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Abstract

Messages that can be treated as first-class entities are calledfirst-
class messages. We present a sound unification-based type infer-
ence system for first-class messages. The main contribution of the
paper is the introduction of an extended form of function called a
match-functionto type first-class messages. Match-functions can
be given simple dependent types: the return type depends on the
type of the argument. We encode objects as match-functions and
messages as polymorphic variants, thus reducing message-passing
to simple function application. We feel the resulting system is sig-
nificantly simpler than previous systems for typing first-class mes-
sages, and may reasonably be added to a language design without
overly complicating the type system.
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1 Introduction

First-class messages are messages that can be treated as first-class
values and bound to program variables. Hence, we can writeobj←
x, whereobj is an object,x a program variable and← represents
message passing. Since the message assigned tox can be varied
at run-time, we can change the message sent toobj dynamically.
This is the exact dual ofdynamic dispatch, where we change the
objectat run-time—here we want to be able to change themessage
at runtime.

First-class messages are useful in typing delegate objects, which
forward messages to other objects. For example, in

let m= fmessage() in
let o1 = {forward(x) = o2← x} in

o1← forward(m)

o1 is a delegate object whereforward (x) is the method that delegates,
i.e. forwards,x to o2. fmessage() is the first-class message which
gets assigned tom, thenx, and finally forwarded too2. Such del-
egate objects are ubiquitous in distributed systems such as proxy
servers giving access to remote services (e.g. ftp) beyond a fire-
wall. The following is an example of a proxy server cited by
Müller [MN00]:

let ProxyServer= {new(o) = {send(m) = o←m}}

This creates an objectProxyServerwith a methodnew that receives
an objecto and returns a second object with a methodsend. send

takes an abstract first-class messagem as a argument and forwards
it to o. We can create a Ftp proxy server as:

let FtpProxy= ProxyServer← new(ftp)

whereftp is aFtp object. A typical use of this new proxy is

FtpProxy← send(get(′paper.ps.gz′))

get is a method inftp. Delegation of abstract messages cannot be
easily expressed without first-class messages, since the message
can be changed at run-time and hence must be abstracted by a vari-
ablem. [MN00] and [Nis98] further discuss how first-class mes-
sages can exploit locality by abstracting remote computations in
distributed object-oriented computing.

Modern typed object-oriented programming languages (e.g. Java,
C++) do not support first-class messages. Smalltalk [GR89] and
Objective-C [PW91] provide untyped first-class messages.

The static type-checking of first-class messages presents two main
difficulties:

1. Typing first-class messages that can be placed in variables and
passed as values,e.g. m= fmessage(): we need a way to
express and type standalone messages.

2. Typing abstract message-passing to objects, such aso← x:
sincex can be any message ino and these different messages
can have different return types,o← x doesn’t have a single
return type but rather its type depends upon the type ofx. We
need to be able to encode its static type such that it depends
on the abstract type ofx.

We solve the first problem by encoding messages as polymorphic
variants which have standalone types,i.e., a polymorphic variant
‘ fmessage() has type ‘fmessage().

The second problem is more challenging, and the most important
contribution of this paper is the simplicity of its solution. We in-
troduce an extended form of function (inspired by SML/NJ’s pat-
tern matching functions) called amatch-function, which always
takes a variant as argument and has a return type that can de-
pend on the argument variant. We call these dependent types
match-types. We encode objects as match-functions, thus reduc-
ing message sending to simple function application. There are sev-
eral other solutions to typing first-class messages in the literature
[Wak93, Nis98, MN00, Pot00]; the main advantage of our approach
is its simplicity.

We organize the rest of the paper as follows. We review OCaml’s
polymorphic variants in Section 1.1, and review the duality of



records and variants in Section 1.2. In Section 2 we defineDV,
a core language with match-functions. In Section 3 we present a
type system forDV that includes match-types, and show it is sound.
In Section 4 we present a constraint-based type inference system
for inferring match-types along with an algorithm for simplifying
the constrained types to human-readable constraint-free types and
prove its soundness. The net result is a type inference algorithm
for the originalDV type system. Section 5 illustrates all aspects of
the system with a series of examples. In Section 6 we show how
objects with first-class messages can be faithfully encoded with
match-functions. Section 7 discusses the related work.

Some portions of the paper aregrayed out. They represent optional
extensions to our system which enhance its expressiveness at the
expense of added complexity. The paper can be read assuming the
gray portions don’t exist. We recommend the readers skip these
grayed out portions during their initial readings to get a better un-
derstanding of the core system.

1.1 Review of Polymorphic Variants

Variant expressions and types are well known as a cornerstone of
functional programming languages. For instance in OCaml we may
declare a type as:

type feeling = Love of string | Hate of string
| Happy | Depressed

Polymorphic variants [Gar98, Gar00], implemented as part of Ob-
jective Caml [LDG+02], allow inference of variant types, so type
declarations like the above are not needed: we can directly write
expressions like‘Hate("Fred") or ‘Happy.

We use the Objective Caml [LDG+02] syntax for polymorphic vari-
ants in which each variant name is prefixed with‘. For example in
OCaml 3.07 we have,

let v = ‘Hate ("Fred");;
val v : [> ‘Hate of string] = ‘Hate "Fred"

[> ‘Hate of string] is the type of the polymorphic variant
‘Hate ("Fred"). The “>” at the left means the type is read as
“these cases ormore’’. The “or more” part means these types are
polymorphic, it can match with a type of more cases.

Correspondingly, pattern matching is also given a partially specified
type. For example,

let f = fun ‘Love s -> s | ‘Hate s -> s
-: val f : [< ‘Love of string | ‘Hate of string] -> string

[< ‘Love of string | ‘Hate of string] is the inferred vari-
ant type. The “<” at the left means the type can be read
“these cases orless”, and since ‘Hate ("Fred") has type
[> ‘Hate of string], f ‘Hate ("Fred") will typecheck.

Polymorphic variants are expressible without subtyping, and are
thus easily incorporated into unification-based type inference al-
gorithms. They can be viewed as a simplified version of [R8́9,
Oho95].

Our type system incorporates a generalization of Garrigue’s notion
of polymorphic variants that explicitly maps the variant coming in
to a function to the variant going out. This generalization is useful
in functional programming, but is particularly useful for us in that it
allows objects with first-class messages to be expressed using only
variants and matching, something that is not possible in any of the

existing polymorphic variant type systems above.

1.2 The Duality of Variants and Records

It is well-known that variants are duals of records in the same man-
ner as logical “or” is dual to “and”. A variant is this fieldor that
field or that field . . . ; a record is this fieldand that fieldand that
field . . . . Since they are duals, defining a record is related to using a
variant, and defining a variant is like using a record. In a program-
ming analogy of DeMorgan’s Laws, variants can directly encode
records and vice-versa.

A variant can be encoded using a record as follows:

match swith ‘n1 (x1)→ e1 | . . . | ‘nm(xm)→ em≡
s{n1 = fun x1→ e1, . . . , nm = fun xm→ em}

‘n(e)≡ (fun x→ (fun r → r.n x)) e

Similarly, a record can be encoded in terms of variants as follows:

{l1 = e1, . . . , lm = em} ≡
fun s→ match swith ‘ l1 (x)→ e1 | . . . | ‘ lm(x)→ em

wherex is any new variable. The corresponding selection encoding is:

e.lk ≡ e ‘ lk ( )

where could be any value.

One interesting aspect about the duality between records and vari-
ants is thatbothrecords and variants can encode objects. Tradition-
ally, objects have been understood by encoding them as records,
but a variant encoding of objects also is possible:A variant is a
message, and an object is a case on the message. In the variant en-
coding, a nice added side-effect is it is easy to pass around messages
asfirst-class entities.

The problems with the above encodings, however, is neither is com-
plete in the context of the type systems commonly used for records
and variants: for example, if an ML variant is used to encode ob-
jects, all the “methods” (cases of the match) must return the same
type! This is why objects are usually encoded as records. But if the
variant encoding could be made to work, it would give first-class
status to messages, something not possible in the record system.

In this paper we introducematch-functions, which are essentially
ML-style pattern match functions, but match-functions in addi-
tion support different return types for different argument types via
match-types. A match-function-encoding of objects is as power-
ful as a record encoding, but with additional advantage of allowing
first-class messages to typecheck.

2 The DV Language

DV {“Diminutive” pure functional programming language with
PolymorphicVariants} is the core language we study. The gram-
mar is as follows:

Name 3 n
Val 3 v ::= x | i | ‘n(v) | λ f ‘nk (xk)→ ek
Exp 3 e ::= v | e e | ‘n(e) | let x = e1 in e2
Num 3 i ::= . . .−2 | −1 | 0 | 1 | 2 | . . .

