Resizable Arrays in Optimal Time and Space

Andrej Brodnik*! Svante Carlsson' Erik D. Demaine?
J. Tan Munro? Robert Sedgewick?

Abstract

We present simple, practical and efficient data structures for the fundamental prob-
lem of maintaining a resizable one-dimensional array, A[l...l + n — 1], of fixed-size
elements, as elements are added to or removed from one or both ends. In addition to
these operations, our data structures support access to the element in position i. All
operations are performed in constant time. The extra space (i.e., the space used past
storing the n current elements) is O(y/n) at any point in time. This is shown to be
within a constant factor of optimal, even if there are no constraints on the time. If de-
sired, each memory block can be made to have size 2¥ — ¢ for a specified constant ¢, and
hence the scheme works effectively with the buddy system. The data structures can
be used to solve a variety of problems with optimal bounds on time and extra storage.
These include stacks, queues, randomized queues, priority queues, and deques.

1 Introduction

The initial motivation for this research was a fundamental problem arising in many random-
ized algorithms [14, 17, 20]. Specifically, a randomized queue is to maintain a collection of
fixed-size elements, such as word-size integers or pointers, and support the following opera-
tions:

1. Insert (e): Add a new element e to the collection.
2. DeleteRandom: Delete and return an element chosen uniformly at random from the
collection.

That is, if n is the current size of the set, DeleteRandom must choose each element with
probability 1/n. We assume our random number generator returns a random integer between
1 and n in constant time.

*Department of Theoretical Computer Science, Institute of Mathematics, Physics, and Mechanics, Jad-
ranska 19, 1111 Ljubljana, Slovenia, email: Andrej.Brodnik@IMFM.Uni-Lj.SI

tDepartment of Computer Science and Electrical Engineering, Luled University of Technology, S-971 87
Lule&, Sweden, email: svante@sm.luth.se

fDepartment of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, email:
{eddemaine, imunro}@uwaterloo.ca

$Department of Computer Science, Princeton University, Princeton, NJ 08544, U.S.A., email:
rs@cs.princeton.edu

At first glance, this problem may seem rather trivial. However, it becomes more inter-
esting after we impose several important restrictions. The first constraint is that the data
structure must be theoretically efficient: the operations should run in constant time, and
the extra storage should be minimal. The second constraint is that the data structure must
be practical: it should be simple to implement, and perform well under a reasonable model
of computation, e.g., when the memory is managed by the buddy system. The final con-
straint is more amusing and was posed by one of the authors: the data structure should be
presentable at the first or second year undergraduate level in his text [20].

One natural implementation of randomized queues stores the elements in an array and
uses the doubling technique [9]. Insert (e) simply adds e to the end of the array, increasing
n. If the array is already full, Insert first resizes it to twice the size. DeleteRandom chooses
a random integer between 1 and n, and retrieves the array element with that index. It then
moves the last element of the array to replace that element, and decreases n, so that the
first n elements in the array always contain the current collection.

This data structure correctly implements the Insert and DeleteRandom operations. In
particular, moving the last element to another index preserves the randomness of the elements
chosen by DeleteRandom. Furthermore, both operations run in O(1) amortized time: the
only part that takes more than constant time is the resizing of the array, which consists of
allocating a new array of double the size, copying the elements over, and deallocating the old
array. Because n/2 new elements were added before this resizing occurred, we can charge
the O(n) cost to them, and achieve a constant amortized time bound. The idea is easily
extended to permit shrinkage: simply halve the size of the structure whenever it drops to
one third full. The amortization argument still goes through.

The O(n) elements of space occupied by this structure is optimal up to a constant factor,
but is still too much. Granted, we require at least n units of space to store the collection
of elements, but we do not require 4.5n units, which this data structure occupies while
shrinkage is taking place. We want the extra space, the space in excess of n units, to be
within a constant factor of optimal, so we are looking for an n + o(n) solution.

1.1 Resizable Arrays

This paper considers a generalization of the randomized queue problem to (one-dimensional)
resizable arrays. A singly resizable array maintains a collection of n fixed-size elements, each
assigned a unique index between 0 and n — 1, subject to the following operations:

1. Read (i): Return the element with index ¢, 0 < i < n.

2. Write (4, z): Set the element with index i to z, 0 <i < n.

3. Grow: Increment n, creating a new element with index n.

4. Shrink: Decrement n, discarding the element with index n — 1.

As we will show, singly resizable arrays solve a variety of fundamental data-structure
problems, including randomized queues as described above, stacks, priority queues, and
indeed queues. In addition, many modern programming languages provide built-in abstract

data types for resizable arrays. For example, the C++ vector class [21, sec. 16.3] is such an
ADT.

Typical implementations of resizable arrays in modern programming systems use the
“doubling” idea described above, growing resizable arrays by a constant factor ¢, where ¢
can be a user-defined parameter. This implementation has the major drawback that the
amount of wasted space is linear in n, which is unnecessary. Optimal space usage is essential
in modern programming applications with many resizable arrays each of different size. For
example, in a language such as C++, one might use compound data structures such as stacks
of queues or priority queues of stacks that could involve all types of resizable structures of
varying sizes. Modern programming applications might involve a few huge resizable arrays,
or a huge number of small resizable arrays. For example, in a language such as C++, one
might use compound data structures such as stacks of queues or a queues of deques that could
involve all types of resizable structures of varying sizes. For example, multidimensional arrays
in C and C++ fall into this category. Optimal space usage is essential in such applications.

