
Compiler Optimizations

Using Data Compression

To Decrease Address Reference Entropy

H. G. Dietz and T. I. Mattox
Electrical and Computer Engineering Department

University of Kentucky
Lexington, KY 40506-0046

{hankd, tmattox}@engr.uky.edu
http://aggregate.org/

In modern computers, a single “random” access to main memory often takes as much
time as executing hundreds of instructions.Rather than using traditional compiler
approaches to enhance locality by interchanging loops, reordering data structures,
etc., this paper proposes the radical concept of using aggressive data compression
technology to improve hierarchical memory performance by reducing memory
address reference entropy.

In some cases, conventional compression technology can be adapted.However,
where variable access patterns must be permitted, other compression techniques must
be used.For the special case of random access to elements of sparse matrices, data
structures and compiler technology already exist. Our approach is much more
general, using hash functions to implement random access compressed lookup tables.
Techniques that can be used to improve the effectiveness of any compression method
in reducing memory access entropy also are discussed.

1. Intr oduction
Optimization of memory accesses is not a new idea, nor is it new that a compiler
should perform the appropriate transformations.However, over the past few years,
the natural evolution of computer hardware has yielded a qualitative change in how
memory accesses affect processor performance.

1.1. Modern Computer Architecture

Logically, processors are more complex than memory, so one would expect them to
be slower than memory. In fact, that was the case for much of the history of digital
computing. However, through the relatively short history of digital computing, a
surprisingly wide variety of different technologies have been used for constructing
main memory and processors.Using different technologies, processors and memories
have followed different performance curves... bothgetting faster, but processors
increasing in speed at a much greater rate than memories.The result is what we all
know: main memory is now much slower than a processor. But the relationship is
much more complex than that suggests.

It is true that processor clock rates have been increasing at an impressive rate, but the
processors running at these higher clock rates are not the same designs that were used
at lower clock rates.Very little of the performance increase in modern processors
comes from using the same design with faster gates. For example, the design of an
Intel 468DX processor allowed it to run with the then-fast clock frequency of 33MHz
and to complete execution of an instruction every few clock cycles. Incontrast, the
Pentium 4 uses “superscalar” instruction-level parallel execution to complete
execution of several instructions every clock cycle — an order of magnitude more
work per clock cycle, even ignoring the fact that the Pentium 4’s clock ticks at a
blazing 2.4GHz.Beyond that, the reason a Pentium 4 can run with a 2.4GHz clock
frequency is not simply because it is built using better gates than a 486DX, but also
because it carves long logic paths into many pipeline stages.For example, this is why
a Pentium III cannot achieve the same clock rate as a Pentium 4 even when they are
built with the same technology:a Pentium 4 has much deeper pipelines yielding
shorter logic paths for each clock cycle. In summary, processor speed increases are
largely enabled by extensive use of superscalar pipelining— all of which comes to a
screeching halt when the processor has to wait for a memory read.

Computer architects are very aware of this problem. The standard architectural
solution is to construct a memory hierarchy in which small, fast memories are placed
within or near the processor and intended to be used to hold copies of memory blocks
that will be referenced with good spatial and/or temporal locality.

The fastest such memory structure is a register file. Compiler writers have long
understood register allocation... but there is a twist: the number of registers
accessible to the compiler is a function of the instruction set design, so the compiler
can only manage as many general-purpose registers on a Pentium 4 as it had on a
486DX. Fortunately, aggressive use of register renaming has allowed computer
architects to build hardware that performs on-the-fly reallocation of registers to a
much larger pool. For example, the 8 compiler-visible floating point registers of the
Intel 486DX turn into 88 within the AMD Athlon.In many processors, special write
buffer hardware even attempts to short-circuit-route data being stored from one
register into another register which is loading from the address being stored into.

After registers, there are usually two or more levels of cache.Cache line sizes and
replacement policies vary, but in general the line size gets bigger and access gets
slower as caches get further from the processor. Across processor generations, cache
line sizes tend to be increasing in general.Further, most caches now hav e special
provisions for fetching the requested word within a cache line first, rather than
fetching the words in sequence.

Even though your program might not use disk-based virtual memory, modern
operating systems rely on a page table mechanism to allocate main memory space.
Thus, all main memory addresses have to be translated from logical to physical
addresses. Inmost modern machines, this is done by two lev els of TLB (translation
lookaside buffers) which serve as “caches for address translations.” Caches typically
are indexed by physical addresses, so that TLBs appear between the processor and L1
cache. Theimplication is that even if a particular address is in cache, it will be fast to

access only if its address is also in the TLB.Although TLBs are often ignored by
programmers, they are often very small (typically 32 to 128 entries), so TLB misses
can seriously limit performance.