The “vector notation”‘nk (xk)→ ek is shorthand for‘n1 (x1)→ e1 |
. . . | ‘nk (xk)→ ek for somek. ‘n(e) is a polymorphic variant with
an argumente. For simplicity, variants take only a single argument
here; multiple argument support can be easily added.λ f ‘ni (xk)→ ek



is an extended form ofλ-abstraction, inspired by Standard ML
style function definitions which also perform pattern matching on
the argument type. Thef in λ f is the name of the function for
use in recursion, as withlet rec. We call thesematch-functions.
Each match-function can also be thought of ascollectionof one or
more (sub-)functions. For example, a match-function which checks
whether a number is positive, negative or zero could be written as:

f = λ f ‘positive(x)→ (x > 0)
| ‘negative(x)→ (x < 0)
| ‘zero(x)→ (x == 0)

and corresponding application would be:

f (‘positive(5))

where‘positive(5) is the argument to the above match-function.

A match-function need not have a single return type, it can depend
on the type of the argument. Thus in the above example,‘positive,
‘negativeand ‘zerocould have had different return types. The main
technical contribution of this paper is a simple type system for the
static typechecking of match-functions.

Regular functions can be easily encoded using match-functions as:

λ f x.e≡ λ f ‘ (x)→ e

where ‘ is a fixed polymorphic variant name; and corresponding
application as:

f e′ ≡ f (‘ (e′))

2.1 Operational Semantics

Figure 1 presents the operational semantics forDV. Computation is
defined via a single-step relation−→1 between closed expressions.
e[v/x] is the substitution ofv for x in e. The only interesting case is
function application, which is a combinedβ-reduction and pattern-
match.

3 The DV Types

The types ofDV are as follows.

TyVar 3 α ::= ′a | ′b | . . .
TypVariant 3 ν ::= ‘n(τ) | [> α ] | [< ‘nk (τk) ]
Typ 3 τ ::= α | Int | ν | ‘nk (τk)→ τ′k | 〈νk→ τk 〉 |τ (ν) | µτ. τ′

‘n(τ) is a polymorphic variant type, for variant name ‘n with argu-
ment typeτ. [> α ] is a variant-type variable which represents any
polymorphic variant type.[< ‘nk (τk) ] is an “upper bound” poly-
morphic variant type,i.e., it can match ‘n1 (τ1) or . . . or ‘nk (τk).
This type is a part of the optional extension (grayed out portions) to
our type system and we recommend readers ignore this and all the
following grayed portions during the initial readings.

Our main novelty is‘nk (τk)→ τ′k, the match-type, in which each
variant maps to a different return type.〈νk→ τk 〉 is a “lower
bound” match-typei.e. it matches anymatch-typewith at least
νk→ τk cases.

τ (ν) is theapp-type. The only forms in which it will appear in our
system are as‘nk (τk)→ τ′k ([> α ]) or ‘nk (τk)→ τ′k ([< ‘ni (τi) |
. . . ]). It is used for unknown first-class messages,i.e., when the type
of the argument to aknownmatch-function is unknown at compile-
time, and the return type is also unknown and depends upon the

value assigned to the argument at run-time. In such cases, the return
type has the above type, which essentially means that at run-time
[> α ] can be any of ‘ni (τi) and when[> α ] is ‘ni (τi) then the
correspondingτ′i would be the return type.

µτ.τ′ is therecursive-type. It meansτ can occur inτ′ and alsoτ has
the same type asτ′. The only forms in which it will occur in our
system areµ α. τ or µ[> α ]. τ.

We now define a type subsumption relation,

DEFINITION 3.1 (TYPE SUBSUMPTION). τ1 � τ2 iff,

1. τ1 = τ andτ2 = τ; or

2. τ1 = τ andτ2 = [τ′′/τ′]τ whereτ′ � τ′′; or

3. τ1 = [> α ] andτ2 = ‘n(τ); or

4. τ1 = 〈νk→ τ′k 〉 and τ2 = ‘nk+m(τk+m)→ τ′′k+m where

νk � ‘nk (τk) andτ′k � τ′′k;

or

5. τ1 = ‘nk (τk)→ τ′k ([< ‘ni (τi) | . . . ]) andτ2 = τ′i where i≤ k;
or

6. τ1 = [< ‘n(τ) | . . . ] andτ2 = ‘n(τ) .

3.1 Type Rules

Figure 2 gives the type rules forDV. We have three different types
rules for application expressionse e′; when botheande′ are known
(app)1 is applied, whene is known bute′ is unknown i.e.e′ is an
abstracted argument, (app)2 is applied, and when neitherenore′ is
known i.e.e is an abstracted match-function ande′ is an abstracted
argument, (app)3 is applied.

Type environmentΓ is a mapping from variables to types. Given a
type environmentΓ, the type system derives a direct-typeτ for an
expressione. This is written as atype judgementΓ ` e : τ. Γ‖ [xi 7→
αi ] is the extension ofΓ with xi 7→ αi .

3.2 Soundness of Type System

We prove soundness of the type system by demonstrating a subject
reduction property.

LEMMA 3.1 (SUBJECTREDUCTION). If /0 ` e : τ and e−→1 e′

then /0 ` e′ : τ′ such thatτ� τ′.

The full proof appears in Appendix A.1.

LEMMA 3.2 (SOUNDNESS OFTYPE SYSTEM). If Γ ` e : τ then
e either computes forever or computes to a value.

PROOF. By induction on the length of computation, using
Lemma 3.1.

4 Type Inference

Figure 3 gives the type inference rules. Our inference type rules fol-
low a constrained type presentation [AW93, EST95], even though
our type theory does not include subtyping. We found this formu-



(variant)
e−→1 e′

‘n(e)−→1 ‘n(e′)

(app)
e1 −→1 e′1

e1 e2 −→1 e′1 e2

e2 −→1 e′2
v1 e2 −→1 v1 e′2 (λ f ‘nk (xk)→ ek) ‘nd (v)−→1 ed [v/xd] [λ f ‘nk (xk)→ ek/ f ]

whered≤ k

(let)
e1 −→1 e′1

let x = e1 in e2 −→1 let x = e′1 in e2 let x = v1 in e2 −→1 e2 [v1/x]

Figure 1. Operational Semantic Rules

(num) /0 ` i : Int
i ∈ Num (sub)

Γ ` e : τ τ� τ′
Γ ` e : τ′

(variant)
Γ ` e : τ
Γ ` ‘n(e) : ‘n(τ) (var)

x∈ dom(Γ) Γ(x) = τ
Γ ` x : τ

(abs)
∀ i ≤ k. Γ‖ [ f 7→ µα f . ‘nk (τk)→ τ′k; xi 7→ τi ] ` ei : τ′i
Γ ` λ f ‘nk (xk)→ ek : µα f . ‘nk (τk)→ τ′k

(app)1
Γ ` e : ‘nk (τk)→ τ′k Γ ` e′ : ‘nd (τd)
Γ ` e e′ : τ′d

(let)
Γ ` e : τ Γ ` e′ [e/x] : τ′
Γ ` let x = e in e′ : τ′

whered≤ k

(app)2
Γ ` e : ‘nk (τk)→ τ′k Γ ` e′ : [> α ]
Γ ` e e′ : ‘nk (τk)→ τ′k ([> α ])

(app)3
Γ ` e : 〈νk→ τk 〉 Γ ` e′ : νd

Γ ` e e′ : τd

replace[> α ] above with[< ‘ni (τi) | . . . ], whered≤ k
wherei ≤ k

Figure 2. Type Rules

lation useful for an elegant specification of the type inference algo-
rithm. τ\E is a constrained type, where “\ ” reads “where” andE
is a set of equational constraints of the formτ1 = τ2.

Type environmentΓ is a mapping from variables to types. Given a
type environmentΓ, the type inference system derives a constrained
type τ\E for an expressione. This is written as atype judgement
Γ `inf e : τ\E under the condition thatE is consistent.

The following definition defines consistent and inconsistent sets.

