cation can reduce this risk simply by not asking for shorusege
numbers, and data injection attacks seem less dangerousdha
nection reset attacks; the attacker doesn’t know whereeistiieam
their data will appear, and DCCP applications must alreazbl d
with loss (and, potentially, corruption).

Unless we are careful, though, data injection might cause co
nection reset. For example, certain invalid options mightse the
receiver to reset the connection; an injected Data packgitnii-
clude such an option. Several aspects of the protocol wedi-mo
fied to prevent this kind of attack escalation. At this poimd,Data
packet, no matter how malformed its header or options, shoul
cause a DCCP implementation to reset the connection, orrto pe
form transport-level operations that might eventuallydliéareset-
ting the connection. For instance, many options must beregho
when found on a Data packet. In retrospect, these modifitatio-
cord with the TCP Robustness Principle, “be conservativehat
you send, and liberal in what you accept”. Although care&lidity
checking with harsh consequences for deviations may sepm-ap
priate for a hostile network environment, attackers caraéxghat
checking to cause denial-of-service attacks. It is betigeeep to
the principle and ignore any deviations that attackers highse.

4.7 Summary and discussion

Congestion control requires loss detection, which in temguires

sequence numbers. An unreliable protocol uses applicatida

units, so DCCP sequence numbers ngiaekets rather than bytes.
Several reasons, including our preference for minimal rmeisim,

led us to assigevery packet a new sequence number.

The semantics of acknowledgement are very different forran u
reliable protocol than for TCP, as there is no succinct exjeiv to
TCP’s cumulative ackno. DCCP acknowledgesrtiost recently re-
ceived packet. Options such as Ack Vector indicate precisely which

packets have been received; some such options may grow with-

out bound, requiring thatcknowl edgements be acknowledged from
time to time.

Providing robustness via sequence number validity chesks i
harder for an unreliable protocol, since absent flow contio
two endpoints can get out of sync. DCCP thus provideexahcit
synchronization mechanism. This has some advantages even over
TCP’s design, since unexpected events can trigger synizatan
rather than connection reset.

Long sequence numbers are preferred to short ones, since they
cleanly avoid wrapping issues and frustrate attack, burevepace
is at a premium, short sequence numbers caextended to long

Data B A Data B
Ack DataAck
Data n _ DataAck
Ack DataAck

Ak |
(@) (b) ()

Figure 5. (@) An A-to-B half-connection and (b) a B-to-A half-
connection combine into (c) a full connection with piggyked data
and acknowledgements.

attacked points in the protocol, such as opportunities &ta dn-
jection,cannot escalate to denial-of-service attacks.

Not all comparisons between TCP sequence numbers and
DCCP-style unreliable, packet-oriented sequence numixare
out in favor of TCP. For example, TCP’s bytestream sequenog n
bers make it ambiguous whether an acknowledgement refeas to
packet or its retransmission, which has led to a cottagestngin
acknowledgement disambiguation and recovery from spsirieu
transmissions [27, 36].

5 CONNECTION MANAGEMENT

This section describes DCCP properties, including seweithlin-
teresting differences from TCP, that do not directly concse-
guence numbers.

5.1 Asymmetric communication

DCCP, like TCP, provides a single bidirectional connectidata
and acknowledgements flow in both directions. However, many
DCCP applications will have fundamentally asymmetric dbta.
For example, in streaming media almost all data flows fromeser
to client; after the initial connection setup, the clieng&ckets are
all acknowledgements.

TCP devolves naturally into unidirectional communication
Since TCP acknowledgements occupy no sequence spaceegiit is n
ther useful nor possible to acknowledge them; since datan®t
missions clean up old ack state, a unidirectional TCP flowhictv
all data has been acknowledged occupies minimal state brebdt
points. We aim for a similar property from DCCP: a DCCP connec
tion with unidirectional data flow should spend little tinspace, or
bandwidth on the inactive direction. In a bidirectional DE€on-
nection, however, each endpoint may need to keep detail &@KSA
like acknowledgement information about its partner’s getekets.
When data flows unidirectionally, this overhead is largelyaste
for the inactive direction. If B is sending only acknowledgents
to A, then A should acknowledge B’s packets only as necegsary
clear B’'s acknowledgement state; these acks-of-acks amamali
and need not contain detailed loss reports (Section 4.4).

