
Calendars as Types
Data Modeling, Constraint Reasoning, and Type Checking

with Calendars

Stephanie Spranger

München 2005

Calendars as Types
Data Modeling, Constraint Reasoning, and Type Checking

with Calendars

Stephanie Spranger

Dissertation

an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität

München

vorgelegt von

Stephanie Spranger

aus Preetz

München, 10. Oktober 2005

Erstgutachter: Prof. Dr. François Bry

Zweitgutachter: Prof. Dr. Nachum Dershowitz (Tel Aviv University, Israel)

Tag der mündlichen Prüfung: 22. November 2005

Acknowledgments

This work has been developed during my three-year scholarship from the PhD program
“Logics in Computer Science” (GKLI) at the University of Munich, funded by the Ger-
man Research Society (DFG). Special thanks are due to Helmut Schwichtenberg who has
launched this PhD program.

Above all, I thank my supervisor François Bry, the head of the research unit “Programming
and Modeling Languages” (PMS) at the Institute for Informatics at the University of
Munich. Without his confidence in my skills and perseverance on the one hand side and
his numerous valuable ideas on the other hand side, surely, this work wouldn’t have been
realized.
Nachum Dershowitz, many thanks to you for examining this thesis and for supporting me
during my work. Your interest in calendars, and in particular, your book on calendric
calculations has inspired me for this work.
I have to thank the team from PMS for a pleasant working atmosphere. Many colleagues
from the research unit PMS, from the PhD program GKLI as well as from the REWERSE
project (funded by the European Commission and by the Swiss Federal Office for Educa-
tion and Science) gave me a lot of ideas. Thanks in particular to Hans Jürgen Ohlbach,
Bernhard Lorenz, Klaus Schulz, Martin Hofmann, and Emmanuel Coquery. And I have
to thank François Fages who gave me a hint to easily show completeness of the constraint
solver, introduced in this thesis.
I thank Arnaud Lallouet for good ideas and an encouraging teamwork in Munich and
Orléans and Matthias Wagner for his invitation to present this work at DoCoMo Research
Labs Europe and the resulting interesting comments and remarks.
Furthermore, I thank Jutta Haußer from Japanese studies (“Japan Zentrum”) of the Uni-
versity of Munich for an interesting interdisciplinary cooperation; I have learned several
things about Japanese time and calendar culture.

I have to exceptionally thank the student Frank-André Rieß who has worked with me on
this project for a long and fruitful period of time.

I want to thank several colleagues from media research (“Institut für Kommunikationswis-
senschaften”) of the University of Munich for good “lunch-times”. Finally, I thank my
family and my friends who have sympathized with me for this work.

Munich, 10th October 2005 Stephanie Spranger

ii

“Le temps passe, et progressivement tout devient vrai ce qu’on a eu de mensonger.”
(Marcel Proust, 1871 – 1922, A la recherche du temps perdu, La fugitive)

Abstract

This thesis investigates real-life calendars, calendar and time expressions, and time and
date formats. The thesis aims at the development of computer-based tools for modeling
and processing such calendric data, primarily in the “World Wide Web”, in particular
regarding today’s internationalization efforts and the vision of the “Semantic Web”. Ap-
plications are not only appointment scheduling problems and travel planning referring to
calendar expressions like “consultation hour”, “meeting”, or “available departure times”
but also mobile applications: a mobile application listing pharmacies in the surround-
ing of a (mobile) user will preferably only mention those that are currently open. The
temporal and calendric data used in such applications is inherently heterogeneous and
context-dependent, referring to cultural, professional, legal, and/or locational aspects. To-
day’s Web formalisms lack appropriate and specific tools for temporal and calendric data
modeling and for efficiently processing such data.

To realize the goal mentioned above, I have chosen a programming language approach
to time and calendars that essentially differs from logic-based and algebraic approaches.
The thesis underlying this work is twofold:

1. “Calendar as Type”: time and calendar expressions such as “day”, month”, “year”,
“consultation hour”, and “meeting” are not modeled in a logic or an algebra but,
instead, by means of data types. The user is provided with a set of language con-
structs (so-called type constructors). Advantages of this approach are: user-friendly
modeling, increase of efficiency and consistency, program and document annotation,
and abstraction.

2. “Theory Reasoning”: Problems such as appointment scheduling or travel planning
are formulated in the environment of a constraint solver specific to arbitrary calendar
domains (i.e. user-defined data types like “day” or “consultation hour”) rather than
by axiomatization, commonly used with approaches based on ontology modeling and
reasoning. The constraint solver refers to and relies on (user-defined) calendric types,
it maintains the semantics of different calendric types like “day” and “consultation
hour”, and it allows for efficient constraint solving with arbitrary calendric data.

Concerning Computer Science, this work is related to research in the area of modeling
language design and design of language constructs for programming languages based on
concepts and theories from research on type systems and constraint programming. Theo-
retical aspects of this work are the use of data types to model time and calendar expressions

iv Abstract

with type checking approaches and constraint solving over different domains referring to
such calendric types. Practical aspects of this work are user-friendly language constructs
for modeling calendars and calendric data and constraints which can be efficiently pro-
cessed. Such specialized language constructs and processing tools for data that refer to a
specific domain such as calendars and time are (or will be) important for several Semantic
Web applications. Due to use of data types and type checking approaches to temporal and
calendric data, the proposed tools can be integrated into any Web language.

The thesis shows perspectives for future research on using data types and specific
inference algorithms (e.g. constraint solving) for modeling and reasoning on specific theories
(e.g. topologies and locational data).

Zusammenfassung

Untersuchungsgegenstand der Dissertation sind Kalender, Kalender- und Zeitbegriffe und
Uhrzeit- und Datumsangaben des täglichen Lebens. Ziel ist die Entwicklung von compu-
tergestützten Werkzeugen zur Modellierung und Verarbeitung solcher Begriffe und Daten,
die vor allem im

”
World Wide Web” und insbesondere im Zuge der Internationalisierungs-

bestrebungen und der Vision des sogenannten
”
Semantic Web” an Bedeutung gewinnen.

