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In modern computers, a single “random” access to main memory ofesndaknuch

time as gecuting hundreds of instructionRather than using traditional compiler
approaches to enhance locality by interchanging loops, reordering data structures,
etc., this paper proposes the radical concept of using aggrebsa compression
technology to impree Herarchical memory performance by reducing memory
address reference entyop

In some cases, ceentional compression technology can be adapteldwever,

where \ariable access patterns must be permitted, other compression techniques must
be used.For the special case of random access to elements of sparse matrices, data
structures and compiler technology alreadyste Our approach is much more
general, using hash functions to implement random access compressed lookup tables.
Techniques that can be used to imgrdhe efectiveness of ap compression method

in reducing memory access enty@bso are discussed.

1. Intr oduction

Optimization of memory accesses is not avndea, nor is it ng that a compiler
should perform the appropriate transformatiokiwever, over the past fev years,
the natural eolution of computer hardare has yielded a qualitegi change in ho

memory accessesfatt processor performance.

1.1. Modern Computer Architecture

Logically, processors are more complthan memoryso one would epect them to

be slaver than memoryIn fact, that vas the case for much of the history of digital
computing. Havever, through the relately short history of digital computing, a
surprisingly wide wariety of diferent technologies ka keen used for constructing
main memory and processongdsing diferent technologies, processors and memories
have followed diferent performance cues... bothgetting faster but processors
increasing in speed at a much greater rate than memaditesresult is what we all
know: mainmemory is naw much slaver than a processoBut the relationship is
much more complethan that suggests.



It is true that processor clock ratewédeen increasing at an impressiate, ut the
processors running at these higher clock rates are not the same designs that were used
at lover clock rates.Very little of the performance increase in modern processors
comes from using the same design waktér gtes. Br example, the design of an
Intel 468DX processor aleed it to run with the therakt clock frequencof 33MHz

and to completexecution of an instructionwery few clock cycles. Incontrast, the
Pentium 4 uses “superscalar” instructiomele parallel eecution to complete
execution of seeral instructions eery clock g/cle — an order of magnitude more
work per clock gcle, even ignoring the &ct that the Pentium g’'dock ticks at a
blazing 2.4GHz.Beyond that, the reason a Pentium 4 can run with a 2.4GHz clock
frequengy is ot simply because it isullt using better gtes than a 486DX,ub also
because it caps long logic paths into mamipeline stagesFor example, this is wi

a Rentium 1l cannot achige the same clock rate as a Pentiunvdnenhen thg are

built with the same technologya RFentium 4 has much deeper pipelines yielding
shorter logic paths for each clockete. In summary processor speed increases are
largely enabled byxensie wse of superscalar pipelining al of which comes to a
screeching halt when the processor hasdib for a memory read.

Computer architects areery avare of this problem.The standard architectural
solution is to construct a memory hieraréh which small, &st memories are placed
within or near the processor and intended to be used to hold copies of memory blocks
that will be referenced with good spatial and/or temporal locality

The fastest such memory structure is gister file. Compiler writers hee long
understood mgister allocation... but there is a twist: the number of mgsters
accessible to the compiler is a function of the instruction set design, so the compiler
can only manage as mageneral-purpose gisters on a Pentium 4 as it had on a
486DX. Fortunately aggressie wse of rgister renaming has alled computer
architects to bild hardware that performs on-the-fly reallocation ofjisters to a
much lager pool. For example, the 8 compilerisible floating point rgisters of the

Intel 486DX turn into 88 within the AMD Athlonin mary processors, special write
buffer hardvare @en dtempts to short-circuit-route data being stored from one
register into another gaster which is loading from the address being stored into.

After registers, there are usually dvor more levels of cache.Cache line sizes and
replacement policiesawy, but in general the line size gets bigger and access gets
slower as caches get further from the processmross processor generations, cache
line sizes tend to be increasing in genemalirther most caches mo have special
provisions for fetching the requestedord within a cache line first, rather than
fetching the wrds in sequence.