Further complicating all of this, hardware in the latest AMD Athlon and Intel Pentium
4 processors attempts to automatically recognize access patterns.Prefetch operations
are issued automatically.

1.2. Memory Access Performance Of Modern Architectures

How do all of the above architectural features change how code should be written?
The best way to answer such a question is to make some performance measurements
on real machines so that the cost of different coding constructs can be accurately
estimated. To make the memory access trends more visible, we have restricted our
benchmarks to processors that execute the basic IA32 (Intel Architecture, 32-bits)
instruction set.This not only eliminates artifacts from use of different instruction
sets, but also made it possible to literally use the exact same binary executable on all
the machines.Consequently, the memory system effects are not convolved with
differences between compilation systems; the one executable was produced using
EGS 2.91.66 with the optimizations enabled by the -O1 command line option.An
additional benefit in using this instruction set is that all the processors provide the
same processor clock cycle timing mechanism.

Most of the architectural features listed above are aimed at improving performance of
low-entropy memory access patterns: read sequences that have good spatial and
temporal locality or are easily predicted by the hardware. Onewould hope that
repeated references to the exact same word (temporal locality) would be optimized by
the compiler to access the word from memory once, and thenceforth from a register.
Thus, the lowest entropy memory reference pattern is generally assumed to be a
stride-1 access pattern in the increasing address direction.Have these architectural
changes achieved speed-up for this read access pattern?As Figure 1 clearly shows,
the answer is yes; from the 100MHz Pentium to the most modern Athlon and Pentium
4 an order of magnitude speedup is seen.

It is important to note that, because processors are heavily pipelined, memory access
latency can be partly overlapped with loop overhead. Itis not possible to separate-out
the test loop overhead; any memory access latency that is completely overlapped with
loop overhead would appear to be zero and inefficient loop implementations would
make memory seem faster. For this reason, all of the graphs in this paper include the
loop overhead.

That good speedup is achieved for the lowest-entropy reference pattern is not
surprising. To determine if good speedup is also achieved for high-entropy reference
patterns, we selected a simple random number generator— RANQD1 [PrT88]— and
used that to generate the address sequence.Ironically, a random number generator
does not generate the highest entropy memory access sequence, but is a good model
for the type of high-entropy memory reference pattern commonly seen in programs.
The good news is that, as Figure 2 shows, good speedup is also achieved for this high-
entropy pattern.

2

4

8

16

32

64

128

256

512

1024

32 1024 32768 1048576 33554432

T
im

e
(n

s)
 p

er
 S

eq
ue

nt
ia

l A
cc

es
s

�

Table Size (bytes)

Wall Clock Time per Sequential Access vs. Table Size

1700 MHz Pentium 4 (PC2100)
1500 MHz Pentium 4 (PC133)
1533 MHz Athlon XP 1800+ (PC2100)
1533 MHz Athlon MP 1800+ (PC2100)
1200 MHz Athlon (PC133 Socket A)
1000 MHz Mobile Athlon 4 (PC100)
1000 MHz Athlon (PC100 512KB L2)
 700 MHz Athlon (PC100 512KB L2)
 550 MHz Pentium III (PC100)
 500 MHz K6-2 (PC100 no L2)
 166 MHz Pentium MMX
 166 MHz Pentium
 100 MHz Pentium

Figure 1: Low-Entropy Memory Read Access Pattern Times

2

4

8

16

32

64

128

256

512

1024

32 1024 32768 1048576 33554432

T
im

e
(n

s)
 p

er
 R

an
do

m
 A

cc
es

s

�

Table Size (bytes)

Wall Clock Time per Random Access vs. Table Size

1700 MHz Pentium 4 (PC2100)
1500 MHz Pentium 4 (PC133)
1533 MHz Athlon XP 1800+ (PC2100)
1533 MHz Athlon MP 1800+ (PC2100)
1200 MHz Athlon (PC133 Socket A)
1000 MHz Mobile Athlon 4 (PC100)
1000 MHz Athlon (PC100 512KB L2)
 700 MHz Athlon (PC100 512KB L2)
 550 MHz Pentium III (PC100)
 500 MHz K6-2 (PC100 no L2)
 166 MHz Pentium MMX
 166 MHz Pentium
 100 MHz Pentium

Figure 2: High-Entropy Memory Read Access Pattern Times

However, viewing Figures 1 and 2 together reveals a disturbing fact: newer
processors generally have larger differences between the best sequential time and the
worst random time.The 100MHz Pentium had only a time factor of 13.3 penalty for
a bad reference pattern, whereas an Athlon MP had a time factor of 127.5 penalty.