Anwendungsbeispiele sind nicht nur Terminabsprachesysteme und Reisebuchungs- und Pla-
nungssysteme in denen Zeitbegriffe wie

”
Sprechstunde”,

”
Konferenz” und

”
verfügbare Ab-

flugtermine” auftauchen können, sondern auch mobile System – beispielsweise wenn eine
Person eine offene Apotheke in ihrer Nähe sucht. Wesentliche Eigenschaften, der in sol-
chen Anwendungen verwendeten Zeitbegriffe und Uhrzeit- und Datumsangaben, sind He-
terogenität und Kontextabhängigkeit, wobei sich der Kontext auf kulturelle, berufliche,
gesetzliche und/oder ortsgebundene Aspekte beziehen kann. Insbesondere gegenwärtigen
Webformalismen fehlen umfangreiche und geeignete Zeit- und Kalendermodelle und Stra-
tegien zur Modellierung und Verarbeitung solcher Begriffe und Daten.

Zur Realisierung des in dieser Arbeit formulierten Zieles ist ein programmiersprachen-
basierter Ansatz gewählt worden, der sich wesentlich von bisherigen logikbasierten und
algebraischen Ansätzen zur Beschreibung und Verarbeitung von Kalender- und Zeitbegrif-
fen unterscheidet. Die beiden nachfolgenden Thesen formulieren die Kernidee, die dieser
Arbeit zugrundeliegt.

1.
”
Calendar as Type”: Kalenderbegriffe, insbesondere Zeiteinheiten, wie zum Beispiel

”
Tag”,

”
Monat” und

”
Jahr” und Zeitbegriffe wie zum Beispiel

”
Sprechstunde” und

”
Konferenz” werden nicht logisch oder algebraisch sondern mittels Datentypen mo-

delliert. Dazu werden dem Benutzer von der entwickelten Sprache deklarative Sprach-
konstrukte (sog. Typkonstruktoren) zur Verfügung gestellt. Vorteil dieses Ansatzes
sind: benutzerfreundliche Modellierung, Erhöhung von Effizienz und Konsistenz, An-
notation von Dokumenten und Programmen und Datenabstraktion.

2.
”
Theory Reasoning”: Anfragen wie zum Beispiel Terminabsprachen oder eine Reise-

planung werden als Constraintproblem formuliert und mittels speziell für Kalender-
und Zeitbegriffe geeignetem Constraintlösen über beliebigen endlichen Kalenderberei-
chen (also benutzerdefinierte Datentypen wie

”
Tag” oder

”
Sprechstunde”) beantwor-

tet und nicht wie bei webbasierten ontologischen Ansätzen üblich mittels Axiomen.
Der Constraintlöser bezieht sich dabei auf (benutzerdefinierte) Kalenderdatentypen

vi Zusammenfassung

wodurch sowohl die Sematik von Kalenderbegriffen wie
”
Tag” oder

”
Sprechstunde”

erhalten als auch die Effizienz des Constraintlösers verbessert wird.

In der Informatik ist die Arbeit im Bereich des Entwurfs von Modellierungssprachen
und Sprachkonstrukten für Programmiersprachen unter Verwendung von Konzepten und
Theorien der Entwicklung von Typsystemen und Constraintprogrammierung einzuordnen.
Theoretische Aspekte der Arbeit sind die Verwendung von Datentypen zur Modellierung
(von Kalender- und Zeitbegriffen) und Lösen von Constraints über verschiedenen Werte-
bereichen. Praktische Aspekte der Arbeit sind benutzerfreundliche Sprachkonstrukte zur
Modellierung von Kalendern und Kalender- und Zeitbegriffen und von Anfragen über
Kalender- und Zeitdaten, die maschinell gut verarbeitet werden können und die für viele
Anwendungen, insbesondere im

”
Semantic Web”, hochnotwendig sind (oder sein werden).

Dadurch daß Datatypen und Typrüfung verwendet werden, können die entwickelten Werk-
zeuge in beliebge Websprachen integriert werden.

Die Arbeit zeigt Forschungsperspektiven im Bereich der Verwendung von Datentypen
und speziellen Inferenzalgorithmen (zum Beispiel Constraintlösen) zur Modellierung und
Verarbeitung spezieller Theorien (zum Beispiel Topologien und Ortsangaben) auf.

Notations

notation description
τ, σ, ρ calendric type (time granularity);

kind of points over calendric type
τ∗, σ∗, ρ∗ kind of intervals over calendric type
τn, σn, ρn kind of durations over calendric type
α, β, γ type variable
∀α :: K kinding expression, read as “for every type α of kind K”,

K := {τ, τ∗, τn}
σ � τ aggregation
σ ⊆ τ inclusion
cσ→τ , cτ→σ conversion function and its inverse
C finite set of aligned calendars, i.e. C := {τ0, τ1, . . . , τn}

and for all i ∈ {1..n} τi � ⊗ ⊆ τ0

e CaTTS object language expression
te CaTTS-DL object language expression
ce CaTTS-CL object language expression
Γ typing context
∀α :: K. Γ ` e : α typing statement
trans(∀α :: K. Γ ` e : α) translation of typing statement ∀α :: K. Γ ` e : α
∀α, β :: K. α ≤ β subtype statement, ≤:=� ⊗ ⊆
∀α, β :: K. cβ

α coercion, i.e. translation of subtyping statement
∀α, β :: K. α ≤ β

X, Y, Z constraint variable
X ∈ Dτ , calendar domain expression for events
Dτ := n..m, τ associated domain, n, m ∈ Z, n ≤ X ≤ m
X ∈ Dτ∗ , calendar domain expression for tasks
Dτ∗ := n..m + d−..d+, τ associated domain, n, m, d−, d+ ∈ Z,

n ≤ SX ≤ m, d− ≤ dX ≤ d+, n + d− − 1 ≤ EX ≤ m + d+ − 1
SX := n..m starting point of X
dX := d−..d+ duration of X
EX := nE ..mE ending point of X; nE := n + d− − 1, mE := m + d+ − 1
D finite set of calendar domains
DE finite set of calendar domain expressions
C constraint
C finite set of constraints
〈C;DE〉 constraint problem

viii

Naming and Subscribing Conventions

The choice of metavariable names, numeric subscriptions, and primes is guided throughout
this thesis by the following principles.

