
Ideas for a new Erlang

Sven-Olof Nyström

February 17, 2009

Abstract

This paper presents some thoughts and ideas on the future develop-

ment of Erlang. Among the topics are: an alternative to Erlang’s se-

lective receive, a simple language mechanism to allow function in-lining

across module boundaries, a new mechanism for introducing local vari-

ables with a more cleanly defined semantics, and a mini-language to allow

the efficient implementation of low-level algorithms.

1 Introduction

Erlang is an interesting example of a concurrent, high-level programming lan-
guage. It is very instructive to consider how easy it is to write complex con-
current applications in Erlang compared to concurrent programming languages
that are based on shared memory, locks, and synchronization. On the other
hand, it’s far from clear that all features of Erlang are necessarily the ideal
ones. Saying “this is a satisfactory solution and we see no reason to try to im-
prove it further” might make sense to some, but for those of us who don’t think
that the history of programming languages ended with the current version of
Erlang, I have assembled a list of possible improvements of Erlang. My inten-
tion is that these changes would preserve the current strengths of Erlang, would
not affect the basic organization of Erlang applications, but make the language
simpler and more powerful.

Erlang might at first seem simple, but as anyone who has studied the lan-
guage in detail knows, it is actually quite complicated. Consider, for example,
selective receive, guards which superficially resembles ordinary expressions but
are more restricted and have different execution rules, the rules for how new
bindings may be introduced in a context, or the preprocessor and the need for
include files, and how records are defined.

Why would one want to simplify Erlang? Complexity obviously has an
immediate cost in learning and using the language. In the long run, just like
a simple program is often easier to modify and extend than an unnecessarily
complicated one, simplifications may allow the language to be extended, making
it more powerful. Conversely, new ways of doing things might allow us to get
rid of old machinery, thus again simplifying the language.

My proposals are largely independent; most of the time, you can have one
without the other, but I think the best result would be obtained if they were
combined.

An earlier version of this paper was presented (and discussed) on the Erlang
Questions mailing list, June and July 2008.

1

• In Section 2, a few notes on implementation and backward compatibility.

• Section 3 looks at Erlang’s selective receive and proposes an alternative.

• In Section 4, a simple language mechanism to allow function in-lining
across module boundaries. This would also allow a better record concept.

• Section 5 proposes a binding mechanism very similar to Erlang’s current
one, but with a more cleanly defined semantics.

• Section 6 describes a mini-language to allow the efficient implementation
of low-level algorithms.

• Finally, in Section 7 I discuss the macro feature of Common Lisp.

2 Implementation and backward compatibility

New versions of a programming language are normally backward compatible at
the source code level, so that old code can be run on the new system. If we
want to liberate ourselves from the syntax of old Erlang, we need to consider
other options.

An alternative strategy would be to base implementation on existing Erlang
run-time system, and require that

• processes executing old code can spawn processes executing new code, and
vice versa, and

• processes executing old and new code can communicate by sending mes-
sages.

These requirements would of course imply that Erlang’s data structures remain
largely unchanged.

Obviously, one would not want to write a new run-time system from scratch.
Allowing old and new Erlang processes to interact makes it possible to incre-
mentally rewrite an Erlang application to take advantage of the new language.
This strategy would of course impose some limitations on the new language, but
as we shall see, there are still many new options to explore.

3 Channels

The most interesting features of Erlang are of course the primitives for concur-
rency; process creation and process communication. Recently, there have been
many attempts to implement Erlang-like process communication in other lan-
guages (see for example [5, 4]). This makes it even more worthwhile to take a
second look at Erlang’s concurrency model to determine which features are the
important ones.

2

3.1 Selective receive

An Erlang process receives messages through the receive expression. The
incoming messages are stored in a sequential buffer (normally referred to as a
mailbox) which is then searched sequentially.

For example, an expression

receive

{hello,Y} when Y < 100 -> ...

{bye, Z} -> ...

end

will accept messages which are either of the form {hello,...} (where the second
element of the tuple is less than 100) or {bye, ...}. If the message {hello,
42} is sent to the process the variable Y will be bound to the integer 42 and the
corresponding branch will be executed. If no matching message is found, the
process will suspend until a message arrives.