DEFINITION 4.1 (CONSTRAINT CONSISTENCY). A constraint
τ1 = τ2 is consistent if either:

1. τ1 ∈ TyVar or τ2 ∈ TyVar;

2. τ1 = τ andτ2 = τ;

3. τ1 = ‘n(τ) andτ2 = ‘n(τ′);

4. τ1 = ‘n(τ) andτ2 = [> α ] or its symmetry;

5. τ1 = [> α ] andτ2 = [> α′ ];

6. τ1 = ‘nk (τk)→ τ′k andτ2 = 〈ν→ τ′ 〉 or its symmetry;

7. τ1 = 〈ν1→ α1 〉 andτ2 = 〈ν2→ α2 〉;

8. τ1 = [> α ] andτ2 = [< ‘nk (τk) ] or its symmetry;

9. τ1 = µα. ‘nk (τk)→ τ′k andτ2 = 〈ν→ τ′ 〉 or its symmetry;

Otherwise it is inconsistent.

A constraint setE is consistent if all the constraints in the set are

consistent.

The type inference system assigns allDV expressions constrained
types of the formτ\E to indicate an expression of typeτ which is
constrained by the constraints inE.

Following defines a closed constraint setE. A closed constraint set
E will have any type errors immediately apparent in it. In the defi-
nition E1]E2 denotes the closed union of sets of constraints: union
followed by closure.]1 denotes closure with respect toPhase 1
only.

DEFINITION 4.2 (CLOSED CONSTRAINT SET). A set of type
constraints E isclosediff

Phase 1

1. (Match) If {‘nk (τk)→ τ′k = 〈 [> α ] → α′ 〉, [> α ] =
‘nd (τo)} ⊆ E then{α′ = τ′d, τo = τd} ⊆ E if d≤ k else fail.

2. (Variant) If ‘n(τ) = ‘n(τ′) ∈ E thenτ = τ′ ∈ E.

3. (Same-Arg) If〈ν→ α〉= 〈ν→ α′ 〉 ∈ E thenα = α′ ∈ E.

4. (Transitivity) If{τ = τ′, τ′ = τ′′} ⊆ E thenτ = τ′′ ∈ E.

5. (Symmetry) Ifτ = τ′ ∈ E thenτ′ = τ ∈ E.

Phase 2

• (Simulate) If ‘nk (τk)→ τ′k = 〈 [> α ] → α′ 〉 ∈ E and
¬∃n,τ. [> α ] = ‘n(τ)∈E then[> α ] = [< ‘ni (τi) | . . . ] ∈E,
such that i≤ k and E]1 {[> α ] = ‘ni (τi)} is consistent.

The closure is divided in two sequential phases. Phase 2 is com-
puted only after Phase 1 completes.



(num) /0 `inf i : Int\ /0 i ∈ Num

(variant)
Γ `inf e : τ\E
Γ `inf ‘n(e) : ‘n(τ)\E

(var)
x∈ dom(Γ) Γ(x) = τ\E
Γ `inf x : τ\E

(abs)
∀ i ≤ k. Γ‖ [ f 7→ α f ; xi 7→ αi ] `inf ei : τi \E

Γ `inf λ f ‘nk (xk)→ ek : ‘nk (αk)→ τk\E α f = ‘nk (αk)→ τk ∈ E
whereα f andαk are fresh type variables

(app)
Γ `inf e : τ\E Γ `inf e′ : τ′ \E
Γ `inf e e′ : α\E {τ = 〈 [> α′ ]→ α〉, [> α′ ] = τ′ } ⊆ E

(let)
Γ `inf e : τ\E Γ `inf e′ [e/x] : τ′ \E
Γ `inf let x = e in e′ : τ′ \E

whereα andα′ are fresh type variables.

Figure 3. Type Inference Rules

The (Match) rule is the crux of our type inference system. It en-
ables match-functions to choose the return type corresponding to
the argument type. The closure rule for normal functions is “if
τ1 → τ′1 = τ→ τ′ ∈ E then{τ = τ1, τ′1 = τ′} ⊆ E”. (Match) is
the generalization of this rule to match-functions. When the argu-
ment type to the match-function is known,i.e. it is ‘nd (τo), then
(Match) simply selects the matching sub-function and applies the
above regular function closure rule. Unknown arguments introduce
no immediate type errors and so are not analyzed. If the variant is
not in the match-type, there is no closure ofE: closure fails.

(Variant) ensures that if two variants are equal they have the same
argument type.

(Same-Arg)ensures that identical variants applied to the same
match-function have identical component types.

(Simulate)adds precision to the type of an unknown argument ap-
plied to a known match-function. So if‘nk (τk)→ τ′k = 〈 [> α ]→
α′ 〉 ∈ E but¬∃n,τ. [> α ] = ‘n(τ) ∈ E after Phase 1, then[> α ]
doesn’t have a known concrete type. However, the above constraint
does imply that[> α ] could have been ‘n1 (τ1) or ‘n2 (τ2) or . . . or
‘nk (τk), and it would still have been consistent; anything else would
have made it inconsistent. So to find all the valid ‘ni (τi)’s we add
[> α ] = ‘ni (τi) to E for all i ≤ k separately and compute the clo-
sure with respect to Phase 1. If the resulting closed set is consistent
we know that ‘ni (τi) is a valid type for[> α ]. At the end of all the
simulationswe add[> α ] = [< ‘ni (τi) | . . . ] to E where ‘ni (τi) is
a valid type for[> α ].

The closure is trivially seen to be computable inO(n3) time, as-
sumingK� n, wheren= |E | andK = max(k) ∀k. ‘nk (τk)→ τ′k =
〈τ→ α′ 〉 ∈ E. In the rare case whereK ≈ n, the time complexity
would beO(n3K). The factorK is introduced due to(Match)hav-
ing to search through at most each of theK sub-functions to find a
match (or an absence thereof).

We now define the type inference algorithm.

ALGORITHM 4.1 (TYPE INFERENCE). Given an expression e
its typeτ\E (or type-error) can be inferred as follows:

1. Produce the unique proof tree/0 ` e : τ\E via the type infer-
ence rules in Figure 3.

2. Compute E+ = closure(E).

3. If E+ is consistent thenτ\E+ is the inferred type for e, else
there is a type-error in e.

By inspection of the type inference rules in Figure 3, it is easy to
see this process is deterministic, based on the structure ofe, modulo
the choice of fresh type variables.

We don’t prove the soundness of the type inference algorithm.
Rather we give a Simpfication Algorithm 4.2, which simplifies the
inferred constrained types to direct-types as per the type rules in
Figure 2 which we have already proven sound, and prove the sound-
ness of this simplification algorithm. However, it would not be very
difficult to verify that the soundness of the type inference algorithm
as well.

4.1 Equational Simplification

Now we present an algorithm for reducing a constrained typeτ\E
to an unconstrained typeτs which contains all the type informa-
tion of τ\E, and prove its soundness. This means direct types
containing the complete type information, without hard-to-digest
type equations, can be presented to programmers. This improves
on [Gar98] which is a lossy method.

We now give the algorithm for simplification. In the following al-
gorithm we handle symmetry implicitly.

ALGORITHM 4.2 (SIMPLIFICATION ). A constrained typeτ\E
can be reduced toτs by the following steps:

1. For all constraints of the formα = 〈ν→ τ′ 〉 ∈ E

E1 = E−{α = 〈ν1→ τ′1 〉, . . . , α = 〈νk→ τ′k 〉}
∪ {α = 〈νk→ τ′k 〉}

2. For all constraint sets of the form{α f = ‘nk (τk)→ τ′k, [>
α ] = τ, α f = 〈 [> α ]→ α′ | . . .〉} ⊆ E1,

E2a = E1−{α f = ‘nk (τk)→ τ′k}
τ2\E2 = [µα f . ‘nk (τk)→ τ′k/‘nk (τk)→ τ′k] (τ\E2a)

if τ occurs in‘nk (τk)→ τ′k then:
τ3\E3 = [α f ([> α ])/α′] (τ2\E2)

else
τ3\E3 = τ2\E2

E4 = E3−{α f = 〈 [> α ]→ α′ | . . .〉}

3. For all constraint sets of the form{[> α ] = τ, α f = 〈 [>
α ]→ α′ | . . .〉} ⊆ E4,

if α f occurs inτ then:
E5 = E4−{α f = 〈 [> α ]→ α′ | . . .〉}



∪ {α f = µα f . 〈τ→ α′ | . . .〉}
else

E5 = E4

4. τs = Unify(E5) (τ3)

Unify( /0) = /0
Unify(E ∪ {α = τ}) = if τ≡ α′ then

if α≤lexicographicα′ then
Unify([α′/α]E)◦ [α′/α]

else
Unify(E)

else ifα occurs inτ then
Unify([µ α. τ/α]E)◦ [µ α. τ/α]

else
Unify([τ/α]E)◦ [τ/α]

