What every compiler writer should know about
programimers
or
“Optimization” based on undefined behaviour
hurts performance

M. Anton Ertl*

TU Wien

Abstract. In recent years C compiler writers have taken the attitude
that tested and working production (i.e., conforming according to the
C standard) C programs are buggy if they contain undefined behaviour,
and they feel free to compile these programs (except benchmarks) in a
way that they no longer work. The justification for this attitude is that it
allows C compilers to optimize better. But while these “optimizations”
provide a factor 1.017 speedup with Clang-3.1 on SPECint 2006, for
non-benchmarks it also has a cost: if we go by the wishes of the compiler
maintainers, we have to “fix” our working, conforming C programs; this
requires a substantial effort, and can result in bigger and slower code.
The effort could otherwise be invested in source-level optimizations by
programmers, which can have a much bigger effect (e.g., a factor > 2.7
for Jon Bentley’s traveling salesman program). Therefore, optimizations
that assume that undefined behaviour does not exist are a bad idea
not just for security, but also for the performance of non-benchmark
programs.

1 Introduction

Compiler writers are sometimes surprisingly clueless about programming. For
example, the first specification for Fortran states: “no special provisions have
been included in the FORTRAN system for locating errors in formulas” and
“FORTRAN should virtually eliminate coding and debugging”, and this ap-
proach to error checking made it into the finished product; there were also no
programmer-defined functions in the original design, but that was fixed before
release [Bac81].

More recently, people have meant one of several different programming lan-
guages when they wrote about C; for clarity, we will use different names for these
programming languages:

* Correspondence Address: Institut fiir Computersprachen, Technische Univer-
sitdt Wien, Argentinierstrafie 8, A-1040 Wien, Austria; anton@mips.complang.
tuwien.ac.at

C* A language (or family of languages) where language constructs correspond
directly to things that the hardware does. E.g., * corresponds to what a
hardware multiply instruction does. In terms of the C standard, conforming
programs are written in C*.

“C” The subset of C* that excludes all undefined behaviour according to the
C standard. In C-standard terms, programs written in “C” are strictly con-
forming programs.

Cpench A subset of C* and (slight) superset of “C” that includes the bench-
marks considered relevant by the compiler maintainers (e.g., the SPEC CPU
benchmarks).

We look at the differences between C* and “C” in Section 2.

Production programmers typically think in C* when programming, and as a
result, they program in C*, so most production code is not written in “C” (see
Section 2). The cluelessness of many recent C compiler maintainers is that they
officially support only “C” and officially feel free to compile any source code that
performs undefined behaviour into arbitrary machine code,' even programs that
were tested and worked as intended with earlier versions of the same compiler.
As John Regehr puts it: “A sufficiently advanced compiler is indistinguishable
from an adversary.”? Inofficially, these compilers support Cy,qpep, but that is of
little benefit to other programs.

Unlike the authors of the first Fortran compiler, the current C compiler main-
tainers stubbornly insist on their view.? The reason for this seems to be that
they evaluate their work through benchmark results of a certain set of bench-
marks; by only having to compile these benchmark programs as intended, they
want to give their optimizer freedom to produce better benchmark results.

Better benchmark numbers alone are a weak justification for not compiling
production programs as intended, so the C compiler maintainers also claim that
these “optimizations” give speedups for other programs. However, that would
require programmers to convert their C* programs to “C” first, a process which
can produce worse code (Section 3), and more importantly, requires an effort that
would be much more effective if directed at source-level optimizations. We look at
the performance benefits of source-level optimizations in Section 4 and compare
it to the differences seen from “optimizations” based on undefined behaviour.

Section 5 discusses what compiler writers, standards committees, program-
mers, and researchers can and should do about these issues.

2 The difference between C* and “C”

Both languages have the same syntax and the same static semantics; the differ-
ence is in the run-time semantics.

! The classical intimidation was “may format your hard drive”, but recently “make
demons fly out of your nose” (in short: nasal demons) seems to be more popular.

2 http://blog.regehr.org/archives/970

3 http://blog.11lvm.org/2011/05/what-every-c-programmer-should-know.html

http://blog.regehr.org/archives/970
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html

C* maps language elements to corresponding hardware features, and is con-
sistent about this, at least on the platform. The actual behaviour at run-time
may be different between platforms, lead to an exception, or worse, overwriting
of an unrelated data structure (and it is thinkable, although very improbable,
that this eventually results in a formatted hard disk on some platforms), but
can always be explained by a sequence of hardware steps corresponding to the
source program.

“C” is a subset of C* that tries to specify what is portable between different
hardware platforms (including some that have died out) and between different C
compilers. Therefore it specifies that the behaviour of many language elements
under some circumstances is undefined, implementation-defined?, or similar. The
original idea was that C compilers implement C*, and that undefined behaviour
gives them wiggle room to choose an efficient hardware instruction; e.g., for <<
use the hardware’s shift instruction, and differences between different architec-
tures for some parameters result in not defining the behaviour in these cases. But
in recent years, compiler maintainers have gone beyond that and “optimized”
programs based on the assumption that undefined behaviour does not happen,
in ways that do not correspond to any direct mapping from language element to
the actual hardware; e.g., they “optimize” a bounded loop into into an infinite
loop.

There are 203 undefined behaviours listed in appendix J of the C11 standard
(up from 191 in C99). And these are not just obscure corner cases that do not
occur in real programs, on the contrary, it is likely that most, if not all, produc-
tion programs exhibit undefined behaviour; even in GCC and LLVM itself (i.e.,
the pinnacles of the church of “C”), undefined behaviour has been found even
when just compiling an empty C or C++ program with optimizations turned
off.> Standards conformance was a requirement to be considered for inclusion
in SPEC CPU 2006, yet 6 out of 9 C programs perform C99-undefined integer
operations [DLRA12], and these are not the only undefined behaviours around
by far.

2.1 Optimization* and “Optimization”

An optimization is a program transformation that preserves the observable be-
haviour of the program and hopefully results in a program that consumes fewer
resources (run-time and code size are typical metrics).