In this paper, we present an optimal data structure for singly resizable arrays. The worst-
case running time of each operation is a small constant. The extra storage at any point in
time is O(y/n), which is shown to be optimal up to a constant factor.! Furthermore, the
algorithms are simple, and suitable for use in practical systems. While our exposition here
is designed to prove the most general results possible, we believe that one could present one
of the data structures (e.g., our original goal of the randomized queue) at the first or second
year undergraduate level.

1.2 Deques

A natural extension is the efficient implementation of a deque (or double-ended queue), which
supports inserts and deletions at both ends. While we cannot implement deques using singly
resizable arrays, they are the natural consequence of a variant that can resize on both ends.
Specifically, a doubly resizable array which maintains a collection of n fixed-size elements.
Each element is assigned a unique index between ¢ and u (where u — ¢+ 1 =n and £, u are
potentially negative), subject to the following operations:

1. Read (i): Return the element with index 7, £ < i < u.
Write (i, z): Set the element with index i to x, ¢ <i < w.
GrowForward: Increment u, creating a new element with index u + 1.
ShrinkForward: Decrement u, discarding the element with index wu.
GrowBackward: Decrement /¢, creating a new element with index ¢ — 1.

1S Al S

ShrinkBackward: Increment ¢, discarding the element with index /.

An extension to our method for singly resizable arrays supports this data type in the same
optimal time and space bounds.

1.3 Connection to Hashing

Resizing has traditionally been explored in the context of hash tables [9]. Knuth [14, vol. 3,
p. 540] traces the idea of resizing, in conjunction with hashings, back at least to Hopgood in

!For simplicity of exposition, we ignore the case n = 0 in our bounds; the correct statement for a bound
of O(b) is the more tedious O(1 + b).

1968. Since Knuth, it has appeared in many basic textbooks on algorithms, e.g. [1, 20].

For hashing, changing the size of the table involves rehashing all the keys, and that cost
is amortized, so the basic method is effective only when we grow the table by a constant
factor. The insight of this paper is that, for many simpler data structures, we only need to
amortize the resizing cost, and can change the size of the array in smaller increments, thus
wasting far less space.

1.4 Outline

The rest of this paper is organized as follows. Section 2 describes our fairly realistic model
for dynamic memory allocation. In Section 3, we present a lower bound on the required extra
storage for resizable arrays. Section 4 presents our data structure for singly resizable arrays.
Section 5 describes several applications of this result, namely optimal data structures for
stacks, queues, randomized queues, and priority queues. Finally, Section 6 considers deques,
which require us to look at a completely new data structure for doubly resizable arrays.

2 Model

Our model of computation is a fairly realistic mix of several popular models: a transdichoto-
mous [10] random access machine in which memory is dynamically allocated. Our model
is random access in the sense that any element in a block of memory can be accessed in
constant time, given just the block pointer and an integer index into the block. Fredman
and Willard [10] introduced the term transdichotomous to capture the notion of the problem
size matching the machine word size. That is, a word is large enough to store the problem
size, and so has at least [log,(1 + n)| bits (but not many more). In practice, it is usually the
case that the word size is fixed but larger than log, M where M is the size of the memory
(which is certainly at least n + 1). Our model of dynamic memory allocation matches that
available in most current systems and languages, for example the standard C library. Three
operations are provided:

1. Allocate (s): Returns a new block of size s.
2. Deallocate (B): Frees the space used by the given block B.

3. Reallocate (B, s): If possible, resizes the block B to the specified size s. Otherwise,
allocates a block of size s, into which it copies the contents of B, and deallocates B.
In either case, the operation returns the resulting block of size s.

Hence, in the worst case, Reallocate degenerates to an Allocate, a block copy, and a Deallocate.
It may be more efficient in certain practical cases, but it offers no theoretical benefits.

In our analysis we ignore the running time of these three memory operations, effectively
assuming that they run in constant time. This is not practical, however. In particular, as we
just mentioned, Reallocate can often take a linear amount of time. Furthermore, Allocate (s)
often takes O(s) time in order to zero out the memory being allocated, for security reasons.
However, our point of view is justified because we prove that whenever our algorithms allocate
a block of size s, the next call to Allocate or Deallocate is ©(s) units of time away. Hence our

worst-case time bounds convert directly into amortized time bounds if the cost of memory
allocation is linear instead of constant.

A memory block B consists of the user’s data, whose size we denote by | B|, plus a header
of fixed size h. In many cases, it is desirable to have the total size of a block equal to a
power of two, that is, have |B| = 2% — h for some k. This is particularly important in the
binary buddy system [14, vol. 1, p. 435], [8] which would otherwise round to the next power
of two. If the blocks contained user data whose sizes were powers of two, half of the space
would be wasted.

The amount of space occupied by a data structure is the sum of total block sizes, that is,
it includes the space occupied by headers. Hence, to achieve o(n) extra storage, there must
be o(n) allocated blocks.

3 Lower Bound

Theorem 1 (\/n) extra storage is necessary in the worst case for any data structure that
supports inserting elements, and deleting those elements in some (arbitrary) order. In partic-
ular, this lower bound applies to resizable arrays, stacks, queues, randomized queues, priority
queues, and deques.

Proof: Consider the following sequence of operations:

Insert (a1), ..., Insert (a,), Delete, ..., Delete.

n tﬁnes
Apply the data structure to this sequence, separately for each value of n. Consider the state
of the data structure between the inserts and the deletes: let s(n) be the size of the largest
memory block, and let k(n) be the number of memory blocks. Because all the elements are
about to be reported to the user (in an arbitrary order), the elements must be stored in
memory. Hence, s(n) - k(n) must be at least n.