1. In syntax definitions, the bare metavariable e is used for all CaTTS expressions, τ
for all calendric types of kind point, τ ∗ for all types of kind interval, τn for all types
of kind duration, α for all types (of any kind), etc.

2. In typing rules, the main expression (i.e. the one whose type is being calculated) is
always called te in CaTTS-DL and ce in CaTTS-CL. Its subterms are named te1,
te2, etc. (resp. ce1, ce2, etc.).

3. In typing rules and throughout the text, instead of ∀α :: τ. ` e : α (resp. ∀α :: τ ∗ `
e : α, ∀α :: τn ` e : α), it is written ` e : τ (resp. ` e : τ ∗, ` e : τn), for short.

4. In typing rules, the type of an expression e is called α, written e : α, if it does not
have a specific kind; otherwise it is called τ ,τ ∗, or τn.

5. In constraint reasoning, the whole constraint problem being reduced is called 〈C;DE〉,
and the problem it reduces to is called 〈C ′;D′

E〉.

6. In constraint reasoning, the type of a constraint variables X is called τ or τ ∗, written
Xτ (resp. Xτ∗), short for X is associated to the domain D of type τ , i.e. X ∈ Dτ

(resp. short for X is associated to the domain D of type τ ∗, i.e. X ∈ Dτ∗).

7. The duration (domain) of the domain a variable Xτ∗ is associated with is written
dXτ∗ . The type of dXτ∗ is called τn.

8. The index (domain) of the domain a variable Xτ is associated with is written iXτ .
The type of iXτ is called Z.

x

Contents

1 Introduction 1
1.1 Field of Research . 4
1.2 Importance of Time and Calendars for the Semantic Web 5

1.2.1 Cultural Concerns . 5
1.2.2 Internationalization Efforts . 7
1.2.3 Applications . 8

1.2.3.1 Web-based Appointment Scheduling 8
1.2.3.2 Web-based Event Planning 9
1.2.3.3 Web-based Budgeting . 10

1.3 Thesis’ Contribution: Calendar Types and Constraints 11
1.4 Thesis’ Outline . 13

1.4.1 Introduction to the Thesis . 14
1.4.2 Background . 14
1.4.3 A Time Model for Calendric Data, Types, and Constraints 20
1.4.4 The Language CaTTS . 21
1.4.5 Constraint Reasoning with Calendric Data 25
1.4.6 An Approach to Predicate Subtyping with Calendric Types 29
1.4.7 Conclusion of the Thesis . 32

2 Background: Temporal Knowledge Representation and Reasoning for
Information Systems 39
2.1 Approaches to Temporal Knowledge Representation and Reasoning 41

2.1.1 Implicit Time Models . 42
2.1.1.1 Situation Calculus . 42
2.1.1.2 Event Calculus . 43
2.1.1.3 Dynamic Logic . 43

2.1.2 Explicit Time Models . 44
2.1.2.1 Point-based Models . 44
2.1.2.2 Interval-Based Models . 46
2.1.2.3 Combined and Generalized Models 48

2.1.3 Temporal Constraints . 49
2.1.3.1 Metric Temporal Constraints 51
2.1.3.2 Qualitative Temporal Constraints 52

xii CONTENTS

2.1.3.3 Metric and Qualitative Constraints Combined 54
2.1.4 Time Granularity Systems . 55

2.1.4.1 Set-theoretic Time Granularity Systems 56
2.1.4.2 Logic-based Time Granularity Systems 60
2.1.4.3 Automata-based Time Granularity Systems 61

2.2 Calendric Computations . 62
2.3 Web and Semantic Web Formalisms and Applications 62

2.3.1 Data Type Definition Languages 63
2.3.1.1 XML DTD . 63
2.3.1.2 XML Schema . 63

2.3.2 Ontology Languages . 64
2.3.2.1 RDF: Resource Description Framework 65
2.3.2.2 OWL: Ontology Web Language 67
2.3.2.3 Applications: Time Ontologies 69

2.3.3 Internationalization . 71
2.3.4 Web Services for Calendric Data . 72

2.3.4.1 Web-based Meeting Scheduler 72
2.3.4.2 Calendar Web Server . 73

2.3.5 Temporal and Active Web Systems 74
2.4 In Comparison with CaTTS . 75

2.4.1 Approaches to Temporal Knowledge Representation and Reasoning 76
2.4.2 Calendric Computations . 78
2.4.3 Web and Semantic Web Formalisms and Applications 80

3 A Time Model for Calendric Data, Types, and Constraints 83
3.1 Base Time Line . 85
3.2 “Discretization” of Time . 85

3.2.1 Time Granularities . 85
3.2.1.1 Activities over Time Granularities 87
3.2.1.2 Time Granularities in CaTTS 88

3.2.2 Relations between Time Granularities 88
3.2.2.1 Aggregations . 88
3.2.2.2 Inclusions . 89

3.3 Calendars . 89
3.4 Time Granularity Conversion . 90

4 The Language CaTTS 95
4.1 CaTTS-DL: Definition Language . 97

4.1.1 Reference Time . 97
4.1.2 CaTTS-TDL: Type Definition Language 98

4.1.2.1 Predicate Subtypes . 98
4.1.2.2 Calendar as Type . 105

4.1.3 CaTTS-FDL . 108

CONTENTS xiii

4.2 CaTTS-CL: Constraint Language . 110
4.2.1 Specifying Constraint Problems . 110
4.2.2 Answers and Solutions to Constraint Problems 111
4.2.3 Programs . 112