Of course, some differences are due to differing clock rates; looking at raw counts of
clock cycles is an arguably purer measure.These results, respectively for the

sequential access pattern and for the random access pattern, are in Figures 3 and 4.

4

8

16

32

64

128

256

512

32 1024 32768 1048576 33554432

C
P

U
 C

lo
ck

 C
yc

le
s

pe
r

S
eq

ue
nt

ia
l A

cc
es

s

�

Table Size (bytes)

CPU Clock Cycles per Sequential Access vs. Table Size

1700 MHz Pentium 4 (PC2100)
1500 MHz Pentium 4 (PC133)
1533 MHz Athlon XP 1800+ (PC2100)
1533 MHz Athlon MP 1800+ (PC2100)
1200 MHz Athlon (PC133 Socket A)
1000 MHz Mobile Athlon 4 (PC100)
1000 MHz Athlon (PC100 512KB L2)
 700 MHz Athlon (PC100 512KB L2)
 550 MHz Pentium III (PC100)
 500 MHz K6-2 (PC100 no L2)
 166 MHz Pentium MMX
 166 MHz Pentium
 100 MHz Pentium

Figure 3: Low-Entropy Memory Read Access Pattern Clock Cycles

4

8

16

32

64

128

256

512

32 1024 32768 1048576 33554432

C
P

U
 C

lo
ck

 C
yc

le
s

pe
r

R
an

do
m

 A
cc

es
s

�

Table Size (bytes)

CPU Clock Cycles per Random Access vs. Table Size

1700 MHz Pentium 4 (PC2100)
1500 MHz Pentium 4 (PC133)
1533 MHz Athlon XP 1800+ (PC2100)
1533 MHz Athlon MP 1800+ (PC2100)
1200 MHz Athlon (PC133 Socket A)
1000 MHz Mobile Athlon 4 (PC100)
1000 MHz Athlon (PC100 512KB L2)
 700 MHz Athlon (PC100 512KB L2)
 550 MHz Pentium III (PC100)
 500 MHz K6-2 (PC100 no L2)
 166 MHz Pentium MMX
 166 MHz Pentium
 100 MHz Pentium

Figure 4: High-Entropy Memory Read Access Pattern Clock Cycles

In summary, the cost of memory references is getting further from constant; access
times are a complex function of the access pattern with costs currently ranging over at
least two orders of magnitude.High entropy memory access patterns can take
hundreds of clock cycles per read— and many operations can be executed per clock
cycle. Executing as many as a thousand instructions to avoid a single high-entropy

memory reference can yield speedup!This huge payoff makes it practical to consider
very complex mechanisms for reducing address reference entropy. Throughout this
paper, our focus is using compression to decrease address reference entropy — in
some cases, the total size of the compressed data structures is actually larger than the
original data.

2. Compression To Reduce Access Entropy
Although we believe the fully general concept of using compiler technology to
employ compression for the purpose of reducing address reference entropy to be
entirely new, there are a few special cases in which compression has been used to
improve memory system performance.

Although our focus is using compiler technology to apply compression to reduce
entropy of data references, the work most similar in concept involves hardware
technology to operate on compressed code.Shortly after the invention of VLIW
(Very Long Instruction Word) architecture, it was recognized that VLIW instructions
often contained redundant or empty fields.Although the fact was not widely
published, the Multiflow Trace architecture took advantage of this fact by having
processor hardware fetch compressed blocks of VLIW instructions and decompress
them on the fly. An even more aggressive compression scheme was used for encoding
instructions for the complex instruction set of the Intel 432 [ARM81]:instructions
were Huffman encoded as bit sequences that were extracted directly from the code
stream by the processor hardware. Although modern processor architecture
implementations could benefit from such a hardware-driven approach, the benefit is
not as great as one might expect because code stream address reference entropy is
relatively low — spatial locality is very good.

Very recent work [ZhG02] attempts to achieve modest compression for dynamically-
allocated data structures, but the majority of compiler techniques have been developed
to translate code written as “dense” matrix operations to use “sparse” data structures
[BiW95]. The sparse representations assume that the majority of data elements have
the same value (most often, zero).Despite this constraint, these compiler code and
data transformations, and the associated analyses, are very closely related to our more
general notion of using compression as a memory address entropy-reducing
transformation. Inparticular, the analysis that determines what code would be
impacted if the representation of a particular data structure were to be changed is
directly applicable.In fact, the analysis we presented in [JuD92] also would suffice
for that purpose.

