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Abstract. This paper introduces a privacy-aware geographic routing
protocol for Human Movement Networks (HumaNets). HumaNets are
fully decentralized opportunistic and delay-tolerate networks composed
of smartphone devices. Such networks allow participants to exchange
messages phone-to-phone and have applications where traditional infras-
tructure is unavailable (e.g., during a disaster) and in totalitarian states
where cellular network monitoring and censorship are employed. Our
protocol leverages self-determined location profiles of smartphone opera-
tors’ movements as a predictor of future locations, enabling efficient geo-
graphic routing over metropolitan-wide areas. Since these profiles contain
sensitive information about participants’ prior movements, our routing
protocol is designed to minimize the exposure of sensitive information
during a message exchange. We demonstrate via simulation over both
synthetic and real-world trace data that our protocol is highly scalable,
leaks little information, and balances privacy and efficiency: messages
are 30% more likely to be delivered than similar random walk protocols,
and the median latency is only 23-28% greater than epidemic protocols
while requiring an order of magnitude fewer messages.

1 Introduction

The ubiquity of smartphones enable new communication models beyond those
provided by cellular carriers. While standard cellular communication uses a cen-
tralized infrastructure that is maintained by the service provider, smartphones
have communication interfaces such as ad-hoc WiFi and Bluetooth that allow
direct communication between devices. Since smartphone owners often carry
their devices, leave them constantly on, and encounter other individuals (and
their smartphones) in their daily routines, smartphones enable fully decentral-
ized store-and-forward networks that completely avoid the cellular infrastructure.

Human Movement Networks (HumaNets) [2] fit this model and are designed
to allow participants to exchange messages phone-to-phone without using any
centralized infrastructure. HumaNets’ “out-of-band” message passing is applicable
when cellular networks are unavailable or if the networks are untrusted (i.e.,
operated by a totalitarian state that censors, shuts down, or otherwise leverages
its communication systems to restrict its citizenry).



Rather than rely on network addresses, HumaNets route messages using geo-
cast — an addressing scheme that directs messages towards a particular geo-
graphic region. Such a messaging system could be used, for example, to notify
a group of people in a targeted area of an upcoming event, or to warn them
of some impending crisis. To cope with mobility, HumaNet routing protocols
route messages based on message carriers’ predicted future locations. This is ac-
complished by leveraging self-determined location profiles that approximate the
smartphone owners’ routine movements. The patterns of human mobility — for
example, the daily commute to and from work — serve as predictors of future
locations. HumaNets take advantage of this observation by greedily forwarding
messages to smartphones whose owners’ location profiles indicate that they are
good candidates for delivery.

Privacy issues must be central when designing a HumaNet routing protocol
since location profiles contain sensitive information about participants’ prior
movements. The disclosure of such information is particularly dangerous when
HumaNets are used for covert communication in totalitarian regimes. Existing de-
centralized routing approaches that do not consider privacy [8,10], rely on trusted
third parties [6], or assume a priori trust relationships [4] are also unsuitable for
HumaNets.

This paper proposes a novel routing protocol for HumaNets that protects
participants’ location profiles from an adversary who wishes to learn previous
movements and/or determine “important” locations of network users (e.g., home,
work, or the location of underground activist meetings). Our technique, which we
call Probabilistic Profile-Based Routing (PPBR), balances performance and pri-
vacy by efficiently routing messages in a manner that minimizes the exposure of
users’ location profiles. We demonstrate through trace-driven simulations using
both real-world and synthetic human movement data that our PPBR proto-
col is highly scalable, efficiently routes messages, and preserves the privacy of
profile information. In summary, the contributions of this paper are: (1) The
introduction and design of a fully decentralized, privacy-preserving, geographic-
based HumaNet message routing protocol for smartphones; (2) An analysis of
the privacy and security properties offered by our routing protocol; and, (3) A
trace-driven simulation study (using both real-world and synthetic data) that
evaluates our method’s scalability and efficiency.

2 Network Assumptions and Goals

To achieve reasonable performance, HumaNets leverage humans’ tendency to fol-
low routines: The locations that people frequented in the past are predictors of
their future locations [2]. However, a device’s location history may be extremely
sensitive, and moreover, combining multiple nodes’ location histories may allow
an adversary to discover social networks and enumerate participants’ movements.
Hence, the high-level goal of our PPBR protocol and the central challenge of this
paper is to enable efficient geographic-based messaging that limits the exposure
of important location information at message exchanges.