4.3 Example: Modeling Calendars and Constraints in CaTTS 112
4.3.1 Calendar Signature . 113
4.3.2 Gregorian Calendar . 113
4.3.3 Hebrew Calendar . 115
4.3.4 An Academic Calendar . 117
4.3.5 Time Zones . 119
4.3.6 Date Formats . 120
4.3.7 Multi-Calendar Appointment Scheduling Problem 120

5 Constraint Reasoning with Calendric Data 123
5.1 Constraint Programming in a Nutshell . 126

5.1.1 Constraint Satisfaction Problems 126
5.1.2 Example . 128
5.1.3 Proof Rules and Derivations . 128

5.2 Multi-Calendar Appointment Scheduling Problems 129
5.3 The Underlying Constraint System . 134
5.4 Calendric Constraints . 135

5.4.1 Activity Constraints . 137
5.4.1.1 Events . 138
5.4.1.2 Tasks . 138

5.4.2 Time Constraints . 139
5.4.3 The Conversion Constraint . 142

5.5 The Constraint Propagation Algorithm . 144
5.5.1 Achieving Local Consistency . 144
5.5.2 Proof Rules for Time Constraints 146
5.5.3 The Proof Rule for the Conversion Constraint 151
5.5.4 Example: Application of Proof Rules 153

5.6 Complexity of the Multi-Calendar Constraint Solver 155

6 An Approach to Predicate Subtyping with Calendric Types 159
6.1 (Sub-)Typing in a Nutshell . 161

6.1.1 The Simply Typed Lambda Calculus with Subtyping 162
6.1.2 Subtyping Semantics . 165

6.1.2.1 Inclusion Polymorphism 166
6.1.2.2 Implicit Coercion . 166

6.1.3 Predicate Subtypes and Dependent Types 167
6.2 Properties and Advantages of Calendric Types 169

6.2.1 Concise Modeling, Documentation, and Annotation 170
6.2.2 Multi-Calendar Support: Modularity, Reuse, and Maintenance . . . 170

xiv CONTENTS

6.2.3 Calendar-Conversion Functionality 171
6.2.4 Multi-Calendar Constraint Solving 171
6.2.5 Use in Different Web Languages . 171

6.3 Predicate Subtypes in CaTTS . 172
6.4 Conversion Function Generation from Type Predicates 173

6.4.1 Definition of the Conversion Function 174
6.4.2 Conversion Function Generation from Aggregation Subtypes 177

6.4.2.1 Periodic Aggregations . 177
6.4.2.2 Periodic Aggregations with finite many Exceptions 179
6.4.2.3 Restricted Aggregations 182

6.4.3 Conversion Function Generation from Inclusion Subtypes 183
6.4.3.1 Selections . 183
6.4.3.2 Conjunctions . 187
6.4.3.3 Disjunctions . 187
6.4.3.4 Exceptions . 188

6.5 Well-Formed CaTTS-DL Calendar Specifications 189
6.5.1 Syntax . 190
6.5.2 Typing Relation . 190
6.5.3 Example: Checking Well-Formedness of a CaTTS-DL calendar spec-

ification . 194
6.6 Note: Equivalence of Calendric Type Definitions 195
6.7 Typing and Subtyping in CaTTS-CL . 196

6.7.1 Syntax . 197
6.7.2 Subsumption . 197
6.7.3 The Subtype Relation . 199
6.7.4 The Typing Relation . 202
6.7.5 Example: Type Checking a CaTTS-CL Program 205
6.7.6 Consistency Checks based on Calendric Types 206

6.8 Coercion Semantics for Subtyping in CaTTS-CL 208
6.8.1 Coercion Semantics . 209
6.8.2 Example: Transforming a CaTTS-CL Program into a CLcatts Program212
6.8.3 Coherence . 214

6.9 Note: Typing CaTTS-DL Calendar Specifications 216

7 Conclusion 217
7.1 Results . 219

7.1.1 Underlying Problem . 219
7.1.2 CaTTS: A Programming Language Approach to Time and Calendars 220
7.1.3 CaTTS’ Language Processors . 220

7.2 Perspectives for Future Research . 221
7.2.1 Possible Extensions of the Type Language CaTTS 221

7.2.1.1 Further Directions to Calendric Data Modeling 222
7.2.1.2 Further Directions to Multi-Calendar Constraint Solving . 223

Contents xv

7.2.1.3 Further Directions to Type Checking with Calendric Types 225
7.2.2 Topologies as Types . 226

7.2.2.1 Granularities . 227
7.2.2.2 Topological Data Modeling 228

7.3 Concluding Remarks . 229

A CaTTS’ Syntax 231
A.1 Reserved Words . 231
A.2 Constants . 231
A.3 Comments . 232
A.4 Identifiers . 232
A.5 Grammar . 234
A.6 Syntactic and Closure Restrictions . 234
A.7 Note: CaTTS’ Reference Implementation 237

B A CHR Implementation of CaTTS’ Constraint Propagation Algorithm 241
B.1 Constraints and Functions Available for the Constraint Solver 242
B.2 Activity Constraints . 243
B.3 Bounds Consistency . 244
B.4 Time Constraints . 244
B.5 Conversion Constraint . 246
B.6 Termination . 247

C A Haskell Implementation of Predicate Subtyping in CaTTS 251
C.1 Auxiliary Data Structures and Functions 251
C.2 Well-Formedness of CaTTS-DL Calendar Specifications 252