Even though your program might not use disk-based virtual memmogern
operating systems rely on a page table mechanism to allocate main memory space.
Thus, all main memory addressesvédd be translated from logical to psical
addresses. Imost modern machines, this is done by tevds of TLB (translation
lookaside bffers) which sere & “caches for address translatidrSaches typically
are indeed by physical addresses, so that TLBs appear between the processor and L1
cache. Theémplication is that en if a particular address is in cache, it will kst to



access only if its address is also in the TLAthough TLBs are often ignored by
programmers, theare often ery small (typically 32 to 128 entries), so TLB misses
can seriously limit performance.

Further complicating all of this, hardne in the latest AMD Athlon and Intel Pentium
4 processors attempts to automatically recognize access patirafetch operations
are issued automatically

1.2. Memory Access Rrformance Of Modem Architectures

How do dl of the abwe achitectural features changevh@ode should be written?
The best \ay to answer such a question is to makme performance measurements
on real machines so that the cost ofadént coding constructs can be accurately
estimated. & make the memory access trends more visible, weehastricted our
benchmarks to processors thaeaite the basic 1A32 (Intel Architecture, 32-bits)
instruction set. This not only eliminates artitts from use of dérent instruction
sets, bt also made it possible to literally use tixaet same binaryxecutable on all
the machines.Consequentlythe memory system feicts are not camlved with
differences between compilation systems; the omeutable vas produced using
EGS 2.91.66 with the optimizations enabled by the -O1 command line option.
additional benefit in using this instruction set is that all the processorgi@rine
same processor clockae timing mechanism.

Most of the architectural features listed abae aimed at impnang performance of
low-entroy memory access patterns: read sequences thet ¢god spatial and
temporal locality or are easily predicted by the hamdw Onewould hope that
repeated references to theaet same ward (temporal locality) wuld be optimized by

the compiler to access theowd from memory once, and thenceforth from gister

Thus, the lavest entrop memory reference pattern is generally assumed to be a
stride-1 access pattern in the increasing address direddare these architectural
changes achied speed-up for this read access patted® Figure 1 clearly shus,

the answer is yes; from the 100MHz Pentium to the most modern Athlon and Pentium
4 an order of magnitude speedup is seen.

It is important to note that, because processors arghhegpelined, memory access
lateng can be partly eerlapped with loop werhead. Itis not possible to separate-out
the test loop werhead; ag memory access latepthat is completely werlapped with
loop overhead would appear to be zero and ifi@ent loop implementations auld
malke memory seemdster For this reason, all of the graphs in this paper include the
loop overhead.

That good speedup is achéd for the lavest-entrog reference pattern is not
surprising. © determine if good speedup is also agbikfor high-entrog reference
patterns, we selected a simple random number genera®ANQD1 [PrT88]— and
used that to generate the address sequednasically, a andom number generator
does not generate the highest entroemory access sequenceyf s a good model
for the type of high-entrgpmemory reference pattern commonly seen in programs.
The good nes is that, as Figure 2 shis, good speedup is also acle for this high-
entropy pattern.



Wall Clock Time per Sequential Access vs. Table Size

1024 T T

—+— 1700 MHz Pentium 4 (PC2100)
fffffff 1500 MHz Pentium 4 (PC133)
512 | ---x--- 1533 MHz Athlon XP 1800+ (PC2100) n
8-+ 1533 MHz Athlon MP 1800+ (PC2100)

256 B

-~ 1000 MHz Athlon (PC100 512KB L2)
- 700 MHz Athlon (PC100 512KB L2)

~-a 550 MHz Pentium Ill (PC100) o o .o

—v— 500 MHz K6-2 (PC100 no L2) SN

64 F w186 MHZ PertiuiP Vv T oY 4

---©--- 166 MHz Pentium

¢+ 100 MHz Pertiun® & ¢ 7

Time (ns) per Sequential Access

32 1024 32768 1048576 33554432
Table Size (bytes)