At the time between the inserts and the deletes, the amount of extra storage is at least
hk(n) to store the memory block headers, and hence the worst-case extra storage is at
least k(n). Furthermore, at the time immediately after the block of size s(n) was allo-
cated, the extra storage was at least s(n). Hence, the worst-case extra storage is at least

max{s(n), k(n)}. Because s(n) - k(n) > n, the minimum worst-case extra storage is at least
Vn. O

This theorem also applies to the related problem of vectors in which elements can be in-
serted and deleted at any position. Here constant-time updates and queries are not possible.
Goodrich and Kloss [11] show that O(n®) amortized time suffices for updates, for any ¢ > 0,
even when access queries must be performed in constant time. Their ¢ = 1/2 data structure
uses O(y/n) extra space, which as we see is optimal. It is an open problem whether O(y/n)
extra space is sufficient to achieve the same time bounds as in [11].

4 Singly Resizable Arrays

The basic idea of our first data structure is to store the elements of the array in ©(y/n)
blocks, each of size roughly \/n. Now because n is changing over time, and we allocate the
blocks one-by-one, the blocks have sizes ranging from (1) to ©(y/n). One obvious choice
is to give the ith block size i, thus having k(k + 1)/2 elements in the first k& blocks. The
number of blocks required to store n elements, then, is [(\/1 +8n — 1)/21 = 0(y/n).

The problem with this choice of block sizes is the cost of finding a desired element in the
collection. More precisely, the Read and Write operations must first determine which element
in which block has the specified index, in what we call the Locate operation. With the block
sizes above, computing which block contains the desired element ¢ requires computing the
square root of 1+ 8i. Newton’s method [19, pp. 274-292] is known to minimize the time for
this, taking ©(loglogi) time in the worst case. This prevents Read and Write from running
in the desired O(1) time bound.?

Another approach, related to that of doubling, is to use a sequence of blocks of sizes the
powers of 2, starting with 1. The obvious disadvantage of these sizes is that half the storage
space is wasted when the last block is allocated and contains only one element. We notice
however that the number of elements in the first & blocks is 2¥ — 1, so the block containing
element 7 is |logy(1 +4)|. This is simply the position of the leading 1-bit in the binary
representation of ¢ + 1 and can be computed in O(1) time (see Section 4.3).

Our solution is to sidestep the disadvantages of each of the above two approaches by
combining them so that Read and Write can be performed in O(1) time, but the amount of
extra storage is at most O(y/n). The basic idea is to have conceptual superblocks of size
2¢ each split into approximately 2%/2 blocks of size approximately 2/2. Determining which
superblock contains element i can be done in O(1) time as described above. Actual allocation
of space is by block, instead of by superblock, so only O(y/n) storage is wasted at any time.

This approach is described more thoroughly in the following sections. We begin in Sec-
tion 4.1 with a description of the basic version of the data structure. Sections 4.2 and 4.3
prove the storage and time bounds, respectively. Section 4.4 shows how to modify the algo-
rithms to make most memory blocks have total size a power of two, including the size of the
block headers.

4.1 Basic Version

The basic version of the data structure consists of two types of memory blocks: one index
block, and several data blocks. The index block simply contains pointers to all of the data
blocks. The data blocks, denoted DB, ..., DB;_1, store all of the elements in the resiz-
able array. Data blocks are clustered into superblocks as follows: two data blocks are in
the same superblock precisely if they have the same size. Although superblocks have no
physical manifestation, we will find it useful to talk about them with some notation, namely
SBy, ..., SB,_;. When superblock SB; is fully allocated, it consists of 2l%/2] data blocks,
each of size 2/%/21. Hence, there are a total of 2* elements in superblock SBy. See Figure 1.

2In fact, one can use O(y/n) storage for a lookup table to support constant-time square-root computation,
using ideas similar to those in Section 4.3. Here we develop a much cleaner algorithm.

Index block | |

Data blocks E\—\ | eee] | | |eee i 1

| I e o - - - - I L e e e e e e e ——

SBO SBl SBQ SBs—l

Figure 1: A generic snapshot of the basic data structure.

Grow:

1. If the last nonempty data block DB;_1 is full:
(a) If the last superblock SB,_; is full:
i. Increment s.
ii. If s is odd, double the number of data blocks in a superblock.
iii. Otherwise, double the number of elements in a data block.
iv. Set the occupancy of SB;_1 to empty.
(b) If there are no empty data blocks:
i. If the index block is full, Reallocate it to twice its current size.
ii. Allocate a new last data block, and store a pointer to it in the index block.
(c) Increment d and the number of data blocks occupying SBs_1.
(d) Set the occupancy of DB;_1 to empty.
2. Increment n and the number of elements occupying DBy .

Algorithm 1: Basic implementation of Grow.

We reduce the four resizable-array operations to three “fundamental” operations as fol-
lows. Grow and Shrink are defined to be already fundamental; they are sufficiently different
that we do not merge them into a single “resize” operation. The other two operations, Read
and Write, are implemented by a common operation Locate (i) which determines the location
of the element with index .

The implementations of the three fundamental array operations are given in Algorithms 1—
3. Basically, whenever the last data block becomes full, another one is allocated, unless an
empty data block is already around. Allocating a data block may involve doubling the size
of the index block. Whenever two data blocks become empty, the younger one is deallocated;
and whenever the index block becomes less than a quarter full, it is halved in size. To find
the block containing a specified element, we find the superblock containing it by computing
the leading 1-bit, then the appropriate data block within the superblock, and finally the
element within that data block.

Note that the data structure also has a constant-size block, which stores the number of
elements (n), the number of superblocks (s), the number of nonempty data blocks (d), the
number of empty data blocks (which is always 0 or 1), and the size and occupancy of the
last nonempty data block, the last superblock, and the index block.