C.2.1 Syntax . 252
C.2.2 Well-Formedness . 253

C.3 Typing and Subtyping in CaTTS-CL . 255
C.3.1 Syntax . 255
C.3.2 Subtyping . 256
C.3.3 Typing . 259
C.3.4 Coercion . 264
C.3.5 Transformation . 265

xvi Contents

List of Figures

1.1 Sundial with East, Central, and West European Time. Fresco Cloister Osi-
ach, Carinth . 34

1.2 A Japanese calendar illustrations [be96], p.105. 35

1.3 A Japanese calendar illustrations [be96], p.102. 36

1.4 The system CaTTS. 37

2.1 The 13 basic relations between two intervals i and j. 47

3.1 An illustration of some time granularities. 86

3.2 An illustration of aggregations of time granularities. 89

3.3 An illustration of a calendar. 90

4.1 Languages of CaTTS. 96

4.2 Indexing of the types defined in Section 4.1.2. 104

4.3 A CaTTS-DL calendar signature for standard calendars. 113

4.4 The standard Gregorian calendar in CaTTS-DL. 114

4.5 The standard Hebrew calendar in CaTTS-DL. 116

4.6 An academic calendar in CaTTS-DL. 118

4.7 Calendars in different time zones in CaTTS-DL. 119

4.8 A sample catalog of various formats in CaTTS-FDL. 121

4.9 A multi-calendar appointment scheduling problem in CaTTS-CL. 122

5.1 One solution to the 4 queens problem. 128

5.2 Indexing of the calendric types addressed in Example 5.1. 129

5.3 Illustration of the appointment scheduling problem of Example 5.1 as con-
straint network. 131

5.4 Illustration of the appointment scheduling problem of Example 5.1 with
conversion constraints as constraint network. 132

5.5 Illustration of the answer to the appointment scheduling problem of Example
5.1 as constraint network. 133

5.6 Illustration of CLcatts time constraints that define interval relations on ac-
tivities. 140

5.7 Illustration of CLcatts time constraints that define metric relations on activities.141

xviii List of Figures

5.8 Illustration of CLcatts time constraints that define metric relations on dura-
tions. 143

6.1 Illustration of the conversion function cσ→τ and its inverse cτ→σ for σ ≤ τ . 176

7.1 A part of Munich’s subway and suburban train network. 228

List of Tables

2.1 The basic binary relations between two points t and s. 53
2.2 The basic binary relations between two intervals i = [i−, i+] and j = [j−, j+]. 53
2.3 The basic binary relations between a point t and an intervals i = [i−, i+]. . 53

5.1 The abstract syntax of the language CLcatts. 136
5.2 Activity constraints. 137
5.3 Time constraints. 142
5.4 The domain reduction rules for time constraints on activities according to

the illustrations in Figure 5.6, p.140. 147
5.5 The domain reduction rules for time constraints on activities according to

the illustrations in Figure 5.7 p.141. 148
5.6 The transformation rules for time constraints on activities. 149
5.7 The domain reduction rules for time constraints on durations according to

the illustrations in Figure 5.8, p.143. 149
5.8 The transformation rules for time constraints on durations. 149
5.9 The domain reduction rule for the conversion constraint. 152

6.1 Typing relation of the simply typed lambda calculus. 164
6.2 Subtyping relation for the simply typed lambda calculus. 165
6.3 The (abstract) syntax of CaTTS-DL. 189
6.4 Formation rules for CaTTS-DL type declarations. 192
6.5 Typing rules for expressions used in CaTTS-DL type declarations. 192
6.6 The aggregation relation over calendric types. 193
6.7 The inclusion relation over calendric types. 194
6.8 The (abstract) syntax of CaTTS-CL. 198
6.9 The subtype relation of CaTTS-CL. 200
6.10 The typing relation of CaTTS-CL. 203

A.1 The syntax of CaTTS-DL including CaTTS-TDL and CaTTS-FDL. 235
A.2 The syntax of CaTTS-TDL declarations. 236
A.3 The syntax of CaTTS-FDL declarations. 237
A.4 The syntax of CaTTS-CL. 238
A.5 The syntax of CaTTS-CL declarations. 239

xx List of Tables

Chapter 1

Introduction

“Dreifach kommt die Zeit:
Zögernd kommt die Zukunft herangezogen,

pfeilschnell ist das Jetzt entflogen,
ewig still steht die Vergangenheit.”

(Friedrich von Schiller, 1759–1805)

Time and calendars play an important role in Artificial Intelligence, in Database Sys-
tems, and, in recent times, also in the Web and Semantic Web. Temporal reasoning is a
major research field in Artificial Intelligence for applications such as time tabling, schedul-
ing, and planning; in Database Systems for applications such as query answering and
change detection and reaction. Many database and information systems as well as many
advanced Web and Semantic Web applications and Web services like database updates,
active systems, medical monitoring, information services, appointment scheduling, travel
planning, Web trading and logistics, and so-called adaptive (or context-aware) applications
and systems refer to temporal and calendric data. Most existing or foreseen mobile com-
puting applications refer not only to locations but also to time [BLOS03]. For example,
a mobile application listing pharmacies in the surrounding of a user will preferably only
mention those that are currently open, i.e. it refers to rather sophisticated temporal and
calendric data.

The temporal and calendric data involved in such applications and systems are most
often rather complex, sometimes involving different calendars with various regulations and
lots of irregularities (e.g. leap years). Calendars are arbitrary human abstractions of the
physical time, enabling to measure and to refer to time in different units like “day”, “week”,
“working day”, and “teaching term”. Examples of calendars are cultural calendars like the
Gregorian, the Julian, the Hebrew, and the old and new Chinese calendars as well as
professional calendars like the academic calendar of a university or the legal calendar used
in some state including legal holidays, a specification of the legal working year, due dates

2 1. Introduction

for taxes, etc. Hence, temporal and calendric data are not only irregular but they also
depend on cultural, legal, professional, and/or locational contexts. For example the date
“12/02/2005” is interpreted as 12th February 2005 in France while it is interpreted as 2nd

December 2005 in the US. Time and calendar expressions like “month” or “teaching term”
can be interpreted regarding different calendars. The specification of (religious) holidays
depends on the calendar used such as “Christmas Day” which refers to 25th December
if the Gregorian calendar is used but to 7th January if the Julian calendar is used to
determine the date of Christmas on the Gregorian calendar. Several legal holidays are
determined by regions such as “Epiphany” which is a legal holiday only in some German
federal states. Beyond, calendric expressions such as “Friday evening” depend on some
cultural interpretation: while Friday evening refers to the eve of Friday in most western
countries, in some Islamic countries this expression refers to the eve of Thursday.