To solve these issues cleanly, DCCP logically divides eath ¢
nection into twohalf-connections. A half-connection consists of
data packets from one endpoint plus the corresponding adkno
edgements from the other. When communication is bidiraeatio
both half-connections are active, and acknowledgemenisota
ten be piggybacked on data packets (Figure 5). The formatdor
knowledgements is determined by the governing half-comes
congestion control method, which might for example requiee
tailed Ack Vector information. But a half-connection thatshsent
no data packets for some time (0.2 seconds or 2 RTTs, whickeve
greater), and that has no outstanding acknowledgemergaidgo
be quiescent. There is no need to send acknowledgements on a qui-
escent half-connection. When the B-to-A half-connectioagyqui-

ones on the fly. Care should be taken to ensure that any easily-escent (B stops sending data), A can also stop acknowledjing



packets, except as necessary to prune B’s acknowledgetasat s

Half-connections turned out to be an extremely useful abstr
tion for managing connection state. It makes sense coraigptu
and in the implementation to group information related toatad
stream with information about its reverse path. DCCP rurth wi
this idea: each half-connection has an independent setiatias
and features, including a congestion control method. Taisn-
gle DCCP connection could consist of two TFRC half-conroeti
with different parameters, or even one half-connectiong3iCP-
like congestion control and one using TFRC.

5.2 Feature negotiation

DCCP’s connection endpoints must agree on a set of parasneter
the most obvious of which is the choice of congestion comtreth-
ods the connection should use. Both endpoints have caipessi

the mechanisms they implement—and application requirésnen
the mechanisms the application would prefer. Since theegifmn
cannot be relied upon to negotiate agreement, negotiatic take
place in band. TCP has a similar problem, applying at leaSQN,
SACK, window scaling, and timestamps, which it solves ad hoc
with different options or bits in each case. The resultingiptexity
would only grow in an unreliable protocol. Therefore, in DE@e
builtin a single general-purpose mechanism for reliabtyatiating

the values ofeatures. A feature is simply a per-endpoint property
on whose value both endpoints must agree. Examples inchate e
half-connection’s congestion control mechanism, and drebr
not short sequence numbers are allowed.

Feature negotiation involves two option types: Changeoogti
open feature negotiation, and Confirm options, which aré¢ isen
response, name the new values. Change options are retttsmi
as necessary for reliability. Each feature negotiatioesgiace in
a single option exchange; our initial design involved nplétiback-
and-forth rounds, but this proved fragile. A single excleign’'t
overly constraining, since complex preferences can berithestin
the options themselves. Change and Confirm options caninonta
preference lists, which the endpoints analyze to find a basthm

With hindsight, generic reliable feature negotiation hi@sed
us to easily add additional functionality without neediagonsider
interactions between feature negotiation, congestiotrabmelia-
bility, and the differing acknowledgement styles requitgdeach
congestion control mechanism.

5.3 Mobility and multihoming

Mobility and multihoming, which cut across the network arahs-
port layers, are different from most functionality in thhey can-
not be layered on top of an unreliable protocol. Mobility kbu
be implemented entirely at the network layer, as with Molbite
but choosing the transport layer has advantages [42]: émsort
layer is naturally aware of address shifting, so its corigestontrol
mechanism can respond appropriately, and transport-tagbility
avoids triangle routing issues. We were thus directed teldpva
mobility and multihoming mechanism for DCCP.

Happily, mobility and multihoming are among the few cases
where unreliability makes a problem easier. Reliable partanust
maintain in-order delivery even across multiple addressea con-
sequence, changing a connection’s address set requihasrtig-
gration with the transport layer [42]. Unreliable trandpbowever,
doesn’t guarantee in-order delivery, or any delivery gtaait coor-
dination can therefore be quite loose. DCCP’s mobility andtim
homing mechanism simply joins a set @imponent connections,
each of which may have different endpoint addresses, psets,
guence numbers, and even connection features, into a sasglen
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Figure 6: Shutdown handshakes push Time-Wait state to the client.

entity. This is done in the simplest possible way: to add a adw
dress, an endpoint opens a new DCCP connection, includiitg in
Request an option for attaching to an existing session. Mk&ns
that most DCCP and middlebox code can treat component connec
tions as independent; for instance, each connection hawitgon-
gestion control state. The only code that differs involresgocket
layer, where transport interacts with the application. Ma@nsport
state is unique per component connection, but all comperient
a session share a single socket. Data written to the sochdbeca
distributed arbitrarily among component connections, datz re-
ceived from any component connection is enqueued on theghar
socket. This design resembles previous work on sessi@r-lag-
bility management [25, 43], but thanks to unreliability, ean add
multihoming support while simplifying the basic abstracs.