Unify(E ∪ {[> α ] = [> α′ ]}) = Unify(E ∪ {α = α′})
Unify(E ∪ {[> α ] = ‘n(τ)}) =

Unify([‘n(τ)/[> α ]]E)◦ [‘n(τ)/[> α ]]
Unify(E ∪ {‘nk (τk)→ τ′k = 〈ν→ τ′ 〉}) =

if τ′ ≡ α and¬∃τ.α = τ ∈ E then
Unify([‘nk (τk)→ τ′k (ν)/α]E)◦

[‘nk (τk)→ τ′k (ν)/α]
else

Unify(E)
Unify(E ∪ {τ = τ}) = Unify(E)
Unify(E ∪ {‘n(τ) = ‘n(τ′)}) = Unify(E)
Unify(E ∪ {〈ν1→ α1 〉= 〈ν2→ α2 〉}) = Unify(E)
Unify(E ∪ {[> α ] = [< ‘nk (τk) ]}) =

Unify([[< ‘nk (τk) ]/[> α ]]E)◦
[[< ‘nk (τk) ]/[> α ]]

Unify(E ∪ {µ α. ‘nk (τk)→ τ′k = 〈ν→ τ′ 〉}) =
if τ′ ≡ α and¬∃τ.α = τ ∈ E then

Unify([(µα. ‘nk (τk)→ τ′k) (ν)/α]E)◦
[(µα. ‘nk (τk)→ τ′k) (ν)/α]

else
Unify(E)

Figure 4. Unify(E)

Unify(E) defined in Figure 4 is a recursive function, which takes
in a set of constraints and returns a composition of substitu-
tions. When this composition is applied toτ in Step 4 above, the
constraint-free type results.Steps 2 and 3 generate recursive types.

The above algorithm can be thought of as 3 phases, revolving
aroundUnify:

1. Pre-Unify: which adds and removes contraints fromE to gen-
erateE′. This includes Steps 1, 2 and 3.

2. Unify: which computesUnify(E′) which generates a compo-
sition of substitutionss.

3. Post-Unify: which appliess to τ to generate unconstrained
direct-typeτs i.e. Step 4.

Note thatUnify() simply throws away some constraints like ‘n(τ) =
‘n(τ′) and 〈ν1 → α1 〉 = 〈ν2 → α2 〉; this is sound as closure
would have extracted all relevant information from these con-
straints, hence they can be discarded safely.

The examples in Section 5 illustrate the significance of each of the
steps as wellUnify().

4.2 Soundness of Simplification

We prove the following lemmas,

LEMMA 4.1 (TERMINATION OF SIMPLIFICATION ).
simplify(τ\E) = τs iff E is closed and consistent.

The full proof appears in Appendex A.2. The simplification algo-
rithm is sound in the sense that a derivation in the (non-inference)
type system may be constructed using the type resulting from sim-
plification. Thus, the type inference algorithm plus simplification
amounts to a type inference algorithm for the non-inference type
system.

LEMMA 4.2 (SOUNDNESS OFSIMPLIFCATION). If Γ `inf e :
τ\E and simplify(τ\E+) = τs, where Γ = x j 7→ α j and
simplify(α j \E+) = τ j , and E+ is non-cyclic, thenΓ′ ` e: τs where

Γ′ = [τ j/α j ]Γ.

The full proof appears in Appendex A.2.

For simplicity, we only consider non-cyclicE i.e. it doesn’t con-
stain cyclic constraints and hence no recursive types, in all the
proofs.

5 Examples

We now illustrate our type inference system to infer constrained
types and equational simplification algorithm to simplify these
inferred constrained types into human-readable non-constrained
types. Let us start with a basic match-function:

λ f ‘ int ()→ 1 | ‘bool()→ ‘ true() (1)

The following would be the inferred type of (1):

(‘ int ()→ Int | ‘bool()→ ‘ true())\ /0

Since the set of constraints is/0, the above without/0 is the simplified
type as well. An example of a corresponding application could be:

(λ f ‘ int ()→ 1 | ‘bool()→ ‘ true()) ‘ int () (2)

(app) would derive the type of (2) as:

′a\{(‘ int ()→ Int | ‘bool()→ ‘ true()) = 〈 [> ′b]→ ′a〉, [> ′b] = ‘ int ()}

On closure, (Match) would generateInt = ′a∈ E+. Had ‘bool() had
been the argument, then (Match) would have generated‘ true() =
′a, thus achieving the desired result of tying the return type of a
function to the argument type instead to the whole function. The
simplified type of (2) would beInt by direct substitution of′a using
the constraintInt = ′a.

Let us now look at a more interesting example, when the type of the
argument is unknown:

λ f ‘ redirect(m)→ e1 m (3)

wheree1 is (1) above. Ifm is assigned type variable′m, the inferred
type of juste1 m by (app) would be:

′a\{(‘ int ()→ Int | ‘bool()→ ‘ true()) = 〈 [> ′b]→ ′a〉, [> ′b] = ′m}

[> ′b] = ′m constrains′m to a variant type. Hence if the above type
is ′a\E′ the type of (3) by (abs) would be:

‘ redirect(′m)→ ′a\E′ ∪ {′ f = ‘ redirect(′m)→ ′a} ≡ ′a\E

The simplified type of (3) would then be:



‘ redirect([> ′b])→ (‘ int ()→ Int | ‘bool()→ ‘ true()) [> ′b]
or
‘ redirect([< ‘ int () | ‘bool() ])→

(‘ int ()→ Int | ‘bool()→ ‘ true()) [< ‘ int () | ‘bool() ]

mainly due toUnify() on ‘ int ()→ Int | ‘bool()→ ‘ true() = 〈 [> ′b]→ ′a〉
and Phase 2 of closure. As is clearly evident this simplified type is
more precise but verbose and hence less-readable as well.

Now consider the following application with first-class message
passing where‘ int () is the first-class message:

(λ f ‘ redirect(m)→ e1 m) (‘ redirect(‘ int ())) (4)

(app) would infer its type as:

′b\E ∪ {‘ redirect(′m)→ ′a = 〈 [> ′c]→ ′b〉, [> ′c] = ‘ redirect(‘ int ())}

The simplified type of (4) would beInt. Let us go through the steps.
(Match)closure on the above constraint generates:

{′a = ′b, ‘ int () = ′m}

Next, ‘ int () = ′m with [> ′b] = ′m on (Transitivity) gives [> ′b] = ′m
and{(‘ int ()→ Int | ‘bool()→ ‘ true()) = 〈 [> ′b]→ ′a〉, [> ′b] = ‘ int ()}
on (Match)generates:

mathrmInt= ′b

Unify() with Int = ′b generates a substitution[Int/′b] and hence the
simplified type isInt.

Lets now consider the case when the match-function is unknown:

λ f ‘dummy(o)→ o (‘zero()) (5)

(abs) with (app) will infer the following constrained type:

‘dummy(′o)→ ′b\{′o = 〈 [> ′c]→ ′b〉, [> ′c] = ‘zero()}

The simplified type would be:

‘dummy(〈 ‘zero()→ ′b〉)→ ′b

by Step 1 of Algorithm 4.2 and substitutions byUnify().

Now consider a minor variant of (5):

λ f ‘dummy(o)→ o (‘m());o (‘n()) (6)

The simplified type of (6) mainly by Step 1 of Algorithm 4.2 would
be:

‘dummy(〈 ‘m()→ ′a | ‘n()→ ′b〉)→ ′b

Let us look at the case when both the match-function and the argu-
ment is unknown:

λ f ‘dummy(o)→ λ f ‘ redirect(m)→ o m (7)

(abs) and (app) would infer the type of (7) as:

‘dummy(′o)→ ‘ redirect(′m)→ ′a\{′o = 〈 [> ′b]→ ′a〉, [> ′b] = ′m}

and the simplified type would be:

‘dummy(〈 [> ′b]→ ′a〉)→ ‘ redirect([> ′b])→ ′a

Now lets consider the most complicated examplewhich shows the
real usefulness of(Simulate)closure rule:

λ f ‘ redirect(m)→ (λ f ‘a(x)→ x > 0 |‘b(x)→ x+1) m;
(λ f ‘b(x)→ x+0 | ‘c(x)→ x == 1) m

(8)

It can be deduced by inspection thatm could only be substituted
‘b at run-time since it is the only variant name present in both
match-functions and hence the return type ofλ f redirect could only
be Int and neverBool.