In the next two sections, we prove the following theorem:

Theorem 2 This data structure implements a singly resizable array using O(y/n) extra

storage in the worst case and O(1) time per operation, on a random access machine where
memory is dynamically allocated, and binary shift by k takes O(1) time on a word of size

7

Shrink:

1. Decrement n and the number of elements occupying the last nonempty data block DBy 1.
2. If DB;_1 is empty:
(a) If there is another empty data block, Deallocate it.
(b) If the index block is a quarter full, Reallocate it to half its size.
(c) Decrement d and the number of data blocks occupying the last superblock SB;_1.
(d) If SBs_; is empty:
i. Decrement s.
ii. If s is even, halve the number of data blocks in a superblock.
iii. Otherwise, halve the number of elements in a data block.
iv. Set the occupancy of SB;_1 to full.
(e) Set the occupancy of DBy to full.

Algorithm 2: Basic implementation of Shrink.

Locate (7):

1. Let r denote the binary representation of ¢ + 1, with all leading zeros removed.

2. Note that the desired element ¢ is element e of data block b of superblock k, where
(a) k=|r[—1,
(b) bis the |k/2] bits of r immediately after the leading 1-bit, and
(c) e is the last [k/2] bits of r.

3. Let p = 2¥ — 1 be the number of data blocks in superblocks prior to SB.

4. Return the location of element e in data block DB .

Algorithm 3: Basic implementation of Locate.

[log,(1+n)|. Furthermore, if Allocate or Deallocate is called when n = ngy, then the next
call to Allocate or Deallocate will occur after Q(\/ng) operations.

Some of our applications, namely stacks and queues, do not need general Read and Write
operations. For these applications, the data structure does not use the transdichotomous
model. In addition, our second data structure (presented in Section 6) does not use the
transdichotomous model even for general Reads and Writes, and furthermore supports doubly
resizable arrays.

4.2 The Space Bound

In this section we show that the worst-case extra storage in the basic data structure is O(y/n),
which by Theorem 1 is optimal. We need some preliminary lemmas:

Lemma 1 The number of superblocks (s) is [logy(1 4+ n)].

Proof: The number of elements in the first s superblocks is

s—1)
S 2t =2 1.
=0

8

If we let this equal n, then s = log,(1 + n). For slightly smaller n, the same number of
superblocks is required, and hence we get a ceiling operator. O

Lemma 2 At any point in time, the number of data blocks is O(y/n).

Proof: Because there is always at most one empty data block, and we assume n > 0, it
suffices to consider just the nonempty data blocks. In the worst case, the number of data
blocks in each superblock SB; is the maximum allowed number 2l%/2! Hence, the maximum
number of nonempty data blocks is

s—1 . s—1) 23/2 _ 1
o2l < NT iz =2~
R RV E
but 2* = O(n) by Lemma 1, so this is O(y/n) as desired. O

Lemma 3 The last (empty or nonempty) data block has size ©(y/n).

Proof: The last superblock is SBs_;, where s = [log,(1+ n)| by Lemma 1. By the
construction, it contains data blocks of size

2[] = ©(1)2¢/2 = ©(1)Valowli] = (1) Vo = O(y/),

as desired. If there is an empty data block, it has the same size or twice the size, which is
also ©(y/n). O

We can now argue that the extra storage at any point in time is O(y/n). The size of
the index block is at most four times the number of data blocks, so by Lemma 2 has size
O(y/n). The wastage from block headers is O(y/n) by Lemma 2. All data blocks except the
last nonempty data block, and possibly an empty data block saved for later use, are full of
elements; by Lemma 3, these two blocks have size (and so maximum wastage) O(y/n).

4.3 Time Bound

To prove the time bound, we first show a bound of O(1) for Locate, and then show how to
implement Reallocate first in O(1) amortized time and then in O(1) worst-case time.

The key issue in performing Locate is the determination of k& = [log,(1 + 4)], the position
of the leading 1-bit in the binary representation of 74+ 1. Many modern machines include this
instruction; newer Pentium chips do it as quickly as an integer addition. Brodnik [3] gives a
constant-time method using only basic arithmetic and bitwise boolean operators. Another
very simple method is to store all solutions of “half-length,” that is for values of ¢ up to
2Lloex(14m))/2] = @(/n). Two probes into this lookup table now suffice. We check for the
leading 1-bit in the first half of the 1 + |log,(1 + n)] bit representation of ¢, and if there is
no 1-bit, check the trailing bits. The lookup table is easily maintained as n changes. From
this we see that Algorithm 3 runs in constant time.

We now have an O(1) time bound if we can ignore the cost of dynamic memory allocation.
First let us show that Allocate and Deallocate are only called once every (/1) operations as

9

claimed in Theorem 2. Note that immediately after allocating or deallocating a data block,
the number of unused elements in data blocks is the size of the last data block. Because
we only deallocate a data block after two are empty, we must have called Shrink at least as
many times as the size of the remaining empty block, which is Q(y/n) by Lemma 3. Because
we only allocate a data block after the last one becomes full, we must have called Grow at
least as many times as the size of the now full block, which again is Q(y/n).

Thus, the only remaining cost to consider is that of resizing the index block and the
lookup table (if we use one), as well as maintaining the contents of the lookup table. These
resizes only occur after Q(y/n) data blocks have been allocated or deallocated, each of which
(as we have shown) only occurs after €2(y/n) updates to the data structure. Hence, the cost of
resizing the index block and maintaining the lookup table, which is O(n), can be amortized
over these updates, so we have an O(1) amortized time bound.