The mobility and multihoming mechanism also prevents conne
tion hijacking, where an attacker moves one endpoint of tirnie
connection to its own IP address. We reason that hijackirignis
damentally more serious than data injection or connectgett so
hijacking should be preventesten when the attacker can passively
snoop the connection. Thus, the DCCP options that manage ses-
sions are protected against forgery and replay by noncedigitall
signatures. Of course, an on-path active attacker, suck@mpro-
mised router, can still hijack a connection with or withoualility.

5.4 Denial-of-service attacks

In a transport-level denial-of-service attack, an attadkes to
break a victim's network stack by overwhelming it with data o
calculations. For example, the attacker might send thalssan
TCP SYN packets from fake (or real) addresses, filling up the v
tim's memory with useless half-open connections. Genethése
attacks are executed against servers rather than clienysméd-
ern transport protocol must be designed from the outsetdistre
such attacks, which may even involve changes to the desigreof
protocol state machine itself.

The basic strategy is to push state to the client whenevesipos
ble. In DCCP, for example, a server responding to a Requekepa
can encapsulate all of its connection state into an Init @ook-
tion, which the client must echo when it completes the thwag-
handshake. Like TCP’s SYN cookies [9] and SCTP’s initializa
tion cookies [46], this lets the server avoid keeping anyrimfa-
tion about half-open connections; unlike SYN cookies, Wuhi@re
retrofitted, Init Cookies can encapsulate lots of state.tA@ostate-
holding issue occurs during connection shutdown where, itls w
TCP, Time-Wait state needs to remain at an endpoint for at tem
minutes to prevent confusion in case the network deliveckgta
late. Unlike TCP, DCCP servers can shift Time-Wait stat®e avitl-
ing clients. This is accomplished by introducing asymmeétty the
shutdown state machine. All DCCP connections end with desing
Reset packet, and only the receiver of that Reset packes Agite-
Wait state. Normal connections end with a Close—Reset hakds
but the server (and only the server) can initiate shutdowth @i
CloseReq packet, which effectively asks the client to acTepe-
Wait state (Figure 6).



DCCP also allows rate limits whenever an attacker mighteforc
an endpoint to do work. For example, there are optional fariés|
on the generation of Reset and Sync packets. Finally, asibledc
above, the DCCP state machine itself and the explicit symiba-
tion mechanism have both been engineered to resist blied a¢s
tacks on existing connections.

5.5 Formal modeling
The initial DCCP design was completed without benefit of fafrm

congestion window “cwnd”, a slow-start threshold, and ameste
of the number of data packets outstanding [10].

One difference from TCP is CCID 2's reaction to reverse-path
congestion. TCP doesn’t enforce any congestion control@n a
knowledgements, except trivially via flow control. This isnsi-
taneously too harsh and not harsh enough: high reverseepath
gestion slows down the forward path, and medium reverde-pat
congestion may not even be detected, although it can becparti
larly important for bandwidth-asymmetric networks or peicka-

modeling. As our work progressed, however, we made use of a dio subnetworks [7]. Modern protocols should ideally detaed

semi-formal exhaustive state search tool and two forma$i@oa-

beled transition system (LTSA, [28]) model and an indepatige

developed colored Petri net (CPN) model from the University
South Australia [47]. These tools, and particularly theooed Petri

net model, were extremely useful, revealing several spiotiblems

in the protocol as we had initially specified it.

The most important tool was simply shifting from reasoning
via state diagrams to detailed pseudocode that defined hokv pa
ets should be processed. The resulting precision revealestas
places where our design could lead to deadlock, livelocktioer
confusion. An ad hoc exhaustive state space exploratidnwas
then developed to verify that the pseudocode worked as teghiec
examining its output led to further refinements, especitdlyhe
mechanism for recovering from half-open connections. Th8A.
model—which included states, packets, timers, and a n&twith
loss and duplication, but not sequence nhumbers—was usedrso m
formally examine the specification for progress and dediee-
dom. It found a deadlock in connection initiation, which weefi.
The CPN model went into more depth, in particular by inclgdin
sequence numbers, with impressive results. This modeldfole
half-open connection recovery problem described in Fi@(bg, a
similar problem with connections in Time-Wait state, andabbem
with the short-sequence-number extension code in Sectiofwe
initially forgot reordering). These problems involved tieg rather
than deadlock: a connection would eventually recover, hiyt af-
ter sending many messages and causing the verificatiors tet-
eralized state space to explode in size. Thus, as the ptdtoeo
proved the verifier ran more quickly!