Our system (without Closure Phase 2) will, however, generate only
the following constraints even after closure:

{(‘a(x)→ Bool | ‘b(x)→ Int) = 〈 [> ′m1 ]→ ′e〉, [> ′m1 ] = ′m
(‘b(x)→ Int | ‘c(x)→ Bool) = 〈 [> ′m2 ]→ ′ f 〉, [> ′m2 ] = ′m}

There is no constraint on return types′e and ′ f nor any constraint
of the form ′m= Int. This constraint set is still consistent since the
messagem in the program is not sent and hence the above code is
essentially dead. The simplified type of (8), anologous to that of
(3), would be:

‘ redirect([> ′m2 ])→ (‘b()→ Int | ‘c()→ Bool) [> ′m2 ]

If m were sent in the future as say‘a(5), then the constraints

{(‘b(x)→ Bool | ‘c(x)→ Int) = 〈 [> ′m2 ]→ ′ f 〉, [> ′m2 ] = ‘a(Int)}

would be generated and(Match) would fail. Thus the program
would not typecheck.

Had(Simulate)been computed, it would have generated

[> ′m1 ] = [< ‘b() ], [> ′m2 ] = [< ‘b() ]

resulting in the simplified type of (8) to be:

‘ redirect([< ‘b() ])→ (‘b()→ Int | ‘c()→ Bool) [< ‘b() ]

which clearly implies thatInt is the only possible return type for
‘ redirect.

Now lets take a look at expressions which result in cyclic types
i.e.µ α. τ. Neither type derivation nor closure generate cyclic types;
they are only generated duringsimplify(),

λ f ‘ this()→ f (9)

The simplified type would be:

µ ′ f . ‘ this()→ ′ f

maily due to Step 2 of Algorithm 4.2.

Consider a similar example:

λ f ‘ this(x)→ f x (10)

The simplified type would be:

µ ′ f . ‘ this([> ′a])→ (′ f ) [> ′a]

and with(Simulate)

µ ′ f . ‘ this(µ[> ′a]. [< ‘ this([> ′a]) ])→
′ f ( µ[> ′a]. [< ‘ this([> ′a]) ] )

maily due to Step 2 of Algorithm 4.2 andUnify on cyclic constraint
′m= [< ‘ this(′m) ] such that′m= [> ′a] is in the generated set of con-
straints.

Lets consider an example of self-application:

λ ‘dummy(x)→ x (‘self(x)) (11)

The simplified type will be:

‘dummy(µ′s. 〈 ‘self(′s)→ ′a〉)→ ′a



maily due to Step 3 of Algorithm 4.2.

6 Encoding Objects and Other Features

We now show how a collection of simple macros allow object-based
programs to be faithfully encoded intoDV.

The basic idea is to encode classes and objects as match-functions
and messages as polymorphic variants, thus reducing message-
sending to simple function application. There is nothing unusual
in the translation itself, the main feature is the expressiveness of its
typing: match types allow arbitrary objects to typecheck encoding
messages as variants.

DEFINITION 6.1. The object syntax is defined by the following
translation.

(class) Jclass(λthis‘nk (xk)→ ek)K = λthis → λthis‘nk (xk)→ Jek K
(new) JneweK = JeK ()
(send) Je1← e2 K = Je1 K Je2 K
(message)J ‘n(e)K = ‘n(JeK)

Since match-functions are recursive, we get recursive objects
with this for self-reference within the object. We now illus-
trate this encoding withftpProxy example from the introduction.

J let ftp = new(class(λ f ‘get()→ 1)) in
let ftpProxy=

new(class(λ f ‘send(m)→ (ftp←m))) in
ftpProxy← ‘send(‘get())K

⇓ (translation to DV)

let ftp = (λ f → λ f ‘get()→ 1) () in
let ftpProxy=

(λ f → λ f ‘send(m)→ (ftp m)) () in
ftpProxy‘send(‘get())

It creates newftp andftpProxyobjects withftpProxydelegating mes-
sages toftp. For simplicity,ftp returns an integer in response to the
‘get request.

The simplified type offtpProxyproduced by our system would be:

‘send([> ′m])→ (‘get()→ Int) [> ′m]

and with(Simulate):

‘send([< ‘get() ])→ (‘get()→ Int) ([< ‘get() ])

which is similar to example (3) in Section 5. We do not deal with
inheritance here, but the various standard approaches should apply.

We show that records and if-then-else can also be encoded with
variants and match-types alone, thus defining a very expressive lan-
guage.

6.1 Encoding Records

In Section 1.1 we discussed the duality of variants and records. We
showed how the ML type system allows only records with all ele-
ments of the same type to be encoded in terms of variants. We now
show how match-functions can fully and faithfuly encode records.
This should not be surprising given the above encoding of objects.

A match-function is essentially a sophisticated form of the ML
match statement. Hence, record encoding of a match-function
would be identical to that ofmatch given in Section 1.1. The key

observation is that, since every case of the match can return a dif-
ferent type, it allows records with differently-typed fields to be en-
coded. For example, the record{l1 = 5, l2 = ‘wow(3)} is encoded as
λ f ‘ l1 (x)→ 5 | ‘ l2 (x)→ ‘wow(3) and has type(‘ l1 (′a)→ Int | ‘ l2 (′b)→
‘wow(Int)).

6.2 Encoding if-then-else

if -then-elsestatements can be easily encoded via match-functions
using polymorphic variants‘ true() and ‘ false() to correspond to
boolean valuestrue and false respectively. This encoding has the
added advantage that the two “branches” can have different return
types.if -then-elseis then encoded as

J if e then e1 elsee2 K = (λ f ‘ true()→ e1 | ‘ false()→ e2) e

7 Related Work

Previous papers containing static type systems for first class mes-
sages include those by Wakita [Wak93], Nishimura [Nis98], Müller
& Nishimura [MN00], and Pottier [Pot00]. The main advantage
of our system is it is significantly simpler. No existing program-
ming language implementation efforts have included typed first-
class messages, this is an implicit indication of a need for a more
simple type system that captures their spirit.

Wakita [Wak93] presents an inter-object communication frame-
work based on RPC-like message passing. He does not present a
type system for his language so a comparision with his system is
not possible.

Nishimura [Nis98] develops a second order polymorphic type sys-
tem for first-class messages (referring to them asdynamicmessages
in the paper), where type information is expressed by kindings of
the formt :: k, wheret is a type variable indexing the type informa-
tion of the object or message andk is a kind representing the type
information. It has no type directly representing the type struc-
ture of objects and messages. This system is very complicated and
Müller and Nishimura in [MN00] (same second author) attempt to
present a simpler system.

Müller et al [MN00] present a monomorphic type inference system
based on OF (objectsandfeatures) constraints. They extend tradi-
tional systems of feature constraints by a selection constraintx〈y〉z
intended to model the behavior of a generic message-send opera-
tion. This does simplify things a little, but, is arguably still not
simple enough to be implemented in a programming language.

Bugliesi and Crafa [BC99] also attempt to simplify Nishimura’s
original work [Nis98]. However, they choose a higher-order type
system, and abandon type inference.

Pottier [Pot00] like us does not define a type system oriented solely
around first-class messages; it is a very general type system that
happens to be powerful enough to also faithfully type first-class
messages. His approach is in some ways similar to ours in that
conditional types are used. His system is very expressive, but is
also very complex and is thus more suited to program analysis than
the production of human-readable types.

8 Implementation

We have implemented an interpreter forDV in OCaml. It has an
OCaml-style top-loop, in which the user can feed aDV expression.



The interpreter will typecheck it, compute its simplified human-
readable type, evaluate it to a value and then display both the value
and the type.

The core of the interpreter, which includes the Type Inference (4.1)
and Simplification (4.2) Algorithms, is only a few hundred lines of
code. This further validates our assertion about the simplicity of the
DV type system.

The source code along with documentation and examples can be
found athttp://www.cs.jhu.edu/˜pari/match-functions/.
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A Proofs

A.1 Soundness of the Type System

We prove soundness of the type system by demonstrating a subject reduction property.

LEMMA A.1.1 (SUBSTITUTION). If Γ‖ [x 7→ τx] ` e : τ andΓ ` e′ : τ′x such thatτx � τ′x, thenΓ ` e[e′/x] : τ′such thatτ� τ′.

PROOF. Follows induction on the structure ofe. For simplicity we ignore the (sub) case as well as recursive match-functions.

1. (num)e≡ i. Proof is trivial.

2. (var)e≡ x andx∈ dom(Γ).

By (var), Γ ` x : τ whereΓ(x) = τ.