The tricky part is that receive may need to look at many messages before
it finds one that matches. It is however considered bad style to leave many
messages in the mailbox, as the cost of searching the mailbox increases with the
number of messages stored in it. One often repeated recommendation is to give
receive expressions an extra clause that will match any message (which is then
removed without processing) [1, Chapter 5].1

It is strange that Erlang has a feature that is on one hand so general and
powerful, but yet programmers are not supposed take advantage of it! Perhaps
selective receive could be replaced with something simpler?

Other programming languages based on asynchronous message passing [3, 6]
have chosen a much simpler mechanism where the first message in the queue is
always selected.

There are a few obvious uses for selective receive: The incoming messages
that match a particular pattern form a “virtual channel”. When a process
sends a request to another process and expects a response, it has to distinguish
the response from other incoming messages. The standard solution is to use
selective receive. Selective receive can also be used in other situations when
wants to distinguish one class of messages from another, for example if one
wants to recognize high-priority messages.

Consider as an example of the first use a rather typical Erlang program,
loosely following [1, Chapter 5]. A counter process maintains the state of a
counter. It can react to the messages inc, value, and stop.

The inc message causes the counter process to increment its internal counter
by one, the value message is a request for the current value of the counter, and
the stop message causes the process to halt.

The process is implemented by the function below.

counter(Val) ->

receive

1I have been told at more than one occasion that an overfull mailbox may cause its process
to crash. Perhaps this was true for early Erlang implementations, but when I tested I found
no obvious limitations (other than those imposed on the whole system).

3

inc ->

counter(Val+1);

{value,From} ->

From ! {self(),Val},

counter(Val);

stop ->

true

end.

The code for another process using the counter:

...

Counter ! inc,

Counter ! inc, % increment the counter twice

Counter ! {self(), value}, % ask the counter about its

% current value

receive

{Counter, Value} -> % match messages that are tuples

% containing the counter as first

% argument

true

end,

% the variable Value is now bound to the value of the counter

To implement the response of the value message in Erlang a simple program-
ming idiom is used. The exchange of messages is described below, where the
process A is the one asking for information and the process B is the responding
process, e.g., the counter process in the example.

1. The process A sends the request to process B. In the request the process
identifier of A is included.

2. The receiver (process B) recognizes the message, extracts the process iden-
tifier and computes the answer.

3. Process B sends the answer to to A. To make sure that A can recognize
the answer, the process identifier of B is included in the answer (obtained
by calling self()).

4. Process A recognizes the answer by comparing the included process iden-
tifier with B’s process identifier.

Selective receive also allows the mailbox to be used as a sequential storage area.
Value are added to the mailbox by sending them as messages to the process.
Erlang’s receive can then be used to scan the mailbox for values matching a
particular pattern. There are a number of problems with this approach. Er-
lang’s implementation of mailboxes implies a sequential search which will be too
expensive when the number of messages are large. Another limitation is that
there is no direct way to determine the number of messages in a mailbox. In
my opinion, a better solution is to use an explicit data structure (for example,
a list or a balanced binary search tree).

4

3.2 Suggestion: Allow channels as first class objects

Selective receive is a rather unattractive programming language construct with
complex semantics. My proposal on how to manage without selective receive is
simply to allow channels as first-class objects.

As before, let each process have a “standard” channel for requests from other
processes, but allow processes to create additional channels.

Below is a tentative list of primitives (i.e., BIFs) that will allow the use of
first-class channels (in particular, their names are very tentative).

1. current()

return the standard channel of current process

2. new_channel()

create a new channel

3. ne_receive(Ch)

read message from channel Ch (suspends if message not present). In the
example below, I assume that ne_receive() reads from the standard
channel when called with no arguments.

4. Ch ! M

send message M on channel Ch

Some functions could be given shorter names; my choice of names is intended
to help avoid confusion between old and new Erlang. There should also be
functions that allow a receive with timeout.

Using the new primitives, the “counter-example” could be implemented as
follows:

counter(Val) ->

case ne_receive() of

inc ->

counter(Val+1);

{value,From} ->

From ! Val,

counter(Val);

stop ->

true

end.

and the the code that acesses the counter

...

Counter ! inc,

Counter ! inc,

Q = new_channel(), % create a new channel for this question

Counter ! {value, Q},

Value = ne_receive(Q),

5

3.3 Semantics of channels

Channels will be easier to understand and implement if we impose one rule:
only the creator of a channel may receive messages from it.