The generalized problem of using compressed data structures with non-sparse data
can be subdivided into four classes based on two simple attributes:

1. Is the data structure read-only? Compression algorithms for read-only data
structures, especially those with compile-time constant values, can be very
computationally expensive provided that the decompression algorithm is
inexpensive. If the data can be changed during program execution, the efficiency
of the compression algorithm is also critical.

2. Ar e elements of the data structure accessed in a fixed pattern — i.e., are they
ordered? Given a fixed access pattern, transmitting the data structure from
memory to the processor in that order is nearly the same problem as transmitting
the data structure through a communications network — the classical application
of compression technology. Note that the access order need not access each
element precisely once; a structure containing “a,b,c” accessed with the fixed
order “c,a,c,c” is essentially the same as sequential access of the structure
“c,a,c,c”. If a variable access pattern must be supported, compression methods
that make decompression of an element dependent on decompression of previous
elements are generally inappropriate.

Techniques for fixed access pattern compression are very well developed; thus, the
primary contribution here is the concept of using these techniques as a compiler
technology. This is discussed in the following section. Given a variable access
pattern and read-only data, new compression techniques are needed.Section 2.2
outlines a very aggressive technique for this type of compile-time compression, which
is most useful for increasing the efficiency of lookup tables.To efficiently compress
given a variable access pattern and changeable data, the compression scheme must
have a relatively efficient method for incremental update of the compressed form.
Very few such schemes exist; a very brief discussion is given in section 2.3.

2.1. Compression with Ordered Access

Compiler technology for recognizing everything necessary to improve ordered access
is very well developed. Therequired information is essentially accumulated as a side-
effect of performing traditional loop parallelization dependence analysis.For
example, consider the simple loop nest:

DO 10 J=1,100
DO 10 I=1,100

10 A(I,J) = A(I,J) * B(I, J)

Within this example loop nest, the elements ofB are only read; let us further assume
that B is in fact an array of constant values known at compile time.The elements of
the arrayA are both read and written.Thus, the example contains both read-only and
read-write data structures with a known access order.

For B, because both the element values and the access order are known at compile
time, we can apply a traditional communications-oriented compression scheme at
compile time. For example, a variant of Huffman encoding, LZW (Lempel-Ziv
Welch), or even fractals and wav elets can be used to compressB. Simple type-
dependent compression techniques may be particularly appropriate; for example,
although mantissa bits vary, it is very likely that the exponent and sign are the same
(or differ little) from one floating point value to the next. Further, because the
compression is done at compile time, it is feasible to try several alternative
compression techniques and pick the most effective.

The compression ofA is much more difficult to make effective. In part, the
complexity comes from the fact that the compression algorithm must be incrementally
applied (e.g., wav elets cannot be used because they require examining the complete
data structure) and must be computationally cheap enough to be applied at every point
where the data are changed.However, the fact that compression is applied at run time
also makes it infeasible to try several alternatives and pick the most effective. For
many incremental compression techniques, it is quite possible that the result of
applying compression would be a data structure larger than the original— with the
slowdown aggravated by the higher overhead of processing compressed accesses.

2.2. Compression with Variable Access, Read-Only Data

With the exception of some of the sparse compression techniques discussed in section
2, virtually all compression techniques in the literature are incapable of supporting a
variable access pattern.However, if the elements of the data structure are read-only
and known at compile time, there are a variety of techniques that can be used to
compress the lookup table without compromising random access.The basic
technology is the creation of a set of one or more hash functions that occupy
significantly less total memory space, but together implement the original lookup
function.

A hash function is a mapping of domain (input or key) values into range (function or
return) values. Normally, the ideal is to find a hash function that is minimal and
“perfect” — i.e., that implements a domain-to-range mapping which is bothontoand
1:1. Howev er, a perfect hash function only provides rapid indexing: it does not
provide compression of the data.In order to provide compression, the hash function
should ben:1. Further, provided that the average range value is targeted by enough
domain elements, we do not care if there are some range elements that are targeted by
no domain elements, i.e., are unused “don’t care” entries in the hash table.This is the
type of hash function that will provide compression while supporting fully variable
random access patterns.