Figure L Low-Entroy Memory Read AccessaRern Tmes
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However, viewing Figures 1 and 2 togetherveals a disturbing dct: never
processors generally V& lager diferences between the best sequential time and the
worst random time.The 100MHz Pentium had only a timacfor of 13.3 penalty for

a bad reference pattern, whereas an Athlon MP had a #oterfof 127.5 penalty

Of course, some ddrences are due to fiifing clock rates; looking atwacounts of
clock grcles is an auably purer measureThese results, respeatly for the



sequential access pattern and for the random access pattern, are in Figures 3 and 4.
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In summarythe cost of memory references is getting further from constant; access
times are a comptefunction of the access pattern with costs currently rangiagab

least tvo orders of magnitude.High entroly memory access patterns can gak
hundreds of clockycles per read— and maly operations can bexecuted per clock
cycle. BErecuting as manas a housand instructions toveid a single high-entrgp



memory reference can yield speedupiis huge paydfmakes it practical to consider
very complex mechanisms for reducing address reference eptrdproughout this

paper our focus is using compression to decrease address referencey entiop

some cases, the total size of the compressed data structures is actyeilthkar the

original data.

2. Compression D Reduce Access Entipy

Although we belige te fully general concept of using compiler technology to
employ compression for the purpose of reducing address reference yemtrde
entirely nev, there are a f@ special cases in which compression has been used to
improve memory system performance.

Although our focus is using compiler technology to apply compression to reduce
entropy of data references, theork most similar in concept wlves hardware
technology to operate on compressed coflbortly after the iention of VLIW
(Very Long Instruction \Wrd) architecture, it as recognized that VLIW instructions
often contained redundant or empty field&lthough the &ct was not widely
published, the Multiftv Trace architecture took aalntage of thisé&ct by haing
processor hardare fetch compressed blocks of VLIW instructions and decompress
them on the fly An even more aggresse compression schemeas used for encoding
instructions for the compieinstruction set of the Intel 432 [ARM81]nstructions
were Hufman encoded as bit sequences that wetaeted directly from the code
stream by the processor haate. Although modern processor architecture
implementations could benefit from such a hadwdriven gpproach, the benefit is
not as great as one mightpect because code stream address reference yeigrop
relatively low — spatial locality is ery good.

Very recent vark [ZhG02] attempts to achie nodest compression for dynamically-
allocated data structuregjtithe majority of compiler techniquesveakeen deeloped

to translate code written as “dense” matrix operations to use “sparse” data structures
[BiW95]. The sparse representations assume that the majority of data elemants ha
the same a&lue (most often, zero)Despite this constraint, these compiler code and
data transformations, and the associated analysessrgrelosely related to our more
general notion of using compression as a memory address \erdgrhing
transformation. Inparticular the analysis that determines what codeuld be
impacted if the representation of a particular data structure were to be changed is
directly applicable.In fact, the analysis we presented in [JuD92] alsald sufice

for that purpose.

The generalized problem of using compressed data structures with non-sparse data
can be subgtided into four classes based orotample attritutes:

1. Is the data structure read-only? Compression algorithms for read-only data
structures, especially those with compile-time constalties, can be ery
computationally epensve povided that the decompression algorithm is
inexpensve. If the data can be changed during prograetion, the dfciency
of the compression algorithm is also critical.



2. Are dements of the data structue accessed in a fixed patter— i.e., are they
ordered? Given a fixed access pattern, transmitting the data structure from
memory to the processor in that order is nearly the same problem as transmitting
the data structure through a communications odtw— the classical application
of compression technologyNote that the access order need not access each
element precisely once; a structure containing “a,b,c” accessed with éde fix
order “c,a,c,c” is essentially the same as sequential access of the structure
“c,a,c,c”. If a variable access pattern must be supported, compression methods
that male decompression of an element dependent on decompressiorviolupre
elements are generally inappropriate.

Techniques for fird access pattern compression agy well dereloped; thus, the
primary contrilution here is the concept of using these techniques as a compiler
technology This is discussed in the folling section. Given a \ariable access
pattern and read-only data,wie&ompression techniques are need&kction 2.2
outlines a ery aggresse technique for this type of compile-time compression, which

is most useful for increasing thefiefency of lookup tables.To ficiently compress

given a \ariable access pattern and changeable data, the compression scheme must
have a elatvely efficient method for incremental update of the compressed form.
Very few such schemesxést; a \ery brief discussion is @gen in sction 2.3.