There are a large number of effective optimizations that can be used on
C* programs (called optimizations* in the following), e.g., strength reduction,
inlining, or register allocation. A simple example would be to optimize a multi-
plication by 5 into a lea instruction on the AMDG64 architecture.

GCC and LLVM have been adding “optimizations” based on undefined be-
haviour in “C”. These work by assuming that the program exhibits no undefined

4 And apparently the implementation is allowed to define the implementation-defined
behaviour as undefined.
5 http://blog.regehr.org/archives/761

http://blog.regehr.org/archives/761

behaviour, and deriving various “facts” from this assumption, e.g., about values
of variables, propagates these “facts” throughout the program, and uses them
in other places for “optimizations”. An example is the following function from
the SPEC benchmark 464.h264ref:

int d[16];

int SATD (void)
{
int satd = 0, dd, k;
for (dd=d[k=0]; k<16; dd=d[++k]) {
satd += (dd < 0 ? -dd : dd);
}
return satd;

}

This was “optimized” by a pre-release of gcc-4.8 into the following infinite
loop:

SATD:
.L2:
jmp .L2

What happened? The compiler assumed that no out-of-bounds access to d
would happen, and from that derived that k is at most 15 after the access, so
the following test k<16 can be “optimized” to 1 (true), resulting in an endless
loop. Then the compiler sees that the return is now unreachable, that satd is
dead, that dd is dead, and k is dead, and optimizes the rest away.

The GCC maintainers subsequently disabled this optimization for the case
occuring in SPEC,® demonstrating that, inofficially, GCC supports Cy,ap e, ROt
“CV? X

This kind of “optimization” certainly changes the observable behaviour, but
its advocates defend it by saying that programs broken by these “optimizations”
have been buggy all along. Given the widespread occurence of undefined be-
haviour in production code, this means that the compiler maintainers feel free
to compile pretty much every production program in a way that it behaves dif-
ferently than intended and different from the code produced by an earlier version
of the same compiler and tested successfully.

If undefined behaviour is so widespread, why do we notice code broken by
“optimizations” only occasionally? Undefined behaviour is a run-time property,
and only a small portion of these occurs in a way that can be turned into
(compile-time) “optimization”. Many of of these cases are checks for special
cases that do not occur in most executions, such as a check for a buffer overflow;
so “optimizing” such checks away may go unoticed unless the program tests for

6 Tt still strikes for other programs, see gcc bug 66875.

these specific checks; and such testing may be hard to achieve in larger programs,
because 100% test coverage is hard to achieve.

Wang et al. [WZIKSL13] have written a static program analyzer that tries to
find code that may be “optimized” away in “C”, but not optimized* away in
C*. They found that 3,471 packages out of 8,575 packages in Debian Wheezy
contain a total of about 70,000 such pieces of code (as far as their checker could
determine). In most cases “optimizing” these pieces of code away would result
in code different from what the programmer intended (programmers rarely write
code that they intend to be optimized away). These numbers are pretty alarming,
but probably far lower than the number of undefined behaviours and packages
containing them.

More on optimization* Actually I was a little bit too cavalier about optimiza-
tions* not changing the observable behaviour of C* programs. It is actually pos-
sible to write programs in C* where any change in the generated code produces
an observable difference, e.g., a program that outputs the bytes in its object
code.

But C*programmers would not complain about that. They generally don’t
expect this level of stability. After all, the bytes in the object code change every
time there is a change in the program, e.g., due to a bug fix or a new feature.

What they do expect is, in the first order, the direct results of language
elements must not change if they are observable (i.e., influence output or excep-
tions/signals). So optimization such as strength reduction, dead code elimina-
tion, or jump optimization are fine.

Register allocation can change the results of accesses to uninitialized vari-
ables. This is also accepted by C* programmers: they don’t rely on the values
of uninitialized variables, because these values often change during maintenance
even in the absence of register allocation.”

Of course, “optimization” defenders like to tell stories about bug reports
about changes in behaviour due to, e.g., changed values of uninitialized variables
when optimization is turned on, implying that there is no difference between
optimization* and “optimization”. But my guess is that in most such cases the
bug reporters were not aware that the reason for the breakage is an uninitialized
variable, and once they are aware of that, they are likely to change the program
to avoid using such values, because the program would also be likely to break
on maintenance.

And these kinds of reports are not that frequent: Of the 25 bug reports
for gcc components rtl-optimization and tree-optimization resolved or closed
between 2015-07-01 and 2015-07-16, three were marked as invalid, and all three
were due to “optimizations”, none due to optimizations*; Bug 66875 was very
similar to the SATD example shown above (but the bug reporter accepted that
his program is buggy due to the out-of-bounds array access), and Bugs 66804
and 65709 are both due to gce using aligned rather than unaligned instructions

7 Alternatively, a compiler striving for a more deterministic behaviour could initialize
all uninitialized variables to a fixed value, at a small cost in performance.

when autovectorizing code with unaligned accesses on the AMDG64 architecture
(which normally does not impose alignment restrictions).

“Optimization” and benchmarks Compiler maintainers justify “optimiza-
tions” with performance, and they have benchmark results to prove it; actually,
not really (see below). But if they had such benchmark results, would they really
prove anything? There are significant differences between production programs
and benchmarks:

— Production programs are maintained, including performance tuning by pro-
grammers if desired.

— Benchmark programs are fixed, and are normally not changed anymore.
Therefore they cannot benefit from further source-level optimizations by
programmers.

— Benchmark programs are fixed, and therefore exempt from the policy of
compiler maintainers that it is ok to break code with undefined behaviour,
as we have seen from the released gcc not breaking SATD() from SPECint.
Benchmark programs are not rewritten to eliminate undefined behaviours as
compiler maintainers demand of non-benchmark programs, and therefore do
not suffer from the worse code that such rewrites can cause (see Section 3).

Therefore, even if “optimizations” produce speedups for benchmarks, that
does not say anything about the performance effect of enabling “optimizations”
on production code.