Let L(k)=vk be the original table lookup function implemented by indexing an array
of values,a[] , such thatvk=a[k] . If there exist two values ofk, ki and kj such that
ki≠kj and L(ki)≡L(kj), then a[ki] and a[kj] are essentially copies of the same range
value and one might be able to be eliminated from storage as redundant.It is
common that lookup functions have many such redundant entries; further, there are
techniques that can be used to transform the lookup problem to create such
redundancies (see sections 3 and 4).The problem of finding a compressed hash
function, L’ (k)=vk, is thus the problem of finding an index transformation function,
H(k)=xk, which maps into a table with fewer entries thana[] , such that for all pairs of
values ki and kj, if H(ki)≡H(kj), then L(ki)≡L(kj). Notice thatL(ki)≡L(kj) does not
imply H(ki)≡H(kj); duplicate entries can also exist in the compressed form, provided
that the total array size is still reduced.Similarly, having the compressed array
contain entries that are not targeted by any value of k also merely reduces the
compression factor achieved. Of course, optimizing the compression factor is not our
goal; minimizing average access cost by taking advantage of lower memory access
entropy is.

There are many approaches that can be used to search for a good hash functionH(k)
and the array contents that it requires in order to perform the correct mapping.
Fundamentally, the problem of reverse-engineering an efficient hash function from the
array contents becomes exponentially more difficult as larger domains and ranges are
considered. Achieving higher compression generally has the same impact on
complexity of the search, or, equivalently, generates hash functions that are
computationally too complex to be useful. Ourapproach can be summarized as:

(1) Computethe minimum possible size of the hash table,s, by counting redundant
entries inL(k). If modulus operations are expensive, round s up to the next
largest power of two. Alsoinitialize a hash table,e[s] to all “empty” entries.

(2) Generatea potential hash function,H(k), which ensures that, for all values ofk,
0≤H(k)<s. If s is a power of two, this can be accomplished using bitwise AND
(s-1) in H(k).

(3) EvaluateH(k) for all values ofk. In essence, this is done by evaluatingH(ki)=xi
and then examininge[xi] for either of two conditions:

• If e[xi] is empty, sete[xi]=L(k i) and mark the entry as full.
(Serial numbering is often a good way to handle empty/full marking.)

• If e[xi] is full ande[xi]≠L(ki), record the conflict.
If the hash function must be perfect, goto step 5;
otherwise, continue with lossy compression (sections 5 and 6).

(4) Combineevaluations of conflicts and the computational cost forH(k);
record it as the new “best found so far” if appropriate.

(5) Increases if the array size seems too small to afford a computationally efficient
hash function.

(6) Exit if available search time has elapsed, sufficiently good solution has been
found, ors has become too large.
Otherwise, go to step 2.

Notice that it was not specified how one generates the potential hash function in step
2. Thereare many viable alternatives. Techniques we have used include:

• Searches of fixed collections of known-effective forms

• Enumerative searches (as per the Superoptimizer [Mas87])

• Genetic programming (GP) [Koz92]

• Adaptive methods that attempt to correct specific conflict(s) from previous hash
functions

• Various curve-fitting techniques

Of these, the fixed-collection and GP methods have thus far proven to be most
effective. Howev er, further research is needed to find more efficient ways to handle
very hard hash compression problems.Currently, overnight or longer runs are often
needed to find appropriate hash functions.

2.3. Compression with Variable Access, Changeable Data

As discussed above, it is very difficult to find an appropriate compressing hash
function for an arbitrary mapping...and the creation process is not incremental.
Except when the rate of change of entries is low enough to permit use of a fixed hash
compression augmented by a conventional hash table with linear rehash used to
identify changed entries, we currently know of no effective approach.

3. Accuracy and Range Precision Filtering
Although programmers often take the position that every value computed within their
program should be computed with as much precision as possible, what really matters
is the accuracy of the results.Precision simply indicates how many bits are used to
represent a value; accuracy describes how many of the bits carry correct and useful
information. Becausevarious savings are possible in operating on lower precision
values, it is generally desirable to make the storage precision of values equal to or
slightly greater than the accuracy of those values. Theonly benefit in maintaining
precision much higher than accuracy is that it saves the programmer from having to
be aware of what the accuracy of their computations truly is— in other words, it
facilitates bad programming practice.

Although integer values are absolutely accurate, the precision required for integer
values is determined by the range of values. For example, an integer variable that
ranges from 0 to 100 does not require storage with 32-bit precision; 7 bits would
suffice. A value that ranges from 10000 to 10100 also can be stored in just 7 bits.In
fact, a value that ranges from 10000 to 10200 and is always a multiple of 2 also can
be stored in just 7 bits.Range compression also can be applied to floating point
values that have a very limited range of exponent values.

Thus, when compression techniques are being applied, the compression techniques
should not be constrained to produce values that are identical to the full precision, but
only to preserve the accuracy and range of the original values.