Our experience with formal modeling was quite positive,eesp
cially combined with clear explanation in pseudocode. Ni&we,
we would seek out modeling experts earlier in the desighge®c

6 CONGESTION CONTROL

As a congestion control framework, DCCP gives the applcas
choice of congestion control mechanisms. Some applicatitght
prefer TFRC congestion control, avoiding TCP’s abrupt imgj\of
the sending rate in response to congestion, while otherktrpig-
fer a more aggressive TCP-like probing for available badtiwi
The choice is made via Congestion Control IDs (CCIDs), which
name standardized congestion control mechanisms. A cbanisc
CCIDs are negotiated at connection startup. This sectisorites
the two CCIDs that have currently been developed, congesto-
trol issues exposed by DCCP’s target applications thatiretodoe
solved, and more general problems relating to congestiotralo
including misbehaving receivers and non-congestion loss.

6.1 CCID 2: TCP-like Congestion Control

DCCP’s CCID 2 provides a TCP-like congestion control mecha-
nism, including the corresponding abrupt rate changes hilityao
take advantage of rapid fluctuations in available bandwid@ID 2
acknowledgements use the Ack Vector option, which is e&dbnt

a version of TCP’s SACK. Its congestion control algorithrike{
wise follow those of SACK TCP, and maintain similar variabla

act on reverse-path congestion. Thus, CCID 2 maintainstarfea
called Ack Ratio that controls the rough ratio of data pashmr
acknowledgement. TCP-like delayed-ack behavior is pexbidy
the default Ack Ratio of two. As a CCID 2 sender detects lost ac
knowledgements, it manipulates the Ack Ratio so as to rethee
acknowledgement rate in a very roughly TCP-friendly way.

Ack Ratio is an integer. To reduce ack load, it is set to attleas
two for a congestion window of four or more packets. Howeteer,
ensure that feedback is sufficiently timely, it is cappedvatdy/2,
rounded up. Within these constraints, the sender chandeRaAtio
as follows. LetR equal the current Ack Ratio.

e For each congestion window of data where at least one of the
corresponding acks was lost or mark&ds doubled;

e For each cwngd(R%2 — R) consecutive congestion windows of
data whose acks were not lost or markRdls decreased by 1.

This second formula comes from wanting to increase the numbe
of acks per congestion window, namely cwi] by one for every
congestion-free window that passes. However, sRég an inte-
ger, we instead find & so that, aftekk congestion-free windows,
cwnd/R+k = cwnd/(R—-1).

6.2 CCID 3: TFRC Congestion Control

TFRC congestion control in DCCP’s CCID 3 uses a different ap-
proach. Instead of a congestion window, a TFRC sender uses a
sending rate. The receiver sends feedback to the sendehnlyoug
once per round-trip time reporting the loss event rate itisantly
observing. The sender uses this loss event rate to deteisgend-

ing rate; if no feedback is received for several round-trpes, the
sender halves its rate.

This is reasonably straightforward, and does not requiratie
delivery of feedback packets, as long as the sender trustseth
ceiver’s reports of the loss event rate. Since acknowleégesrare
so limited—to one per round-trip time—there is no need for ac
knowledgement congestion control. However, a mere loss esite
is ripe for abuse by misbehaving receivers. Thus, CCID 3iregu
instead that the receiver report a setass intervals, the quantities
from which TFRC calculates a loss event rate. Each lossviater
contains a maximal tail of non-dropped, non-marked packéie
Loss Intervals option reports each tail's ECN nonce echowatg
the sender to verify the acknowledgement; see Section 6ofvbe
The receiver need never report more than the nine most reosst
Intervals. Since this bounds acknowledgement state, CCHg-3
knowledgements need not be acknowledged. Loss Intensdsre
bles TCP’s SACK option even more closely than does Ack Vec-
tor, except that unlike SACK, Loss Intervals can group saveis-
tinct losses into a single range representing a congestemt.€T his
feedback information is substantially different from CC28 Ack
Vector, but DCCP supports both mechanisms equally well.s& le
flexible protocol might have difficulties supporting futucenges-
tion control methods as the state of the art evolves.