2.1. Compression with Ordered Access

Compiler technology for recognizingerything necessary to impve adered access

is very well dereloped. Therequired information is essentially accumulated as a side-
effect of performing traditional loop parallelization dependence analyBi3.
example, consider the simple loop nest:

DO 10 J=1,100
DO 10 I=1,100
10 AlLJ) = AULJ)*B(l, J)

Within this e&kample loop nest, the elementsBéire only read; let us further assume
thatB is in fact an array of constanailes knan at compile time.The elements of
the arrayA are both read and writter hus, the gample contains both read-only and
read-write data structures with a kvioaccess order

For B, because both the elemerdlwes and the access order arevkm@t compile

time, we can apply a traditional communications-oriented compression scheme at
compile time. For example, a wriant of Hufman encoding, LZW (Lempel-¥i
Welch), or eren fractals and wavdets can be used to compreBs Simple type-
dependent compression techniques may be particularly appropriatexafmple,
although mantissa bitsaw, it is very likely that the gponent and sign are the same

(or differ little) from one floating point alue to the nd. Further because the
compression is done at compile time, it is feasible to twerak alternatie
compression techniques and pick the mdstcéfe.



The compression oA is much more dffcult to male dfectve. In part, the
compleity comes from thedct that the compression algorithm must be incrementally
applied (e.g., @vdets cannot be used becauseytheguire &amining the complete
data structure) and must be computationally cheap enough to be appliey gt
where the data are changddowever, the fact that compression is applied at run time
also maks it infeasible to try seral alternatres and pick the most &ctive. For

mary incremental compression techniques, it is quite possible that the result of
applying compression ould be a data structure ¢gr than the origina with the
slowdown aggraated by the higherverhead of processing compressed accesses.

2.2. Compression with \ariable Access, Read-Only Data

With the &ception of some of the sparse compression techniques discussed in section
2, virtually all compression techniques in the literature are incapable of supporting a
variable access patterHowever, if the elements of the data structure are read-only
and knevn at compile time, there are anety of techniques that can be used to
compress the lookup table without compromising random accébe basic
technology is the creation of a set of one or more hash functions thatyoccup
significantly less total memory spaceayt hogether implement the original lookup
function.

A hash functionis a mapping of domain (input oe¥ values into range (function or
return) \alues. Normallythe ideal is to find a hash function that is minimal and
“perfect” —i.e., that implements a domain-to-range mapping which is dratithand
1:1. Howeve, a perfect hash function only pvales rapid indeing: it does not
provide compression of the datén order to preide compression, the hash function
should ben:1. Furthey provided that the erage range alue is tageted by enough
domain elements, we do not care if there are some range elements thaeted tay

no domain elements, i.e., are unused “toare” entries in the hash tabl&his is the
type of hash function that will pride compression while supporting fullyanable
random access patterns.

Let L(k)=v, be the original table lookup function implemented by kg an array

of values,a[], such thatv,=alk] . If there aist two values ofk, k andk such that
ki;c:kj and L(ki)EL(k].), thenalk] andalk;] are essentially copies of the same range
value and one might be able to be eliminated from storage as redurtast.
common that lookup functions & mary such redundant entries; furthdéhere are
techniques that can be used to transform the lookup problem to create such
redundancies (see sections 3 and e problem of finding a compressed hash
function, L' (k)=v,, is thus the problem of finding an indéransformation function,
H(k)=x,, which maps into a table withier entries thaa[], such that for all pairs of
values k. and k;, if H(ki)EH(k].), then L(ki)EL(kj). Notice thatL(ki)EL(kj) does not
imply H(k)=H(k); duplicate entries can alsaist in the compressed form, pided
that the total array size is still reduce&imilarly, having the compressed array
contain entries that are not gated by ay value of k also merely reduces the
compressiondctor achieed. Of course, optimizing the compressiattor is not our
goal; minimizing &erage access cost by taking adtage of laver memory access
entropy is.