For example, consider a typical lookup table.Each entry is usually either the result of
a very complex computation or an empirically measured quantity— after all, if
entries were determined by a cheap formula, few programmers would bother
constructing a lookup table.However, even if complex computations were carried out
using very high precision, the accuracy of the results placed in the table is likely to be
far lower than the precision of the intermediate calculations used to compute them.
Low accuracy also is common for empirical data.Thus, even if subsequent
calculations using values from the lookup table require high precision arithmetic,
storage of the table entries need not.More generally, a lossy compression scheme
that recovers the table entries only approximately is acceptable provided that accuracy
is not compromised.Alternatively, accuracy information can be used to filter the
table before compression, reducing entropy by changing values to conform with other
values in the table when the change does not compromise accuracy.

It is useful to further note that, if the accuracy and range values vary widely over
portions of a lookup table, it may be appropriate to subdivide the table on this basis.

Although static accuracy analysis is not particularly difficult for a compiler to
implement, an informal survey conducted by Dietz in the early 1990s of scientific
Fortran codes then in use at Purdue University revealed that few, if any, results printed
by these programs had any significant digits as determined by the standard static
analysis. Despitethis, the codes seem to produce reasonably accurate answers,
apparently with several significant digits. The discrepancy lies in the fact that
compensating errors are common and worst-case loss of accuracy is very rare, so
static analysis was far too conservative. For this reason, we suggest that the
programmer should use apragma to explicitly state the accuracy that should be
preserved.

4. Synthetic Range Filtering
In some cases, accuracy and range precision filtering are not very helpful. For
example, a table of floating point numbers often will have relatively random bit
patterns in the mantissas.It may be exceedingly difficult to compress such data.
However, an interesting trick can be used to simplify the search.

Let L(k)=vk be the original table lookup function.If the return value hasb bits, then
vk is really the bit vector vk[0..b-1]. Instead of searching for a single compressed
lookup function,L’ (k)=vk, we can search for a set of compressed lookup functions
L’0=vk[0..b0-1], L’1=vk[b0..b1-1], ..., L’m=vk[bm-1..b-1]. This effectively
synthetically restricts the range for each compressed lookup function, significantly
reducing the apparent entropy of the values and consequently making appropriate
functions easier to create.Because the bit vectors can be stored as packed fields
within a table, there is little or no additional storage overhead associated with the
decomposition into bit vectors.

If the compression achieved for the decomposed bit vectors is comparable to the
compression achieved without decomposition, having m lookup table references
instead of 1 will introduce enough overhead to make decomposition inappropriate.
However, the reduced ranges often yield significantly higher compression for some of
the m compressed lookup functions.Thus, decomposition intom lookup tables may
significantly reduce the total space needed for lookup tables.If this reduction allows
the tables to reside in a higher level of memory (e.g., L2 cache rather than main
memory), computingm decomposed lookup functions can be significantly faster than
performing a single compressed lookup.

Another way to synthetically reduce the range is to convert bit positions that are
constant across all lookup values into “don’t care” bit positions.The bit positions that
are constant (“stuck” at 0 or 1) can be obtained straightforwardly. Let O be the
bitwise OR of all the values andA be the bitwise AND of all the values. Theactive
bit positions are then those inO AND NOTA. The inactive bit positions can thus be
treated as “don’t care” values within the lookup function(s) and the correct bit
position values can be inserted by bitwise ANDing with theactive set (computed
above) followed by bitwise ORing withA.

5. Indi vidual Exceptions
Suppose that a particular table lookup operation,L(k)=vk, is equivalent to a cheaper
lookup operationL’ (k)=vk for all k≠x. The single exception can be corrected by code
like:

if (k≡x) {
return(vx);

} e lse {
return(L’ (k));

}

This correction method can be generalized to correct multiple flaws in L’ by coding
either a binary tree or a linear nest ofif tests.