In fact, time and calendars seem to be fundamental issues associated with any time-
dependent phenomenon in any dynamic system. These and further considerations gave
birth to a large field of research in Artificial Intelligence and Database Systems that can be
summarized to the effort of developing frameworks for temporal knowledge representation
and reasoning. Such frameworks usually comprise a formalization of the aspects of time
and calendars and means to temporal and calendric data representation and reasoning.
Research in temporal knowledge representation and reasoning (in Artificial Intelligence
and Database Systems) has mainly focused on set-theoretic and logic-based formalisms to
time and calendars.

Recently, similar problems concerning time and calendars to those in Artificial Intel-
ligence and/or in Database Systems appear in existing and emerging Web and Semantic
Web applications and Web services. In fact, applications that involve arbitrary calendric
data possibly referring to different calendars are typical for the Semantic Web: systems
and applications in the Semantic Web cannot be considered being closed and they cannot
demand uniform data modeling. Temporal and calendric data on the Web and the Seman-
tic Web is extremely distributed and heterogenous. Furthermore, such data should support
recent internationalization and localization efforts in the Web. Thus, existing and emerging
Web and Semantic Web applications and Web services give rise to further considerations
concerning time and calendar models and representation and reasoning approaches.

On the current Web, temporal and calendric data and expressions can hardly be in-
terpreted by computers. The vision of the Semantic Web is to enrich the current Web
with well-defined meaning and to enable computers to meaningfully process temporal and
calendric data and expression. Nowadays research in the Semantic Web mainly focuses
on ontology-based modeling (even of temporal and calendric data) using generic languages
such as OWL or RDF which refer to axiomatic reasoning approaches designed for arbitrary
Semantic Web applications.

The work reported about in this thesis claims that temporal data and calendars require
specific modeling and processing tools, even in the Semantic Web, that goes far beyond
ontology modeling and axiomatic reasoning approaches. This work is based on a program-
ming language approach to data modeling and reasoning with calendars and calendric

3

and temporal data. This approach combines ideas and techniques developed for modern
programming languages, in particular type checking approaches including subtyping (to re-
late different calendars and calendric types) with theory reasoning approaches, in particular
constraint programming techniques. The application of choice is appointment scheduling
involving arbitrary calendars, called multi-calendar appointment scheduling. Thus, this
approach complements both research in the area of temporal knowledge representation
and reasoning and research in the area of the Semantic Web with programming language
approaches to conveniently express temporal and calendric data and expressions in a user-
friendly calendar modeling language and with theory reasoning approaches to efficiently
model and process problems specific to the particular application domain of calendars and
time. The work’s underlying thesis is twofold:

1. “Calendar as Type”: calendars are more conveniently expressed with dedicated lan-
guage constructs. Types and type checking are as useful and desirable with calendric
data types as with whatever other data types. Types complement data with machine
readable and processable semantics. Type checking is a very popular and well es-
tablished “lightweight formal method” to ensure program and system behavior and
to enforce high-level modularity properties yielding in abstraction. Types and type
checking enhance efficiency and consistency of any language.

2. “Theory Reasoning”: calendars are more efficiently processed with dedicated reason-
ing methods than with “axiomatic reasoning” of ontology languages like RDF and
OWL. This makes search space restrictions possible that would not be possible if
calendars and temporal notions would be specified in a generic formalism such as
first-order logic and processed with generic reasoning methods such as first-order
logic theorem provers.

4 1. Introduction

1.1 Field of Research

This thesis is related to research in the field of modeling language design, in particular mod-
eling languages with reasoning approaches for Information Systems and Web and Semantic
Web applications and Web services such as scheduling and planning systems, information
services, so-called adaptive (or context-aware) applications and systems as well as mo-
bile computing applications. Such systems and applications often involve rather complex
temporal and calendric data.

The thesis introduces into a declarative modeling language for temporal and calendric
data modeling and reasoning for which a programming language approach has been chosen:
specific language constructs, type constructors, are provided to user-friendly modeling of
calendric data as well as to express constraints on such data. This type language for
calendars comes with types and type checking approaches and with efficient reasoning
approaches specific to the application domain of time and calendars. This language which
is called CaTTS has been developed within the last two and a half years.

The design of the time model underlying CaTTS has been influenced by research on
temporal knowledge representation, in particular by an interval calculus for time and by
a system of so-called time granularities to express time in different units such as days and
months. Since time granularities do not have an internal structure in the sense of types,
they are not immediately suitable as types in a type language for calendars. Thus, in-
fluenced by research in type theory and specification languages for theorem provers, time
granularities are defined as (sub)types of other calendric types by specifying predicates,
adapting the idea of predicate types. Interdependent with such type predicates always
defining calendric subtypes of other calendric types, the operational semantics of this lan-
guage is defined by a subtyping semantics of implicit coercion that allows for comparison
of different calendric types during reasoning. Reasoning with temporal and calendric data
is based on Constraint Programming techniques, in particular those developed for combi-
natoric problems such as scheduling.

Theoretical aspects of this work are the use of data types for modeling time and calendar
expressions with type checking approaches and constraint solving over different domains
referring to such types. Practical aspects of this work are user-friendly language con-
structs for modeling calendars and calendric data and constraints which can be processed
efficiently. Such specialized language constructs and processing tools for specific data are
(or will be) important for several Semantic Web applications. Due to the use of data types
and type checking approaches, the proposed tools can be integrated in any Web language.

The theory of time and calendars is not the only “specific theory” that frequently
appears in systems and applications such as those previously addressed. Thus, the work
reported about in this thesis gives rise to future research on using data types and specific
reasoning methods (e.g. constraint solving) for modeling and reasoning on specific theories
(e.g. topologies and location data).

1.2 Importance of Time and Calendars for the Semantic Web 5

1.2 Importance of Time and Calendars for the Se-

mantic Web

Temporal and calendric data are probably more than any other data domain a subject
to user interpretation, depending on some cultural context. Interdependent with culture,
time and calendars are specified in the context of professional, legal, and/or locational
aspects. Thus, time and calendars should be a major concern of internationalization and
localization, the Semantic Web community is striving for. In fact, many Web and Semantic
Web applications and Web services refer to temporal and calendric data.