But do “optimizations” actually produce speedups for benchmarks? Despite
frequent claims by compiler maintainers that they do, they rarely present num-
bers to support these claims. E.g., Chris Lattner (from Clang) wrote a three-part
blog posting® about undefined behaviour, with most of the first part devoted to
“optimizations”, yet does not provide any speedup numbers. On the GCC side,
when asked for numbers, one developer presented numbers he had from some
unnamed source from IBM’s XLC compiler, not GCC; these numbers show a
speedup factor 1.24 for SPECint from assuming that signed overflow does not
happen (i.e., corresponding to the difference between -fwrapv and the default
on GCC and Clang).

Fortunately, Wang et al. [WCC ™ 12] performed their own experiments com-
piling SPECint 2006 for AMDG64 with both gcc-4.7 and clang-3.1 with default
“optimizations” and with those “optimizations” disabled that they could iden-
tify, and running the results on a on a Core i7-980. They found speed differences
on two out of the twelve SPECint benchmarks: 456.hmmer exhibits a speedup
by 1.072 (GCC) or 1.09 (Clang) from assuming that signed overflow does not
happen. For 462.libquantum there is a speedup by 1.063 (GCC) or 1.118 (Clang)
from assuming that pointers to different types don’t alias. If the other bench-
marks don’t show a speed difference, this is an overall SPECint improvement by
a factor 1.011 (GCC) or 1.017 (Clang) from “optimizations”.

8 http://blog.1lvm.org/2011/05/what-every-c-programmer-should-know.html

http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html

2.2 The intended meaning of programs

Why do programmers program in C*, not in “C”? Programmers are usually
not language lawyers, nor should they be required to. They usually learn a
programming language by reading introductory books, by looking at programs
written in the language, and by trying out what the compiler does for various
programs, and build a relatively simple model from that, possibly incorporating
other knowledge (e.g., about hardware).

GCC maintainers have claimed that they don’t know what the intended
meaning of programs with undefined behaviour is. However, their own compiler
is evidence against this claim. It compiles exactly the code intended by the
programmer unless it sees enough of the program to derive “facts” that are then
used for “optimization”. E.g., in the SATD example, if the compiler did not know
the number of elements of d (e.g., because d is defined in a different compilation
unit), the compiler would not “optimize” the code and would compile it exactly
as intended.

And that’s what programmers expect: In the normal case a read from an
array (even an out-of-bounds read) performs a load from the address computed
for the array element; the programmer expects that load to produce the value at
that address, or, in the out-of-bounds case, it may also lead to a segmentation
violation (Unix), general protection fault (Windows), or equivalent; but most
programmers do not expect it to “optimize” a bounded loop into an endless
loop.

The expectations of programmers are reinforced, and partially formed, by the
behaviour of compilers. Most of the time programmers experience the compiler
without “optimizations” kicking in.

So, contrary to claims by “optimization” advocates’, the compiler does not
need psychic powers to determine the intent of the programmer in case of unde-
fined behaviour, it knows the intent already.

A common assumption is that this expected behaviour corresponds to the
behaviour when turning off optimization. That is often, but not always the case.
In particular, at least some versions of GCC “optimize” x+1<=x even with -00.

The programmers’ model may or may not include some caveats (such as dif-
ferent sizes of pointers between 32-bit and 64-bit platforms, or that one should
avoid unaligned accesses on some hardware), but not all the fine details of un-
defined behaviour in the C standard. And a programmer who programs for just
one platform will often not feel compelled to heed portability caveats even if he
knows them. So, we cannot exclude non-portable code from C*.

What is more likely to not be in C* is non-maintainable assumptions (such as
the values of uninitialized variables). Still, be very cautious before introducing
new optimizations that rely on the assumption that a certain usage is unmain-
tainable and therefore won’t occur.

Coming back to the psychic powers question, while the compiler cannot know
which undefined behaviours a particular program exhibits, it is safe to use a con-
servative approximation (i.e. C*). One can ask whether the optimization under

% news: <h02dnSk5W8n4p570nZ2dnUVZ_qSdnZ2d@supernews.com>

news:<hO2dnSk5W8n4p57OnZ2dnUVZ_qSdnZ2d@supernews.com>

consideration would break things that are likely to be stable across mainte-
nance, or one can use the large corpus of working free software to get an idea
which undefined behaviours do occur in production programs. Deriving such
knowledge from bug reports is also an option, if all else fails; e.g., if there are
several bug reports on alignment problems from autovectorization, obviously un-
aligned accesses are used by programmers on architectures that support them,
and therefore autovectorization should by default use SIMD instructions without
alignment restrictions on these architectures.

2.3 Security

I have read arguments that use security to justify compiling programs with
undefined behaviour different from what was intended. While this paper focuses
on the performance and optimization claims, this section discusses this argument
briefly.

The argument tends to go something like this: Because there are out-of-
bounds array accesses that are security vulnerabilities (in particular, buffer over-
flow vulnerabilities), and out-of-bounds array accesses are undefined behaviours,
it is good for security to compile undefined behaviours differently from the ex-
pectations of the programmer. There may be the assumption in this argument
that programmers are encouraged to produce fewer out-of-bounds array accesses
if compilers do that.

That argument is wrong for several reasons:

— Not all vulnerabilities perform undefined behaviour (e.g., privilege escalation
or SQL injection).

— Undefined behaviour is just as hard to find as vulnerabilities (both usually
only show up at run-time for certain corner-case inputs), so encouraging
programmers to eliminate undefined behaviours will not make it easier to
find vulnerabilities. For a given amount of effort, it is more likely that pro-
grammers will find more vulnerabilities if they focus on vulnerabilities than
if they also have to look out for undefined behaviour.

— Buffer overflow vulnerabilities will typically not be “optimized” into code
different from what the programmer intended, because the compiler usually
cannot statically determine for such code that the out-of-bounds access hap-
pens. If the compiler can determine it, reporting it to the programmer makes
much more sense than to “optimize” the code.

— Not all undefined behaviours result in a vulnerability; on the contrary, some
security checks perform undefined behaviour, and have been “optimized”
away [WCCT 12 WZIKSL13]. There the “optimizing” compiler created a vul-
nerability that was not present in the C* source code.

2.4 Expressive power

One might think that one can express in “C” all that one can express in C*,
but to my surprise that’s not the case. So while we are doing a detour from the
performance theme of the rest of the paper, let us look at an example of that.!”