By induction hypothesis, letΓ(x[e′/x]) = τ′ whereτ� τ′.

Hence, by (var), Γ ` x[e′/x] : τ′.

3. (variant)e≡ ‘n(ev)

By (variant), let Γ ` ‘n(ev) : ‘n(τv) whereΓ ` ev : τv. Also letx 7→ τx ∈ Γ.

By induction hypothesis, letΓ′ ` ev [e′/x] : τ′v andΓ′ ` e′ : τ′x, whereΓ′ = Γ−{x 7→ τx} such thatτx � τ′x andτv � τ′v.

Now, ‘n(ev) [e′/x] = ‘n(ev [e′/x]). Hence, by (variant), Γ′ ` ‘n(ev[e′/x]) : ‘n(τ′v). Also, by Case 6 of Definition 3.1, ‘n(τv)� ‘n(τ′v).

4. (abs)e≡ ‘nk (xk)→ ek

By (abs), Γ ` ‘nk (xk)→ ek : ‘nk (τk)→ τ′k where∀ i ≤ k. Γ‖ [xi 7→ τi ] ` ei : τ′i . Also let x 7→ τx ∈ Γ and, without loss of generality,
x /∈ {xi}.

By induction hypothesis, let∀ i ≤ k.Γ′ ‖ [xi 7→ τi ] ` ei [e′/x] : τ′′i , whereΓ ` e′ : τ′x andΓ′ = Γ−{x 7→ τx} such thatτx � τ′xandτ′k � τ′′k.

Now, (‘nk (xk)→ ek)[e′/x] = ‘nk (xk)→ (ek[e′/x]). Thus, by (abs), Γ′ ` ‘nk (xk)→ (ek[e′/x]) : ‘nk (τk)→ τ′′k. Also, by Case 2 of

Definition 3.1,‘nk (τk)→ τ′k � ‘nk (τk)→ τ′′k.

5. (app)e≡ eo ev. There are 3 different cases:

(a) (app)1. By (app)1, Γ ` eo ev : τ′d whereΓ ` eo : ‘nk (τk)→ τ′k, Γ ` ev : ‘nd (τd) for d≤ k. Also, letx 7→ τx ∈ Γ.

By induction hypothesis and Case 2 of Definition 3.1, letΓ′ ` eo [e′/x] : ‘nk (τ′′k)→ τ′′′k andΓ′ ` ev [e′/x] : ‘nd (τ′′d) whereΓ ` e′ : τ′x
andΓ′ = Γ−{x 7→ τx} such thatτx � τ′x, τk � τ′′k andτ′k � τ′′′k.

Now, (eo ev) [e′/x] = (eo [e′/x]) (ev [e′/x]). Thus, by (app)1, Γ′ ` (eo [e′/x]) (ev [e′/x]) : τ′′′d and by hypothesis we knowτ′d � τ′′′d.

(b) (app)2. By (app)2, Γ ` eo ev : ‘nk (τk)→ τ′k ([< ‘ni (τi) | . . . ]) whereΓ ` eo : ‘nk (τk)→ τ′k, Γ ` ev : [< ‘ni (τi) | . . . ] for i ≤ k.
Also, letx 7→ τx ∈ Γ andΓ′ = Γ−{x 7→ τx}. Assume,Γ ` e′ : τ′x such thatτx � τ′x. Also, (eo ev) [e′/x] = (eo [e′/x]) (ev [e′/x]).

Now there two possible choices for the induction hypothesis :

i. By induction hypothesis and Case 2 of Definition 3.1, letΓ′ ` eo [e′/x] : ‘nk (τ′′k)→ τ′′′k andΓ′ ` ev [e′/x] : [< ‘ni (τ′′i) | . . . ]
such thatτk � τ′′k andτ′k � τ′′′k.

Thus, by (app)2, Γ′ ` (eo [e′/x]) (ev [e′/x]) : ‘nk (τ′′k)→ τ′′′k ([< ‘ni (τ′′i) | . . . ]) and by Case 2 of Definition 3.1,

‘nk (τk)→ τ′k ([< ‘ni (τi) | . . . ])� ‘nk (τ′′k)→ τ′′′k ([< ‘ni (τ′′i) | . . . ]).

ii. By induction hypothesis and Cases 2 and 6 of Definition 3.1, letΓ′ ` eo [e′/x] : ‘nk (τ′′k)→ τ′′′k andΓ′ ` ev [e′/x] : ‘ni (τ′′i) for

somei ≤ k such thatτk � τ′′k andτ′k � τ′′′k.



Thus, by (app)2, Γ′ ` (eo [e′/x]) (ev [e′/x]) : τ′′′i and by Cases 2 and 5 of Definition 3.1,‘nk (τk)→ τ′k ([< ‘ni (τi) | . . . ]) �
‘nk (τ′′k)→ τ′′′k ([< ‘ni (τ′′i) | . . . ])� τ′′′i .

(c) (app)3. By (app)3, Γ ` eo ev : τd whereΓ ` eo : 〈νk→ τk 〉, Γ ` ev : νd for d ≤ k. Also, letx 7→ τx ∈ Γ andΓ′ = Γ−{x 7→ τx}.
Assume,Γ ` e′ : τ′x such thatτx � τ′x. Also, (eo ev) [e′/x] = (eo [e′/x]) (ev [e′/x]).

Now there two possible choices for the induction hypothesis :

i. By induction hypothesis and Case 2 of Definition 3.1, letΓ′ ` eo [e′/x] : 〈ν′k→ τ′k 〉 andΓ′ ` ev [e′/x] : ν′d such thatνk � ν′k
andτk � τ′k.

Now, (eo ev) [e′/x] = (eo [e′/x]) (ev [e′/x]). Thus, by (app)3, Γ′ ` (eo [e′/x]) (ev [e′/x]) : τ′d and we know by hypothesis
τd � τ′d.

ii. By induction hypothesis, letΓ′ ` eo [e′/x] : ‘nk+l (τ′k+l )→ τ′′k+l and Γ′ ` ev [e′/x] : ‘nd (τ′d) such thatνk � ‘nk (τ′k) and

τk � τ′′k.

Thus, by (app)3, Γ′ ` (eo [e′/x]) (ev [e′/x]) : τ′′d and we know by hypothesisτd � τ′′d.

6. (let) e≡ let y = e1 in e2.

By (let), let Γ ` e : τ2 whereΓ ` e1 : τ1 andΓ ` e2 [e1/y] : τ2. Also, letx 7→ τx ∈ Γ. Without loss of generality, we assumex 6= y.

By induction hypothesis, letΓ′ ` e1 [e′/x] : τ′1, Γ′ ` e2 [e1/y] [e′/x] : τ′2 andΓ ` e′ : τ′x, whereΓ′ = Γ−{x 7→ τx} such thatτx� τ′x, τ1� τ′1
andτ2 � τ′2.

Now, x 6= y implies (let y = e1 in e2) [e′/x] = let y = e1 [e′/x] in e2 [e′/x]. Similarly, e2 [e1/y] [e′/x] = e2 [e′/x] [e1/y]. Hence by (let),
Γ′ ` e[e′/x] : τ′2.

LEMMA A.1.2 (SUBJECTREDUCTION). If /0 ` e : τ and e−→1 e′ then /0 ` e′ : τ′ such thatτ� τ′.

PROOF. Follows by strong induction on the depth of the type derivation tree,i.e., the induction hypothesis applies to all trees of depthn−1
or less, wheren is the depth of the proof tree of/0 ` e : τ. Hence, following are all the possible rules that can be applied as the last step of
the type derivation of/0 ` e : τ. (Note that (app)2 and (app)3, will never be applied as the last step, since the argument in (app)2 and both the
applicand and the argument in (app)3 are program variables, and hence the application expression is not closed. By the same argument (var)
will also never be the last step. These cases are handled in the Substitution Lemma.)

1. (num). Proof is trivial.

2. (variant).

Hence,e≡ ‘n(ed) and let the last step of the type derivation be/0 ` ‘n(ed) : ‘n(τd) and /0 ` ed : τd the penultimate one.

By (variant), ‘n(ed)−→1 ‘n(e′d) whereed −→1 e′d.

By induction hypothesis, let/0` e′d : τ′d such thatτd� τ′d. Hence by (variant), /0` ‘n(e′d) : ‘n(τ′d). We know by Case 6 of Definition 3.1,
‘n(τd)� ‘n(τ′d).

3. (abs)

Hence,e≡ ‘nk (αk)→ ek. The proof in this case trivial, since a‘nk (αk)→ ek ∈Val, hence it evaluates to itself.