Importantly, however, our HumaNet routing protocol does not conceal the
identities of the network’s participants. An adversary who intercepts a PPBR
message can reasonably conclude that the sender is participating in a HumaNet.
Participating in a HumaNet inherently carries risk if used as an anti-censorship
technology: This is unfortunately true of any system that may be deemed “sub-
versive”. However, when other means of communication are impossible (either
due to global monitoring or blocked connectivity), HumaNets provide a means to
exchange information in a manner that is efficient, scalable, difficult to surveil,
and privacy-aware.

Requirements. HumaNets routing protocols are designed for location-aware
mobile devices. We assume that network participants can learn their locations
(e.g., via GPS?) without relying on the cellular service provider’s network, and
that devices contain sufficient storage to record their movement histories. We
note that current generation smartphones meet HumaNets’ modest storage and
processing requirements.

We additionally assume that participants have knowledge of the routing area.
Since HumaNets enable geocast routing, a message that is targeted at specific
receivers requires the sender to have some knowledge about the receivers’ likely
future locations (e.g., their home or work); this requirement is similar to that
imposed by traditional networking where users need knowledge of a service’s
hostname or IP address. We also assume that participants know some coarse-
grain information about general movement statistics over the routing area. In
particular, nodes should be capable of estimating the “popularity” of city areas
— e.g., that the upper west side of Manhattan is more densely traveled than Far
Rockaway, Queens. This information can be obtained from census data, other
public source of information, or personal experience. Such information can be
shipped with the HumaNets software and is assumed to be known to an adversary.

Threat Model. We envision both passive and active adversaries. A passive
adversary may have any number of confederates and is able to observe message
exchanges at a fixed number of locations throughout the HumaNet routing area.
An active adversary may additionally participate in HumaNets by generating fake
messages, accepting messages, and/or dropping or misrouting messages.

We do not provide protection against a mobile targeting adversary. An adver-
sary that can physically follow a node can trivially learn about its whereabouts
and discover its routine movements. Such a “stalker” adversary is also very costly
to deploy. In this paper, we focus on less targeted attackers and assume an ad-
versary who monitors, intercepts, or participates in local exchanges that occur
in its presence. The adversary is aware of the participants and their locations
at the time of an exchange, and thus we do not claim that our system provides
traditional location-privacy [9] for ad hoc networks, although such extensions
may be relevant here.

3 GPS is a unidirectional protocol and requires only the reception of signals from
U.S.-operated satellites.



The adversary’s goals are as follows:

— DISRUPTION: Inject failures into the network such that messages can no
longer be reliably delivered.

— DE-ANONYMIZATION: Determine the originating sender of intercepted mes-
sages.

— PROFILING: Infer movement patterns of a targeted individual or learn his/her
“important” locations (e.g., home, work, underground meeting place).

Performance and Security Goals. The goal of our routing protocol is to
provide the following properties in the presence of active and passive adversaries:

— RELIABILITY: Messages should reach their intended destinations with high
probability.

— EFFICIENCY: Messages should reach their intended destinations with rea-
sonable latency and overhead.

— SCALABILITY: HumaNets should be able to scale to a large number of partic-
ipants with many concurrent messages.

— POINT-TO-POINT: Messages should be exchanged only point-to-point and
avoid any centralized routing structures.

— PRIVACY-PRESERVATION: The protocol should not leak the sender’s iden-
tity, nor should it reveal information about participants’ previous locations.
We do not distinguish between locations that should or should not remain
private (e.g., secret meeting place vs. place of work). The treatment of all
prior locations as private simplifies our protocol design, and more impor-
tantly, improves usability by preventing configuration errors that may lead
to accidental exposure of private locations.

At first blush, it may seem that naive flooding and random walk strate-
gies are sufficient to achieve the above goals. Although these strategies achieve
the POINT-TO-POINT and PRIVACY-PRESERVATION properties, they are lacking
with respect to SCALABILITY, EFFICIENCY, and/or RELIABILITY. In particular,
flooding achieves optimal latency and delivery rates because all paths are ex-
plored, but scales poorly since all transfers that do not occur along the optimal
path constitute a wasted effort (and, consequently, wasteful power consumption).
Moreover, since several senders may use HumaNets to disseminate their messages,
flooding requires that nodes store (and worse, communicate) a large fraction of
all messages. At the other extreme, random walk protocols in which messages
are transferred (as opposed to copied) upon node contacts scales well but incurs
poor RELIABILITY and EFFICIENCY.