Given that C was designed as a systems programming language, implement-
ing a simple function like memmove () in terms of lower-level constructs should
be possible in C, e.g, as follows:

void *memmove(void *dest, const void *src, size_t n) {
if (dest<src)
memcpy_pos_stride(dest,src,n);
else
memcpy_neg_stride(dest,src,n);

where memcpy_pos_stride () copies the lower-addressed bytes of src before
higher-addressed bytes, and memcpy_neg_stride() copies the higher-addressed
bytes before the lower-addressed ones (I believe that these helper functions can
be implemented in “C”, but I also believed that of memmove () before looking
closely into it).

However, this implementation is C*, but not “C”, because p<q is not defined
in “C” if p and q point to different objects. Apparently the reason is to allow
more efficient implementation of these operations on segmented architectures
(by comparing only the offsets). However, it is likely that both variants above
work in C* on such platforms, too, because the result of the comparison does
not matter if the pointers point to different objects/segments (in that case either
memcpy variant will be correct).

However, a “C” compiler might assume that src and dest point to the same
object, propagate that “knowledge” to all users of memmove(), and perform
various “optimizations” based on that, even on hardware with a flat address
space.

Another memmove () implementation is based on malloc ()ing an intermediate
copy, but malloc() can fail, whereas the standard memmove () cannot.

3 Code quality

Your production program is not a benchmark, so compiler maintainers demand
that you change your program into a “C” program. Let’s see what this can do
to the code quality of a simple example.

We want to determine whether a variable x of some signed integer type is
the smallest value that type can hold. A succinct way to express this in C* (and
in Java) is x-1>=x. This may seem puzzling if you think about these types as

10 For a longer discussion, see news : <2015May1.155805@mips . complang.tuwien.ac.at>
ff.

news:<2015May1.155805@mips.complang.tuwien.ac.at>

mathematical integers, but note that these are bounded types; if x is the smallest
value, then x-1 cannot be smaller. Note that this does not depend on the signed
number representation; some machines may produce an exception on underflow,
but, when x is the smallest value, none produces a value that will produce false
for this comparison. However, gcc assumes that signed integer underflow does
not happen, and uses this assumption to “optimize” this test to always produce
false.!!

So how do we rewrite this into “C”? If we assume that the type of x is long,
we can write x==LONG_MIN.'? Let us look at the code quality. For the x-1>=x
variant, we use the gce option -fwrapv that some (but not all) versions of gee
offer (as non-default option) to allow compiling many programs with signed
integer overflows as intended. On AMDG64 gce-5.2.0 produces:

x-1>=x

48 8d 47 ff lea -0x1(%rdi),%rax

48 39 c7 cmp jrax,s%rdi

7f 06 ig ...

x==LONG_MIN

48 b8 00 00 00 00 00 00 00 80 movabs $0x8000000000000000,%rax
48 39 c7 cmp jrax,srdi

75 05 jne ...

Three instructions each, but the “C” variant takes 15 bytes (both with -03
and -Os (size optimization)), whereas the C* variant takes 9. Another way to
implement this check would be

48 ff cf dec %rdi
71 05 jno ...

This takes two instructions and 5 bytes. An optimizing compiler would ideally
produce this machine code from all ways of expressing this check; that would be
an optimization*, and a particularly useful one, because one cannot express this
code more directly in C (the overflow flag is not a feature in the C programming
language).

Another example'® is the implementation of 32-bit rotation: The straight-
forward implementation in C*is (x<<n) | (x>>32-n) and compiles to the in-
tended code in current compilers but performs undefined behaviour in “C” when
n=0."" A “C” version with the obvious zero check generates additional instruc-
tions on both GCC and Clang. The blog entry also looks at another variant

1 This even happens for -00 on, e.g., gcc-4.1.2 on Alpha.

12 The type of x in the actual program may be a different signed integer type, resulting
in much more code to handle all these possible types, while x-1>=x is independent
of the type.

13 From http://blog.regehr.org/archives/1063

4 Presumably the reason for the undefined behaviour is that the machine instruction
for x>>32 produces x on some CPUs and 0 on others; note that either behaviour
produces the correct result for this idiom.

http://blog.regehr.org/archives/1063

(x<<n) | (x>>(-n&31)),'" which gcc managed to compile into a rol, but Clang
didn’t and produced code that was longer by four instructions.

So, converting C*code to “C” can lead to worse code even on those compilers
whose maintainers say that we should do the conversion. You don’t see this effect
on benchmarks, because the benchmarks are not changed to eliminate undefined
behaviour.

4 Source-level optimizations

Programmers can be very effective at improving the performance of code, and
in particular, can do things that the compiler cannot do. Here we first look at
three examples.

4.1 SPECint

Wang et al. [WCCT12] did not just present the difference that “optimizations”
make for SPECint numbers (Section 2.1), they also looked at the reasons for
these performance differences, and found two small source-level changes that
made the less “optimizing” compiler variants produce just as fast code as the
default compilers.

For 456.hmmer, the problem is that an int index is sign-extended in every
iteration of an inner loop unless the sign-extension is “optimized” away by as-
suming that the int does not wrap around. The source-level solution is to use
an address-length or unsigned type for the index; Wang et al. used size_t, and
the slowdown from disabling “optimizations” went away for 456.hmmer.

For 462.libquantum, the problem is a loop-invariant load in the inner loop
that could not be moved out of the loop without assuming strict aliasing, because
there is a memory store (to a different type) in the loop. The source-level solution
is to move that memory access out of the loop. Wang et al. did that, and the
slowdown from disabling “optimizations” went away for 462.libquantum. Note
that, if the store was to the same type as the load, “optimization” could not
move the invariant load out, while source-level optimization still can.

Also note that you just need to look at the inner loops to find and perform
such optimization opportunities, while you have to work through your whole
program to convert it to “C”, plus you may incur slowdowns from the conversion.