There are manapproaches that can be used to search for a good hash furdijon

and the array contents that it requires in order to perform the correct mapping.
Fundamentallythe problem of reerse-engineering anfefient hash function from the
array contents becomespanentially more dffcult as lager domains and ranges are
considered. Achigng higher compression generally has the same impact on
complity of the search, orequivalently, generates hash functions that are
computationally too comp¥eto be useful. Ourapproach can be summarized as:

(1) Computehe minimum possible size of the hash tabldyy counting redundant
entries inL(k). If modulus operations arexgensve, round s up to the ngt
largest paver of two. Alsoinitialize a hash table[s] to all “empty” entries.

(2) Generata potential hash functiorti(k), which ensures that, for alblues ofk,
O<H(K)<s. If sis a paver of two, this can be accomplished using bitwise AND
(s-1) inH(K).

(3) EvaluateH(k) for all values ofk. In essence, this is done byatuating H(k,)=x;
and then eamininge([x] for either of two conditions:

* If e[x] is empty sete[x]=L(k;) and mark the entry as full.
(Serial numbering is often a goodwto handle empty/full marking.)

» If e[x] is full ande[x]#L(k), record the conflict.
If the hash function must be perfect, goto step 5;
otherwise, continue with lossy compression (sections 5 and 6).

(4) Combineevduations of conflicts and the computational costHk);
record it as the me“best found sodr” if appropriate.

(5) Increasesif the array size seems too small tfoed a computationally &€ient
hash function.

(6) Exitif available search time has elapsed,fisigntly good solution has been
found, orshas become too Ige.
Otherwise, go to step 2.

Notice that it vas not specified moone generates the potential hash function in step
2. Thereare may viable alternaties. Techniques we k& wsed include:

Searches of figd collections of knwn-effective forms

Enumeratve arches (as per the Superoptimizer [Mas87])

Genetic programming (GP) p¢92]

Adaptive methods that attempt to correct specific conflict(s) fronvipts hash
functions

» Various cure-fitting techniques

Of these, the fied-collection and GP methodsvieathus fir proven to be most
effective. Howevae, further research is needed to find mofficieht ways to handle
very hard hash compression problenturrently overnight or longer runs are often
needed to find appropriate hash functions.



2.3. Compression with \ariable Access, Changeable Data

As discussed ale, it is very difficult to find an appropriate compressing hash
function for an arbitrary mapping..and the creation process is not incremental.
Except when the rate of change of entriesuwsdoough to permit use of a &g hash
compression augmented by a wemtional hash table with linear rehash used to
identify changed entries, we currently knof no efective goproach.

3. Accuracy and Range Pecision Filtering

Although programmers often talkhe position thatwery value computed within their
program should be computed with as much precision as possible, what really matters
is the accuracof the results.Precision simply indicates thwomary bits are used to
represent aalue; accurac describes hew mary of the bits carry correct and useful
information. Becausearious s&ings are possible in operating orwkr precision
values, it is generally desirable to neathe storage precision ofilues equal to or
slightly greater than the accuyaof those walues. Theonly benefit in maintaining
precision much higher than accwas that it saes the programmer from kg to

be avare of what the accurgcof their computations truly is— in other words, it
facilitates bad programming practice.

Although integger \alues are absolutely accurate, the precision required fageinte
values is determined by the range @flues. IBr example, an intger \ariable that
ranges from 0 to 100 does not require storage with 32-bit precision; 7 daitd w
suffice. Avalue that ranges from 10000 to 10100 also can be stored in just Trbits.
fact, a \alue that ranges from 10000 to 10200 andvsyd a multiple of 2 also can

be stored in just 7 bitsRange compression also can be applied to floating point
values that hee a vey limited range of gponent alues.

Thus, when compression techniques are being applied, the compression techniques
should not be constrained to produedues that are identical to the full precisioat b
only to preserg the accuragand range of the originalaues.