1.2.1 Cultural Concerns

In the western, Christian-dominated world, time is considered as irretrievable and unre-
peatable, i.e. time progresses irresistibly. Time continuously goes on, and regarding the
finiteness of human life time, time is bounded, and, thus, regarded as extremely valuable.
This Christian understanding of time has led to a strict culture of counting, measuring, and
dividing time, considering for example the hourly prayers of monks determined by using a
sundial such as that illustrated in Figure 1.1, p.34, calendars of traders in the Middle Ages,
“Ora et labora”, or the Millennium Countdown in 2000. The Christian understanding of
time is thus linear.

In Asia, however, a circular understanding of time predominates. It inherently differs
from the western perception of a linear time: in the Asian, i.e. predominantly the Chinese
cultural sphere, a year is separated into several circles, depending on the corresponding
system of beliefs. In a country like Japan all these calendrical systems overlap, so it can
be quite complicated and confusing to correctly refer to a day. Therefore, fixing a day
for a certain occasion can be quite difficult and many calendars have to be consulted. To
plan a wedding on a day, when – as it is done repeatedly during the year – the entrance
of Buddha into Nirvana is commemorated, for example, is supposed to be very inauspicious.

Calendars (and clocks) are human abstractions of the physical time. They allow for
measuring time in different units like “day”, “week”, “working day”, and “teaching term”,
predominately depending on culture, especially religion and history. For example, the
working days of a professional calendar used in some country are defined according to the
days in the underlying cultural calendar in use. Examples of cultural calendars are the
Gregorian, the Julian, the Hebrew, the old and new Japanese calendars, and the old and
new Chinese calendars.

Although nowadays most people use the Gregorian calendar to measure time, to make
appointments, or to schedule travels, more (often rather subtle) differences are present
than one might think at first:

Christmas Day means 25th December in Greece, but 7th January in Russia, although,
Greece and Russia are both dominated by the same (Christian Orthodox) religion. How-
ever, in Russia the Christmas Day is determined using the Julian calendar to determine

6 1. Introduction

the date of Christmas on the Gregorian calendar while in Greece this day is determined
according to the Gregorian calendar which is used in both countries in everyday life. Fur-
thermore, Russia, Greece, and most other Christian Orthodox countries calculate Easter
according to the Julian calendar although the Gregorian calendar is used for specifying
other religious celebrations. However, note that Orthodox Swedes celebrate Gregorian
Easter.

Another particularity regarding (religious) holidays arises in Germany: people in Bavaria
do not work on Epiphany (6th January) while people in Schleswig-Holstein work on this
day. The reason is that legal holidays are defined at the German federal level, not at the
state level, i.e. Epiphany is a legal holiday in Bavaria but not in Schleswig-Holstein.

Yet another curiosity concerns German universities and technical institutes: while at
a technical institute a lecture would be announced by a time slot like “8:15 to 9:45”, at a
university a lecture with the same time slot would be announced “8:00 to 10:00 c.t.”. The
abbreviation c.t., Latin for “cum tempore”, defines a time shift by a quarter of an hour.

Beyond different interpretations of dates or holidays, the common-sense understanding
of some calendar expressions varies: in Western countries like France or the US, “Friday
evening” denotes the eve of Friday but in some Islamic countries, the eve of Thursday.

Years are numbered differently in Japan and China than in European countries (and
not in the same way in Japan, continental China, and Taiwan). For example 24th December
1926 is referred to in Japan as Taishō 15, the 12th month, the 24th day, while 25th December
1926 is Shōwa 1, the 12th month, the 25th day.1 The rationale is that, following the old
Chinese practice, years are numbered in the Japanese calendar after the era name. These
era names are chosen by each emperor as a kind of governing slogan. The slogan of
the present Japanese emperor, whose reign started on 8th January 1989, Heisei, has the
meaning “creating peace” Frequently, however, the meanings of these era names being
Chinese compounds are quite ambiguous and therefore often open – even if unsaid – new
interpretations according to changing situations. Shōwa, the era which started 1926, can
mean “brilliant Japan” as well as “radiant peace”. Since in modern times it had become
the habit not to change the governing slogan during one emperor’s reign, this possibility
to reread the meaning nevertheless permitted a new start even under the reign of still the
same emperor.

On the one hand, these era names show an understanding of time which is, as can be
repeatedly found in Asia, circular, inherently differing from the western understanding of
a linear time.

On the other hand, these era names show that calendar systems manifest – as it is
the case for the era names, as well – a great deal of inherent power. To become able
to be in charge of time – even if it might be only your own – time has to be modeled.
Therefore, clocks and calendars as common devices can also be seen as one step to personal
independence as well as to common-sense. With the growing of a merchant class in pre-

1Even though for designating the months in Japanese now their mere numbers are mainly used, there
exist other names that evoke the old calender. That is by mentioning the first month, for example Japanese
automatically think of spring, because in the past the first month denoted the beginning of spring. This
can still be seen in different greetings for the New Year, where ”spring”is frequently used.

1.2 Importance of Time and Calendars for the Semantic Web 7

modern Japan such devices for common use became more and more on demand, as there
were a sine qua non for monetary acts. But since the calendar system that days was so
complicated, for example the long and short months have changed every year and have
involved so much power. It was a strict state monopoly to print calendars. To circumvent
this law different modes of riddle like modeling calendars in prints, so called e-goyomi, were
invented. The length of the months and often even the year was interwoven with the overall
picture of the respective prints. Even though these calendars were strictly forbidden, due
to their playful approach during the 18th and 19th centuries private editions were soon “en
vogue” as well as coveted collection articles. Two examples illustrate their working in the
following.

At the first glance, Figure 1.2, p.35 illustrates only a good luck charm for New Year,
showing the God of Good Fortune, Ebisu, together with a red snapper, tai2. However, the
thread loosely laid around the fishing rod tells us in hardly legible letters the year, the
3rd year in the era Meiwa (1766), a dog-year, while the numbers for the long months are
hidden in the folds of the garment of the God of Fortune and the numbers for the short
months in the outline of the fish.