4.2 Jon Bentley’s Traveling Salesman programs

In “Writing Efficient Programs” [Beng2], Jon Bentley used a relatively short
traveling-salesman program that uses a greedy (non-optimal) algorithm as run-
ning example for demonstrating various optimizations at the source code level,
each optimization step resulted in a new program. The programs in the book were
written in Pascal. I transliterated them to C in 2001, keeping the original opti-
mizations and a Pascal-like style (arrays instead of explicit pointer arithmetics),

5 n needs to be unsigned in order for this variant to be “C”.

except that I did not perform Bentley’s step 7 of switching from floating point
to integer arithmetics. This results in the programs tspl...tsp9 (but without
tsp7).10

Given the Pascal-based style, I expect that these programs benefit from opti-
mizations like strength reduction and induction variable elimination more than
many other C programs. They are probably also closer to “C” than many other
C programs for the same reason; to test this, I compiled these programs with
gcc-5.2.0 —-m32 -fsanitize=undefined -fsanitize-undefined-trap-on-error,
and they ran through (but note that these runs may still perform undefined be-
haviours that the checker does not check, or for other inputs).

Experimental setup: We used several compiler versions and different options:

gce We used gee versions 2.7.2.3 (1997), eges-1.1.2 (1999, shortly before gec-
2.95), and gce-5.2.0 (2015). The earlier versions already “optimize” x-1>=x
(with no way to disable this “optimization”), but overall probably per-
form much less “optimization” than gce-5.2.0; e.g., eges-1.1.2 has an option
-fstrict-aliasing'”, but (unlike gce-5.2.0) does not enable it by default,
and gce-2.7.2.3 does not even have such an option. In addition to “opti-
mizations”, hopefully gcc also added optimizations* in these 18 years. We
use the -m32 option for gce-5.2.0 to produce TA-32 code, because the earlier
compilers do not produce code for the AMDG64 architecture that was only
introduced in 2003.

Clang/LLVM We also use clang 3.5 (2014) for breadth of coverage. We use
-m32 -mno-sse for comparability with the gcc results which also produce
code for TA-32 without SSE.

-fno... In addition to using -03 and default optimizations (including “opti-
mizations”) we also compiled with -03 but disabled as many “optimizations”
as we could identify: For gce-5.2.0 we used
-fno-aggressive-loop-optimizations -fno-unsafe-loop-optimizations
-fno-delete-null-pointer-checks -fno-strict-aliasing
-fno-strict-overflow -fno-isolate-erroneous—-paths-dereference
~-fwrapv, for clang 3.5 we use ~-fno-strict-aliasing -fno-strict-overflow
-furapv.'® These compilers still might perform various “optimizations” that
are not covered with these flags, but that is as close to turning these com-
pilers into C* compilers as we can get.

-00 It is often suggested to turn off optimization in order to get a C* compiler.
While this does not work (some gcc versions “optimize” x-1>=x even at -00),
we tried -00 to see how much it hurts performance.

6 http://www.complang.tuwien.ac.at/anton/lvas/effizienz/tsp.html

17 With strict aliasing the compiler assumes roughly that pointers to different types do
not point to the same object.

18 For clang I used the subset of the gcc options that clang accepts, because I could
not find documentation on any such options.

http://www.complang.tuwien.ac.at/anton/lvas/effizienz/tsp.html

cIang—%.S -03 [-fno...]
888 :2:8 -8% -fno...
gcc-2.7.2.3 -03
egcs-1.1.2 -03

_———9cc-5.2.0 -00 [-fno...]

0.1

0.05+—— T T
tsp | tsp3 | tsp5 | tsp8 |
tsp2 tsp4 tsp6 tsp9

Fig. 1. Performance across different compilers of Jon Bentley’s Traveling Sales-
man program variants for visiting 5000 cities

We ran the resulting binaries on a Core i3-3227U (Ivy Bridge), with 5000
cities. We measured the run-time in cycles using CPU performance counters with
perf stat -r 100 -e cycles; this runs the program 100 times and reports
“average” (probably arithmetic mean) and standard deviation; the standard
deviation for our measurements was at most 0.62%.

Figure 1 shows the results. In cases where the binaries where the same with
and without the -fno... options, one line is shown for both, with the label
containing [-fno...].

Source-level optimization speedup: Overall, the source-level optimizations
provide a good speedup (starting at a factor 2.7 between tspl and tsp9 for
gce-5.2.0 -03) across all compilers and options, with some optimization steps
having little effect on performance, while others have a larger effect. This also
disproves claims that compiler optimizers are now so good that they make source-

level optimization unnecessary; on the contrary, compilers do not perform most of
these source-level optimizations from a 33-year old book. If compilers performed
these optimizations themselves, we would expect the -03 lines to be flat, but
in fact the speedups from source-level optimizations provide similar speedups to
the -03-compiled versions as to the -00-compiled versions; only the optimization
from tsp4—tsp5 (inlining one function) is performed by the compilers with -03,
resulting in horizontal line segments for this step. Section 4.4 looks at why source-
level optimization is effective.

“Optimization” speedup: We first compare the binaries generated with and
without the -fno. . . options. For clang-3.5 -03, clang-3.5 -00and gcc-5.2.0
-00, all of the programs are compiled to the same binary code without and
with -fno. .. options. So for these compilers show only one set of results. For
gcc-5.2.0 -03, there are no differences in the binaries for tspl...tsp3, but there
are for tsp4...tsp9, so we measure both sets of binaries for gcc-5.2.0 -03.

For tsp4/5 (and of course for tspl-3, where there is no difference in the
binaries) the code generated by gcc-5.2.0 -03 has the same speed as the code
compiled with the -fno. .. options; for tsp6 it is faster by a factor of 1.04, for
tsp8 it is slower by a factor of 1.05, and for tsp9 it is faster by a factor of 1.02.
So disabling these “optimizations” has only a minor and inconsistent effect on
performance.

-00 vs. -03: By contrast disabling both “optimization” and optimization* with
-00 has a dramatic effect on performance, especially for gece (factor 5.6 for tsp9).
So using -00 is not a good suggestion as a C* compiler if you care for perfor-
mance: In addition to still performing some “optimizations”, it also produces
slow code.

