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Abstract takes an abstract first-class messages a argument and forwards
it to 0. We can create a Ftp proxy server as:

Messages that can be treated as first-class entities are fiedted

class messagedilVe present a sound unification-based type infer-

ence system for first-class messages. The main contribution of theywhereftp is aFtp object. A typical use of this new proxy is

paper is the introduction of an extended form of function called a

match-functiorto type first-class messages. Match-functions can FtpProxy— send (get('paperpsg?))

be given simple dependent types: the return type depends on the ) )

type of the argument. We encode objects as match-functions andget iS @ method irftp. Delegation of abstract messages cannot be

messages as polymorphic variants, thus reducing message-passin%as'ly expressed W|th01_Jt first-class messages, since the message

to simple function application. We feel the resulting system is sig- ¢an be changed at run-time and hence must be abstracted by a vari-

nificantly simpler than previous systems for typing first-class mes- @Plem. [MNOO] and [Nis98] further discuss how first-class mes-

sages, and may reasonably be added to a language design witholf29es can exploit locality by abstracting remote computations in

overly complicating the type system. distributed object-oriented computing.

let FtpProxy= ProxyServer— new (ftp)

Modern typed object-oriented programming languages (e.g. Java,
Keywords C++) do not support first-class messages. Smalltalk [GR89] and
Obijective-C [PW91] provide untyped first-class messages.
First-class messages, polymorphic variants, object-oriented pro-
gramming, constraint-based type inference, unification, object- The static type-checking of first-class messages presents two main
encoding. difficulties:

1 Introducti 1. Typing first-class messages that can be placed in variables and
ntroauction passed as values,g. m= fmessage(): we need a way to

. . express and type standalone messages.
First-class messages are messages that can be treated as first-class

values and bound to program variables. Hence, we can alsjte- 2. Typing abstract message-passing to objects, suah-asc:

X, Whereobj is an objectx a program variable ane- represents sincex can be any messagedrand these different messages
message passing. Since the message assignedao be varied can have different return types,— x doesn't have a single

at run-time, we can change the message senbjalynamically. return type but rather its type depends upon the type e

This is the exact dual aflynamic dispatchwhere we change the need to be able to encode its static type such that it depends
objectat run-time—here we want to be able to changertiessage on the abstract type of

at runtime.

We solve the first problem by encoding messages as polymorphic

First-class messages are useful in typing delegate objects, which/ariants which have standalone types,, a polymorphic variant

forward messages to other objects. For example, in ‘fmessagé) has type fmessagg).
let m= fmessage () in ‘ The second problem is more challenging, and the most important
let o1 = {forward (x) = 02 < x} in contribution of this paper is the simplicity of its solution. We in-
0l — forward (m) troduce an extended form of function (inspired by SML/NJ’s pat-

ol is a delegate object whef@ward (x) is the method that delegates, tern matching functions) called match-function which always

i.e. forwards,x to 02. fmessage () is the first-class message which ~t@kes a variant as argument and has a return type that can de-
gets assigned to, thenx, and finally forwarded t@2. Such del- pend on the argument variant. We call these dependent types
egate objects are ubiquitous in distributed systems such as proxymatch-types We encode objects as match-functions, thus reduc-
servers giving access to remote services (e.g. ftp) beyond a fire-ing message sending to simple function application. There are sev-
wall. The following is an example of a proxy server cited by eral other solutions to typing first-class messages in the literature
Miiller [MNOO]: [Wak93, Nis98, MNOO, Pot00]; the main advantage of our approach
let ProxyServer= {new (0) = {send (m) = 0+« m}} Is its simplicity.
This creates an obje@troxyServemwith a methochew that receives ~ We organize the rest of the paper as follows. We review OCaml’s
an objecto and returns a second object with a metlea. send polymorphic variants in Section 1.1, and review the duality of



records and variants in Section 1.2. In Section 2 we defiive

a core language with match-functions. In Section 3 we present a
type system foDV that includes match-types, and show it is sound. . .
In Section 4 we present a constraint-based type inference system]--2 The Dua“ty of Variants and Records

for inferring match-types along with an algorithm for simplifying ] ) )

the constrained types to human-readable constraint-free types andt is well-known that variants are duals of records in the same man-
prove its soundness. The net result is a type inference algorithmner as logical “or” is dual to “and”. A variant is this fielt that

for the originalDV type system. Section 5 illustrates all aspects of field or that field ... a record is this fieldnd that fieldand that

the system with a series of examples. In Section 6 we show how field ... Since they are duals, defining a record is related to using a
objects with first-class messages can be faithfully encoded with Variant, and defining a variant is like using a record. In a program-

existing polymorphic variant type systems above.

match-functions. Section 7 discusses the related work.

Some portions of the paper ageayed out They represent optional

ming analogy of DeMorgan’s Laws, variants can directly encode
records and vice-versa.

extensions to our system which enhance its expressiveness at thé* variant can be encoded using a record as follows:

expense of added complexity. The paper can be read assuming the . ., <.t ‘o (
gray portions don't exist. We recommend the readers skip these

X1) = er]... [ Nm(Xm) = em=
s{ng =funx; — €i,...,Nm = fun Xm — €n}

grayed out portions during their initial readings to get a better un- ‘n(e) = (funx— (funr —rnx)) e

derstanding of the core system.

1.1 Review of Polymorphic Variants

Similarly, a record can be encoded in terms of variants as follows:

{hi=e,... . Im=em}=
funs— matchswith‘l1(X) = e |...| Im(X) — em

Variant expressions and types are well known as a cornerstone of : . . . o
functional programming languages. For instance in OCaml we may wherex is any new variable. The corresponding selection encoding is:

declare a type as:

type feeling = Love of string | Hate of string
| Happy | Depressed

ely=e‘l(-)

where_ could be any value.

Polymorphic variants [Gar98, Gar00], implemented as part of Ob- One interesting aspect about the duality between records and vari-

jective Caml [LDG02], allow inference of variant types, so type

ants is thabothrecords and variants can encode objects. Tradition-

declarations like the above are not needed: we can directly write ally, objects have been understood by encoding them as records,

expressions likeHate ("Fred") Or ‘Happy.

We use the Objective Caml [LD®2] syntax for polymorphic vari-
ants in which each variant name is prefixed witiFor example in
OCaml 3.07 we have,

let v = ‘Hate ("Fred");;

val v : [> ‘Hate of string] = ‘Hate "Fred"

[> ‘Hate of string] is the type of the polymorphic variant
‘Hate ("Fred"). The " at the left means the type is read as
“these cases anore”. The “or more” part means these types are
polymorphic, it can match with a type of more cases.

but a variant encoding of objects also is possibevariant is a
message, and an object is a case on the messaglee variant en-
coding, a nice added side-effect is itis easy to pass around messages
asfirst-class entities

The problems with the above encodings, however, is neither is com-
plete in the context of the type systems commonly used for records
and variants: for example, if an ML variant is used to encode ob-
jects, all the “methods” (cases of the match) must return the same
type! This is why objects are usually encoded as records. But if the
variant encoding could be made to work, it would give first-class
status to messages, something not possible in the record system.