One can achieve a worst-case running time of O(1) per operation as follows. In addition
to the normal index block, maintain two other blocks, one of twice the size and the other
of half the size, as well as two counters indicating how many elements from the index block
have been copied over to each of these blocks. In allocating a new data block and storing a
pointer to it in the index block, also copy the next two uncopied pointers (if there are any)
from the index block into the double-size block. In deallocating a data block and removing
the pointer to it, also copy the next two uncopied pointers (if there are any) from the index
block into the half-sized block.

Now when the index block becomes full, all of the pointers from the index block have
been copied over to the double-size block. Hence, we Deallocate the half-size block, replace
the half-size block with the index block, replace the index block with the double-size block,
and Allocate a new double-size block. When the index block becomes a quarter full, all of
the pointers from the index block have been copied over to the half-size block. Hence, we
Deallocate the double-size block, replace the double-size block with the index block, replace
the index block with the half-size block, and Allocate a new half-size block.

The maintenance of the lookup table can be done in a similar way. The only difference
is that whenever we allocate a new data block and store a pointer to it in the index block,
in addition to copying the next two uncopied elements (if there are any), compute the next
two uncomputed elements in the table. Note that the computation is done trivially, by
monitoring when the answer changes, that is, when the question doubles. Note also that
this method only adds a constant multiplicative factor to the extra storage, so it is still
O(y/n). The time per operation is therefore O(1) in the worst case.

4.4 The Buddy System

In the basic data structure described so far, the data blocks have user data of size a power
of two. Because some memory management systems add a block header of fixed size, say h,
the total size of each block can be slightly more than a power of two (2% + h for some k).
This is inappropriate for a memory management system that prefers blocks of total size a
power of two. For example, the (binary) buddy system [14, vol. 1, p. 540], [8] rounds the
total block size to the next power of two, so the basic data structure would use twice as much
storage as required, instead of the desired O(y/n) extra storage. While the buddy system

10

is rarely used exclusively, most UNIX operating systems (e.g., BSD [16, pp. 128-132]) use
it for small block sizes, and allocate in multiples of the page size (which is also a power of
two) for larger block sizes. Therefore, creating blocks of total size a power of two produces
substantial savings on current computer architectures, especially for small values of n.

This section describes how to solve this problem by making the size of the user data in
every data block equal to 2¥ — h for some k. As far as we know, this is the first theoretical
algorithm designed to work effectively with the buddy system. To preserve the ease of
finding the superblock containing element number 7, we still want to make the total number
of elements in superblock SBy equal to 2*. To do this, we introduce a new type of block
called an overflow block. There will be precisely one overflow block OBy, per superblock SBy.
This overflow block is of size h2¥/2)| and hence any waste from using the buddy system is
OWE).

Conceptually, the overflow block stores the last h elements of each data block in the
superblock. We refer to a data block DB; together with the corresponding h elements in the
overflow block as a conceptual block CB;. Hence, each conceptual block in superblock SBy
has size 2/%/21 as did the data blocks in the basic data structure.

We now must maintain two index blocks: the data index block stores pointers to all the
data blocks as before, and the overflow index block stores pointers to all the overflow blocks.
As before, we double the size of an index block whenever it becomes full, and halve its size
whenever it becomes a quarter full.

The algorithms for the three fundamental operations are given in Algorithms 4-6. They
are similar to the previous algorithms; the only changes are as follows. Whenever we want
to insert or access an element in a conceptual block, we first check whether the index is
in the last h possible values. If so, we use the corresponding region of the overflow block,
and otherwise we use the data block as before. The only other difference is that whenever
we change the number of superblocks, we may allocate or deallocate an overflow block, and
potentially resize the overflow index block.

We obtain an amortized or worst-case O(1) time bound as before. It remains to show that
the extra storage is still O(y/n). The number s of overflow blocks is O(logn) by Lemma 1,
so the block headers from the overflow blocks are sufficiently small. Only the last overflow
block may not be full of elements; its size is at most h times the size of the last data block,
which is O(y/n) by Lemma 3. The overflow index block is at most the size of the data index
block, so it is within the bound. Finally, note that the blocks whose sizes are not powers of
two (the overflow blocks and the index blocks) have a total size of O(y/n), so doubling their
size does not affect the extra storage bound.

Hence, we have proved the following theorem.

Theorem 3 This data structure implements a singly resizable array in O(y/n) worst-case
extra storage and O(1) time per operation, on a [logy(1 + n)| bit word random access machine
where memory is dynamically allocated in blocks of total size a power of two, and binary shift
by k takes O(1) time. Furthermore, if Allocate or Deallocate is called when n = ng, then the
next call to Allocate or Deallocate will occur after Q(y/ng) operations.

11

Grow:

1. If the last nonempty conceptual block CBy_; is full:
(a) If the last superblock SB;_; is full:
i. Increment s.
ii. If s is odd, double the number of data blocks in a superblock.
iii. Otherwise, double the number of elements in a conceptual block.
iv. Set the occupancy of SB;_1 to empty.
v. If there are no empty overflow blocks:
e If the overflow index block is full, Reallocate it to twice its current size.
e Allocate a new last overflow block, and store a pointer to it in the overflow
index block.
(b) If there are no empty data blocks:
i. If the data index block is full, Reallocate it to twice its current size.
ii. Allocate a new last data block, and store a pointer to it in the data index block.
(c) Increment d and the number of data blocks occupying SB;_1.
(d) Set the occupancy of CBy_1 to empty.
2. Increment n and the number of elements occupying CBy_.

Algorithm 4: Buddy implementation of Grow.