Other results: Every compiler has some program for which it is fastest: gce-
2.7.2.3 is fastest for tsp8, eges-1.1.2 is fastest for tsp4d/5, gee-5.2.0 is fastest for
tspl-3, and clang-3.5 is fastest for tsp6 and tsp9. Overall, the performance with
-03 is remarkably close given the 18 years span the gcc versions; Proebsting’s
law tongue-in-cheekly predicts a factor of 2 between gce-2.7.2.3 and 5.2.0.

The slow speed of clang-3.5 -03 for tspl/2 is probably due to differences in
sqrt () implementation, because tspl/2 have a large number of calls to sqrt (),
while that number is much smaller for tsp3—tsp9.

4.3 Gforth

Gforth is an implementation of the Forth programming language. Its virtual ma-
chine was implemented as a threaded-code interpreter starting in 1992 [Ert93];
already that version heavily used GNU C extensions to achieve better perfor-
mance than is possible in standard C* (let alone “C”). And while it is extremely
far from being a strictly conforming (and thus portable) program according to

speed 1A32 Xeon 5450 speed AMD64 Xeon 5450

4] 3

0.91
0.81

0.7 1

0.61

0.51

49

0.4

0.3 /4.4.0
gforth version

050 | o062 | 050 | o062 |
06.1 0.7.0 06.1 0.7.0

gforth version

Fig. 2. Gforth performance with different GCC versions

the C standard, it is pretty portable: e.g., we tested Gforth 0.7.0 on eight dif-
ferent architectures, five operating systems, and up to nine gcc versions per
architecture.

In 2009 we compared the performance of different Gforth versions across
different CPUs and different gce versions [Frt09], and below we discuss the results
as relevant for the present paper. We measured different Gforth versions, from
Gforth 0.5.0 (2000) to 0.7.0 (2008) compiled with various GCC versions from
2.95 (1999) to 4.4.0 (2009).

We ran five application benchmarks on a 3GHz Xeon E5450, each one three
times per configuration, taking the median of the three runs and the geometric
mean over these inividual benchmark results. The data we present here is the
same as in Figures 8 and 9 of the Gforth performance paper [Frt09], but we
present it differently.

Figure 2 shows 32-bit and 64-bit'® results for different Gforth and GCC
versions. As you can see, the source-level optimizations between Gforth 0.5.0
(2000) and 0.7.0 (2008) provide a speedup by a factor > 2.6 on most compiler
versions. Some compiler versions don’t perform as well as others, either because
a source-level optimization was disabled??, or because of some compiler-specific

19 For AMD64, generic code is used up to 0.6.2, special AMD64 support was added
only in 0.7.0.

20 Gforth checks whether the assumptions used by the optimization hold, and falls back
to older techniques if they do not.

problem (like bad register allocation: gce-4.0 and -4.1 on IA32); for details, see
the original paper [FErt09].

We also prototyped an optimization that moves Gforth further into JIT com-
piler territory, with less per-target effort than required by a conventional JIT
compiler [£G04], and this optimization produced a median speedup of 1.32 on
an Athlon, and 1.52 on a PPC 7400.

We had plans to turn this optimization into a production feature, but even-
tually realized that the GCC maintainers only care about certain benchmarks
and treat production programmers as adversaries that deserve getting their code
broken. Given that the Gforth source code is extremely far from “C”, and this
optimization would have taken it even further from “C”, we dropped the plans
for turning this feature into a production feature. So, in this instance, the fo-
cus on “C” and “optimizations” by the C compiler maintainers resulted in less
performance overall.

The current GCC and Clang maintainers suggest that we should convert
programs to “C”. How would that turn out for Gforth?

We could not use explicit register allocation, and therefore lose much of
the performance advantage of gforth-0.7.0. More importantly, we have to drop
dynamic superinstructions, and, since everything else builds on that, that would
throw us back to Gforth-0.5.0 performance. In addition, we would have to drop
threaded code, so we would lose even more performance. We could get back
a little performance by implementing static superinstructions and static stack
caching in a new way (without dynamic superinstructions), but overall I expect
a slowdown by a factor > 3 compared to gforth-0.7.0 from these changes alone.

Gforth is outside “C” in many other respects, in particular in its data and
memory model. It is unclear to me how that part could be turned into efficient
“C” code, but it certainly will not increase performance.

Changing the code to “C” would not just reduce performance by a lot, but
also require a huge effort. Instead of spending that effort to make Gforth slower,
we are considering switching to native code compilation, and getting rid of C as
much as possible. Machine code, while not as portable as C used to be, offers
the needed expressive power, reliability, and stability, that gcc used to give us,
but no longer does.

4.4 Why are programmers effective?

Gcee-5.2.0 does not perform most of the optimizations that Bently performed in
his 33 years old book. Why?

One big advantage that the programmers have is that they have to satisfy the
requirements document (or the specification) of the program, while the compiler
uses the source code as specification and has to keep to that. The source code
overspecifies the program, so the compiler cannot perform the same optimiza-
tions that the programmer can. For example, tsp8 does not produce the same
stdout output as tsp6, so a compiler could not perform that change.

Another advantage that programmers have is that they can have a better
understanding of the design of the program, and therefore can perform trans-

formations that the compiler cannot perform because it cannot determine that
the transformation is safe or profitable to perform. As an example, in Gforth
we have numbers for the VM instructions in the image file format, and replace
them with code addresses when loading the image file, eliminating the need to
do the code address lookup at run-time; compilers do not do that, because they
cannot prove that the instruction numbers are not used in any other way.

Finally, programmers can apply optimizations for idioms for which compiler
maintainers do not develop optimizations because they do not occur frequently
enough in “relevant” code (i.e., their benchmarks).

Of course, source-level optimization costs in development, and may also cost
in maintenance. However, the recommendation by “optimization” advocates of
“fixing” or “sanitizing” your code (i.e., converting it to “C”) also costs in devel-
opment and in maintenance.

As can be seen here, the optimization by programmers is far more effective
than “optimization” by compilers, so it makes more sense to have a compiler
with only optimization* and invest the development budget for optimization
in source-level optimization rather than “sanitizing”. In particular, in source-
level optimization you can concentrate on the parts of the programs relevant
to performance, and stop when the benefit/cost ratio of further optimizations
becomes too small, while “sanitizing” has to cover the whole program, as any
undefined behaviour in the program allows nasal demons, or “optimizations”, to
happen.