Correspondingly, pattern matching is also given a partially specified In this paper we introducenatch-functios, which are essentially

type. For example,

let £ = fun
-: val f :

‘Love s -> s | ‘Hate s -> s
[< ‘Love of string | ‘Hate of string] -> string

[< ‘Love of string | ‘Hate of string] isthe inferred vari-
ant type. The ¢" at the left means the type can be read
“these cases olfess, and since ‘Hate ("Fred") has type
[> ‘Hate of string],f ‘Hate ("Fred") will typecheck.

ML-style pattern match functions, but match-functions in addi-
tion support different return types for different argument types via
match-types A match-function-encoding of objects is as power-

ful as a record encoding, but with additional advantage of allowing
first-class messages to typecheck.

2 TheDV Language

DV {“Diminutive” pure functional programming language with

Polymorphic variants are expressible without subtyping, and are PolymorphicVariantg is the core language we study. The gram-
thus easily incorporated into unification-based type inference al- mar is as follows:

gorithms. They can be viewed as a simplified version cfiS{R
Oho95].

Our type system incorporates a generalization of Garrigue’s notion E

of polymorphic variants that explicitly maps the variant coming in

Name > n

Val > vi=x|i|'nv) | A m(X) — &
xp > eu=v]ee|'n(e) |letx=eine
Num > i:x=...-2]-1|0|1|2]...

to a function to the variant going out. This generalization is useful The “vector notation™ny (x.) — & is shorthand forn; (x) — e |

in functional programming, but is particularly useful for us in that it

.. | ‘'m (%) — & for somek. ‘n(e) is a polymorphic variant with

allows objects with first-class messages to be expressed using onlyan argumeng. For simplicity, variants take only a single argument
variants and matching, something that is not possible in any of the here; multiple argument support can be easily addeah (x) — e



is an extended form ok-abstraction, inspired by Standard ML
style function definitions which also perform pattern matching on
the argument type. Theé in A; is the name of the function for
use in recursion, as withet rec. We call thesematch-functios.
Each match-function can also be thought otakectionof one or
more (sub-)functions. For example, a match-function which checks
whether a number is positive, negative or zero could be written as:

f =\t ‘positive(x) — (x> 0)

| ‘negativgx) — (x < 0)

| ‘zero(x) — (x==0)
and corresponding application would be:
f (‘positive(5))

where*positive(5) is the argument to the above match-function.

A match-function need not have a single return type, it can depend
on the type of the argument. Thus in the above examptaitive
‘negativeand‘zerocould have had different return types. The main
technical contribution of this paper is a simple type system for the
static typechecking of match-functions.

Regular functions can be easily encoded using match-functions as:
Arxe=Ai'_(x) —e

where*_is a fixed polymorphic variant name; and corresponding
application as:

fe="f(_(¢)

2.1 Operational Semantics

Figure 1 presents the operational semanticér Computation is
defined via a single-step relation-; between closed expressions.
e[v/x| is the substitution of for x in e. The only interesting case is
function application, which is a combing@ereduction and pattern-
match.

3 TheDV Types

The types oDV are as follows.

TyVar >ax="alb]...
TypVariant > v = ‘n(1) | [> a] | [< ‘ne(ty) ]
Typ Sti=a|Int|v]‘m(t) =T | (=) [T(v) | ut. T

‘n(t) is a polymorphic variant type, for variant namewith argu-
ment typet. [> a] is a variant-type variable which represents any
polymorphic variant type[ < ‘ny (tx)] is an “upper bound” poly-
morphic variant typeij.e., it can match fy (t1) or ... or ‘ng (Tk).
This type is a part of the optional extension (grayed out portions) to

value assigned to the argument at run-time. In such cases, the return
type has the above type, which essentially means that at run-time
[> o] can be any offy (ti) and when[> a] is ‘nj (1;) then the
corresponding; would be the return type.

ut. v is therecursive-typelt meanst can occur int” and alsar has
the same type ag. The only forms in which it will occur in our
system arg@ro. T orpu[> a].T.

We now define a type subsumption relation,
DEFINITION 3.1 (TYPE SUBSUMPTION). T3 = T2 iff,
1. Ty =Tandta =T, 0r

2. 11 =T andtp = [1"/T']T wheret’ = 17; or

w

. T1=[>a]andtz="n(1); or

4.1 = (W—T) and T2 = ‘N (Tkrm) — Thyy Where
Vi = ‘N (Tk) and Ty = T;

or

5. Ty =Nk (Tk) = T ([< ‘M (Ti) | ...]) andTo = 7] where i< k;
or

6. Tu=[<'n(1) | ...]andty ="n(1) .

3.1 Type Rules

Figure 2 gives the type rules f@V. We have three different types
rules for application expressiors¥; when bothe ande’ are known
(app)1 is applied, where is known but€ is unknown i.e.€ is an
abstracted argumentdp); is applied, and when neithemor € is
known i.e.eis an abstracted match-function agids an abstracted
argument, {pp)3 is applied.

Type environmenk is a mapping from variables to types. Given a
type environment, the type system derives a direct-typéor an
expressiore. This is written as &pe judgemert -e: 1. || [X —

aj] is the extension of with x; — a;.

3.2 Soundness of Type System

We prove soundness of the type system by demonstrating a subject
reduction property.

LEMMA 3.1 (SUBJECTREDUCTION). If 0e:1and e—; €
then® € : U such thatt = .

our type system and we recommend readers ignore this and all theThe full proof appears in Appendix A.1.

following grayed portions during the initial readings.

Our main novelty isny (T) — T, the match-typein which each
variant maps to a different return type(vy — 1¢) is a “lower
bound” match-typei.e. it matches anynatch-typewith at least
VK — Tk cases.

T (v) is theapp-type The only forms in which it will appear in our
system are a3y (Tx) — Tj ([> a]) or ‘ng (te) — T ([< ‘ni (Ti) |
...]). Itis used for unknown first-class messagdes, when the type
of the argument to Bnownmatch-function is unknown at compile-

LEMMA 3.2 (SOUNDNESS OFTYPE SYSTEM). If ' e:1then
e either computes forever or computes to a value.

PROOF By induction on the length of computation,
Lemma 3.1. [

using

4 Type Inference

Figure 3 gives the type inference rules. Our inference type rules fol-
low a constrained type presentation [AW93, EST95], even though

time, and the return type is also unknown and depends upon theour type theory does not include subtyping. We found this formu-



(variant) i
n(e) —1‘n(e)
(app) S ) —_— —
e —1€ & Vie—1Vi&  (Af'mk(X) — &) ‘Na (V) —1ed [v/Xa] A r Nk (%) — /]
whered < k
(let) e 18 : :
letx=e;ine —iletx=¢€ ine letx=viine —1 e[v1/X
Figure 1. Operational Semantic Rules
. frce:t =70
(num) i Nt i € Num (sub) TFe U
) MFe:t xedoml) IF(x)=t
(veriant) FEm (an) Py
(abs) Vi<k T|[f—por m(te) = T X — Tl Fe:T
T A (X)) — & pa. ng (Tk) — T
Fr-e:'m(t) =1 FH€:'ng(tq) M-e:t Feee/x:v
(app)1 Fred 1 (et)  Frfetx=ené 7
whered < k
r-e:'m() =1 FH€:[>aj N-e:(Vw—=1) FF€:vy
(erp)e reé:m() — 1 ([>a)) (app)s rFeé:tq
replace[> a| above with[< ‘n; (ti) | ...], whered < k
wherei <k

Figure 2. Type Rules

lation useful for an elegant specification of the type inference algo-

rithm. T\ E is a constrained type, where * reads “where” ance
is a set of equational constraints of the form= 1,.