It may also seem that traditional cryptographic solutions would be applicable
here. However, the decentralized and highly dynamic nature of HumaNets make
their deployment difficult. In particular, many cryptographic solutions require
centralized services or trusted third parties. Such approaches are problematic in
our setting since a strong (e.g., nation-state) adversary could either compromise
or prevent access to centralized services. Routing techniques that rely on complex



key distribution schemes or expensive cryptographic operations (for example,
SMC [23]) are incompatible with HumaNets’ distributed architecture and use of
power-constrained devices. A significant advantage of PPBR is that it provides
PRIVACY-PRESERVATION using simple probabilistic techniques, and avoids the
key management and computation issues present in protocols that provide more
traditional cryptographic protections [6,4,21].

Finally, we note that a non-goal of our system is authentication of message
senders and message content. PPBR is a content-agnostic service that routes
packets, whether they be sent by dissidents trying to organize a rally or a total-
itarian state that wishes to provide misinformation. However, as with standard
networking protocols, PPBR may be combined with other techniques — for ex-
ample, the use of pseudoidentities and digital signatures — to provide stronger
authenticity guarantees.

3 Privacy-Preserving Routing

At a high level, the Probabilistic Profile-Based Routing (PPBR) protocol requires
participants (nodes) to estimate whether they are good candidates for deliver-
ing a message. Upon receiving a message from a carrier — i.e., a node that
announces a message — the receiving node makes a local determination as to
whether it is well positioned to deliver the message to the addressed destination.
The node either accepts or discards the message, and in either case, does not no-
tify the current carrier as to its choice. If the message is accepted, the receiving
node becomes a carrier and begins to announce the message. However, unlike
flooding techniques in which messages are continuously duplicated, leading to
an exponential number of message copies, each message carrier in PPBR an-
nounces the message to only k£ contacts, of which only one out of the k receiving
nodes should accept it. The main task is thus for a receiver to locally determine
whether it is best suited to deliver the message out of the &k — 1 other nodes that
received the message.

3.1 HumalNet Preliminaries

Addressing. HumaNets provide a basic addressing primitive, geocast, in which
messages are addressed to a geographic location (e.g., a city square). Messages
are routed to nodes who are likely to travel towards the destination address
and are then locally flooded within the confines of the specified destination. We
do not consider temporal features in addressing or routing — i.e., addressing a
message to a location for a specific time — but the protocol described herein can
be easily expanded to meet temporal specifications®. Additionally, HumaNets do

4 One method for delivering messages at a targeted time of day is for nodes to main-
tain multiple location profiles, each representing movement information collected at
different times of day. The message exchange algorithm is as described later; how-
ever, each node now uses the location profile most relevant to the addressed time
and location.



not provide message confidentiality; however, message payloads can be protected
using standard encryption techniques.

HumaNets interpret the routing area as a grid, the dimensions of which are
assumed to be known a priori to all nodes (for example, based on latitude and
longitude). Messages are addressed to a particular grid square. In the remainder
of the paper, when describing a message address or destination, we refer to the
index of the corresponding grid square.

Finally, HumaNets are fully decentralized, delay tolerate networks, and as
such, deliver messages according to a “best-effort” policy. Importantly, PPBR
does not utilize message delivery acknowledgments; the omission of ACKs and
NACKs increases privacy since it prevents an observer from trivially discovering
whether or not a message was accepted by the receiver.

Message Exchanges. Messages are exchanged between smartphone devices
when they come into wireless contact with one another. We consider a contact
to occur when two nodes are within wireless transmission range, e.g., the range
of Bluetooth or a point-to-point 802.11 transmission in ad hoc mode. At set
time intervals, nodes awaken and begin the routing protocol. If a contact is
made, messages can be exchanged. Otherwise, if there are no other participants
nearby, the node returns to normal activity.

HumaNets require coarse time synchronization (i.e., within a few seconds)
to ensure message exchanges occur at the appropriate times. Such synchronic-
ity could be achieved using NTP servers, but this would require nodes to send
messages over centralized networks. Fortunately, smartphone devices are already
highly synchronized as a requirement of participating in the centralized cellu-
lar network [1,16] (a network which HumaNets do not use to send messages). If
cellular services are disabled or are untrusted to provide correct time informa-
tion, nodes could alternatively obtain the timing information from GPS satellite
timestamps.

3.2 Routing Overview and Constructions

PPBR consists of two phases: a passing phase and a holding phase (see Figure 1).
In the passing phase, a carrier of a message attempts to pass the message to the
first £ nodes that it encounters. A node that receives a message will locally
estimate whether it has the highest similarity to the message address (a grid
square) out of the k — 1 other nodes who also received (or will receive) the mes-
sage. If the node perceives itself to be the best candidate for delivery, it accepts
the message, becomes a carrier, and prepares to transition to the passing phase.
Otherwise, the message is dropped. A node transitions from the passing phase
to the holding phase once it has announced the message to k other neighbors.
The challenge of PPBR is enabling each node to accurately predict whether
it is the best of k candidates to accept a message without conferring with other
nodes. The intuition behind our approach is that a node can compute a similarity
score to a message’s destination using its location profile — a compact representa-
tion of its movement history. To populate its location profile, a node periodically



records its GPS location and determines the fraction of time spent within each
grid square. Using its location profile along with background knowledge of the
movement patterns of an “average” node, the node can estimate how well it is
positioned to deliver the message relative to the £k — 1 other participants who
will receive the message.