For example, consider a typical lookup tableach entry is usually either the result of
a very comple computation or an empirically measured quantityafter all, if
entries were determined by a cheap formulay farogrammers wuld bother
constructing a lookup tabld-dowever, even if complex computations were carried out
using \ery high precision, the accusaof the results placed in the table isdliik to be

far lower than the precision of the intermediate calculations used to compute them.
Low accuray aso is common for empirical dataThus, @en if subsequent
calculations using alues from the lookup table require high precision arithmetic,
storage of the table entries need nbtore generallya lossy compression scheme
that recwers the table entries only approximately is acceptabieiged that accurac

is not compromised.Alternatively, accuray information can be used to filter the
table before compression, reducing engrbp changing alues to conform with other
values in the table when the change does not compromise accurac

It is useful to further note that, if the accurand range slues ary widely over
portions of a lookup table, it may be appropriate to sudhelithe table on this basis.



Although static accurgc analysis is not particularly ditult for a compiler to
implement, an informal suey mnducted by Dietz in the early 1990s of scientific
Fortran codes then in use at Purduevdrsity revealed that fev, if any, results printed

by these programs had yasignificant digits as determined by the standard static
analysis. Despitehis, the codes seem to produce reasonably accurate answers,
apparently with seeral significant digits. The discrepanc lies in the &ct that
compensating errors are common anarsircase loss of accusaés very rare, so
static analysis as far too consemtive. For this reason, we suggest that the
programmer should use @ agnma to explicitly state the accurgcthat should be
presered.

4. Synthetic Range Filtering

In some cases, accuyaend range precision filtering are noery helpful. For
example, a table of floating point numbers often wilvdaelatively random bit
patterns in the mantissadt may be &ceedingly dificult to compress such data.
However, an interesting trick can be used to simplify the search.

Let L(k)=v, be the original table lookup functionf the return alue has bits, then

v, is really the bit ectorv,[0..b-1]. Instead of searching for a single compressed
lookup function,L’(k)=v,, we can search for a set of compressed lookup functions
L’ozvk[Q..bo-l], L =Vilbo-by-1l, .., LU =vi b, 4.b-1].  This _efectl\_/ely__
synthetically restricts the range for each compressed lookup function, significantly
reducing the apparent entsopf the \alues and consequently making appropriate
functions easier to creatBecause the bitectors can be stored as pagkfields
within a table, there is little or no additional storagerbead associated with the
decomposition into bitectors.

If the compression achied for the decomposed bitegtors is comparable to the
compression achied without decomposition, wing m lookup table references
instead of 1 will introduce enougtveshead to mak decomposition inappropriate.
However, the reduced ranges often yield significantly higher compression for some of
the m compressed lookup function§hus, decomposition intm lookup tables may
significantly reduce the total space needed for lookup tabidisis reduction allas

the tables to reside in a highewdeof memory (e.g., L2 cache rather than main
memory), computingn decomposed lookup functions can be significargbter than
performing a single compressed lookup.

Another way to synthetically reduce the range is towveoinbit positions that are
constant across all lookuphaes into “dort care” bit positions.The bit positions that
are constant (“stuck” at 0 or 1) can be obtained straightficiiyy Let O be the
bitwise OR of all the alues andA be the bitwise AND of all thealues. Theactive

bit positions are then those @AND NOTA. The inactve bt positions can thus be
treated as “don’care” walues within the lookup function(s) and the correct bit
position \alues can be inserted by bitwise ANDing with #dive set (computed
above) followed by bitwise ORing witk.



5. Individual Exceptions

Suppose that a particular table lookup operatigk)=v,, is equivalent to a cheaper
lookup operatiort’ (k)=v, for all k#x. The single gception can be corrected by code
like:

if( k=x) {
return( v,);
} else{

return( L' (K));
}

This correction method can be generalized to correct multiples flaL’ by coding
either a binary tree or a linear nesifoftests.