4. (app)1

Hence,e≡ eo ev. The cases wheneo andev are not both values are analogous to Case 2. Suppose now that botheo, ev ∈ Val then
e≡ (λ f ‘nk (xk)→ e′k) ‘n(v).

Hence by (app)1, let the the last step of the type derivation be/0` e: τ′d for d≤ k and,/0` λ f ‘nk (xk)→ e′k : ‘nk (τk)→ τ′k, ∀ i ≤ k. /0‖ [ f 7→
‘nk (τk)→ τ′k; xi 7→ τi ] ` ei : τ′i and /0 ` ‘n(v) : ‘nd (τd) be the penultimate ones, wheren≡ nd; while be /0 ` v : τd the second to last.



By (app), let e−→1 ed [v/xd] [λ f ‘nk (xk)→ e′k/ f ]≡ e′.

Now by Lemma A.1.1,/0 ` e′ : τ′′d such thatτ′d � τ′′d.

5. (let)

Hence,e≡ let x = e1 in e2. There are two possible cases:

(a) e1 /∈ Val.

Hence by (let), let the last step of the type deriviation be/0 ` e : τ and, /0 ` e1 : τ1 and /0 ` e2 [e1/x] : τ be the penultimate ones.

By (let), let e−→1 (let x = e′1 in e2)≡ e′ wheree1 −→1 e′1.

By induction hypothesis, let/0 ` e′1 : τ′1 such thatτ1 � τ′1 and /0 ` e2 [e′1/x] : τ′ such thatτ� τ′. Hence by (let), /0 ` e′ : τ′ where
τ� τ′.

(b) e1 ∈ Val. So lete≡ let x = v in e2.

Hence by (let), let the last step of the type deriviation be/0 ` e : τ and, /0 ` v : τv and /0 ` e2 [v/x] : τ be the penultimate ones.

By (let), let e−→1 e2 [v/x]≡ e′.

We already know,/0 ` e2 [v/x] : τ and by Case 1 of Definition 3.1,τ� τ.

6. (sub)

In a type derivation we can collapse all the successive (sub)’s into one (sub). Hence, we know that the penultimate rule willnot be a
(sub), and thus by the (strong) induction hypothesis we can assume the lemma to hold up to the second to last rule and prove it for the
penultimate rule via one of the above cases. The last step then follows via (sub).

LEMMA A.1.3 (SOUNDNESS OFTYPE SYSTEM). If Γ ` e : τ then e either diverges or computes to a value.

PROOF. By induction on the length of computation, using Lemma A.1.2.

A.2 Soundness of Simplification

LEMMA A.2.1 (CANONICAL CONSTRAINT FORMS). Following are the canonical constraint formsτ1 = τ2 that can occur in any consis-
tent E:

1. α = τ

2. τ = τ;

3. ‘n(τ) = ‘n(τ′)

4. ‘n(τ) = [> α ]

5. [> α ] = [> α′ ]

6. ‘nk (τk)→ τ′k = 〈ν→ τ′ 〉

7. 〈ν1→ α1 〉= 〈ν2→ α2 〉

8. [> α ] = [< ‘nk (τk) ]

9. µ α. ‘nk (τk)→ τ′k = 〈ν→ τ′ 〉

and their corresponding symmetric constraints.

PROOF. Directly follows from Definition 4.1.



LEMMA A.2.2 (TERMINATION OF UNIFY). Unify(E) terminates for all closed and consistent E.

PROOF. Unify(E) is a recursive function withE = /0 as its base or terminating case. At each level of recursionUnify(E) removes one
constraint, except atUnify(E ∪ {[> α ] = [> α′ ]}) when it addsα = α′ to E. But it can be easily seen thatα = α′ will be removed at the
next step without adding any additional constraints. Also there is a case for each canonical constraint form in any consistentE. Also sinceE
is closed none of the intermediate substitutions will produce an inconsistent constraint. Hence ultimatelyE will be reduced to/0 andUnify(E)
will terminate, returning a composition of substitutions.

LEMMA A.2.3 (TERMINATION OF SIMPLIFICATION ). simplify(τ\E) = τs iff E is closed and consistent.

PROOF. Step 4 of Simplificaton Algorithm 4.2 impliessimplify(τ\E) = τs iff Unify(E5) terminates. By Lemma A.2.2Unify(E5) terminates
iff E5 is closed and consistent. It can be easily seen that the previous steps ofsimplify(τ\E) do not introduce nor remove any inconsistent
constraints inE5. HenceE5 is closed and consistent iffE is closed and consistent.

LEMMA A.2.4 (TYPE STRUCTUREPRESERVATION BY SIMPLIFICATION ). If simplify(τ\E) = τs and τ 6≡ α or [> α ] thenτs has the
same outermost structure asτ i.e. for example,simplify(‘n(τ′)\E+) = ‘n(τ′s) for someτ′s, simplify(‘nk (αk)→ τ′k\E+) = ‘nk (τks)→ τ′ks

for someτks andτ′ks, and so on.

PROOF. Unify(E) only produces substitutions of the form[τ′′ /α] or [τ′′ / [> α ]]. Hence, at Step 4 when the composition of substitutions
generated byUnify(E+

5 ) are applied toτ only the type variables insideτ will get subsituted, neverτ itself, thus at the endτ will retain its
outermost structure.

LEMMA A.2.5 (SUB-SIMPLIFICATION ).

1. If simplify(‘nk (αk)→ τk\E) = ‘nk (τ′k)→ τ′′k thensimplify(αk\E) = τ′k andsimplify(τk\E) = τ′′k.

2. If simplify(‘n(τ)\E) = ‘n(τ′) thensimplify(τ\E) = τ′ and vice-versa.

3. If simplify([< ‘ni (τi) | . . . ]\E) = [< ‘ni (τ′i) | . . . ] thensimplify(τi \E) = τ′i and vice-versa.

PROOF. Directly follows from the fact thatUnify(E) only produces substitutions of the form[τ′′ /α] or [τ′′ / [> α ]].

LEMMA A.2.6 (PRE-UNIFY PROPERTY).

1. If α = τ ∈ E andτ 6= 〈ν→ τ′ 〉 for anyν, τ′, thenα = τ ∈ Pre-Unify(E).

2. If α = τ ∈ E andτ = 〈ν→ τ′ 〉 for someν, τ′, thenα = 〈ν→ τ′ | . . .〉 ∈ Pre-Unify(E).

PROOF. Directly follows from inspection ofPre-Unify.

LEMMA A.2.7 (CONFLUENCE). If τ = τ′ ∈ E, where E is closed, consistent and non-cyclic, andτ,τ′ 6= 〈ν→ τ′′ 〉 for any ν or τ′′, then
simplify(τ\E) = simplify(τ′ \E).

PROOFSKETCH. We observe thatUnify(E) only produces substitutions which substitute a type for a type variable or a variant-type variable.
And the simplified type is generated by applying this composition of substitutions toτ. Hence,simplify(τ\E) = s τ andsimplify(τ′ \E) =
s′ τ′. Now, sinceE is same boths ands′ contain the exact same substitutions, but their orders might differ.

Hence,simplify(τ\E) 6= simplify(τ′ \E) implies s τ 6= s′ τ′, which further implies that two different substitutions[τ1/α] and [τ2/α] exist
in s ands′ such thatτ1 andτ2 have a different outermost structures. In a closed and consistent this is only possible withτ1 = ‘nk (τk)→ τ′k
andτ2 = 〈νk→ τ′′k 〉. However, during the Step 2 of Algorithm 4.2 we removeα = 〈νk→ τ′′k 〉, thus leaving onlyα = ‘nk (τk)→ τ′k in theE
passed toUnify(). Thus, the above case will never arise and the lemma will always hold.

LEMMA A.2.8 (SOUNDNESS OFSIMPLIFICATION ). If Γ `inf e : τ\E and simplify(τ\E+) = τs, where Γ = x j 7→ α j and

simplify(α j \E+) = τ j and E+ is non-cyclic, thenΓ′ ` e : τs whereΓ′ = [τ j/α j ]Γ.

PROOF. Following induction on the structure ofe.

1. (num)e≡ i. Proof is trivial.

2. (variant)e≡ ‘n(e′).

By (variant ), Γ `inf ‘n(e′) : ‘n(τ′)\E whereΓ `inf e′ : τ′ \E. By assumptionsimplify(‘n(τ′)\E+) = τs.

As per Lemma A.2.4, letsimplify(‘n(τ′)\E+) = ‘n(τ′s). Hence by Lemma A.2.5,simplify(τ′ \E+) = τ′s.