TFRC also requires that data senders attach to each datetpack
a coarse-grained “timestamp” that increments every questend-
trip time. This timestamp allows the receiver to group Issard
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Figure 7: Send rate for given packet drop rates using TCP, standard Figure 8: Send rate for giverbyte drop rates using TCP, standard
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maximum send rate of 12 kbps including headers.

) o ) out badly to a file transfer. See, for example, the simulatésults
marks that occurred during the same round-trip time intanglsi  jn Figure 7: an application-limited standard TFRC flow reehiits

congestion event. Such a timestamp could obviously bediedas  send rate with increasing loss rates, even though it alwexysssfar
an option, but at the cost of 4 bytes per packet. Instead, CGCID  |ess data than would a large-packet TCP flow.

attaches the timestamp to a 4-bit protocol header field, CC%a Given these sensible application requirements—and thiecapp
served for use by the sender’s congestion control mechaisoh tions’ overall modest sending rates, in both packets anesbyer

a small field requires care to avoid wrapping problems; wesitbn  second—it made sense to design a TFRC variant allowing such
ered this worth it to avoid the overhead. a VolIP call to compete fairly with a large-packet TCP flow. Our

small-packet TFRC variant [15] does precisely this by comspe-

6.3 Future congestion control issues ing for packet size. Figure 7 also shows that the small-pgakRC

Many open issues remain for designing congestion contitatde variant competes fairly for bandwidth with a large-packerflow.

for unreliable timing-critical applications. Examples afrrently- Is small-packet TFRC safe to deploy? The issue is clouded by

problematic application desires include: questions about the bottleneck links. While the bottlenecier’s

e Sending many small packets rather than fewer large ones. forwarding limitation is commonly link capacity in bytes msec-

e Rapid startup after idle periods, such as in interactivernani- ond, in some cases it may be router CPU cycles, which constrai
cation where parties speak in turn. the forwarding rate ippackets per second. Even if link capa(.:lt.y is

e Abrupt changes in application data rate due to codec asifac the bottleneck, the queue at the bottleneck router may htelinm

such as MPEG I-frames vs. B/P-frames. packets or bytes. The former will give both small and largekpa
ets the same drop probability, whereas the latter will pesfeally
drop large packets. Furthermore, in some situations a floghimi
encountemultiple bottlenecks with different characteristics.

If the bottleneck is in packets per second, an adaptation tha
changes only the packet size while sending a constant peafieet
serves no purpose. However, most modern routers can fomiard
imum sized packets at line speed, so it is probably reasenalals-
sume that changing the packet size is worthwhile. But doesad-s
packet TFRC flow in fact see the same loss rate as the lardetpac
TCP flow? If the bottleneck router manages its flow in bytesnth
the small packets are already less likely to be dropped.r€&igu
shows the results of a simulation like Figure 7, but wherén dgte
is dropped with some probability; a packet is dropped if ahigso
bytes are dropped. Hergandard TFRC competes fairly with TCP.
The small-packet variant gets too much bandwidth at higa dsap
rates, and can actually starve TCP flows in extreme circurosta

Internet router behavior is simply not well specified, sor¢he
is no right answer for how congestion control should be desig
What then should DCCP do? The question of appropriate cenges
tion control for small packet flows is still open. A pragmatiew
is that applications will not choose between standard TFRE a
small-packet TFRC, but rather between small-packet TFR{han
congestion control at all. If DCCP only offered standard TFR
with the likelihood of behavior like that in Figure 7, manypdipa-
tion writers would opt for a fixed-rate UDP flow. The small-gat
variant is never worse for the network than this, and sonetiinis
much better; and, importantly, it may work for the applioati

We don't yet understand how far congestion control mechasis
for best-effort traffic can be pushed to deal with these apfibn-
level issues, or what the consequences might be for aggréegdt
fic if congestion control mechanisms are pushed too far. Wle&x
DCCP to evolve as more is learned, and modular CCIDs faigilita
this evolution. As a concrete example, we focus on the sraaket
issue, which casts light on the fundamental difficultiesthm de-
signing a protocol that should work well for a wide range oblap
cations in the face of immense diversity of network constsai

For a fixed packet loss rate, a TCP connection that uses smalle
packets will achieve a proportionally lower sending rateéoyties
per second than one sending larger packets. However, TCP’s
bytestream semantics mean that it can generally assemtftetpa
to be as large as possible. For unreliable applicationsstitry is
rather different. Due to a combination of application-ledvaming
and tight delay constraints, applications such as telephod gam-
ing may sometimes find it necessary to send frequent smalepac
A good adaptive multi-rate CELP speech codec such as AMR [19]
can achieve bitrates from 12 kbps down to less than 5 kbps. At
5.6 kbps, a 20 ms audio frame requires only 14 bytes. Infgeact
media must react to congestion primarily by adapting thekgiac
size, keeping the rate constant; any additional latency woutghin
duce audible artifacts into the playout stream.