5 Applications of Singly Resizable Arrays

This section describes a variety of fundamental data structures that are solved optimally
(with respect to time and worst-case extra storage) by the data structure for singly resiz-
able arrays described in the previous section. Sections 5.1 and 5.2 begin with the simple
data structures of stacks and queues, respectively. Sections 5.3 and 5.4 examine the more
interesting cases of randomized queues and priority queues, respectively.

5.1 Stacks

A stack is trivial to implement using a singly resizable array. The operation Push (e) calls
Grow, and Writes e to the last element of the array. Top just Reads the last element of the
array, and Pop simply calls Shrink. We thus have proved

Corollary 1 Stacks can be implemented in O(1) worst-case time per operation, and O(/n)
worst-case extra storage.

Note however that the Read and Write operations are unnecessary for stacks when using
the data structure presented in Section 4. As described above, the only accessed element of
the array is the last one. This location is already maintained throughout the updates. In the
basic data structure, it is the last occupied element of the last nonempty data block DB;_;.
In the buddy data structure, it is the last occupied element of either the last nonempty data
block DB, i or the last nonempty overflow block OB, 1; which of the two can be maintained
by monitoring when DB, ; becomes full.

As a result, the Locate algorithm can be avoided in our solution to stacks.

12

Shrink:

1. Decrement n and the number of elements occupying CBy_1.
2. If CB4_1 is empty:
(a) If there is another empty data block, Deallocate it.
(b) If the data index block is a quarter full, Reallocate it to half its size.
(c) Decrement d and the number of data blocks occupying the last superblock SB;_1.
(d) If SBs_; is empty:
i. If there is another empty overflow block, Deallocate it.
ii. If the overflow index block is a quarter full, Reallocate it to half its size.
iii. Decrement s.
iv. If s is even, halve the number of data blocks in a superblock.
v. Otherwise, halve the number of elements in a conceptual block.
vi. Set the occupancy of SB;_1 to full.
(e) Set the occupancy of DBy to full.

Algorithm 5: Buddy implementation of Shrink.

Locate (7):
1. Let r denote the binary representation of ¢ + 1, with all leading zeros removed.
2. Note that the desired element 7 is element e of conceptual block b of superblock k, where
(a) k=|r| -1,
(b) bis the |k/2] bits of r immediately after the leading 1-bit, and
(c) e is the last [k/2] bits of r.
3. Let 5 = 2k/2] be the number of elements in conceptual block b.
4. If e > j — h, element 7 is stored in an overflow block:
Return the location of element bh + e — (j — h) in overflow block OBj.
5. Otherwise, element i is stored in a data block:
(a) Let p = 2¥ — 1 be the number of data blocks in superblocks prior to SBy.
(b) Return the location of element e in data block DB)y.

Algorithm 6: Buddy implementation of Locate.

5.2 Queues

A queue can be implemented with two stacks using a well-known method often described
in the functional-languages community (e.g., [18]), discovered independently by several re-
searchers [4, 12, 13]. Call the two stacks the “enqueue” and “dequeue” stacks, respectively.
The Enqueue operation always simply Pushes the given element onto the enqueue stack. The
Dequeue operation first checks whether the dequeue stack is empty. If so, Dequeue repeatedly
Pops an element off the enqueue stack and immediately Pushes it back on the dequeue stack;
in other words, it flips over the entire enqueue stack, placing the result on the dequeue stack.
Once this process is complete (or if the dequeue stack was originally nonempty), Dequeue
Pops an element from the dequeue stack and returns it.

This results in a constant amortized time bound. For a constant worst-case time bound,
we use more of the flexibility of singly resizable arrays. As we will see, though, the use of
Read and Write will be sufficiently restricted to continue avoiding the use of Locate.

13

Our method will use two singly resizable arrays, called the enqueue array and the dequeue
array. The dequeue array will now have a more complex form. The last element will represent
the ith element to delete for some known value i, the element before that will be the (i —1)st
element to delete, and so on; thus, the ith element from the end will be the first element
to delete. Immediately before that element will be the (i + 1)st element to delete, then the
(1+ 2)nd element, and so on; thus, the first element in the array is the last element to delete.
In other words, the order of elements in the dequeue array is as follows:

n,n—1, ..., i+2 i+1, 1,2 ..., i—1, i

The Dequeue operation now Reads the ith element from the end of the dequeue array
(returning it later), replaces it with the last element of the dequeue array, shrinks the dequeue
array by one, and decrements 7 if it is more than 1. The dequeue array now has the following
order of elements:

n,n—1 ..., 1+2, t+1,4 2, ..., 1 —1,

which is of the desired form. Note that i will eventually become 1, in which case Dequeue
degenerates to a Pop operation.

Two details remain to be mentioned. First, if the dequeue array becomes empty, Dequeue
first swaps the enqueue and dequeue arrays, and initializes ¢ to the number of elements.
Second, the Enqueue operation is simple: it just adds the given element to the end of the
enqueue array. This leads to the following result:

Corollary 2 Queues can be implemented in O(1) worst-case time per operation, and O(/n)
worst-case extra storage.

Note that by keeping a pointer to the ith element from the end of the dequeue array, and
incrementing it as we execute Dequeue (which can be easily done in constant time), we can
again avoid the use of Locate.

5.3 Randomized Queues

As mentioned above, our original motivating application, randomized queues, can be imple-
mented as follows. Insert is the same as the stack Push operation: it calls Grow and Writes
the given value to the last element of the array. DeleteRandom generates a random number
i between 0 and n — 1, calls Read (i), copies the last element of the array to index i, and
finally calls Shrink.