My first reason for imposing this limitation was that it seemed intuitive: a
channel represents a service provided by its creator, and thus only the creator
would know how to perform the service and know what to do with arriving
messages. However, a moment’s reflection reveals an important practical ad-
vantage. The rule implies that a channel can be stored with the process that
created it. If the process that created a channel dies, the channel can be safely
removed as no other process can access its contents. If the creating process no
longer refers to the channel, it can be removed by the garbage collector.

One very straight-forward way to implement channels is to use Erlang’s mail-
boxes, without modification. Each message is represented as a tuple consisting
of a channel id and contents. At the receiving end, selective receive picks out
the first message sent on a virtual channel using pattern matching. We assume
that the standard channel has number 0.

new() -> {channel, self(), make_ref()}.

current -> {channel, self(), 0}.

ne_send({channel, P, Id}, Message) -> P ! {Id, Message}.

ne_receive({channel, P, Id}) when P = self() ->

receive

{Id, Message} -> Message

end.

This implementation will of course give unsatisfactory performance when a pro-
cess creates many channels (also, channels will not be garbage collected). A
better approach is to have the process allocate a separate memory area for each
channel, but that requires modifications to the run-time system.

3.4 Receiving messages on many channels

An earlier version of this paper mentioned the need for a receive expression
that could wait for input on more than one channel (i.e., a multi-receive).
As Richard O’Keefe pointed out, the design of a multi-receive is not straight-
forward. Should it take a list of channels as argument? Should there also be a
provision for timeout? When a multi-receive returns a message, should it also
give information about on which channel the message arrived?

Beside these considerations, I have also started to question the need for
multi-receive. Suppose a process needs to wait for input on two channels. If
the two channels represent the same service, would it not be a better design to
use one channel instead of two? Conversely, if the channels represent different
services, would it not be better to use two processes?

3.5 Guards

The complex selective receive primitive of old Erlang has forced the Erlang
designers to use a programming construct called guards, similar to expressions

6

but with its own evaluation rules and semantics. That function calls are not
allowed in a guard is inconvenient as soon as one wants to test a property that
is defined by a function.

For example, to test if 42 is an element of the list L, one must write a case
expression

case list:member(42, L) of

true -> ...;

false -> ...

end

While the reasons for requiring guards in receive-expressions are quite easy
to see (one wants to avoid code that interacts with the mailbox or has other
side effects), it is harder to see why the same restriction is enforced in other
programming constructs, for example if- and case-expressions.

It has sometimes been argued that limiting what can be put in a guard could
potentially allow a compiler to make more optimizations, as code evaluating
guard tests could be moved around more easily when they are known to contain
no side-effects. Note that

1. no Erlang compiler takes advantage of such optimizations today,

2. the potential gains are small, and

3. if it was deemed worthwhile, a compiler could check for simple guards and
optimize such code, even if the language allowed arbitrary guards.

3.6 Expressiveness of selective receive vs. channels

We have seen how a set of channels can be simulated by selective receive. In
the opposite direction, it is of course always possible to represent a mailbox by
an explicit data structure (if the mailbox stores a large number of messages this
could even lead to a more efficient solution).

The choice between selective receive is not a matter of efficiency or even
of expressiveness. My argument for the solution with channels is that it uses
primitives that are easier to understand and reason about, and (I expect) will
lead to better concurrent Erlang programs.

4 Linked modules1

Erlang’s record facility is rather unusual (at least in the world of functional
programming languages). A record definition is a directive to the pre-processor,
providing definitions on how to expand code that creates, updates, or pattern
matches records. Since record definitions are often shared between modules,
they are typically put in include files, so that they can be included in each file
where they are used. Records are represented as tuples, so all operations on
records are translated into code that operate on tuples.

The use of include files and a preprocessor has some undesirable conse-
quences. For example. the compiler is unaware of record definitions and and a

1Richard O’Keefe tells me that he expressed similar ideas in a paper titled ”Delenda est
preprocessor”.

7

compile-time analysis isn’t possible (for finding errors or performing optimiza-
tions). There is also no easy way to detect at compile-time if different modules
use conflicting record definitions.