Unfortunately, as discussed in the introduction, modern processors are heavily
pipelined; thus, performance depends critically on the processor correctly guessing
whether to take or not to take each conditional branch.One implication is that the
binary tree can be slower than the linear nest because the branch directions are less
predictable. Inany case, branches often will be mispredicted.We can avoid branch
misprediction by converting eachif statement into a masking operation like the
following C code:

t = kˆ x;
m = ((t | -t) >> (WORDBITS-1));
return((m & (vx ˆ L’ (k))) ˆ vx);

In this code, assume thatK, x, t , and mare 2’s complement signed integers. The value
of t will be non-zeroiff k≠x. For any non-zero value oft , the expression(t | -t)
will yield a negative integer value. A signed shift right of a negative value by the
number of bits in a word minus one essentially replicates the sign bit, makingmhave
the value -1. The same process gives m0 if t is 0. Thus,mcan be used as a bitmask
to conditionally enable part of the computation.The returned result isvx if mis 0 (i.e.,
k≡x). Otherwise,becausevxˆ vx is 0, the result is justL’ (k). We can further optimize
this code to:

t = kˆ x;
m = ((t | -t) >> (WORDBITS-1));
return((m & L’’(k)) ˆ vx);

By replacing the table entries ofL’ (k) with L’’(k)=(L ’(k) ˆ vx);, we can avoid the
overhead of one of the exclusive-OR operations.

6. “Lossy” Compr ession
A “ lossy” compression scheme is one in which the values recovered from the
compressed form are not identical to the original, but have similar properties. In
many cases, a lossy compression scheme can yield significantly higher compression

than a lossless scheme.For example, JPEG image encoding achieves high
compression using a lossy scheme, but the compression technique is carefully
engineered so that the lost information is usually visually unimportant.Thus, the
question is: how can a lossy compression scheme be engineered to provide similar
benefits for reducing memory access entropy?

6.1. The Basic Approach

The surprising answer is that a compression scheme that only yields a correct value
for someinputs can dramatically decrease access entropy. Suppose that a particular
table lookup operation,L(k)=vk, is approximated by a lossy compressed lookup
operationL’ (k)=v’k. It is possible to constructL’ (k) such that, for some values ofk,
v≡v’; i.e., the lossy scheme returns the correct value. Letp be the probability thatk is
selected such thatL’ (k) is correct.By usingL’ (k) rather thanL(k) for those values ofk
that yield correct results, we can reduce the memory access entropy by an amount
proportional top.

The only remaining problem is how to select when to useL’ (k) and when to useL(k).
This can be solved by creating an auxiliary correctness-check function,C(k) that
returns true only for values ofk for which L’ (k) yields the correct answer. An
implementation ofC(k) can be created trivially by using a lookup table with a single
bit for each possible value of k. Howev er, lossy compression ofC(k) also can be
applied to create a lookup functionC’(k). The only constraint is that for allk such
thatC’(k)≡true, C(k)≡true. If there exists at least one value ofk such thatC’(k)≡false
andC(k)≡true, then the effect is that the probability of usingL’ (k) is reduced by the
sum of the probabilities of those values ofk incorrectly classified byC’(k).

One further optimization is possible.Since L(k) will not be evaluated for values
where the correctness-check function returnstrue, it is possible to create a residual
lookup function,R(k), such thatR(k)≡L(k) for all k where the correctness-check
function returnsfalse. There are several different ways to produceR(k).

An obvious approach is to treatR(k)as a new L(k), and to recursively apply the search
for a possibly lossy, but cheaper, lookup functionL’ (k). It should be noted, however,
that the recursive application is slightly more complex becauseR(k) is only defined
for certain values ofk, not for all values between a minimum and maximum.This
complication is easily accounted for in the search.

Alternatively, a valid R(k) always can be produced by using an arbitrary (imperfect)
hash function with linear rehashing.Each hash bucket in R would contain an
input/output value pair; if the input does not match, the sequentially next hash bucket
is examined, and so on, until the the value is found.The sequential re-hash is very
friendly to both caches and TLBs, so even performing several probes can take only a
small fraction of the time required for a random lookup usingL(k). Of course, this
last optimization applies only whenp is sufficiently large; for small values ofp,
directly usingL(k) is faster because the lookup table forL(k) is comparably sized or
smaller than the one forR(k)— the table forL(k) does not need to hold values ofk.

6.2. A Simple Example

For example, one test case that we have examined is a lookup table taken from a
weather prediction code.This table can be viewed as a lookup functionL(k),
0≤k<742,600, which returns a 32-bit floating point value.

It happens that many of the entries are 0, so the table is somewhat sparse— although
not sparse enough for the usual sparse data structure methods to be directly useful.It
is trivially easy to recognize that a very good choice for a lossy compressedL’ (k) is
literally the functionL’ (k)=0. There are 297,613 entries computed incorrectly by
L’ (k)=0 (40%). If all values ofk are equiprobable,p=0.6.