So how should such a low-bandwidth, small-packet flow com-
pete with a TCP flow sending 1500-byte packets? We initially
hoped that standard TFRC would suit VoIP applications, but i
practice it competes poorly because it factors packet sizeiis
throughput equation. By default, a TFRC flow using small pack . . .
ets will achieve the same throughput as a TCP flow using the sam 6.4 Misbehaving receivers
small packet size and seeing the same loss rate. But most tifith Internet congestion control is voluntary in the sense that, fif
TCP does not use small packets, so a TFRC VoIP session wéll los any, routers actually enforce congestion control compkarun-
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fortunately, some endpoints, particularly receivers ehacentives
to violate congestion control if that will get them their ddaster.
For example, misbehaving receivers might pretend thatgask-
ets were received or that ECN-marked packets were received u
marked, or even acknowledge data before it arrives [37].'F €&
mantics deter many of these attacks, since missing da@temthe
expectation of reliability and must therefore be handledHgyap-
plication. However, DCCP applications generally tolerates to
some degree, making deliberate receiver misbehavior nilaly.|
The protocol must therefore be designed to allow the deteaif
deliberate misbehavior. In particular, senders must be tabler-
ify that every acknowledged packet was received unmarkedlolT
this the sender provides an unpredictable nonce with eagkepa
the receiver echoes an accumulation of all relevant nonceacdh
acknowledgement [37].

DCCP, like TCP, uses the ECN Nonce for this purpose. The
nonce encodes one bit of unpredictable information thateis d
stroyed by loss or ECN marking [44]. All acknowledgementiaps
contain a one-bit nonce echo set to the exclusive-or of tinee®
of those packets acknowledged as received non-marked. \ldowe
unlike in TCP, calculating and verifying this nonce echosgres
no difficulties. The TCP nonce echo applies to the cumulattle
and thus covers every packet sent in the connection; bueipris-
ence of retransmission and partial retransmission, a T@fesean
never be sure exactly which packets were received, as setian
sions have the same sequence numbers as their originaks, thibu
TCP nonce echo and verification protocol must speciallyrreisso-
nize after losses and marks. None of this is necessary in DCCP
where there are no retransmissions—every packet has itsewn
guence number—and no cumulative ack: options such as Ack Vec
tor explicitly declare the exact packets to which they refer

An endpoint that detects egregious misbehavior on its pastn
part should generally slow down its send rate in responseAgn
gression Penalty” connection reset is also provided, butewem-
mend against its use except for apocalyptic misbehaviderAdl,
if short sequence numbers are used, an attacker may be aiole-to
fuse an endpoint’'s nonce echo through data injection atack

Several other DCCP features present opportunities foiverce
misbehavior. For example, Timestamp and Elapsed Timemptéed
a receiver declare how long it held a packet before acknayihed
it, thus separating network round-trip time from end hosaylerhe
sender can't fully verify this interval, and the receivesmaason to
inflate it, since shorter round-trip times lead to highensfar rates.
Thus far we have addressed such issues in an ad hoc manner.

6.5 Partial checksums and non-congestion loss

Several of our target applications, particularly audio wigigo, not
only tolerate corrupted data, but prefer corruption to .|&%sssing
corrupt data to the application may improve its performaaséar

as the user is concerned [20, 40]. While some link layersnesse
tially never deliver corrupt data, others, such as celltéahnolo-
gies GSM, GPRS, and CDMA2000, often do. Furthermore, link-
layer mechanisms for coping with corruption, such as retras-
sion (ARQ), can introduce delay and rate variability thaplap
cations want even less than corruption [12]. DCCP thereffolre
lows the UDP-Lite protocol [26] in allowing its checksum tover
less than an entire datagram. Specifically, its checksurerage
(CsCov) field allows the sender to restrict the checksum te@ico