Before we can claim exactly what time bound is achieved by this data structure, we
need to discuss what facilities for random-number generation are provided. There are three
standard operations:

1. Random (n): Returns a random integer between 0 and n — 1.
2. RandomBit: Returns a random integer between 0 and 1.

3. RandomWord: Returns a random integer between 0 and 2*—1, where w is the number
of bits in a word.

14

The operation we desire is Random (n). However, often just RandomBit or RandomWord
is provided, so it is important to consider how to implement Random (n) using one of them.
If RandomBit is the only available operation, then Random-Word can be implemented by
calling RandomBit w times, where w is the number of bits in a word. Hence, we can assume
that Random-Word is provided, possibly with a running time of ©(w).

A common implementation of Random (n) is to call RandomWord and take the result
modulo n. However, this is an incorrect implementation, because the choice is biased towards
values less than 2% mod n. This is only suitable when the user allows the randomized queue
to have a small skew in the distribution of randomly chosen elements; the probability that a
particular element will be chosen is always less than 2/n, and it approaches the desired 1/n
as n approaches infinity.

Perhaps the simplest correct implementation of Random (n) is the following standard
one [15]. Let m be the smallest power of two that is at least n.®> Then we call RandomWord,
take the result modulo m (which can be done using a bitwise and operation), and repeat
until we obtain a number less than n. Because of the randomness of RandomWord, the result
is a truly random number between 0 and n — 1. Because m < 2n, the probability that a
particular iteration will succeed is greater than 1/2; so the expected number of iterations is
less than 2. Hence, the expected running time is O(1). While the worst-case running time
is potentially infinite, this is necessary for any correct implementation of Random based on
RandomBit or RandomWord [15].

In conclusion, we have described implementations of Random (n) with running time O(1)
expected time if RandomWord is provided, and ©(logn) if RandomBit is provided. Both of
these time bounds are optimal under these assumptions. In general, we have the following
result:

Corollary 3 Randomized queues can be implemented in O(y/n) worst-case extra storage,
where Insert takes O(1) worst-case time, and DeleteRandom takes time dominated by the cost
of computing a random number between 1 and n.

5.4 Priority Queues

The heap data structure introduced by Williams [22] is well known for its elegant use of
arrays to implement priority queues. Because the n elements of the heap always lie in the
first n elements of the array, and the operations simply make O(logn) accesses to the array,
we have the following immediate consequence:

Corollary 4 Priority queues can be implemented in O(logn) worst-case time per operation,
and O(y/n) worst-case extra storage.

Another interesting problem is double-ended heaps. A double-ended priority queue sup-
ports FindMax and DeleteMax in addition to the usual FindMin, DeleteMin, and Insert op-
erations in the priority queue. There are several so-called “implicit” or “pointerless” data

3This value can be computed incrementally in O(1) time per operation, because n only changes by at
most 1 during each operation.

15

structures for double-ended priority queues, with the same properties as heaps (occupying
only the first n elements of an array). Some examples are the min-max heap [2], deap [5, 6],
and diamond deque [7]. While these data structures use ©(n) extra space, we can use our
efficient singly resizable arrays to obtain the following result:

Corollary 5 Double-ended priority queues (which support both DeleteMin and DeleteMax)
can be implemented in O(logn) worst-case time per operation, and O(y/n) worst-case extra
storage.

6 Doubly Resizable Arrays and Deques

A natural extension to our results on optimal stacks and queues would be to support deques
(double-ended queues). The amortized time bound is easy to extend: instead of flipping
a whole stack when the other becomes empty, just flip half of the stack. However, deques
cannot be efficiently implemented in the worst case with two stacks, unlike the case of queues.
This leads us to examine doubly resizable arrays that can grow and shrink on both ends.

The main reason that the data structure presented in Section 4 cannot support doubly
resizable arrays is its imbalance. More precisely, the blocks range in size from ©(1) to ©(,/n)
when n = ng, so if we start deleting from the low end (where the blocks are of constant size),
we will eventually have a single block of size ©(,/ng), which means that we are potentially
wasting Q(,/ng) storage even when n = O(1).

Our solution is to keep all the data blocks of roughly the same size. Indeed, we will
maintain the invariant that every data block has size

{logZ(l + n)J - {logQ(l + n)J
2 2
s1=2 or Sog =2

for the current value of n. Blocks of the two sizes are called small and large, respectively.
We further maintain the constraint that all the small blocks are consecutive, followed by all
the large blocks which are consecutive. Only the first small block and the last large block
may be partially empty, and therefore the extra storage is O(y/n) at all times.

We maintain these properties by dynamically merging and splitting data blocks. As with
our description of the singly resizable array data structure, we first give a method which
achieves a constant amortized time bound, and then describe modifications to achieve a
constant worst-case time bound.

The basic idea is as follows. Before we create a new block in a Grow operation that ran
out of room on the requested side, we first merge the last two small blocks (the ones adjacent
to the large blocks) into one large block. If there is only one small block, this degenerates to
a Reallocate operation; and if there are no small blocks, this degenerates to doing nothing.
Next Grow checks whether B log,(1 + n)J has increased, in which case we double s; and s,.
The block is then created, using these new values to determine its size: s; for GrowBackward
and s, for GrowForward. Note that because we merged the two small blocks before changing
the size, we will maintain that there are only two block sizes.

16

Before we mark a block as empty in a Shrink operation that discarded the last element
in a block on a particular side, we split the first large block (the one adjacent to the small
blocks) into two small blocks. If there are no large blocks, this operation degenerates to
doing nothing. Next we check whether B log,(1 + n)J has decreased, in which case we halve
s; and sy. Note that because we split the block before this change, the blocks will all be of
small size when this occurs, as desired.