An important characteristic of PPBR’s passing phase is that message recep-
tion is not acknowledged. An eavesdropper therefore cannot determine whether
a message was accepted or declined by a nearby node. This makes it difficult for
an adversary to conduct PROFILING attacks against a receiver, since it has no
information to form a judgment as to whether the receiver’s profile is well-suited
for delivering the message. (We explore the effectiveness of PROFILING attacks
against a carrier who announces a message in Section 5.) To further aggravate
PROFILING attacks, if a node accepts a message and becomes a carrier, it does
not announce the message until it has moved a distance d away from its current
location, preventing the eavesdropper from observing the transition.

After a carrier has performed k mes-
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stricted to the destination grid square). If Fig. 1. Overview of PPBR routing. (1)
the node does not reach the addressed grid ~ The initial message carrier (node a) en-
square within a local timeout, the carrier ters the pas§ing phase (grey shading).
drops the message. A message also has an (2) The carrier encounters three nodes.

associated global timeout after which all (3) que b considers itself the best of
. k candidates and accepts the message,
carriers drop the message.

becoming a carrier and initiating its
passing phase. After advertising k mes-
Location Profiles. Nodes compute lo- $ages, node a enters the holding phase
cation profiles based on their movement (black shading).
histories.> Although long term collection
could be useful in constructing a profile, HumaNets rely on shorter historical
windows to minimize the effects from non-repeated movements, e.g., vacations.
Each node periodically polls its location (e.g., via GPS) to update its location
profile. The profile is a matrix indexed by geographic grid square such that
the value at position (x,y) is the normalized number of location readings in
which the node was located at position (z,y) in the grid. That is, the value at
position (z,y) in the location profile corresponds to the frequency that the node
visited location (z,y) in the physical world over some time window. Following
our heuristic, we assume that the matrix value at (x,y) (which is defined based
on past behavior) approximates the node’s future likelihood of visiting location
(x,y) in the physical topology.

5 News reports suggest that popular smartphones may already collect such informa-
tion [3].



More formally, consider a current window of location entries
W = ((z;,y:), (z;,y;) . ..) that are already mapped to grid square references.
The profile p, indexed by grid squares, contains the values:

‘W<r,y)| .
pllay)] =4 wi ifley ew )
0 otherwise

where W, .y is the sub-list containing location entries occurring within the grid
square (z,y), p[-] is the index function returning the associated value, and | - |
indicates the length of the list.

General Node Profile. An advantage of PPBR is that it does not require
nodes to share their location profiles. However, the technique assumes some
globally shared information which we call the general node profile. The general
node profile is a model of the “average” node’s movement, and has the same
structure and features as the standard location profile. Rather than represent-
ing the frequented locations of a single node, the general profile expresses the
patterns of the general population. We assume that the general node profile is
included with HumaNet software.

As we demonstrate in Section 4, the general node profile does not have to be
a perfect model and can be based on a rough estimate of population densities.
In practice, we posit that a sufficient general node profile could be constructed
using public data such as population densities from census data, transportation
studies, or common knowledge.

Marginal Similarity. A node determines if it is the best of k —1 other message
recipients by comparing its similarity with the message’s destination to the “av-
erage” node’s similarity calculated using the general node profile. If the node’s
similarity is a factor greater, the message is accepted.

More precisely, a node must first be able to calculate the similarity of a
location profile to a message address (grid square). We consider not only the
value in the profile at the addressed grid-point, but also the values at nearby grid-
points, discounted by their square distance. Formally, we define the similarity of
a node n to a message m addressed to a,, to be:

sim(p, anm) = plam] + Z diS’E(jz[Z,pC]lm)2 , )

where p is a location profile and dist(a,, a,,) denotes the Euclidean distance
between grid-points a, and a,,. This computation captures the desired property
that a node that more frequently visits the message’s targeted destination (and
nearby areas) will have higher similarity than a node that visits the destination
region less often®.

5 We have additionally experimented with other decay functions, and found that they
produce similar (but slightly degraded) performance.