To me, the obvious alternative is to expand a record definition into a set of
function definitions, similar to defstruct in Common Lisp [11, Chapter 8]. For
example, a definition

(defstruct person

name

age)

creates a type person, and generates a function for creating values of the type
person, a predicate that recognizes values of the type person and functions
that access and update the fields.

In a corresponding Erlang solution, we would also need a way to specfy
the expansion of pattern matching of records into appropriate function calls.
(Richard O’Keefe’s abstract pattern proposal [9] could also be implemented in
this way.)

One problem with this solution is that record operations would be much
more expensive than they are today, as every record operation would entail
the overhead of a function call. (This is probably why records are implemented
using the pre-processor.) If a record is defined in the same module, the compiler
could simply inline the function call, i.e., replace the call with the definition of
the function. However, if a record definition is to be shared between many
modules, all record operations would have to be implemented as calls between
modules. Now, in Erlang such calls are even more expensive than ordinary calls,
because of Erlang’s hot code update. For the same reason, they can’t be in-lined
(however, see [7, 8]).

4.1 Proposal: linked modules

My proposal is simple: Introduce a declaration

-linked_module(m).

indicating that the code of the current module depends on the module m. The
implication of a linked_module declaration should be that when a module A

links to a module B, the compiler should be free to assume that the module B

remains the same as long as long as module A stays loaded. This should allow
interprocedural optimizations such as inlining.

4.2 Implementation

Now, there has to be some form of machinery to make sure that the promise is
not broken when code is updated. One solution is to record the link information
in the run-time system and require that, as in the example, module A is reloaded
whenever B is reloaded. Another approach would be to compile two versions
of module A, one that assumes that module B is the current one, and one that
does not. If module B changes, the run-time changes A to the version that
makes no assumptions on B.

At this time it is perhaps a good idea to consider what happens today when
an include file is changed. I haven’t found any description in the literature of

8

how this is handled in the development of large-scale telephony systems, but a
moment’s reflection leads to some educated guesses. Clearly, the run-time has no
way of knowing which Erlang files depend on the include file. Besides handling
the dependencies manually, this information could be encoded in make-files (or
similar) which would then cause the relevant source files to be recompiled. It
would then be up to the development team to make sure that the new version
of the module is re-loaded.

4.3 Summary

With a linked_module declaration, function calls from module A to module
B can be implemented as efficiently as function calls internal to a module. If
one module defines a record type which is used by many others, and efficiency
is a concern, we can avoid the function call overhead. The declaration would
also be useful in other cases where we want to avoid the overhead of function
calls between modules. One very striking case is the use of functions to define
constants, for example (in Erlang’s standard library):

pi() -> 3.1415926535897932.

With inlining of function calls, calling this function is as efficient as writing the
constant directly.

A limitation of my proposal is that it would not make sense to include a link
declaration whenever a module referred to another—in an application that did,
a hot code upgrade would require reloading the whole program. Instead, it is
up to the developers to determine the cases where one module relies heavily on
definitions of another, and link those modules.

5 Better treatment of bindings

Erlang has chosen an unconventional model for introducing local bindings, for
example, this code

X = 42,

Y = X+X,

Y*Y.

contains two bindings (not assignments). If we compare with the equivalent
code in, say, the functional programming language SML

let val x = 42

val y = x+x

in

y*y

end

we find that the SML code is larger and requires four keywords where Erlang
requires none. Other functional programming languages use similar constructs.
In my opinion, the greatest advantage of Erlang’s approach is when code that
introduces bindings needs to be mixed with conditionals, say

9

case X of

1 -> Y = 2, Z = [1,2,3];

2 -> Y = 3, Z = [5,6,7]

end

...

or

X = ...

case X of ...

1 -> Y = X*X, ...

...

end

The corresponding code with explicit let expressions becomes more involved and
harder to read:

let {Y, Z} =

case X of

1 -> {2, [1,2,3]};

2 -> {3, [5,6,7]}

end

in

...

end

let X = ...

in

case X of ...

1 ->

let Y = X*X

in

...

end

...

end

end

The two solutions using explicit let are far less attractive than the ones using
Erlang-style binding. The ability to export bindings from branches in a condi-
tional is convenient, but the rules that govern exactly which code is allowed are
complex. One irregularity is that bindings introduced in an anonymous function
are not visible outside the function.