Type environmenk is a mapping from variables to types. Given a
type environmenk, the type inference system derives a constrained
type T\ E for an expressior. This is written as dype judgement

I Fint €: T\ E under the condition thd is consistent.

The following definition defines consistent and inconsistent sets.

DEFINITION 4.1 (CONSTRAINT CONSISTENCY). A constraint
T1 = Ty IS consistent if either:

1. 11 € TyVaror 13 € Ty Var,

2. Ty=Tandty =T;

3. 11 ="n(1) and1z = ‘n(t');

4. 11 ="'n(1) andtz = [> a] or its symmetry;

5 1y=[>alandty=[> d];

6. 11 = N (k) — T, andTp = (v — T') or its symmetry;

7. 11= <V1 — Gl> andty = <V2 - 02>;

8. 11 =[> a]andty = [< ‘ng (k)] or its symmetry;

9. T3 = pa. ‘ng (t¢) — T andty = (v — ') or its symmetry;
Otherwise it is inconsistent.

A constraint seE is consistent if all the constraints in the set are

consistent.

The type inference system assignsW expressions constrained
types of the fornt \ E to indicate an expression of tymewhich is
constrained by the constraintskn

Following defines a closed constraint &etA closed constraint set

E will have any type errors immediately apparent in it. In the defi-
nition E; W E» denotes the closed union of sets of constraints: union
followed by closure.w; denotes closure with respect Rhase 1
only.

DEFINITION 4.2 (OLOSED CONSTRAINT SET). A set of type
constraints E iglosediff

Phase 1

1. Match) If {'n(t) =T, = ([> a] — d'),[> a] =
‘Ng (To)} C E then{a’ =T}, To =Tq} C E if d <k else falil.

2. (Variant) If ‘'n(t) =‘n(1') e E thent =1’ € E.

3. (Same-Arg) Ifv — a) =(v—a’) € E thena = a’ € E.
4. (Transitivity) If {t=1, 7 =1"} CEthent=1" € E.

5. (Symmetry) If =17 € E thent' =1 € E.

Phase 2

o (Simulate) If ‘n (1) = T, = ¢
-3n,T.[> a]="'n(t) € E then[>
such thati< k and Eyp {[> a] =

[> a] — o) € E and
al=[<'nm(T)]...]€E,
‘n; (1)} is consistent.

The closure is divided in two sequential phases. Phase 2 is com-
puted only after Phase 1 completes.



(num) OFm 1IN0\ 0 i € Num
. IFinre:T\E xedoml) T(x)=T1\E
(variant) FFn (@) N0\ E (var) Tt X:T\E
(abs) Vi<kT|[f—oasxi—a]kFne: T\E
I Finf At Nk (%) — &t (ak) = W\E - o =" (o) > € E
wherea s andady are fresh type variables
Mtinfe:T\E T hin € :T\E Meinfe:T\E T kins€[e/x:T\E
(app) e . _ I 1 — 1/ (Iet) K —ai Y
nee€:a\E {t=([>d]—a),[>d]=T}CE gt letx=ein€ T \E
wherea anda’ are fresh type variables.

Figure 3. Type Inference Rules

The (Match) rule is the crux of our type inference system. It en- By inspection of the type inference rules in Figure 3, it is easy to
ables match-functions to choose the return type corresponding tosee this process is deterministic, based on the structeeraidulo

the argument type. The closure rule for normal functionsifis “ the choice of fresh type variables.

T, -1 =T1—TeEthen{t=1.,T; =7} CE" (Match)is

the generalization of this rule to match-functions. When the argu- We don't prove the soundness of the type inference algorithm.
ment type to the match-function is knowirg. it is ‘ng (o), then Rather we give a Simpfication Algorithm 4.2, which simplifies the
(Match) simply selects the matching sub-function and applies the inferred constrained types to direct-types as per the type rules in
above regular function closure rule. Unknown arguments introduce Figure 2 which we have already proven sound, and prove the sound-
no immediate type errors and so are not analyzed. If the variant is ness of this simplification algorithm. However, it would not be very

not in the match-type, there is no closureofclosure fails. difficult to verify that the soundness of the type inference algorithm
as well.

(Variant) ensures that if two variants are equal they have the same

argument type.

4.1 Equational Simplification

(Same-Arg)ensures that identical variants applied to the same

match-function have identical component types. Now we present an algorithm for reducing a constrained tyge

to an unconstrained types which contains all the type informa-
tion of T\ E, and prove its soundness. This means direct types
containing the complete type information, without hard-to-digest
type equations, can be presented to programmers. This improves

(Simulate)adds precision to the type of an unknown argument ap-
plied to a known match-function. So'ify (1) — 1, = ([> a] —

o) € E but=3n,1. [> a] ='n(1) € E after Phase 1, thep> a] 4y [Gar98] which is a lossy method.
doesn’t have a known concrete type. However, the above constraint
does imply thaf> o] could have beem (t1) or ‘n (t2) or ... or We now give the algorithm for simplification. In the following al-

‘N (T), and it would still have been consistent; anything else would orithm we handle symmetry implicitly.

have made it inconsistent. So to find all the valii(ti)’s we add

[> o] ="ni(1j) to E for all i <k separately and compute the clo- ALGORITHM 4.2 (SMPLIFICATION). A constrained type \ E
sure with respect to Phase 1. If the resulting closed set is consistentcan be reduced tos by the following steps:

we know that fh (T;) is a valid type forf > a]. At the end of all the )

simulationswe add[> a] =[< 'ni (tj) | ...] to E where 1 (1j) is 1. For all constraints of the fornu = (v — 1) € E

a valid type for{ > a.
yp [ ] Ei=E—{a=(vi—1)),...,a=(w—T)}

The closure is trivially seen to be computableGrin®) time, as- U{a=(vk—=T1)}
sumingK < n, wheren = | E | andK = max(k) VK. ‘n (Ty) — T, =
(1t —a’) € E. In the rare case whei€ ~ n, the time complexity

would beO(n3K). The factorK is introduced due t¢Match) hav-
ing to search through at most each of khsub-functions to find a
match (or an absence thereof).