The motivation for partial checksums follows that of UDRd,i
but is perhaps more compelling in DCCP because of congestion
control. Wireless link technologies often exhibit an urigieg level
of corruption uncorrelated with congestion, but endpotresat all
loss as indicative of congestion. Various mechanisms haen b
proposed for differentiating types of loss, or for usingdbee-
transmissions to compensate [4]. It isn’t yet clear how smaild
respond to different types of loss—our current congestiamtrol
mechanisms treat corruption as they would treat ECN markivag
is, as congestion indications. However, protocols shouldast al-
low receivers to distinguish between types of loss, allgwircre-
mental deployment of alternative responses as experismzgried.

To enable this, DCCP allows receivers to report corruptem s
arately from congestion, when the corruption is restri¢ctepacket
payload. (Payload corruption may be detected with a sep@RC-
based Payload Checksum option; all packets with corrupddrsa
must be dropped and reported as lost.) This uses the sam@mech
nism as other types of non-network-congestion loss, suctcas/e
buffer drops: the packet is reported as received, and its HOh¢e
is included in the relevant acknowledgement option’s naeaeo,
but a separate Data Dropped option reports the corruption.

6.6 Summary and discussion

DCCP was designed from the outset to supmastiular conges-
tion control. In part, this is because the state of the artilisesl-
vancing, both algorithmically and in the proper responsado
congestion loss. Supporting this evolution in a transport protocol
avoids the need to rewrite thousands of applications wignyeup-
date to congestion control semantics. Furthermore, tiemsisve
applications can have widely varying needs, as illustratesmall-
packet TFRC. It seems unlikely that any one algorithm wiit su
them all, so allowing applications to choose the dynamiey fire-
fer is essential for success.

This choice has consequences, though. Congestion colgol a
rithms form a control loop; the dynamics of the algorithm dinel
nature of the feedback information are tightly coupled. §lselect-
ing a specific algorithm also dictates theknowl edgement format.

The need to be robust in the face of attack also weighs heawily
the design of a modern protocol. Issues such as denialroieeaat-
tacks, misbehaving receivers, and sequence number yediffitct
many small details. Robustness is actually very hard toigbt+
only formal modeling revealed some subtle flaws in our eade
signs. To expect every application designer to do such rivagglid
asking too much; when this work is done for a transport prtac
whole range of different applications can then reap thefitsne

7 CONCLUSIONS

It might reasonably be assumed that designing an unrel&tde
native to TCP would be a rather simple process; indeed we made
this assumption ourselves. However, TCP’s congestiorralistso
tightly coupled to its reliable semantics that few TCP medsias
are directly applicable without substantial change.

TCP manages such a beautifully integrated design for twamai
reasons. First, the bytestream abstraction is very sinvgith the
exception of the urgent pointer, TCP does not need to condiele
tailed application semantics. Second, TCP is able to hegmsiff
its own reliability; for example, the cumulative acknowdgeainent
in TCP serves many purposes, including reliability, liveseflow

just the DCCP header, or both the DCCP header and some num-control, and congestion control. An unreliable protocd haither

ber of bytes from the payload. A restricted checksum coweiag
dicates to underlying link layers that corrupt datagramesukhbe
forwarded on rather than dropped or retransmitted, as Isnipe
corruption takes place in the unprotected area.

11

luxury, and there does not appear to be a simple unifying arech

nism equivalent to the cumulative acknowledgement.
Nevertheless, it is possible to design a relatively simpteg

col that robustly manages congestion-controlled conoestwith-



out reliability. Explicit synchronization and new acknadbement
formats even have some advantages over their TCP equisalent
Modular congestion control mechanisms make it possiblalépt
congestion control within a fixed protocol framework as ratw
and application constraints change. Robustness agaiack & ad-
dressed in a more thorough way.

It is too early to tell whether DCCP will succeed in wide de-
ployment. Only recently have implementations started fmeap (in
Linux and FreeBSD); NATs and firewalls do not yet understand i
no application yet uses DCCP as its primary transport. Beeiéu
was designed for applications, and with feedback from apptn
designers, we hope and believe it will be useful anyway. Rega
less, our design experience cast well-known issues obiktisand
protocol design in what seemed to us a valuable new light.

Although it may not seem like it, we have deliberately avdide
describing all the details of DCCP. The interested readesfesred
to the specifications [14, 18, 24].
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