My proposal gives a binding mechanism that from a practical point of view is
very similar to the the current one, but with a simple type system that specifies
exactly which combinations of bindings. One guiding principle in my system is:
An expression may return a value or export bindings, but may not do both.

In the following, I give a simple inductively defined subset of an Erlang-like
language and give a set of inference rules that specify which expressions are
legal.

10

Given a set of variables v ∈ Var, the set of expressions is defined inductively:

e ::= v

| v = e1

| e1, e2

| e0(e1, . . . , en)
| fun(v1, . . . , vn) → e0

| if e1 then e2 else e3

A type is either

1. T – represents the type of an expression that returns a value

2. d(S) – where S ⊆ Var; an expression exporting bindings to the variables
in S.

When an expression e evaluated in an environment where the variables of S are
defined has the type τ , write

S |= e : τ

We can now define the inference rules.

v ∈ S

S |= v : T
(1)

S |= e1 : T, v 6∈ S

S |= v = e1 : d(S ∪ {v})
(2)

S |= e1 : T S |= e2 : τ

S |= e1, e2 : τ
(3a)

S1 |= e1 : d(S2) S2 |= e2 : τ

S1 |= e1, e2 : τ
(3b)

S |= ei : T, forall i ≤ n

S |= e0(e1, . . . , en) : T
(4)

S ∪ {v1 → T, . . . vn → T} |= e0 : T

S |= fun(v1, . . . , vn) → e0 : T
(5)

S |= e1 : T, S |= e2 : τ, S |= e3 : τ

S |= if e1 then e2 else e3 : τ
(6)

Rule 1. When the expression is a variable it must be defined in the current
environment. A variable is always bound to a term.

Rule 2. An expression that binds a variable. The variable must not be
present in the current environment. The resulting environment contains a bind-
ing of the variable. If we want to permit binding expressions when the left-hand
side variable is already bound (as things work in Erlang today) the condition
v 6∈ S should be removed. Pattern match expressions can be handled similarly.

Rule 3. Evaluation of a pair of expressions (e1, e2). If e1 evaluates to a term
(3a) the value is discarded and e2 is evaluated. If e1 evaluates to a binding
environment, e2 is evaluated in that environment (3b).

11

Rule 4. In a function call, the expression giving the function and all param-
eters must all return terms. The result of a function call is also a term.

Rule 5. The body of an anonymous function must evaluate to a term (this
rule could be relaxed). An anonymous function is a term.

Rule 6. The condition of an if-expression must always evaluate to a term.
The then- and else-branches of an if may return a value or export bindings, but
they must agree and either both return a term, or return binding environments
with the same domains.

One might consider a slightly weaker version of Rule 6 in which one branch
may introduce a binding that is not defined in the other branch:

S |= e1 : T, S |= e2 : d(S2), S |= e3 : d(S3)

S |= if e1 then e2 else e3 : d(S2 ∩ S3)
(5′)

(Only bindings present in both branches will be returned.)
Given rules 1 through 5 we can deduce, for example, that the expression

X = 42, if X>X*X then Y=X-1 else Y = X+1

will have the type d({X,Y }) when evaluated in the empty environment. The
expression

X = 42, (io:format("hello"), Y = 99)

will have the same type. However,

if X>0 then Y=X-1 else 42

cannot be typed.
The whole point of this exercise was to re-formulate in simple mathematical

language what currently is only explained in complex prose.
We will rule out some code that is currently legal, but it should be straight-

forward to rewrite such code. For example, an expression may either produce
bindings or a result, but may never do both. In an expression (X = 42, X*X)

the value of X times X is returned, the binding of X is not exported. Similarly,
the body of a fun may contain bindings, but they may not be exported.

5.1 Summary

A mechanism for introducing local bindings, similar to the current one, but with
a more cleanly defined semantics.

6 A mini language

This section was inspired by a recent white paper [10], but similar ideas have
been explored in the high-performance computing community.

The idea is to look at a very restricted imperative language, say

• bounds of loops must be constant or affine (a linear combination of loop
indexes)

• conditions of if-statements must be affine

12

• array indexes must be affine

Here, any value that is unchanged within the loop is considered to be constant.
In the white paper, it was shown how a compiler could map code of this

type (implementing a video encoder) to the CELL architecture [2]. (The cell
architecture is a rather attractive, low cost design intended for computer games
containing 8 vector processors (SPE’s) connected in a network).