2. For all constraint sets of the fornfas = ‘n (T¢) — T, [>
al=t,0;=([>a]—d |...)} CEy,

Ez2a=E1—{af =Nk (Tk) — T, }
T2\ Ex = [Has. ‘mi () — T/ Mic (Tie) — T3 ) (T\ E2a)

We now define the type inference algorithm. . Tl
P ¢ if T occurs in‘ny (tx) — T then:

: . 13\Ez = [of ([> a]) /o] (12\ E
ALGORITHM 4.1 (TYPE INFERENCH. Given an expression e eIseB\ 3=lar(l /o](t2\Ez)

its typet \ E (or type-erroj can be inferred as follows: 13\E3 =15\ E>
1. Produce the unique proof trelt e: T\ E via the type infer- —Ea— _ /
ence rules in Figure 3. Ba=B—{ar=([>al—a"|..)}}
3. For all constraint sets of the for[> o] = 1,07 = ([>
al —o | ...)} CEa,
3. If ET is consistent them\ E™ is the inferred type for e, else if o+ occurs int then:
there is a type-error in e. Es=E4—{a¢f=([>a]—a|...)}

2. Compute E = closure(E).



U{af=pas.(tT—a |...)}

else

Es=E4
4. 15=Unify(Es) (13)

Unify (0) =
Unify(EU {a =1}) =if t=a’ then
if & <|exicographic®’ then
Unify (o’ /] E) o o /a1
else
Unify (E)
else ifa occurs int then
Unify([pa.t/a]E)o[ua.t/a]

else
Unify ([t/a]E) o [t/
Unify(EU {[> a]=[> a’]}) =Unify(EU {a =a’})
Unify(E U {[> o] ="n(1)}) =
Unify (['n(t)/[> a]]E) e ['n(1)/[> a]
Unify(EU {'n (7o) = T = (V= T)}) =

if ' =a and-3t.a =1 € E then
Unify (['ng (Tk) — T (V) /0] E)o
[N (k) — T (v) /@]

else
Unify (E)

Unify(EU {t=1}) = Unify (E)
Unify(EU {'n(t) = ‘n(t’) = Unify(E)
Unify (B U {{va —~0) = 2)}) = Unify(E)
Unify(EU{[>a]=[< ] =

Unlfy [< M (t)]/[> a]]E)e

< nk Tk)}/[> al]

Unify(EU {pa.'ne(tq) = T, = (v—T')}) =
if “ =aand—-3t.a =1 € E then
Unify ([(na. ‘ng () — ) (V) /0] E)o

[(Ha. N (1) = 1) (v) /o
else

Unify (E)
Figure 4. Unify (E)

Unify (E) defined in Figure 4 is a recursive function, which takes
in a set of constraints and returns a composition of substitu-
tions. When this composition is applied tdn Step 4 above, the

constraint-free type resultSteps 2 and 3 generate recursive types.

The above algorithm can be thought of as 3 phases, revolving
aroundUnify:

1. Pre-Unify. which adds and removes contraints fr&o gen-

erateE’. This includes Steps 1, 2 and 3.

. Unify: which computedJnify (E’) which generates a compo-
sition of substitutions.

. Post-Unify which appliess to 1 to generate unconstrained
direct-typetsi.e. Step 4.

Note thatUnify () simply throws away some constraints likgt) =
‘n(t') and (v1 — a1) = (v2 — a3); this is sound as closure

would have extracted all relevant information from these con- |

straints, hence they can be discarded safely.

The examples in Section 5 illustrate the significance of each of the
steps as welUnify ().

4.2 Soundness of Simplification
We prove the following lemmas,

LEMMA 4.1 (TERMINATION OF SIMPLIFICATION).
simplify (T\ E) = 15 iff E is closed and consistent.

The full proof appears in Appendex A.2. The simplification algo-
rithm is sound in the sense that a derivation in the (non-inference)
type system may be constructed using the type resulting from sim-
plification. Thus, the type inference algorithm plus simplification
amounts to a type inference algorithm for the non-inference type
system.

LEMMA 4.2 (SOUNDNESS OFSIMPLIFCATION). If T ki e:
T\E and simplify(T\E*) = 15, where I = X;—=a; and
simplify (oj \E™) =1;, and E" is non-cyclic, thefi’ - e: s where
M =[tj/oj]T

The full proof appears in Appendex A.2.

For simplicity, we only consider non-cycli€ i.e. it doesn’t con-
stain cyclic constraints and hence no recursive types, in all the
proofs.

5 Examples

We now illustrate our type inference system to infer constrained
types and equational simplification algorithm to simplify these
inferred constrained types into human-readable non-constrained
types. Let us start with a basic match-function:

At ‘int() — 1| ‘bool() — ‘true() 1)
The following would be the inferred type of (1):
(‘int() — Int| ‘bool() — ‘true())\ 0

Since the set of constraints@isthe above without is the simplified
type as well. An example of a corresponding application could be:

(At int() — 1 *bool() — ‘true()) ‘int () )

(app) would derive the type of (2) as:
‘a\{(int() — ([> fint()}

On closure, Match) would generatént =ac E*. Had*bool() had
been the argument, theMétch) would have generatedrue() =

'a, thus achieving the desired result of tying the return type of a
function to the argument type instead to the whole function. The
simplified type of (2) would bént by direct substitution of using

the constraintnt = ‘a.

Int | ‘bool() — ‘true()) = 'b] —"a), [> b] =

Let us now look at a more interesting example, when the type of the
argument is unknown:

(©)

wheree; is (1) above. Ifmis assigned type variable, the inferred
type of juste; m by (app) would be:

‘a\{(‘int() — (>

> 'b] ='m constraingm to a variant type. Hence if the above type
Is‘a\ E’ the type of (3) by &bs) would be:

At ‘redirect(m) — eg m

Int | ‘bool() — ‘true()) = 'b] —"a), [> b] ='m}

‘redirect('m) — 'a\ E’ U {'f = ‘redirect('m) — ‘a} ='a\ E

The simplified type of (3) would then be:



‘redirect([> 'b]) — (‘int() — Int| ‘bool() — ‘true()) [> 'b]
Pr:edirect([< ‘int() | ‘bool()]) —
(‘int() — Int | ‘bool() — ‘true()) [< ‘int() | ‘bool()]

mainly due tdunify() on‘int() — Int | ‘bool() — ‘true() = ([> 'b] — a)
and Phase 2 of closure. As is clearly evident this simplified type is
more precise but verbose and hence less-readable as well

Now consider the following application with first-class message
passing wherént() is the first-class message:

(At ‘redirect(m) — e m) (‘redirect(‘int())) 4)
(app) would infer its type as:
'b\ E U {‘redirect('m) — a= ([> 'c] — 'b), [> c] = ‘redirect(‘int())}

The simplified type of (4) would beat. Let us go through the steps.
(Match)closure on the above constraint generates:

{"a="b, ‘int() ='m}

Next, ‘int() = 'm with [> ’b] ='m on (Transitivity) gives[> 'b] ='m
and{(‘int() — Int| ‘bool() — ‘true()) = ([> 'b] —‘a), [> 'b] = ‘int()}
on (Match)generates:

mathrmint="b

Unify () with Int = b generates a substitutidmt,’b] and hence the
simplified type isint.

Lets now consider the case when the match-function is unknown:
At ‘dummy(o) — o (‘zero()) (5)
(abs) with (app) will infer the following constrained type:
‘dummy’o) — b\ {'o=([> c] = 'b), [> 'c] = ‘zero()}

The simplified type would be:

‘dummy((‘zero() — b)) —'b

by Step 1 of Algorithm 4.2 and substitutions byify ().
Now consider a minor variant of (5):

At ‘dummy(o) — o (*m());0 (*n()) (6)

The simplified type of (6) mainly by Step 1 of Algorithm 4.2 would
be:

‘dummy((‘'m() —"al‘n() —'b)) ="

Let us look at the case when both the match-function and the argu-
ment is unknown:

At ‘dummy(o) — As ‘redirect(m) — om @)
(abs) and @pp) would infer the type of (7) as:

‘dummy(’o) — ‘redirect('m) — ‘a\ {"o= ([> 'b] — ‘a), [> 'b] ='m}

and the simplified type would be:

‘dummy(([> 'b] — ‘a)) — ‘redirect([> 'b]) —'a

Now lets consider the most complicated examplech shows the
real usefulness Simulate)closure rule

At ‘redirect(m) — (Af ‘a(x) — x> 0|'b(x) — x+1) m;
(At ‘b(X) > x+0]‘c(x) > x==1)m
®)

It can be deduced by inspection thatcould only be substituted
‘b at run-time since it is the only variant name present in both
match-functions and hence the return type okdirect could only
belnt and neveBool.