A similarity score computed with the general node profile, rather than an
individual node’s profile, represents an estimate of the “average” node’s simi-
larity to the message address. We define the relationship between a node n’s
similarity and that of the general node’s similarity as the marginal similarity
%, where p,, is the profile of node n and py
is the general node profile. The marginal similarity speaks to how well a node
is suited to become a carrier of a message addressed to a,, as compared to a
node on average: higher values indicate the node would make a good message
carrier, while lower values indicate a poor carrier. The next challenge is selecting
a threshold value for ¢ at which point only one of the k nodes that received the
message will accept it and become a carrier.

o. It is calculated as o =

Threshold Selection. We define 7 as the threshold marginal similarity score at
which a node accepts a message and becomes a carrier. Intuitively, 7 should be
the marginal similarity such that 1/k marginal similarity calculations are greater
than 7. The threshold is calculated locally (and privately) by each node. First,
a node computes o for every grid square in pg:

&= <Sim(p"’a) ’ Va6p9> (3)

sim(pg, a)

The computations are arranged in a sorted list &, where 0; < 7, if 1 < j. &
represents marginal similarity calculations for all likely message addresses, and
we wish the node to accept a message for 1/k of those addresses. To do this,
a node chooses 7 such that 1/k values in ¢ are greater than 7; more precisely,
T =0; and i = ||| * (k — 1)/k], where | - | denotes the length function. 7 must
be updated whenever the node’s location profile changes. To conserve battery,
such a computation could occur nightly while the device is charging.

It should be noted that the threshold computation assumes a uniform dis-
tribution of message addresses. Although this assumption does not likely hold
in practice, our experimental results indicate that our approach is sufficiently
accurate to cause approximately 1/k messages to be accepted by potential car-
riers. In particular, using our tested datasets (see Section 4) in which messages
are addressed non-uniformly, between 8.5%-9.5% of messages are accepted.

4 Performance Evaluation

To evaluate the performance of PPBR, we constructed a discrete event-driven
HumaNets simulator. Our simulator takes as input a trace of human (cellphone)
movement and overlays the PPBR routing algorithm. In all simulations, we
choose k to be 10 and conduct 300 independent runs. Message senders are se-
lected randomly across participants, and message addresses (grid squares) are
randomly chosen by selecting a (different) node and addressing the message to
its most frequented grid square as defined by its location profile. Our simula-
tion was concerned with measuring the effectiveness of PPBR over metropolitan



Table 1. Characteristics of the movement data sets.

Nodes|Length| Area | Contact Rate |Waypoints
SLAW [13] 1000 | 7 days [100 km?[12.62 per hour| 150
Cabspotting [18]| 536 |20 days|326 km?| 1.17 per hour n/a

areas, and as such, we did not simulate local flooding. We considered a mes-
sage successfully delivered if it reaches the destination address. The grid overlay
consists of 200 m x 200 m grid squares, roughly the size of a city block, and
we chose d — the requisite travel distance of a node before transitioning to the
passing phase — to be the size of a grid square (200 m).

Datasets. Due to privacy constraints, the number of realistic datasets that are
suited for evaluation is unfortunately small. We require that the data contain not
only a large number of nodes, but also that the movement of the nodes should
express regular routines over an extended collection time (i.e., many days). To
demonstrate the feasibility of PPBR, we utilize a suitable real-world data trace
as well as a synthetic trace of human movement (summarized in Table 1):

— Cabspotting: The Cabspotting Dataset [18] contains GPS coordinates
and timestamps of 536 taxicabs in the San Francisco area. The dataset spans
20 days: from May 20, 2008 until June 7, 2008. It should be noted that al-
though the movements of taxis are not representative of the general popula-
tion (taxis are arguably more mobile than the average person), simulations
using this dataset can be interpreted as representing a network composed of
the taxi drivers’ smartphones.

— SLAW: We require a synthetic model that (i) accurately represents human
flight patterns, (ii) contact rates, (iil) waypoints (popular places), and (iv)
routines. The closest model to meeting our needs is Self-similar Least
Action Walk (SLAW) [13]. Based in part on Levy walks [20], SLAW intro-
duces a protocol called Least Action Trip Planning (LATP) that produces
human-like trips between fractal waypoints, that are themselves determined
by finding hotspots in actual GPS traces.

Node Contacts. For two nodes to make contact, they must be in the same
location at the same time. However, the periodicity of location entries in the
Cabspotting dataset is not consistent across nodes (or for the same node). We
consider two nodes to have made contact if they are within 10 meters in a
10 second window. In SLAW, a location entry is generated every 60 seconds
consistently across all nodes; we consider a contact to occur if two nodes are
within 10 meters at the same minute mark.