Note that in the context of Erlang, code written in this restricted language
satisfies many useful properties. The code is guaranteed to terminate, further,
we can actually estimate the execution time with reasonable accuracy (as a
function of the parameters). This in turn means that mini-language code could
be set up to execute directly in an Erlang process, with no adverse effects on
scheduling. Another interesting point is that one can set strong bounds for
the amount of memory that will be allocated by the mini-language code. This
should simplify the interaction with the GC. It is acceptable if the code uses
side-effects internally, as long as they are not visible to the surrounding code. As
long as the code is limited in its data types it is possible to determine through
analysis that this is the case.

A mini-language code fragment would input and output Erlang values of
those types that it can conveniently handle; integers (of specified range) and
floating point numbers, tuples of integers and floats, and binaries. Compile-
time analysis would guarantee that it does not modify its input.

An initial goal might be to develop a mini-language compiler that produces
code with performance comparable to C, but ultimately one would like the mini-
language compiler to take advantage of inexpensive vector processors which no
doubt will be (even more) common in the future and vectorize the code. (There
are of course other types of parallel computers, but they all benefit from source
code that is easy to analyze and transform.)

There are some algorithms that are often needed in typical Erlang applica-
tions that are hard to implement with maximum efficiency in Erlang today; for
example data compression, encryption and signal processing. These should be
a good fit for the mini-language.

Moreover, the combination of a low-level vectorizable language and a con-
current language coordinating computations on a higher level would be ideal for
machines that combine different types of parallelism. Erlang could be used as
a coordination language as Erlang processes offer coarse-grain parallelism while
the mini-language code would take full advantage of vector processors.

6.1 Design of the mini language

Regardless of the syntactic form, the mini-language will have to satisfy the
following:

• Loops must be bounded (this implies that the mini-language would not
be Turing complete).

• All data structures must have static type information.

• Side-effects must not be visible outside the mini-language code.

• It should be possible to determine the running time of the mini language
code by static analysis. If a computation is determined to “take too long”

13

it either needs to be run on a separate process (to guarantee real-time
properties) or divided into sub-computations.

In this example I chose a C-like syntax because I expect most readers to be
familiar with this. It is of course very reasonable to consider other notations.

dot_product(T1, T2) ->

<mini-language>

tuple(int32) T1, T2; // T1 and T2 should be tuples of integers

// in the range -2^31 .. 2^31-1

int32 p = 0;

for(int32 i=0; i++; i< T1.length) {

p =+ T1[i] * T2[i];

}

return p;

</mini-language>.

Note that the type declarations of the input data cannot be trusted blindly.
The mini-language code must check that T1 and T2 are indeed tuples, and
that each element is indeed a 32-bit integer. The type checking might be done
incrementally, as the elements of the tuples are accessed—again, the restricted
form will simplify analysis and allow the compiler to ensure that type checking
is only done once, and only on data that will be accessed by the mini-language
code. The for-loop is bounded by the size of the first tuple. Since the size of a
tuple does not change, this value is constant in the context of the loop. If the
tuple T2 is smaller than T1, the mini-language code should generate an error.

The mini-language may be imperative in style or functional, but note that
the presence of side-effects will actually complicate analysis, transformation,
and parallelization and make the language harder to implement efficiently. It
may be worthwhile to take a look at SISAL, a functional language designed for
parallel computers [13]. The notation of list comprehensions might also serve
as a starting point.

One of the challenges in the design of the mini language is keeping it simple,
in order to allow precise reasoning about dependencies and execution times. It
should integrate well with the Erlang code, and (of course) be appropriate for
expressing a wide range of low-level algorithms.

Finally, a quote from the Erlang FAQ, and keep in mind that this is precisely
the class of problems the mini-language would target.

“The most common class of ’less suitable’ problems [for Erlang] is
characterised by performance being a prime requirement and constant-
factors having a large effect on performance. Typical examples are
image processing, signal processing, sorting large volumes of data
and low-level protocol termination.”

7 Lisp-style Macros

Now, Erlang has already a front end that implements Lisp style macros [14] so
I’ll be brief.

Lisp’s macros [12, Chapter 7] offer a way to extend the syntax of the lan-
guage. Suppose that you find that the current control structures are insufficient,

14

or you want a new way to write expressions or even a new way of defining things.
In all cases, Lisp style macros would allow you to do it. In Erlang, and in most
other programming languages you would have to modify the implementation to
extend the language in this manner.