5 Perspectives

Given the state of things, what should be done?

5.1 Compilers

Compiler maintainers should change their attitude: Programs that work with
previous versions of the compiler on the same platform are not buggy just be-
cause they exhibit undefined behaviour; after all, they are conforming C pro-
grams. So the compiler should be conservative and disable “optimizations” by
default, in particular new or enhanced “optimizations”. If you really want the
default to be “C”, then at least provide a single, stable option for disabling “op-
timizations”; in this way, a C* program compiled with that option will also work
with the next version of the compiler.

Also, there is still a lot of improvement possible in terms of optimizations*,
and it would be a good idea to shift effort from “optimizations” to optimizations*.

I do not see a good reason for having “optimizations” at all, but if a compiler
writer wants to implement them, it would be a good idea to be able to warn
when “optimizations” actually have an effect. Contrary to what Chris Lattner
claims?!, this is not that hard: Just keep track of both facts* and “facts”. When

2! http://blog.11lvm.org/2011/05/what-every-c-programmer-should-know_21.html

http://blog.llvm.org/2011/05/what-every-c-programmer-should-know_21.html

eventually generating code, if the code generated based on just facts* would be
different from the code generated based on “facts”, provide a warning. Providing
a good explanation for the warning may be hard, but that’s just an indication
of how unintuitive the “optimization” is.

5.2 Standards

The compiler maintainers try to deflect from their responsibility for the situa-
tion by pointing at the C standard. But the C standard actually takes a very
different position from what the compiler maintainers want to make us believe.
In particular, the C99 rationale®? [C03] states:

C code can be non-portable. Although it strove to give program-
mers the opportunity to write truly portable programs, the C89 Commit-
tee did not want to force programmers into writing portably, to preclude
the use of C as a "high-level assembler”: the ability to write machine-
specific code is one of the strengths of C. It is this principle which largely
motivates drawing the distinction between strictly conforming program
and conforming program (§4).

Keep the spirit of C. The C89 Committee kept as a major goal to
preserve the traditional spirit of C. There are many facets of the spirit of
C, but the essence is a community sentiment of the underlying principles
upon which the C language is based. Some of the facets of the spirit of
C can be summarized in phrases like:

— Trust the programmer.

— Don’t prevent the programmer from doing what needs to be done.
Keep the language small and simple.
Provide only one way to do an operation.
Make it fast, even if it is not guaranteed to be portable.
The last proverb needs a little explanation. The potential for efficient
code generation is one of the most important strengths of C. To help
ensure that no code explosion occurs for what appears to be a very simple
operation, many operations are defined to be how the target machine’s
hardware does it?* rather than by a general abstract rule.

Still, the C standard blesses compilers like GCC and Clang that intentionally
compile only strictly conforming C programs as intended as conforming imple-
mentations. There is the hope that market forces will drive compilers towards
higher quality-of-implementation; unfortunately, that does not seem to work out:
The compiler maintainers’ perception of quality-of-implementation is based on
benchmark results, and this perception has led to the current situation; and since
both GCC and Clang maintainers take the same view of non-“C” programs, and

22 The C11 rationale has not been published yet.
23 By contrast, “what the hardware does” seems to be an insult in GCC circles:
news:<07qdndj_37WIDp70nZ2dnUVZ_tmdnZ2d@supernews.com>.

news:<07qdndj_37WIDp7OnZ2dnUVZ_tmdnZ2d@supernews.com>

there is no competition from an optimizing® C* compiler in the free-software
world, there is little that market forces can do in that area.

So, while the standard is not responsible for the current situation (the main-
tainers of these C compilers are), the C standards committee might still tighten
the standard such that it cannot be abused by compiler maintainers in this way.

Instead of not specifying behaviour (or explicitly specifying undefined be-
haviour) for many cases where different C* implementations may produce differ-
ent results, the standard should enumerate the possible results in enough detail
to discourage “optimizing” compilers.

Pascal Cuoq, Matthew Flat and John Regehr suggested such an approach?*:
They want to define a friendly dialect of C by working through the list of unde-
fined behaviours in the C11 standard, and reduce the amount of undefinedness,
e.g., by replacing “has undefined behaviour” with “results in an unspecified
value”. This is definitely going in the right direction. There will still remain a
gap between the way programmers think about the language construct and the
way the friendly C specification describes it, but if the friendly C specification
is tight enough to rule out “optimizations”, the remaining gap may still be a
source of joy for language lawyers, but harmless for practical programmers. “Un-
specified value” may not be quite tight enough, though, because it does not give
a specified result for, e.g., x-x when x is uninitialized.

5.3 Programmers

The attitude of compiler maintainers puts programmers in a tough situation.
The next version of the compiler could break their currently-working program.
The simplest way to deal with that is to stick with the compiler version that
works with your program. You may need to keep the old binaries, or compile the
old sources with a newer compiler (I have built gee-2.7.2.3 with gee-4.8 for this
paper).

If you want to make your program work for newer versions of the compiler
(e.g., because you want to port to an architecture that is not supported by the
old version), you can use the flags that define some of the undefined behaviours
(such as those listed for our experiments in Section 4.2). You can also see if
lowering the optimization level helps.

As a long-term perspective, you could also decide to switch to another pro-
gramming language. Unfortunately, there are not that many languages available
that occupy the C* niche: a low-level language that can be used as portable
replacement for assembly language; in particular, C ate all its brethren in the
Algol family (e.g., Bliss, BCPL). Forth is available, but is probably unattrac-
tive to most programmers coming from Algol-like languages. C-- [JRR99] was
intended as a portable assembly language, but seems to have been relegated to
an internal component of the Glasgow Haskell Compiler.

Instead of using a portable assembly language, you can go for real assembly
language; in earlier times C was less cumbersome and therefore more attractive,

2 http://blog.regehr.org/archives/1180

http://blog.regehr.org/archives/1180

but that has changed. In contrast to C as currently implemented, assembly
language is rock-solid. The disadvantage of assembly language is that it is not
portable, but the number of different architectures in general-purpose computers
has fallen a lot since the 1990s, so you may be able to make do with just one or
two.