Our system (without Closure Phase 2) will, however, generate only
the following constraints even after closure:

{(*a(x) — Bool | ‘b(x) — Int)
(“b(x) — Int| ‘c(x) — Bool)

([> '] —e), [> 'my] ='m
([> me] —f). [> mp] = ‘m}

There is no constraint on return typesand’f nor any constraint

of the form’m= Int. This constraint set is still consistent since the
messagen in the program is not sent and hence the above code is
essentially dead. The simplified type of (8), anologous to that of
(3), would be:

‘redirect([> 'mp]) — (‘b() — Int | ‘c() — Bool) [> 'my]
If mwere sent in the future as say(5), then the constraints
{("b(x) = Bool | ‘c(x) — Int) = ([> 'mp] = 'f), [> 'mp] =‘a(Int)}

would be generated an@ilatch) would fail. Thus the program
would not typecheck.

Had (Simulate)been computed, it would have generated
[>'my]=[<"b()], [> M| = [<"b()]

resulting in the simplified type of (8) to be:

‘redirect([< ‘b()]) — (‘b() — Int | ‘c() — Bool) [< ‘b()]

which clearly implies thatnt is the only possible return type for
‘redirect

Now lets take a look at expressions which result in cyclic types
i.epa.1. Neither type derivation nor closure generate cyclic types;
they are only generated durirgnplify (),

A ‘this() — f 9)
The simplified type would be:
pf.this() — 'f

maily due to Step 2 of Algorithm 4.2.
Consider a similar example:

At 'this(x) — f x (10)
The simplified type would be:

p'f.‘this([> a]) —
and with(Simulate)

Wt this(u[> ‘al. [< ‘this([> a])]) —
't (u[> al.[< ‘this([> ‘a])] )

() [> 2]

maily due to Step 2 of Algorithm 4.2 anghify on cyclic constraint
'm=[< ‘this('m)] such thatm=[> ‘a] is in the generated set of con-
straints.

Lets consider an example of self-application:

A‘dummy(x) — x (‘self(x)) (11)

The simplified type will be:

/.

‘dummy(p’s. {‘self('s) —'a)) —'a



maily due to Step 3 of Algorithm 4.2. observation is that, since every case of the match can return a dif-
ferent type, it allows records with differently-typed fields to be en-

; ; coded. For example, the recofid = 5,1, = ‘wow(3)} is encoded as
6 Encoding Objects and Other Features A1 00 s 5o s wow(@) and has tyDe s () s It | I (o)
We now show how a collection of simple macros allow object-based ~VoW(I"D)-
programs to be faithfully encoded infaV. ) _

o _ ~ 6.2 Encoding if-then-else

The basic idea is to encode classes and objects as match-functions
and messages as polymorphic variants, thus reducing messageif-then-elsestatements can be easily encoded via match-functions
sending to simple function application. There is nothing unusual using polymorphic variantstrue() and ‘false() to correspond to
in the translation itself, the main feature is the expressiveness of itsboolean valuesrue and false respectively. This encoding has the

typing: match types allow arbitrary objects to typecheck encoding added_ adVantage_ that the two “branches” can have different return
messages as variants. types.if-then-elseis then encoded as

DEFINITION 6.1. The object syntax is defined by the following [If €thenei elsee;| = (A¢‘true() — e, | ‘false() — )
translation.

. - 7 Related Work
(class)  [class(Ahis Mk (%) — &) ] = Athis- — Athis Nk (%) — [&]
(”e"‘g [newe] :L[e]] 0 Previous papers containing static type systems for first class mes-
Efnegss)age)%%@fiﬂ Tn([[[féﬂ])[[ezﬂ sages include those by Wakita [Wak93], Nishimura [Nis98{liet

& Nishimura [MNOO], and Pottier [Pot00]. The main advantage

of our system is it is significantly simpler. No existing program-
ming language implementation efforts have included typed first-
class messages, this is an implicit indication of a need for a more
simple type system that captures their spirit.

Since match-functions are recursive, we get recursive objects
with this for self-reference within the object. We now illus-
trate this encoding withitpProxy example from the introduction.

[let ftp = new(class(At‘get() — 1)) in

let ftpProxy—= Wakita [Wak93] presents an inter-object communication frame-
new(classA¢‘send'm) — (ftp < m))) in work based on RPC-like message passing. He does not present a
ftpProxy«— ‘send‘get()) ] type system for his language so a comparision with his system is
1 (wanstation to v not possible.

letftp = (Ar-—Ag*get() — 1) ()in Nishimura [Nis98] develops a second order polymorphic type sys-

let ftpProxy= " . .
(Af-— As*sendm) — (ftp m)) () in tem for first-class messages (referring to therdyammiomessages
ftpProxy* send‘get()) in the paper), where type information is expressed by kindings of

the formt :: k, wheret is a type variable indexing the type informa-
tion of the object or message akds a kind representing the type
information. It has no type directly representing the type struc-
ture of objects and messages. This system is very complicated and
Miller and Nishimura in [MNOQ] (same second author) attempt to
present a simpler system.

It creates nevitp andftpProxyobjects withftpProxydelegating mes-
sages tdtp. For simplicity, ftp returns an integer in response to the
‘getrequest.

The simplified type oftpProxyproduced by our system would be:

‘send[> 'm]) — (‘get() — Int) [> 'm] Muller et al [MNOO] present a monomorphic type inference system
) ) . based on OFdpjectsandfeature$ constraints. They extend tradi-
and with(Simulate) tional systems of feature constraints by a selection constait

. [ NN -~ ( intended to model the behavior of a generic message-send opera-
send[ < "get()]) — (get() —Int) ([ "get()]) tion. This does simplify things a little, but, is arguably still not
which is similar to example (3) in Section 5. We do not deal with Simple enough to be implemented in a programming language.
inheritance here, but the various standard approaches should apply.

Bugliesi and Crafa [BC99] also attempt to simplify Nishimura’s
We show that records and if-then-else can also be encoded withoriginal work [Nis98]. However, they choose a higher-order type
variants and match-types alone, thus defining a very expressive lan-System, and abandon type inference.
uage.
guag Pottier [Pot00] like us does not define a type system oriented solely
around first-class messages; it is a very general type system that
happens to be powerful enough to also faithfully type first-class
messages. His approach is in some ways similar to ours in that

6.1 Encoding Records

In Section 1.1 we discussed the duality of variants and rgcords. We onditional types are used. His system is very expressive, but is
showed how the ML type system aIIow_s only records_ with all ele- also very complex and is thus more suited to program analysis than
ments of the same type to be encoded in terms of variants. We now, production of human-readable types.
show how match-functions can fully and faithfuly encode records.
This should not be surprising given the above encoding of objects. .

