
Network	Automa-on	
Do’s	&	Don’ts	

Job	Snijders	
NTT	Communica-ons	

job@n=.net	
	

NANOG66,	San	Diego	



Source:	h=ps://plus.google.com/+BrunoOliveira/posts/MGxauXypb1Y	



Research	Sample	Size	

I’ve	asked	the	brightest	minds	in	the	industry	
about	network	automa-on:	
	
•  John	Heasley	
•  Troy	Boudreau	
•  Andree	Toonk	
	
But	also	myself	and	Jared	Mauch	;-)	



DO	#1	

Follow	UNIX	principles	(whenever	possible).	
	
Small	programs	that	do	one	thing	well	and	can	
be	part	of	a	pipeline.	So	don’t	hack	rancid	to	do	
tricky	email	shit,	do	that	as	a	post	processing	
step.	



DO	#2	

No	shortcuts	–	check	for	all	failure	possibili-es	
and	only	allow	precise	coherence	to	expected	
results,	else	recover	and	exit.	
	
Example:	“This	code	will	work	as	long	as	nobody	
manually	touches	the	config	on	the	device”	
	
Example:	“The	RIPE	IRR	database	will	always	
produce	correct	results	forma=ed	as	valid	RPSL”	



DO	#3	

Don’t	buy	crappy	equipment	without	demoing	
and	tes-ng	it.	You	are	not	saving	money	or	-me.	
Test	SNMP,	CLI,	NETCONF.	



DO	#4	

Don’t	be	liberal	in	user	inputs;	check	all	user	input	
rigidly.	Not	only	syntac-c,	but	siphon	the	data	
through	business	rules	as	well!	 		
	
Bad	example	in	middleware	or	IOS:	
•  User	inpujng	a	router2router	linknet	and	
mistakenly	configuring	an	IPv6	/30	

•  2000::/6	in	DFZ	 	(should’ve	been	a	/64)	
•  2000::/12	in	DFZ	 	(should’ve	been	a	/126)	



DO	#5	

Less	opportunity	for	users/managers	to	
customize	is	a	good	thing.	
	
Through	network	automa-on	you	can	exercise	a	
degree	of	control	to	enforce	healthy	network	
design.	
	
	



DO	NOT	#1	

Don’t	let	users	use	your	tools	without	training.	
	
“a	user	ran	a	script	used	to	reboot	the	en1re	
network	when	they	had	no	clue	what	they	were	
doing.”	



DON’T	#2	

Don’t	allow	other	groups	to	take	control	of	any	
part	of	your	domain	(ie:	devices,	DNS,	IRR,	etc)	
unless	they	are	under	you.	You	will	regret	it	
eventually.	



DON’T	#3	

Not	every	new	tech	trend	is	useful.	Consider	
changes	thoroughly.	
	
Example:	docker	on	routers	



DON’T	#4	

Load	your	produc-on	database	in	a	test	
environment	without	locking	down	the	test	
environment.	
	
“Where	a	test	box	doing	tests	sent	email	to	users	
about	change	BGP	ACL	changes”	



DON’T	#5	

Don’t	agree	to	change	management.	Managers	
are	rarely	engineers	and	should	not	be	making	
technical	decisions.		(nor	should	sales)	
	
Change	Advisory	Boards	will	be	the	first	to	go	
against	the	wall	when	the	revolu-on	comes.	



DO	#6	

Make	automa-on	a	top	priority,	change	your	
way	of	thinking,	everything	should	be	
automated,	especially	greenfield	deployments.	
	
Example:	"Automa-on	Friday”	as	expression	of	
ins-tu-onal	buy-in	



DO	#7	

Done	is	be=er	than	perfect.	
	
Think	in	terms	of	minimal	viable	product	(MVP).	
Most	of	us	are	not	hardcore	programmers.	
We	learn	while	doing,	so	start	delivering	small	
deliverables.	Learn	and	build	on	that.	
	
Don’t	refactor	when	adding	1	new	feature.	



DO	#8	

“Decrusing”	-	Dele-ng	unused	code	saves	you	
money!	
	
Example:	by	reducing	the	amount	of	peer-group	
templates,	the	test	surface	is	shrunken	
considerably	because	there	are	less	
permuta-ons	to	cycle	through.	



DO	#9	

Don’t	be	too	religious	regarding	what	language	
to	use.	What	ever	does	the	job,	and	works	for	
your	team.	
	
This	is	counter-intui-ve	because	arguing	about	
what	is	the	best	language	is	awesome.	
	
	



DO	#10	

Steal	ideas!	
	
Net-eng	teams	are	typically	pre=y	new	to	this	
automa-on	stuff.	Other	teams	have	done	this	for	a	
while	and	learned	lessons	along	the	way.	Go	talk	to	
your	sysadmin/SRE/devops	team.	It’s	likely	they	
solved	similar	problems	in	the	past	and	learned	
some	lessons	along	the	way.	Borrow	their	exper-se	
for	a	day	to	get	you	started.	



DO	#11	

Have	tests,	simple	ones	are	fine!	
	
Pre	deployment:	Are	the	ACLs	of	non-zero	length?	
	
Post	deployment:	Simple	valida-on	tests	that	greps	in	the	
RANCID	repository	for	stuff,	like	making	sure	the	DENY-
ALL	rule	is	there.	
	
Future:	This	can	evolve	into	a	database	consistency	check	
script	that	validates	stuff	like	interface	descrip-ons.	
	



DO	#12	

Never	delete	logfiles.	
	
When	you	have	sosware	making	autonomous	
changes	to	the	network,	have	logging	and	keep	
track	of	why	and	what	it’s	changing.	It’s	likely	at	
some	point	it	will	do	something	you	didn’t	
expect	or	understand.	



DO	#14	

Version	control	systems	everywhere!	
	
Everybody	has	RANCID	–	which	is	a4er	the	fact.		
	
Consider	pujng	all	config	snippets	you	plan	to	
push	to	routers	in	a	VCS	too.	To	cover	“planned	
to	push”.	



DO	#13	

Thro:le!	
	
If	you	have	sosware	that	makes	changes	to	the	
network,	like,	op-mizing	latency	by	injec-ng	
BGP	announcements	or	shujng	down	sessions,	
consider	a	max	number	of	opera-ons	allowed	
per	hour.	Use	this	as	a	safe	guard	to	prevent	
unexpected	massive	changes	or	runaway	code	



DON’T	#6	

Don’t	buy	IOS-style	shit!	
	
Get	router	equipment	that	supports	loading	and	
checking	configura-ons	prior	to	commijng	
them.	
	
	



DON’T	#7	

Don’t	allow	your	staff	to	do	“conf	t”	–	bypassing	
the	automa-on	is	like	joining	the	an-christ.	
Punish	people	who	disable	the	automa-on.	
	
		



DO	#15	

TEST	TEST	TEST	TEST	TEST	TEST	
	
•  Invest	in	a	luxury	lab	(with	at	least	all	your	
currently	deployed	hardware)	

•  Get	actual	test	equipment/sosware	



DON’T	#8	



DON’T	#8	

Don’t	mix	data	and	logic	too	much!	
	
Avoid	condi-onals	based	on	hardcoded	values	in	
your	templates.	
	
If	you	hardcode	a	hostname,	a	migra-on	will	
bite	you.	If	you	hardcode	a	peer’s	ASN,	a	change	
in	the	rela-onship	will	cause	issues.	
	
	
	



DONE	