You probably don’t want to write everything in assembly language, but most
code in higher-level languages. There are a number of newer Algol-family lan-
guages that are slightly higher-level than C used to be that may be appropriate
for the higher-level language part, e.g., Rust, D, and Go. I do not have experience
with these languages, nor have I examined the specification and the attitude of
the compiler maintainers, so unfortunately I cannot make any recommendations
here.

Our perspective for Gforth is to use Forth as high-level language and assem-
bly /machine language for the parts that cannot be done in Forth (for these parts
we currently use GNU C).

5.4 Tools and Research Opportunities

Just as the existence of “C” compilers has spawned tools and research papers on
finding undefined behaviours and code that may be “optimized” away although
it should not, a focus on C* compilers and source-level optimization could lead
to tools for finding source-level optimization opportunities.

E.g., consider the source-level optimizations Wang et al. [WC'C"12] used on
SPECint: To get rid of sign extensions, a tool could perform run-time checks to
see if using long instead of int produces a different result, and if not, could then
suggest to the programmer to change the type of inner-loop induction variables
accordingly. A tool could also check whether a load in an inner loop always
produces the same result during a run, and, if so, suggest to the programmer to
move the load out of the loop manually; the source-level optimization also works
in cases where “optimization” does not work because there is a store in the loop
to the same type as the load.

The research questions are what other optimizations can be supported by
such tools, and how effective they are. Of course, the possible optimizations
are not limited to those that are possible by converting to “C” and enabling
“optimizations”.

6 Related work

Complications generate interesting research questions, even if they are unneces-
sary complications.

Wang et al. [WCC " 12] describe a number of “optimizations” by “C” com-
pilers, and give examples where the “optimizations” were not optimizations, but
led to C* code not being compiled as intended; most of the examples are for secu-
rity vulnerabilities caused by “optimizations”. It also gives performance results
showing that “optimizations” give a very small speedup even for SPECint.

There is work on finding undefined behaviour with run-time checks, e.g., for
integer computations [DLRA12]. Of particular interest for the current work are
the empirical results of applying these checks to various programs, in particular,
how widespread these undefined behaviours are.

Not all undefined behaviours can be exploited by “optimizations”, and an-
other paper by Wang et al. [WZIKSL13] describes a tool for finding code that
may be “optimized” (but not optimized*) away. In addition, they describe a
number of security vulnerabilities caused by “optimizations” and also gives em-
pirical results on how many program fragments are “optimized” away in how
many programs.

7 Conclusion

“Optimizations” based on assuming that undefined behaviour does not hap-
pen buy little performance even for SPECint benchmarks (1.7% speedup with
Clang-3.1, 1.1% with GCC-4.7), and incur large costs: Most production pro-
grams perform undefined behaviours and removing them all requires a lot of
effort, and may cause worse code to be produced for the program. Moreover,
a number of security checks have been “optimized” away, leaving the affected
programs vulnerable.

If you are prepared to invest that much effort in your program for perfor-
mance, it is much better to invest it directly in source-level optimization instead
of in removing undefined behaviour. E.g., just two small source-level changes
give the same speedups for SPECint as the “optimizations”; we also presented
examples of source-level optimizations that buy speedup factors > 2.6.

Compiler writers should disable “optimizations” by default, or should at least
give the programmers a single flag to disable them all and that also disables
new “optimizations” in future compiler versions. A focus on optimizations* and
on supporting source-level optimizations better would also be welcome. Finally,
programs that work on a version of your compiler are conforming C programs
and they are not buggy just because they perform undefined behaviour.

References

Bac81. John Backus. The history of Fortran I, IT, and III. In Richard L. Wexelblat,
editor, History of Programming Languages, pages 25—45. Academic Press,
1981. 1

Ben82. Jon L. Bentley. Writing Efficient Programs. Prentice-Hall, 1982. 4.2

C03. Rationale for International Standard—Programming Languages—C, revi-

sion 5.10 edition, 2003. 5.2

DLRA12. Will Dietz, Peng Li, John Regehr, and Vikram Adve. Understanding in-
teger overflow in C/C++. In 84th International Conference on Software
Engineering (ICSE), 2012. 2, 6

EGO4. M. Anton Ertl and David Gregg. Retargeting JIT compilers by using
C-compiler generated executable code. In Parallel Architecture and Com-
pilation Techniques (PACT’ 04), pages 41-50, 2004. 4.3

Ert93.

Ert09.

JRR99.

WCCT12.

WZKSL13.

M. Anton Ertl. A portable Forth engine. In FuroFORTH ’93 conference
proceedings, Maridnské Lazne (Marienbad), 1993. 4.3

M. Anton Ertl. A look at Gforth performance. In 25th EuroForth Confer-
ence, pages 23-31, 2009. 4.3

Simon L. Peyton Jones, Norman Ramsey, and Fermin Reig. C--: a portable
assembly language that supports garbage collection. In International Con-
ference on Principles and Practice of Declarative Programming, September
1999. 5.3

Xi Wang, Haogang Chen, Alvin Cheung, Zhihao Jia, Nickolai Zeldovich,
and M. Frans Kaashoek. Undefined behavior: What happened to my code?
In Asia-Pacific Workshop on Systems (APSYS’12),2012. 2.1, 2.3, 4.1, 5.4,
6

Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-
Lezama. Towards optimization-safe systems: analyzing the impact of un-
defined behavior. In Michael Kaminsky and Mike Dahlin, editors, ACM
SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13,
Farmington, PA, USA, November 3-6, 2013, pages 260-275. ACM, 2013.
2.1,2.3,6

	What every compiler writer should know about programmersor``Optimization'' based on undefined behaviour hurts performance
	Introduction
	The difference between C and ``C''
	Optimization and ``Optimization''
	The intended meaning of programs
	Security
	Expressive power

	Code quality
	Source-level optimizations
	SPECint
	Jon Bentley's Traveling Salesman programs
	Gforth
	Why are programmers effective?

	Perspectives
	Compilers
	Standards
	Programmers
	Tools and Research Opportunities

	Related work
	Conclusion