8 Implementation
A match-function is essentially a sophisticated form of the ML
match statement. Hence, record encoding of a match-function We have implemented an interpreter fo¥ in OCaml. It has an
would be identical to that afiatch given in Section 1.1. The key ~ OCaml-style top-loop, in which the user can feeD® expression.



The interpreter will typecheck it, compute its simplified human-
readable type, evaluate it to a value and then display both the Value[WakQS]
and the type.

The core of the interpreter, which includes the Type Inference (4.1)
and Simplification (4.2) Algorithms, is only a few hundred lines of
code. This further validates our assertion about the simplicity of the
DV type system.

The source code along with documentation and examples can be
found athttp://www.cs. jhu.edu/ pari/match-functions/.
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A Proofs
A.1 Soundness of the Type System

We prove soundness of the type system by demonstrating a subject reduction property.
LEMMA A.1.1 (SUBSTITUTION). If I'||[x— Tx] Fe:Tandl F € : 1§ such thatty = 1§, thenl - e[€//x] : T'such thatt = T'.

ProOF Follows induction on the structure ef For simplicity we ignore thesfub) case as well as recursive match-functions.

1. (num)e=i. Proof is trivial.
2. (var)e=xandx e dom(I").
By (var), I F x: 1t wherel (x) =T1.
By induction hypothesis, ldt (x[¢//x]) = T wheret = T'.
Hence, by ¢ar), I - x[€/X] : T'.
3. (variant)e="'n(ey)
By (variant), letl F'n(ey) : ‘n(ty) wherel ey : Ty. Also letx— 1 € T.
By induction hypothesis, ldt’ I- e, [¢//X] : T, andl"’ - € : T}, wherel’ =T — {x+ Ty} such thaty > T, andty = T3,
Now, ‘n(ey) [€/X] = ‘n(ey[€//X]). Hence, by tariant), " - ‘n(e,[€/X]) : ‘n(T}). Also, by Case 6 of Definition 3.1n{ty) = ‘n(Ty,).

4. (abs)e="'ng (X) — &

By (abs), I - ‘nk (%) — & : ‘Nk(Tk) — Tll( whereVi < k.T'||[x — Ti] - & : Tj. Also letx+— Tx € I and, without loss of generality,

x ¢ {X}.

By induction hypothesis, leti <k.T"||[x — Ti] - g [€ /] : T}, wherel - € : Tj andl"’ = T — {x+— T} such thatry > TjandT, = T}.

Now, (‘nk(x) — &€ /X = ‘m (%) — (ex[€'/x]). Thus, by &bs), I'" - ‘ne (%) — (&[€/X]) : ‘M (k) — T). Also, by Case 2 of
Definition 3.1,'n (Tx) — Tj = ‘N (k) — T

5. (app)e= &, &y. There are 3 different cases:

(@) (app)1- By (app)1, I o &y : T wherel ey : ‘N (Tx) — Tj, T F ey 'ng (1g) ford < k. Also, letxi—1x €.

By induction hypothesis and Case 2 of Definition 3.1[Tet e, [€//X] : ‘i (T},) — U} andr’ ey [€/ /X : ‘ng (1) wherel € : T}
andl’ =T — {x— T} such thatry = T}, T = T} andt; = ;.

Now, (e &) [€//X] = (e [€¢//X]) (ev[€//X]). Thus, by épp)1, '+ (e5[€/X]) (ev[€//X]) : T and by hypothesis we knowj; = 1.

(b) (app)2. By (app)2, ' &0 v ' (Ti) = T ([< 'ni(Ti) | ...]) wherel - ep: "' (te) = T, T ey i [< 'ni(Ti) | ...] fori <k
Also, letx+— 1y € I andl” =T — {x 1¢}. Assume[ F € : T} such thatik = ). Also, (&, &) [€//X] = (e [€//X]) (ev[€//X]).

Now there two possible choices for the induction hypothesis :

i. By induction hypothesis and Case 2 of Definition 3.1[et e [€//X] : ‘n (T} ) — T/} andl ey [€/x] : [< ‘ni () | ...]
such thatry > T} andt; > 1.

Thus, by @pp)2, ' (el€/x]) (ev[€/X]) : ‘M (Th) — 1 ([< ‘m(t}) | ...]) and by Case 2 of Definition 3.1,
M (T) = T ([< i () | --2]) = " (Th) = T ([< i (T) |- ]).

ii. By induction hypothesis and Cases 2 and 6 of Definition 3.1,lete [€/ /X] : ‘n (T}) — T} andl ey [€/ /] : " (T7) for
somei < k such thatry > T} andt > 1.




Thus, by épp)2, I - (&0 [€//X)) (ev[€//X]) : " and by Cases 2 and 5 of Definition 3ty (tx) — Tj ([< ‘N (ti) | ...]) =
(TR = T (< 2] [ )=

(c) (app)3- By (app)3, I & &y : Tg Wherel ey 1 (Vg — 1), [ ey i vg for d < k. Also, letx— tx € T andl" =T — {x+ 1x}.
Assume[ € : 1) such thatry = T}. Also, (e, &) [€/X] = (& [€/X]) (ev[€/X]).

Now there two possible choices for the induction hypothesis :

i. By induction hypothesis and Case 2 of Definition 3.1[Tet e, [€ /X : (v| — T, ) andl"’ - ey [€//x] : vi; such thaw = v}
andty = 1.

Now, (e &) [€//x] = (es[€/X]) (ev[€/X]). Thus, by épp)3, I (e [€//X]) (ev[€//x]) : T; and we know by hypothesis
Tq = Tj

ii. By induction hypothesis, lef’ - e [€//X] : ‘Ny1 (Tyyy) — Ty and T’ - ev[€//X] 1 ‘ng (tg) such thatvy > ‘ny(t}) and
Ty = Ty

Thus, by épp)s, '+ (eo[€//X]) (ev[€//X]) : Ty and we know by hypothesig = /).
6. (let)e=lety=e;iney.
By (let), letl - e: 1o wherel -1 : 11 andl" - ey [e1/y] : T2. Also, letx — tx € I'. Without loss of generality, we assumet y.

By induction hypothesis, I8t - ey [€ /x| : T}, ' Fex[e1/y] [€/X] : T andl - € : 1§, wherel” =T — {x+— Ty} such thatry = T}, T1 = T}
andty = 15.

Now, x # y implies (lety = gy in &) [€/ /x| = lety = e1 [€//X] in ex [€//x]. Similarly, e [e1/y][€//X] = e2[€¢/ /X [e1/y]- Hence by (et),
rtele/x: 1.

[
LEMMA A.1.2 (SUBJECTREDUCTION). If0Fe:Tand e—1 € then® | € : T such thatt = 1'.

PrRoOF Follows by strong induction on the depth of the type derivation iregthe induction hypothesis applies to all trees of depthl

or less, wheren is the depth of the proof tree @f e: 1. Hence, following are all the possible rules that can be applied as the last step of
the type derivation o® - e: 1. (Note that épp), and @pp)s, will never be applied as the last step, since the argumeanpis)£{ and both the
applicand and the argument ispf)3 are program variables, and hence the application expression is not closed. By the same akgtnent (
will also never be the last step. These cases are handled in the Substitution Lemma.)

1. (num). Proof is trivial.

2. (variant).
Hence,e= ‘n(ey) and let the last step of the type derivationfie ‘n(ey) : ‘n(1gq) andd+ ey : T4 the penultimate one.
By (variant), ‘n(eq) —1 ‘n(€}) whereey —1 €.