Timeouts. We use a 12 hour local timeout with both traces. For the shorter,
more dense SLAW movement trace, a three day global timeout is used. The
longer, more sparse Cabspotting trace uses a seven day global timeout. Finally,



Table 2. Median and Average Latencies (first and third quartiles in braces) and De-
livery Rate.

Cabspotting [18] SLAW [13]
Med/Avg Latency (hrs)‘ Rate |Med/Avg Latency (hrs)‘ Rate
PPBR 3.6/6.8 [1.2,4.6] 62.6% 4.2/4.8 [2.6,6.2] 61.8%
Walk-10% | 4.4/6.0 [1.68.1]  |43.4%|  5.1/5.5[2.9,5.2] | 48.0%
]

Flood-10%|  2.8/4.1 [1.6,4.4 99.4%|  3.4/3.3[2.2,4.2]  [100.0%

simulations begin after an initial delay so that node profiles can be well seeded;
delays of three and seven days are used for SLAW and Cabspotting, respectively.

Location Profiles. Each node constructs its location profile using a three day
window of location histories. Location profiles are updated daily, and the current
day’s profile represents the location history of the three previous days.

To generate the general node profile, we select a 10% sample of nodes from
each dataset and use three days worth of movement data. The 10% sample is
excluded from all simulation experiments. A visualization of the resulting general
node profile are shown in Figures 4 and 5 in the Appendix.

4.1 Simulation Results

To measure the efficiency of PPBR, we compare our strategy against two proba-
bilistic protocols that do not use location information: probabilistic random walk
and probabilistic flooding. The probabilistic random walk routing scheme also
has passing and holding phases; however, unlike PPBR, the random walk does
not use location profiles. Instead, a node accepts a carrier’s advertised message
with a fixed probability of 1/k (i.e., 10%). We also compare PPBR to a 10%
probabilistic flood in which nodes duplicate the message to a contacted node
with probability 0.1. The flood provides insight into a worst case for network
load — i.e., exponential growth in the number of duplicate messages. The global
and local timeouts for both random protocols are identical to those used by
PPBR.

Threshold Estimation. As described in Section 3.2, each node computes its
threshold marginal similarity score (7) based on the general node profile and
its knowledge of the routing area. To determine if our local, per-node thresh-
old calculations were generating good thresholds, we looked at the variance of
thresholds calculated at each node for one day in the simulation. The average
value for 7 was 1.557 and 1.353 for SLAW and Cabspotting, respectively. We
found that there is very low variance among the nodes’ thresholds: 0.011 for
SLAW and 0.085 for Cabspotting. Further, we observed that thresholds were
effectively limiting message acceptance to 1/k; with k& = 10 the probability of
message retention was 9.5% and 8.5% for SLAW and Cabspotting, respectively.
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Fig. 2. The number of message copies (“duplicates”) of each message for (left) Cab-
spotting and (right) SLAW, and inset, the average.

Performance Metrics. We evaluate our routing performance using the follow-
ing metrics: delivery rate is the percentage of messages that reach the destination
address (a grid square); latency is the amount of time it takes for a message to be
delivered; and network load is the number of messages in the network at a given
time. Ideally, the routing protocol should deliver messages with a high delivery
rate, low latency, and low network load.

Delivery Rate and Latency. Table 2 lists the delivery rates and latencies for
PPBR, random walk, and probabilistic flooding”. Unsurprisingly, flooding offers
both the best latency and delivery rates. (As we show later, it also incurs a very
high network load, making it impractical for networks of battery-constrained
smartphone devices.) PPBR routing outperforms random walk for both median
latency and delivery rate. Although the average latency for PPBR using the
Cabspotting dataset is 0.8 hours slower, the median latency is nearly an hour
faster and within 28% of probabilistic flooding. The skew in the average latency
is caused in part by the higher delivery rate, and that some messages were
delivered after random walk was no longer delivering messages.

Network Load. The load on the network is measured as the average number
of message duplicates in the system across all simulations runs. PPBR does not
guarantee that only a single copy of a given message is present in the system.
Carriers announce a message to k other nodes; ideally, only one node should
accept it. If the message is accepted, the carrier retains the message until either
it is delivered or a local timeout occurs. Hence, each message could potentially
have multiple (or zero) duplicates.

Figure 2 plots the number of messages that persist in the system over time,
normalized to the number of senders in the system (which, in our simulation
experiments is always 300). The average number of message copies, computed
over the entire simulation, is shown in the Figure’s key. Note that the num-
ber of message duplicates may be less than one if either some messages are not

" The delivery rates reported in Table 2 result from single attempted transmissions.



accepted by any of the k encountered nodes, or if all message copies are deliv-
ered to their destinations. As expected, flooding incurs significant network load,
resulting in approximately two orders of magnitude more message copies than
PPBR. Although the number of duplicates is slightly larger for PPBR than our
naive random walk protocol, the load is easily manageable.