Unfortunately as dscussed in the introduction, modern processors argilyea
pipelined; thus, performance depends critically on the processor correctly guessing
whether to ta& o not to tale each conditional branchOne implication is that the
binary tree can be sk@r than the linear nest because the branch directions are less
predictable. Inary case, branches often will be mispredictéfle aan asoid branch
misprediction by coverting eachif statement into a masking operationelithe
following C code:

t= Kx

m = ((t|-t) >> (WORDBITS-1));

return((m & ( v, T L) vy
In this code, assume thiét x, t , and mare 25 complement signed ingers. The &lue
of t will be non-zerdff k#x. For ary non-zero \alue oft , the expression(t | -t)
will yield a negdive integer \alue. Asigned shift right of a mgtive value by the
number of bits in a ard minus one essentially replicates the sign bit, makihgve
the \alue -1. The same processvgs mO if t is 0. Thus,mcan be used as a bitmask
to conditionally enable part of the computatidrhe returned result ig if mis O (i.e.,
k=x). Otherwisebecause/,” v, is 0, the result is judt’ (k). We can further optimize
this code to:

t = Kx
m = ((t]-t) >> (WORDBITS-1));
return((m & L"(K) ~ v

By replacing the table entries af(k) with L"(k)=(L'(k) " v,);, we can aoid the
overhead of one of thexelusive-OR operations.

6. “Lossy” Compr ession

A “lossy” compression scheme is one in which tladues receered from the
compressed form are not identical to the originat, lieve smilar properties. In
mary cases, a lossy compression scheme can yield significantly higher compression



than a lossless schemd-or example, JPEG image encoding asle® high
compression using a lossy schemej the compression technique is carefully
engineered so that the lost information is usually visually unimportéints, the
guestion is:how can a lossy compression scheme be engineered val@rsimilar
benefits for reducing memory access entfop

6.1. The Basic Approach

The surprising answer is that a compression scheme that only yields a caluect v
for someinputs can dramatically decrease access entr8pppose that a particular
table lookup operationl-(k)=v,, is gproximated by a lossy compressed lookup
operationL’(k)=v',. It is possible to construdt’ (k) such that, for somealues ofk,
V=V'; i.e., the lossy scheme returns the corraiie; Letp be the probability thakt is
selected such that (k) is correct. By usingL’ (k) rather thar_ (k) for those alues ok
that yield correct results, we can reduce the memory accessyehyr@m amount
proportional tap.

The only remaining problem is Wwao slect when to usk’ (k) and when to usk(k).
This can be sokd by creating an auxiliary correctness-check functiogk) that
returnstrue only for values ofk for which L' (k) yields the correct answerAn
implementation ofc(k) can be created Wially by using a lookup table with a single
bit for each possiblealue ofk. Howeve, lossy compression dE(k) also can be
applied to create a lookup functi@i(k). The only constraint is that for atl such
thatC'(k)=true, C(k)strue. If there gists at least onealue ofk such thalC’(k)=false
and C(k)etrue, then the dect is that the probability of using (k) is reduced by the
sum of the probabilities of thosalues ofk incorrectly classified bg’(k).

One further optimization is possibleSince L(k) will not be ealuated for \alues
where the correctness-check function returos, it is possible to create a residual
lookup function,R(k), such thatR(kEL(k) for all k where the correctness-check
function returndalse There are seeral different ways to produc&(k).

An obvious approach is to treRi(k)as a ne/ L(k), and to recursiely apply the search
for a possibly lossybut cheaperlookup functionl’ (k). It should be noted, heever,
that the recurse gplication is slightly more comptebecauseR(k) is only defined
for certain alues ofk, not for all values between a minimum and maximufrhis
complication is easily accounted for in the search.

Alternatively, a \alid R(k) always can be produced by using an arbitrary (imperfect)
hash function with linear rehashingzach hash uxcket in R would contain an
input/output alue pair; if the input does not match, the sequentiaby ina@sh bicket

is examined, and so on, until the thalwe is found.The sequential re-hash iery
friendly to both caches and TLBs, seee performing seeral probes can takanly a
small fraction of the time required for a random lookup usifig. Of course, this
last optimization applies only whem is suficiently lame; for small alues ofp,
directly usingL(k) is faster because the lookup table lf@k) is comparably sized or
smaller than the one fét(k)— the table fol (k) does not need to holdles ofk.



6.2. A Simple Example

For example, one test case that wevdha@amined is a lookup table tak from a
weather prediction codeThis table can be weed as a lookup functiom(k),
0<k<742,600 which returns a 32-bit floating poinale.