By induction hypothesis, Idi+ €, : T such thaty = 1. Hence by {ariant), OF ‘n(€}) : ‘n(t};). We know by Case 6 of Definition 3.1,
‘n(tg) = ‘n(Ty).

3. (abs)
Hencee= ‘ng (ak) — . The proof in this case trivial, since' ey (ax) — & € Val, hence it evaluates to itself.
4. (app)1

Hence,e = e, 6,. The cases wheg, ande, are not both values are analogous to Case 2. Suppose now thabethe Val then
e= (A ‘ng(x) — &) ‘n(v).

Hence by épp)1, let the the last step of the type derivationfbee: T/, ford < kand,0 - At ‘ny (i) — €, : ‘N (Tk) — T}, Vi < k. O [f —
‘M (Tk) — Tp; % — Tj) - g : T and®@+ ‘n(v) : ‘ng (Tg) be the penultimate ones, where= ng; while bed+ v : 14 the second to last.



O

LEMMA A.1.3

PrROOF By induction on the length of computation, using Lemma A.1.2]

By (app), lete —1 eq[v/xa] (A ‘nk (%) — €/ f] = €.
Now by Lemma A.1.10 + € : T/ such thatry = 7).
. (Let)

Hencee= let x=eq in e;. There are two possible cases:

(a) ey ¢ Val.

Hence by {et), let the last step of the type deriviation B e: T and,0F e; : 11 andO+ e; [e1/X] : T be the penultimate ones.
By (let), lete —1 (letx= ¢} in &) = € wheree; —1 €.

By induction hypothesis, @l €, : T} such thatt; = T} and®+ e>[€} /x| : T such that > T'. Hence by (et), 0+ € : T’ where

=T,

(b) e, € Val. Solete=letx=vin ey.

Hence by {et), let the last step of the type deriviation 6e e: 1 and,0 v: 1y and0+ e; [v/X] : T be the penultimate ones.

By (let), lete — ex [v/X| = €.

We already knowd - e [v/x] : T and by Case 1 of Definition 3.1~ 1.

(sub)

In a type derivation we can collapse all the successive)(s into one gub). Hence, we know that the penultimate rule wibit be a
(sub), and thus by the (strong) induction hypothesis we can assume the lemma to hold up to the second to last rule and prove it for the
penultimate rule via one of the above cases. The last step then followsugia (

A.2 Soundness of Simplification

LEMMA A.2.1
tent E:
lL.a=1
2. 1=,
3. “n(1) ="n(v)
4. ‘n(t)=[>a]
5 [>a]=[>d]
6. (T = Ty — (v )
7. (Vvi—0y)=(v2—ayz)
8. [> a] = [< N (W]
0. pat. (T = T (v— )

and their corresponding symmetric constraints.

PrRoOOF. Directly follows from Definition 4.1. [

(SOUNDNESS OFTYPE SYSTEM). If I+ e: 1 then e either diverges or computes to a value.

(CanoNIcAL CONSTRAINT FORMS). Following are the canonical constraint formg = 1, that can occur in any consis-



LEMMA A.2.2 (TERMINATION OF UNIFY). Unify(E) terminates for all closed and consistent E.

ProoFr Unify(E) is a recursive function withe = 0 as its base or terminating case. At each level of recursioify (E) removes one
constraint, except ainify(E U {[> a] =[> a’]}) when it addsx = o’ to E. But it can be easily seen that= o’ will be removed at the
next step without adding any additional constraints. Also there is a case for each canonical constraint form in any donaistesinceE
is closed none of the intermediate substitutions will produce an inconsistent constraint. Hence ulimatiie reduced td andUnify (E)
will terminate, returning a composition of substitutions.]

LEMMA A.2.3 (TERMINATION OF SIMPLIFICATION). simplify(1\ E) = 1siff E is closed and consistent.

PROOF Step 4 of Simplificaton Algorithm 4.2 impliesmplify (T1\ E) = 15 iff Unify(Es) terminates. By Lemma A.2.@nify (Es) terminates
iff Es is closed and consistent. It can be easily seen that the previous stépshfy (1\ E) do not introduce nor remove any inconsistent
constraints irEs. HenceEs is closed and consistent & is closed and consistent[]

LEMMA A.2.4 (TYPE STRUCTURE PRESERVATION BY SIMPLIFICATION). If simplify(T\E) =1sandt # a or [> a] thents has the
same outermost structure as.e. for examplesimplify (‘n(t) \E™) = ‘n(t5) for somety, simplify (‘N (o) — T \E™) = ‘N (Tks) — Tgg

for someTys andT,, and so on.

PrRoOF Unify(E) only produces substitutions of the forfmf /a] or [t” /[> a]]. Hence, at Step 4 when the composition of substitutions
generated bynify(EZ) are applied ta only the type variables insidewill get subsituted, never itself, thus at the end will retain its
outermost structure. [

LEMMA A.2.5 (SUB-SIMPLIFICATION).

1. If simplify (m\ E)="ng (Tl’() — l‘”k thensimplify (o \ E) = Tl’( andsimplify (T \E) = T”k.

2. If simplify (‘'n(1) \ E) = ‘n (") thensimplify (t\ E) = T and vice-versa.

3. If simplify ([< ‘ni (1) | ...]\E) =[< ‘ni(1]) | ...] thensimplify (t; \ E) = T/ and vice-versa.
ProoF Directly follows from the fact thatnify (E) only produces substitutions of the foffmf /a] or [t /[> a]]. O
LEMMA A.2.6 (PRE-UNIFY PROPERTY).

1. fa=1€E andt # (v — 1) for anyv, T/, thena = 1 € Pre-Unify(E).

2. fa=1€Eandt = (v—T1)forsomev, T, thena = (v -1 | ...) € Pre-Unify(E).
PrROOF Directly follows from inspection oPre-Unify. [

LEMMA A.2.7 (CoNFLUENCE). If T =T € E, where E is closed, consistent and non-cyclic, aytd# (v — 1) for anyv or 1, then
simplify (1\ E) = simplify (U \ E).

PROOF SKETCH. We observe thdtnify (E) only produces substitutions which substitute a type for a type variable or a variant-type variable.

And the simplified type is generated by applying this composition of substitutionsHence,simplify (1\ E) = s T andsimplify (T \ E) =
s 1. Now, sinceE is same botls ands’ contain the exact same substitutions, but their orders might differ.

Hence,simplify (1\ E) # simplify (1" \ E) impliess 1 # § T/, which further implies that two different substitutiofrg/a] and [12/a] exist
in sands’ such thatr; andt have a different outermost structures. In a closed and consistent this is only possitie withy (Ti) — T,

andt, = (vi — T/ ). However, during the Step 2 of Algorithm 4.2 we remave- (v — T} ), thus leaving onlyt = ‘ny (Ty) — T, in theE
passed tdJnify (). Thus, the above case will never arise and the lemma will always hald.

LEMMA A.2.8 (SOUNDNESS OFSIMPLIFICATION). If Tt e : T\E and simplify(T\E*) = 15, where I = Xj—0; and

simplify (aj \ET) = 1j and E" is non-cyclic, the’ - e: 1s wherel” = [1; /aj]T.
PrRoOOF Following induction on the structure ef
1. (num)e=i. Proofis trivial.
2. (variant)e=‘n(¢).
By (variant), I' Fins ‘n(€) : ‘n(T') \ E wherel kip € : U\ E. By assumptionimplify (‘n(1) \E™) = Ts.