5 Security Properties

Profiling. All message exchanges in PPBR occur in the open, and an adver-
sary can observe any exchange in its presence. However, PPBR offers strong
privacy protections against PROFILING attacks for both the node announcing
a message as well as the node who receives, and possibly accepts, the message
announcement.

Message Exchange Carrier Protections: An adversary can determine that a car-
rier node who advertises a message has a high marginal similarity to the mes-
sage’s address; otherwise, the node would not be advertising the message. The
adversary knows that the marginal similarity for the carrier is lower bounded
by the threshold 7, and that nodes choose 7 such that they should expect to
accept messages addressed to 1/k of the grid squares. Hence, the acceptance of a
message does not necessarily indicate that the message’s address is particularly
important to the node that accepted it. Depending upon the value of k, a node
may be expected to accept messages targeted at hundreds of grid squares across
the routing area.

Larger values of k decrease privacy since nodes accept messages for fewer
locations, and, thus, an adversary could deduce that these locations are more
likely relevant to the victim node. Conversely, smaller values of k increase pri-
vacy since nodes accept messages to more locations, further obscuring which are
important. Smaller values of k also incur higher power consumption and network
load as more nodes will likely accept (and transfer) the message. In our simula-
tion studies, we found that £ = 10 achieves reasonable privacy while restraining
the number of message transfers.

To study this tradeoff further, we compared the set of addresses (grid squares)
that would result in a node a accepting a message to the node’s most frequented
locations as defined in the location profile. Although nodes accepted messages
addressed to 1/k, many of those locations correspond to grid square that are
uninteresting to an adversary who wishes to learn the most frequented grid
squares. This relationship is depicted in Figure 3 (left). The curves represent
the averages across all nodes in the Cabspotting and SLAW datasets. The x-axis
denotes the number of points an adversary is interested in (i.e., the x grid squares
most frequented by the node). The y-axis plots the fraction of the locations
that are accepted by the node which are of interest to the adversary. Generally,
the more specific the adversary’s interest, the more difficult it is for him to
distinguish the pertinent message addresses that are announced by a node, and
consequently, the more difficult it is to discover the node’s most frequented
locations.
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Fig. 3. Fraction of Safe Interest Points (left) and Fraction of Interesting Observations
(right).

The adversary’s ability to discern profile information is further diminished
due to our algorithm’s willingness to discard announcements that are targeted
at highly frequented areas. Recall that the marginal similarity is the ratio of the
node’s similarity score to the general node profile’s similarity score. Hence, if a
message is addressed to a grid square that is often frequented by the node but
also highly frequented according to the general node profile, then the ratio will
not exceed the 7 threshold, and the node will never accept a message addressed
there. Consequently, such interesting locations are unobservable and safe from
adversarial analysis. Figure 3 (right) visualizes this relationship. Again, the x-
axis considers the number of grid squares an adversary would find interesting
for a victim node. The y-axis represents the fraction of those interesting grid
squares a node would never accept a message for, averaged across all nodes.

Message FExchange Receiver Protections: During the passing phase, receivers do
not acknowledge acceptance (or rejection) of a message, and hence an adversary
cannot directly determine its similarity to the message’s destination address. An
adversary who is able to follow the node for a distance of at least d can deter-
mine whether the message has been accepted by observing whether or not it is
re-advertised by the node. Such a stalking attack inherently leaks the victim’s
location information regardless of the particular routing protocol being used.
Regardless, if the node is followed, or if a separate colluding eavesdropper dis-
covers that the node later advertised the message, then the adversary can only
conclude that the node accepted the message. In such cases, the effectiveness of
a PROFILING attack against the receiver is identical to the effectiveness against
a carrier advertising a message (see above).

De-Anonymization. The standard addressing primitive of HumaNets is geo-
cast, and thus all participants at the addressed location at the time of delivery
should receive the message. Receiver anonymity is trivially exposed in HumaNets
because an adversary located in the address location learns the identities of
the message recipients simply by observing them. However, PPBR provides in-
transit anonymity for message originators (or senders). An intercepted message,



past the initial hop, cannot be traced to the original sender without completely
retracing the message’s path. If an adversary is witness to the initial hop of a
message, the originating sender may be exposed. We note, however, that this is
similar to the level of protection provided by many Internet-based anonymity
systems (e.g., Crowds [19]) in which an adversary on the first hop may infer
with some probability that it has identified the sender (since the sender may
have originated upstream). It is also worth noting that message replay attacks
in which an attacker re-injects a message in hopes of discovering its path are
also infeasible. It is highly unlikely a message will take the same path due to
variability in human movement.