It happens that marof the entries are 0, so the table is swime sparse— although

not sparse enough for the usual sparse data structure methods to be directlytuseful.
is trivially easy to recognize that &y good choice for a lossy compressek) is
literally the functionL’(k)=0. There are 297,613 entries computed incorrectly by
L’ (k)=0 (40%). If all values ofk are equiprobablg=0.6.

The olvious implementation o€(k) is a lookup table containing 742,600 bitsa
mere 92,825 bytes compared to 2,970,400 in the original data stru€hiseis small
enough that both’ (k) and C(k) fit within the L2 cache of most modern processors.
However, it is possible to achiee a $ill smaller cache footprint by lossy compression
of C(k). In this case, one of our hash search codas able to create a 32,768-byte
table that can be used to impleméitk) such thatC’'(k) is overly conserative in
estimating C(k) for less than 0.01% of theales ofK, essentially leging p
unafected. Haevever, the hash function fo€'(k) is a dgree-3 polynomial requiring
three multiplies and taov adds to be ealuated to inde the appropriate byte, which
would take sgnificantly longer than the L2-cache access @fk)— so use of a
compressed’(k) is not worthwhile in this caself 32,768 bytes fit in L2 cache and
92,825 bytes did not, use 6f(k) may hae keen justified.In general, the choice is
made by plugging-in the cost metrics for the particulagetamachines memory
access structure; furthet is not necessary to search hash function forms thetesl
the cost that the tget machine wuld hare for C(k).

Continuing our gample, is it appropriate to replat¢k) with R(k)? As dscussed
abore, C(K) finds that there are 297,613luves ofk that are incorrectlyvaluated by

L’ (k). For simplicity, assume that the recuvsi gpproach is ignored and we instead
accept an imperfect hash function with linear rehdsin.virtually ary data, it is easy

to find such a hash function that has aerage of less than 1 linear rehash per
lookup. Havever, the imperfect hash function must not only store the 297,613 result
vaues, it also the alue ofk that each result is produced. bBecause there are
742,600 possiblealues ofk, storing eachk value would require a minimum of 23
bits. For alignment reasons, oneuld certainly round that up to at least 24 bits, and
perhaps to 32 bits péevaue. At 32+32 bits per table entryhe table forR(k) is
2,380,904 bytes— whereas the original table fank) was 2970,400 bytes.This
constitutes a s@ngs of just under 20%, which is probably notfsignt to justify
usingR(k), becauseR(k)will be slover for the alues ofk that require linear rehashes.
Of course, if this size dié#rence wuld allov R(k)to fit in cache wheré(k) does not,

it would be vorthwhile; our &ample just happens to be toodarto fitR(k) in L2
cache on most modern processors.



On a 1GHz Athlon 4 laptop, the uselotk), C(k), and L(k) as described albe gavea
speedup of 1.4x to 2.1wer use ofL(k) alone. Thevariability reflects changes in the
reference pattern; cleaylfjor some reference patterns, the use of compressioidw
yield slavdown due to thexdra overhead of galuating C(k).

7. Conclusion

In this paper we have outlined a &mily of nev methods for achiéng higher
performance from the comple hierarchical, memory structures found in today’
superscalar pipelined processoBy using \ery aggresse compression technology
they alow a compiler to directly reduce the entgopf memory access patterns, thus
significantly impraing performance.Some of the compiler technology must be
assisted by programming language dirasstior pragmas to help identify appropriate
data structures; other uses of compression can be triggered entirekisbgge
compiler analysis.

This paper does not represent a completed study or a final answer aw to ho
compression should be usefRather it was written because we had long been
applying some of these techniques in obscure special casenly recently
discovered that thg havebeen rendered important and common by modern processor
architecture. Thesvdution of memory systems will no doubt necessitate rhore
research into »®tic methods for impning access pattern entgop We ae
particularly curious as to what impact thesmmsmemory architecture of the AMD
Opteron (formerly knan as Hammer) will hae, since it places less emphasis on
cache and more on “superscalar’ memory pipelining.
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