As per Lemma A.2.4, letimplify (‘'n(t") \E™) = ‘n(1%). Hence by Lemma A.2.5jmplify (T'\E™") = 1¢.



By induction hypothesis, lét’ I- € : 15. Hence by ¢ariant), I’ - ‘n(€) : ‘n(1%).

. (var)e=xandx € dom(I"). (If x¢ dom(I") inference fails).

By (var), I' Fins x: T\ E wherel™ (x) =T\E.

By induction hypothesis, letimplify (1\ E™) = 1s such thaf”’ (x) = 1s. Hencesimplify (T\E™") = Ts.
By (var), " FX: Ts.

. (@bs)e= At ‘ni (x) — &

By (ab9), I Hinf €: ‘ng (ak) — T\ E whereVi < k. I'||[f — at, % — 0i] Fins & : T \E anda; = ‘ng (ak) — Tk € E. By assumption
simplify (‘ng (k) — Tk \E™) = Ts. Hence by Lemma A.2.E™ is consistent.

By Lemma A.2.4, letsimplify(‘ng(ayx) — TW\ET) = 1s = ‘ne (1},) — T for someﬁ and 17, and then by Lemma A.2.7,
simplify (o \E") = ‘ni(T},) — T} Then by Lemma A.2.5¢i < k. simplify (o \ E™) = 1] andsimplify (1 \E™) = 1.
Now, by induction hypothesis, leti < k. I ||[f — ‘ny (T}) — T}; X — T[] - & : T}. Hence by §bs), ' - e: ‘ne (1,) — T
. (app)e=e; &y
By (app), [ Finf €: a\E whererl Finf € : To\E, I Finf & : W\E and {10 = ([> a’] — a), [> o/] =1y} C E. By assumption
simplify (0 \E*) = 1s. Hence by Lemma A.2.E" is consistent. Now, we observe from the type inference rules in Figure 3 and
Definition 4.1 thatro = ‘ny (aK) — T, Or 0o andty = 'ng (T) or ay. Hence there are the following possible combinations:

(@) To="ng(ag) — Tk andty = ‘ng (1).

So{‘ng(ok) = k= ([> a'] —a),[> a']=‘ng (1)} C E. By (Match), we know{a =14, T =04} C ET whered < k.

By Lemma A.2.4, letsimplify (‘n (o) — T\E*) = s = ‘g (1)) — T} for some 1} and T}, then by Lemma A.2.5,
simplify (o \ ET) = 1} and simplify (1« \ E*) = 1}, and similarly letsimplify (‘ng (1) \E™) = ‘ng (v'), thensimplify (1\E*) =
T'. By Lemma A.2.7 simplify (1\ E™) = simplify (ag \ ET) i.e. U = 1y andsimplify (a \ E™) = simplify (1q \ E*) which implies
simplify (0 \E™) = 17.

Now, by induction hypothesis, I€ e : ‘ni (1)) — T} andl” ey : ‘ng (). Now, by @pp)1, ' F ey & : T.
(b) To = "Nk (ak) — T} andty = ay.

So we know{‘ng (o) — k= ([> '] = a),[> a’] = ay} C E. Now there are 2 possible cases:

i. dy="'ng (1) €E". Same as 5a.
i. ay="‘ng(1t) ¢ E™.

Hence-3n, 1. [> o’ =‘n(1) € ET. Thus(Simulate)will ensure[> o’] = [< ‘ni(0) | ...] € ET wherei < k. Hence by
(Transitivity) ay = [< ‘ni(aj) | ...] € ET. Also, notice that since is freshly generated byapp), ‘n (o) — Tk = ([>

a’] — a) is the only constraint ifE thata occurs; and sincéMatch)is the only closure rule which can generate another
constraint containing in E™, which is not applicable in this case, we can infer that. o =1 E™.

By Lemma A.2.4, letsimplify (‘n (ay) — T \ET) = Ts = ‘n (T},) — T} for someﬂ and ﬂ then by Lemma A.2.5,
simplify (o4 \ E*) =1} and simplify (1, \ E*) = T}. And by Lemma A.2.7simplify (ay\E*) = [< 'ni (T]) | ...]. Hence,
without loss of generalityUnify (‘ng (ax) — Tk = ([> o'] — o)) during simplify (o \ E™) will generate a substitution
['ng (o) — Tk ([> o’])/a]; which would be the only subsitution am. Also, Unify([> o'] = [< ‘ni(aj) | ...]) will
generatd[ < ‘nj (aj) | ...]/[> a’]]. Hencesimplify (a \E™) = ‘n (1) — T} ([< ‘m (T]) | ...]).

Now, by induction hypothesis, I8t e, : ‘n (1) — T} and™ ke, : [< ‘m(t]) | ...]. Hence, by {pp)2, ' - e &y :
i (T) — T ([< "M () | -..]).



Now, suppose Phase 2 is not computed.
Hence Unify () will generate substitutiofi > a’]/ay] and thussimplify (a\E") = ‘n(t}) — T} ([> a’]).

Also, by induction hypothesis, &t - e, : ‘n (T}) — T} andl" ke, : [> a’]. Hence, by {pp)2, I Fey ey 1 'ni (T,) — T ([>

a'l).

‘ne (1) — T} ([> o']) is not only almost as expressive ag (T1,) — T} ([< ‘ni(t]) | ...]), but also significantly more
compact and less redundant from the perspective of a human-reader. A human-reader would easily déduaé|tbatld
be replaced byrf (1}) for all i <k which is only a little less precise that ‘ni (t]) | ...], which can only be replaced by

‘ni (t{)’s contained inside it wherie< k.
(c) to=apandty =‘ny(1).
So we know{ae = {[> a’'] = a), [> a’] =‘ng (1)} C E. Again there are 2 possible cases:
i. 0o="ng(ay) — Tx € ET. Same as 5a.
ii. oo ="M (oK) = k¢ ET.
Now duringsimplify (0o \ E™), Step 1 of Algorithm 4.2 will addio = ([> o’] — a | ...) toET and remover, = ([> o'] —
a) from E*. Hence by Lemma A.2.7, letimplify (0o \E") = (‘ng (t') — o | ...) andsimplify (‘ng (1) \E™) = ‘ng (1),
such that by Lemma A.2.&§mplify (t1\ E™) = 1. However, sincéMatch)is not applicable in this case we can infer that
-31.0 =1 € ET and thussimplify (0 \E™) = a.
Now, by induction hypothesis, €t - e, : (‘ng (') — a | ...) andl" Fe,: ‘ng (T'). Hence, by {pp)3, I’ - &5 &y : 0.
(d) 10 =00 andty = ay. Same as 5c.
6. (let)letx=ey in e.
By (let), [ Hins €: T2\ E whererl Hins €1 : 11\ E andrl s e2[e1/X] : T2\ E.

Now, by induction hypothesis, l8implify (11 \ E) = T} andsimplify (12\ E) = 1, such thaf”’ - e; : T} andl" I- ex[e; /x| : T,. Hence
by (let), " Fe: 5.