The obvious implementation ofC(k) is a lookup table containing 742,600 bits— a
mere 92,825 bytes compared to 2,970,400 in the original data structure.This is small
enough that bothL’ (k) andC(k) fit within the L2 cache of most modern processors.
However, it is possible to achieve a still smaller cache footprint by lossy compression
of C(k). In this case, one of our hash search codes was able to create a 32,768-byte
table that can be used to implementC’(k) such thatC’(k) is overly conservative in
estimating C(k) for less than 0.01% of the values of K, essentially leaving p
unaffected. However, the hash function forC’(k) is a degree-3 polynomial requiring
three multiplies and two adds to be evaluated to index the appropriate byte, which
would take significantly longer than the L2-cache access forC(k)— so use of a
compressedC’(k) is not worthwhile in this case.If 32,768 bytes fit in L2 cache and
92,825 bytes did not, use ofC’(k) may have been justified.In general, the choice is
made by plugging-in the cost metrics for the particular target machine’s memory
access structure; further, it is not necessary to search hash function forms that exceed
the cost that the target machine would have for C(k).

Continuing our example, is it appropriate to replaceL(k) with R(k)? As discussed
above, C(k) finds that there are 297,613 values ofk that are incorrectly evaluated by
L’ (k). For simplicity, assume that the recursive approach is ignored and we instead
accept an imperfect hash function with linear rehash.For virtually any data, it is easy
to find such a hash function that has an average of less than 1 linear rehash per
lookup. However, the imperfect hash function must not only store the 297,613 result
values, but also the value of k that each result is produced by. Because there are
742,600 possible values ofk, storing eachk value would require a minimum of 23
bits. For alignment reasons, one would certainly round that up to at least 24 bits, and
perhaps to 32 bits perk value. At 32+32 bits per table entry, the table forR(k) is
2,380,904 bytes— whereas the original table forL(k) was 2,970,400 bytes.This
constitutes a savings of just under 20%, which is probably not sufficient to justify
usingR(k), becauseR(k)will be slower for the values ofk that require linear rehashes.
Of course, if this size difference would allow R(k) to fit in cache whereL(k) does not,
it would be worthwhile; our example just happens to be too large to fit R(k) in L2
cache on most modern processors.

On a 1GHz Athlon 4 laptop, the use ofL’ (k), C(k), and L(k) as described above gav ea
speedup of 1.4x to 2.1x over use ofL(k) alone. Thevariability reflects changes in the
reference pattern; clearly, for some reference patterns, the use of compression would
yield slowdown due to the extra overhead of evaluatingC(k).

7. Conclusion
In this paper, we hav e outlined a family of new methods for achieving higher
performance from the complex, hierarchical, memory structures found in today’s
superscalar pipelined processors.By using very aggressive compression technology,
they allow a compiler to directly reduce the entropy of memory access patterns, thus
significantly improving performance.Some of the compiler technology must be
assisted by programming language directives or pragmas to help identify appropriate
data structures; other uses of compression can be triggered entirely by existing
compiler analysis.

This paper does not represent a completed study or a final answer as to how
compression should be used.Rather, it was written because we had long been
applying some of these techniques in obscure special cases, but only recently
discovered that they hav ebeen rendered important and common by modern processor
architecture. Theev olution of memory systems will no doubt necessitate far more
research into exotic methods for improving access pattern entropy. We are
particularly curious as to what impact the new memory architecture of the AMD
Opteron (formerly known as Hammer) will have, since it places less emphasis on
cache and more on “superscalar” memory pipelining.

References

[ARM81] iAPX 432 General Data Processor Architecture Reference Manual, Intel, January
1981, Appendix A.2, pp. A-13 - A-22.

[BiW95] A. J. C. Bik, H. A. G. Wijshoff, “Advanced Compiler Optimizations for Sparse
Computations,” Journal of Parallel and Distributed Computing, Vol. 31, No. 1,
1995, pp. 14-24.

[JuD92] Y-J. Ju and H. G. Dietz, “Reduction of Cache Coherence Overhead by Compiler
Data Layout and Loop Transformation,” Languages and Compilers for Parallel
Computing, edited by U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua,
Springer-Verlag, New York, New York, 1992, pp. 344-358.

[Koz92] J.R. Koza,Genetic Programming: On the Programming of Computers by Means of
Natural Selection, MIT Press, 1992.

[Mas87] H. Massalin, “Superoptimizer— a look at the smallest program,” A SPLOS II,
1987, pp. 122-126.

[PrT88] W.H. Press,S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in
C, Cambridge University Press, 2nd edition, 1988, p. 284.

[ZhG02] Y. Zhang and R. Gupta, “Data Compression Transformations for Dynamically
Allocated Data Structures,” International Conference on Compiler Construction,
April 2002, pp. 14-28.