One more example: It has been noticed for a long time that it would be
very useful to have a variation of Erlang’s if-expressions that allowed arbitrary
expressions as guards (’cond’ has been reserved as a keyword for this purpose).
Now, in a language with Lisp-style macros it would be a trivial exercise to define
a macro with this semantics.

A final example: Using a parser generator such as Yecc (Erlang’s Yacc) is
probably the most efficient way to build a parser. Still, it’s a rather unattractive
system with its own, crude, syntax. A yecc file is first translated to Erlang code
which then has to be compiled, thus complicating the build process.

In the (incomplete) example below, I show what a Yacc-style grammar would
look like in Common Lisp. There are two macros to define the grammar;
defparser defines a parser with start symbol, terminals and non-terminals,
and def-nt defines the productions of a non-terminal. (The LR-tables can
either set up at compile-time, or when the parser is first run.)

(defparser expression-parser

:start-symbol expression

:terminals (int id + - * / |(| |)|)

:non-terminals (expression term factor))

(def-nt expression

((expression + term) (+ $1 $3))

((expression - term) (- $1 $3))

((term) $1))

Now, it should be said that writing Common Lisp macros is harder than defining
ordinary function. It is still very worthwhile for libraries and other code that is
intended to be re-used many times.

One issue that needs to be resolved is the use of a macro that is defined in
another module. It is straight-forward to apply the rules for macro-expansion
as long as the other module has been loaded before the current one. However,
what happens is the module containing the macro definition is reloaded? One
solution is to require the two modules to be linked, as discussed in Section 4.

Must a language with Lisp-style macros have a Lisp-like syntax? It should
not be necessary; any language with a well-defined internal representation could
in principle be equipped with macros. I don’t know of any language that com-
bines Lisp-style macros with a syntax that isn’t Lisp-like, but it would be inter-
esting to see how it would work out in practice.

Acknowledgments

I would like to thank Per Gustafsson and Tobias Lindahl for comments on earlier
versions of this paper.

15

References

[1] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams.
Concurrent Programming in Erlang. Prentice-Hall, second edition, 1996.

[2] Nicholas Blachford. Cell architecture explained version 2, 2005.
http://www.blachford.info/computer/Cell/Cell0 v2.html.

[3] Jack B. Dennis. First version of a data flow procedure language.
Technical Report 61, Laboratory for Computer Science, Massachusetts
Institute of Technology, May 1975. First published in B. Robinet (ed),
Programming Symposium: Proceedings Colloque sur la Programmation,
Springer LNCS 19, April 1974., 362-376.

[4] erlang-in-lisp manual, August 2008.
http://common-lisp.net/project/erlang-in-lisp/.

[5] Klaus Harbo. cl-muproc: Erlang-inspired multiprocessing in Common
Lisp. In Edi Weitz and Arthur Lemmens, editors, European Common
Lisp Meeting 2006, 2006.

[6] Gilles Kahn. The semantics of a simple language for parallel
programming. In Proceedings of IFIP Congress, pages 471–475.
North-Holland, 1974.

[7] Thomas Lindgren. Module merging: aggressive optimization and code
replacement in highly available systems. UPMAIL Technical Report 154,
Computing Science Department, Uppsala University, March 1998.

[8] Thomas Lindgren. Cross-module optimizations. In Proceedings of the
seventh Erlang user conference, September 2001.

[9] Richard O’Keefe. Abstract patterns for Erlang. In Fourth International
Erlang/OTP User Conference, September 1998.

[10] Parallelization using polyhedral analysis. CoSy White Paper, March 2008.
http://www.ace.nl/compiler/paper-polyhedral.pdf.

[11] Kent Pitman, editor. The Common Lisp Hyperspec. LispWorks, 2005.
http://www.lispworks.com/documentation/common-lisp.html.

[12] Peter Seibel. Practical Common Lisp. Apress, 2005.
http://gigamonkeys.com/.

[13] A tutorial introduction to Sisal. http://www2.cmp.uea.ac.uk/˜jrwg/Sisal/.

[14] Robert Virding. Lisp Flavoured Erlang, March 2008. The Erlang
Questions mailing list.

16