Disruption. PPBR also provides protection against DISRUPTION attacks in
which an adversary attempts to intercept messages in the network. If the at-
tacker is able to infiltrate the network and receive a large portion of the k£ hand-
offs for each message, then the probability that the message will be transferred
to an honest node is reduced. However, such an attack may also be prohibitively
expensive for an adversary since message exchanges occur whenever two partic-
ipants have a chance encounter. Additionally, such an attack may be mitigated
by adjusting the number of passing attempts (i.e., k) to compensate.

6 Related Work

The ability to leverage geographic information to efficiently route packets has
been well explored in the literature [8,14]. In many instances, these techniques
require participants to announce their locations. For example, Last Encounter
Routing (LER) [8] and ProPHET [14] expose location information; LER assumes
that the network is sufficiently connected to allow stable and longstanding paths.
Although these techniques may efficiently route messages, they are not well-
suited for settings in which the disclosure of location histories and/or social
relationships may be cause for government-imposed punishment.

There are a number of approaches that attempt to preserve location privacy.
Here, the goal is often to prevent an adversary from either identifying the source
of an intercepted communication or tracking a node over time. Several protocols
(cf. [7,24]) achieve location privacy by relying on ephemeral pseudoidentities.
Such approaches provide unlinkability by impeding an adversary’s ability to as-
sociate different broadcasts with the same node. Although these techniques can
be used in conjunction with our PPBR protocol, we assume an adversary who
is physically present at various (but not all) locations in the network and can
identify individuals and associate broadcasts with their senders (e.g., through
physical identification). Similarly, anti-localization techniques [15] that are de-
signed to prevent an adversary from determining a sender’s location [11] are
ineffective since our adversary can physically observe nodes.

A number of location privacy protocols (cf. [6,22]) are loosely based off of
AODV [17], a popular routing protocol for decentralized mobile networks (e.g.,
MANETS). However, such techniques assume a highly connected and mostly



static network in which messages can be quickly forwarded between nodes. These
protocols assume that nodes are mostly stationary, communication can occur
with low latency, and anonymous paths can be reused for multiple exchanges,
and as such, are therefore not well-suited for networks of mobile smartphones.

There are a number of existing delay tolerant network (DTN) protocols that
are similar to HumaNets, but either have limited functionality or lack HumaNets’
privacy protections. For instance, Zebranet [12] uses local information to ef-
ficiently exchange information between sensor nodes in order to track wildlife.
However, the network can route messages only towards fixed basestations.
GeoDTN+Nav [5] is a vehicular ad-hoc network routing scheme that, like
HumaNets, relies on location profiles to deliver messages in a DTN. However,
GeoDTN+Nav requires that at least some nodes follow fixed paths (e.g., bus
routes) or provide their destinations before travel (e.g., via a car navigation
system). And in previous work, we applied polygon-intersection algorithm [2] to
HumaNets; however, this protocol does not consider privacy.

The work that perhaps most closely resembles ours is Shifka et al.’s proto-
col [21]. Here, the authors use the heuristic that nodes that share more contexts
are more likely to encounter one another. Like our approach, participants con-
struct profiles that describe frequented locations, but Shifka et al. relies on search
able encryption schemes (namely, PEKS) to limit the adversary’s ability to enu-
merate the contents of a profile. Additionally, their approach assumes a trusted
third party that assigns attribute values (e.g., a frequented location) to nodes.

7 Conclusion

This paper presents probabilistic profile based routing (PPBR), a novel privacy
preserving geographic messaging protocol for HumaNets. Designed for networks
of smartphone devices, our PPBR routing protocol avoids the use of the cellular
network — or any other centralized infrastructure — and is well-suited for en-
vironments in which traditional communication is subject to monitoring and/or
censorship. PPBR leverages self-determined location profiles to assist routing
while minimizing the disclosure of location information to outside observers as
well as adversaries who infiltrate the network. In particular, we demonstrate
using simulations over real-world and synthetic movement data that PPBR is
resistant to disruption, de-anonymization, and location-leakage attacks, while
achieving reasonable delivery rates and latency.
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Appendix: General Node Profile Heatmaps

Fig. 5. Heatmap of the Gen-
eral Node Profiles for the
Cabspotting dataset. Darker
shades indicate regions with
higher node densities.

Fig. 4. Heatmap of the Gen-
eral Node Profiles for the
SLAW dataset. Darker shades
indicate regions with higher
node densities.
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