By induction hypothesis, letΓ′ ` e′ : τ′s. Hence by (variant), Γ′ ` ‘n(e′) : ‘n(τ′s).

3. (var)e≡ x andx∈ dom(Γ). (If x /∈ dom(Γ) inference fails).

By (var), Γ `inf x : τ\E whereΓ(x) = τ\E.

By induction hypothesis, letsimplify(τ\E+) = τs such thatΓ′ (x) = τs. Hencesimplify(τ\E+) = τs.

By (var), Γ′ ` x : τs.

4. (abs)e≡ λ f ‘nk (xk)→ ek.

By (abs), Γ `inf e : ‘nk (αk)→ τk\E where∀ i ≤ k. Γ‖ [ f 7→ α f , xi 7→ αi ] `inf ei : τi \E andα f = ‘nk (αk)→ τk ∈ E. By assumption

simplify(‘nk (αk)→ τk\E+) = τs. Hence by Lemma A.2.3E+ is consistent.

By Lemma A.2.4, let simplify(‘nk (αk)→ τk\E+) = τs = ‘nk (τ′k)→ τ′′k for some τ′k and τ′′k, and then by Lemma A.2.7,

simplify(α f \E+) = ‘nk (τ′k)→ τ′′k. Then by Lemma A.2.5,∀ i ≤ k. simplify(αi \E+) = τ′i andsimplify(τi \E+) = τ′′i .

Now, by induction hypothesis, let∀ i ≤ k. Γ′ ‖ [ f 7→ ‘nk (τ′k)→ τ′′k; xi 7→ τ′i ] ` ei : τ′′i . Hence by (abs), Γ′ ` e : ‘nk (τ′k)→ τ′′k.

5. (app)e≡ eo ev.

By (app), Γ `inf e : α\E whereΓ `inf eo : τo\E, Γ `inf ev : τv\E and{τo = 〈 [> α′ ]→ α〉, [> α′ ] = τv} ⊆ E. By assumption
simplify(α\E+) = τs. Hence by Lemma A.2.3E+ is consistent. Now, we observe from the type inference rules in Figure 3 and
Definition 4.1 thatτo ≡ ‘nk (αk)→ τ′k or αo andτv ≡ ‘nd (τ) or αv. Hence there are the following possible combinations:

(a) τo ≡ ‘nk (αk)→ τk andτv ≡ ‘nd (τ).

So{‘nk (αk)→ τk = 〈 [> α′ ]→ α〉, [> α′ ] = ‘nd (τ)} ⊆ E. By (Match), we know{α = τd, τ = αd} ⊆ E+ whered≤ k.

By Lemma A.2.4, letsimplify(‘nk (αk)→ τk\E+) = τs = ‘nk (τ′k)→ τ′′k for some τ′k and τ′′k, then by Lemma A.2.5,

simplify(αk\E+) = τ′k and simplify(τk\E+) = τ′′k, and similarly letsimplify(‘nd (τ)\E+) = ‘nd (τ′), thensimplify(τ\E+) =
τ′. By Lemma A.2.7,simplify(τ\E+) = simplify(αd \E+) i.e. τ′ = τ′d andsimplify(α\E+) = simplify(τd \E+) which implies
simplify(α\E+) = τ′′d.

Now, by induction hypothesis, letΓ′ ` eo : ‘nk (τ′k)→ τ′′k andΓ′ ` ev : ‘nd (τ′d). Now, by (app)1, Γ′ ` eo ev : τ′′d.

(b) τo ≡ ‘nk (αk)→ τ′k andτv ≡ αv.

So we know,{‘nk (αk)→ τk = 〈 [> α′ ]→ α〉, [> α′ ] = αv} ⊆ E. Now there are 2 possible cases:

i. αv = ‘nd (τ) ∈ E+. Same as 5a.

ii. αv = ‘nd (τ) /∈ E+.

Hence¬∃n, τ. [> α′ ] = ‘n(τ) ∈ E+. Thus(Simulate)will ensure[> α′ ] = [< ‘ni (αi) | . . . ] ∈ E+ wherei ≤ k. Hence by
(Transitivity), αv = [< ‘ni (αi) | . . . ] ∈ E+. Also, notice that sinceα is freshly generated by (app), ‘nk (αk)→ τk = 〈 [>
α′ ]→ α〉 is the only constraint inE that α occurs; and since(Match) is the only closure rule which can generate another
constraint containingα in E+, which is not applicable in this case, we can infer that¬∃τ. α = τ ∈ E+.

By Lemma A.2.4, letsimplify(‘nk (αk)→ τk\E+) = τs = ‘nk (τ′k)→ τ′′k for someτ′k and τ′′k, then by Lemma A.2.5,

simplify(αk\E+) = τ′k and simplify(τk\E+) = τ′′k. And by Lemma A.2.7,simplify(αv\E+) = [< ‘ni (τ′i) | . . . ]. Hence,

without loss of generality,Unify(‘nk (αk)→ τk = 〈 [> α′ ] → α〉) during simplify(α\E+) will generate a substitution
[‘nk (αk)→ τk ([> α′ ])/α]; which would be the only subsitution onα. Also, Unify([> α′ ] = [< ‘ni (αi) | . . . ]) will
generate[[< ‘ni (αi) | . . . ]/ [> α′ ]]. Hence,simplify(α\E+) = ‘nk (τ′k)→ τ′′k ([< ‘ni (τ′i) | . . . ]).

Now, by induction hypothesis, letΓ′ ` eo : ‘nk (τ′k)→ τ′′k andΓ′ ` ev : [< ‘ni (τ′i) | . . . ]. Hence, by (app)2, Γ′ ` eo ev :

‘nk (τ′k)→ τ′′k ([< ‘ni (τ′i) | . . . ]).



Now, suppose Phase 2 is not computed.

Hence,Unify() will generate substitution[[> α′ ]/αv] and thussimplify(α\E+) = ‘n(τ′k)→ τ′′k ([> α′ ]).

Also, by induction hypothesis, letΓ′ ` eo : ‘nk (τ′k)→ τ′′k andΓ′ ` ev : [> α′ ]. Hence, by (app)2, Γ′ ` eo ev : ‘nk (τ′k)→ τ′′k ([>
α′ ]).

‘nk (τ′k)→ τ′′k ([> α′ ]) is not only almost as expressive as‘nk (τ′k)→ τ′′k ([< ‘ni (τ′i) | . . . ]), but also significantly more
compact and less redundant from the perspective of a human-reader. A human-reader would easily deduce that[> α′ ] could
be replaced by ‘ni (τ′i) for all i ≤ k which is only a little less precise that[< ‘ni (τ′i) | . . . ], which can only be replaced by
‘ni (τ′i)’s contained inside it wherei ≤ k .

(c) τo ≡ αo andτv ≡ ‘nd (τ).

So we know,{αo = 〈 [> α′ ]→ α〉, [> α′ ] = ‘nd (τ)} ⊆ E. Again there are 2 possible cases:

i. αo = ‘nk (αk)→ τk ∈ E+. Same as 5a.

ii. αo = ‘nk (αk)→ τk /∈ E+.

Now duringsimplify(αo\E+), Step 1 of Algorithm 4.2 will addαo = 〈 [> α′ ]→α | . . .〉 toE+ and removeαo = 〈 [> α′ ]→
α〉 from E+. Hence by Lemma A.2.7, letsimplify(αo\E+) = 〈 ‘nd (τ′)→ α | . . .〉 andsimplify(‘nd (τ)\E+) = ‘nd (τ′),
such that by Lemma A.2.5simplify(τ\E+) = τ′. However, since(Match) is not applicable in this case we can infer that
¬∃τ. α = τ ∈ E+ and thussimplify(α\E+) = α.

Now, by induction hypothesis, letΓ′ ` eo : 〈 ‘nd (τ′)→ α | . . .〉 andΓ′ ` ev : ‘nd (τ′). Hence, by (app)3, Γ′ ` eo ev : α.

(d) τo ≡ αo andτv ≡ αv. Same as 5c.

6. (let) let x = e1 in e2.

By (let), Γ `inf e : τ2\E whereΓ `inf e1 : τ1\E andΓ `inf e2 [e1/x] : τ2\E.

Now, by induction hypothesis, letsimplify(τ1\E) = τ′1 andsimplify(τ2\E) = τ′2 such thatΓ′ ` e1 : τ′1 andΓ′ ` e2 [e1/x] : τ′2. Hence
by (let), Γ′ ` e : τ′2.