One trick is required in this data structure. We keep a copy of the unmerged or unsplit
version of the block(s) we have just merged or split, on both ends of the array. Thus for
example, if we decide that we should merge a block that we just split, this can be done in
constant time. Similarly, if we decide that this split-then-remerged block should be split
again, we revert to the already computed split version. We only waste a constant number
of blocks, or O(y/n) extra storage, to store these extra copies. The extra copies must be
maintained when we perform updates to elements at the ends, which only requires an extra
constant amount of work in the Write operation.

The Locate operation is quite simple. Because we know the number of small blocks, the
size of each small block, and the occupancy of the first small block, we can determine whether
the desired element is in the small blocks or the large blocks. Then we can determine which
block contains the element by dividing by the block size, and the remainder is the element
number within that block.

For a constant worst-case time bound, we need the following modifications to the data
structure. During updates to the data structure, we simultaneously work on merging and
splitting a constant number of blocks. This approach is similar to that of Section 4.3, where
we deamortize the cost of resizing the index block. We work on merging the next pair of
small blocks we might merge, during each Grow operation; and similarly work on splitting
the next large block we might split, during each Shrink operation.

We have thus proved the following theorem:

Theorem 4 A doubly resizable array can be implemented using O(y/n) extra storage in the
worst case and O(1) time per operation, on a transdichotomous random access machine
where memory is dynamaically allocated.

Note that this data structure avoids finding the leading 1-bit in the binary representation
of an integer. Thus, in some cases (e.g., when the machine does not have an instruction
finding the leading 1-bit), this data structure may be preferable even for singly resizable
arrays.

7 Conclusion

We have presented data structures for the fundamental problems of singly and doubly resiz-
able arrays that are optimal in time and worst-case extra space on realistic machine models.
We believe that these are the first theoretical algorithms designed to work in conjunction with
the buddy system, which is practical for many modern operating systems including UNIX.
They have led to optimal data structures for stacks, queues, priority queues, randomized
queues, and deques.

17

As mentioned in Section 1.3, resizing has traditionally been explored in the context of
hash tables. An interesting open question is whether it is possible to implement dynamic
hash tables with o(n) extra space.

We stress that our work has focused on making simple, practical algorithms. One of our
goals is for these ideas to be incorporated into the C++ standard template library (STL). We
leave the task of expressing the randomized queue procedure in a form suitable for first-year
undergraduates as an exercise for the fifth author.

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.

[2] M. D. Atkinson, J.-R. Sack, N. Santoro, and T. Strothotte. Min-max heaps and gener-
alized priority queues. Communications of the ACM, 29(10):996-1000, October 1986.

[3] Andrej Brodnik. Computation of the least significant set bit. In Proceedings of the 2nd
Electrotechnical and Computer Science Conference, Portoroz, Slovenia, 1993.

[4] F. W. Burton. An efficient functional implementation of FIFO queues. Information
Processing Letters, 14(5):205-206, July 1982.

[6] Svante Carlsson. The Deap—a double-ended heap to implement double-ended priority
queues. Information Processing Letters, 26:33-36, September 1987.

[6] Svante Carlsson, Jingsen Chen, and Thomas Strothotte. A note on the construction of
the data structure “Deap”. Information Processing Letters, 31:315-317, June 1989.

[7] S. C. Chang and M. W. Du. Diamond deque: A simple data structure for priority
queues. Information Processing Letters, 46:231-237, July 1993.

[8] Erik D. Demaine and J. Ian Munro. Fast allocation and deallocation with an improved
buddy system. In Proceedings of the 19th Conference on the Foundations of Software
Technology and Theoretical Computer Science, volume 1738 of Lecture Notes in Com-
puter Science, pages 84-96, Chennai, India, December 1999.

[9] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Heide,
Hans Rohnert, and Robert E. Tarjan. Dynamic perfect hashing: Upper and lower
bounds. SIAM Journal on Computing, 23(4):738-761, August 1994.

[10] Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound
with fusion trees. Journal of Computer and System Sciences, 47(3):424-436, 1993.

[11] Michael T. Goodrich and John G. Kloss II. Tiered vector: An efficient dynamic array
for JDSL. In Proceedings of the 1999 Workshop on Algorithms and Data Structures,
Vancouver, Canada, August 1999.

18

[12] David Gries. The Science of Programming. Springer-Verlag, 1981.

[13] R. Hood and R. Melville. Real-time queue operations in pure Lisp. Information Pro-
cessing Letters, 13(2):50-53, November 1981.

[14] Donald E. Knuth. The Art of Computer Programming. Addison-Wesley, 1968.

[15] Donald E. Knuth and Andrew C. Yao. The complexity of nonuniform random number
generation. In J. F. Traub, editor, Algorithms and Complexity: New Directions and
Recent Results, pages 357-428. Academic Press, Inc., 1976.

[16] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and John S. Quarterman.
The Design and Implementation of the 4.4 BSD Operating System. Addison-Wesley,
1996.

[17] Rajeev Motwani and Prabhaker Raghavan. Randomized Algorithms. Cambridge Uni-
versity Press, 1995.

[18] Chris Okasaki. Simple and efficient purely functional queues. Journal of Functional
Programming, 5(4):583-592, October 1995.

[19] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.
Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press,
2nd edition, 1992.

[20] Robert Sedgewick. Algorithms in C. Addison-Wesley, 3rd edition, 1997.

[21] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 3rd edition,
1997.

[22] J. W. J. Williams. Algorithm 232. Communications of the ACM, 7(6):347-348, 1964.

19