Figure 1.3, p.36 is one of the popular bijin-e, pictures of beautiful women, of the year
1824. Distracted by the beauty the spectator hardly notices the delicate numbers headed
by the character for “large” – this signifying that the following numbers are the long
months – at the corpus of the shamisen (the musical instrument), the woman is holding in
her hands.

1.2.2 Internationalization Efforts

Since the Web and the Semantic Web are accessible world-wide and for arbitrary purpose
such as information, communication, data querying and exchange as well as applications
and services like scheduling appointments and planning travels, Web languages and stan-
dards need to be usable world-wide.

The W3C Internationalization Activity (http://www.w3.org/International) has to
ensure that W3C’s formats and protocols are usable world-wide in all (Web and Seman-
tic Web) languages and in all writing systems. This internationalization activity should
propose and coordinate the adoption by the W3C of techniques, conventions, technologies,
and designs that enable and enhance the use of W3C technology and the Web world-wide,
with and among the various different languages, scripts, regions, and cultures. Interna-
tionalization becomes even more important in the Semantic Web where not only formats
and protocols need to be usable world-wide with any (Semantic) Web language but also
the semantic annotations of the data as well as manipulation and processing tools for such
data.

Many Web and Semantic Web applications and Web services which are involved in
these internationalization efforts such as web-based information and scheduling systems

2Interestingly enough, this is still another of the so popular rebuses in Japanese culture: tai (the name
of the fish) is seen as an abbreviation for ”omedetai”(to bring blessings upon s.o.).

http://www.w3.org/International

8 1. Introduction

and adaptive Web systems also refer to rather complex temporal and calendric data and
expressions. Examples of such advanced Web systems are news servers, scheduling systems,
e-commerce systems, and various Web services like flight booking, online banking, or train
schedules which might be also queried. Salient to advanced Web applications is that they
often explicitely or implicitly use various calendars. However, W3C internationalization
and localization efforts concerning calendric and temporal data do not go beyond locale
specification in Web protocols, and the use of XML Schema’s predefined data types for
calendric data dedicated to the Gregorian calendar [W3C01] in Web and Semantic Web ap-
plications and languages. XML Schema hardly provides any means for temporal reasoning
and no multi-calendar reasoning. The presence of temporal and calendric data in many
Web sites and applications and the Semantic Web requirements to meaningfully model
and process such data, however, let temporal and calendric data modeling and reasoning
become an important aspect of internationalization and localization efforts in the Web and
the Semantic Web.

1.2.3 Applications

The so-called “Web adaptation” is receiving increasing attention in Web circles. Adap-
tation basically means delivering and/or rendering data in a context-dependent manner.
One distinguishes between “semantical adaptation” adapting the data themselves, and
“representational adaptation”, adapting how data are rendered. For example, a web-based
e-commerce catalog might adapt offers to former purchases of a user and/or render Web
pages using font sizes specified by the user and/or the rendering device (desktop, cellular
phone, or handheld computer) used. Temporal information on the Web mostly refers to
semantical adaptation, and in modeling “contexts”, temporal data often play an essential
role. In the following, three scenarios of advanced Web applications that make use of
calendric and temporal data are described: appointment scheduling, event planning, and
budgeting.

1.2.3.1 Web-based Appointment Scheduling

Appointment scheduling is a problem faced daily by many people at work. In general,
scheduling an appointment among a number of people requires considering several time
constraints (such as “John does not accept a meeting on a Monday before 9:30 am”) as well
as the already scheduled appointments registered in the calendars of the persons concerned.
An appointment scheduler tries to find a match (or a best match) between the given con-
straints. Advanced systems might determine priorities on appointments. Appointment
scheduling often requires advanced temporal and calendric reasoning capabilites for pro-
cessing planning requests such as “Mary plays tennis for one hour in the morning every
second week during working time”, for scheduling activities spread over two consecutive
days, or for scheduling activities of different calendric types like what is the latest possible
working day in February for a Valentine Day present delivered in due time (i.e. before 14th

February).

1.2 Importance of Time and Calendars for the Semantic Web 9

It is desirable that a web-based appointment scheduler provides some form of calendar-
based semantical adaptation for appointments expressed in terms of the calendar in use
in the country (or countries) where one works and lives in. These calendars present more
differences than one might think at first. For example Christmas Day means 7th January in
Russia and some (but not all) Slavic countries but 25th December in Greece. Also, years are
numbered differently in Japan and China than in western countries (and not in the same
way in Japan, continental China, and Taiwan). Many more such examples could be given
(cf. Section 1.2.1). Thus, for being usable world-wide, an appointment scheduler must refer
to various calendar systems. Moreover, it should provide with adaptation to the calendar
system preferred to each user making it possible to communicate with each other without
having to take care of the different calendars in use. In fact, multi-calendar temporal
reasoning is an essential, still rather neglected aspect of the so-called internationalization
(cf. Section 1.2.2) the developers of the Web strive for. Beside various calendars and for
obvious reasons, time zones and the various daylight saving times also have to be supported
by modern, web-based appointment schedulers.

The following scenario illustrates the temporal notions and temporal reasoning concerns
an appointment scheduler calls for.

Example 1.1 Three business men plan a trip to London. This trip should be arranged
within the next three months. They estimate the time to spend on the trip to two and a
half days and specify a time interval during which the trip should take place. After having
defined these temporal constraints on the agenda of each business man, the appointment
scheduler queries the electronic calendars of the participants for their personal time con-
straints within the considered time interval. The appointment scheduler reasons over the
temporal constraints and returns the (consistent!) answers to the problem, if any. In doing
this, various calendars, time zones, as well as calendric expressions such as “legal holiday”
and “working day” might be involved.

An appointment as considered in Example 1.1 is a convex time interval represented
by its ending points, and it has a duration. Other examples similar to 1.1 demonstrate
the need for non-convex time intervals. For example the answer to the question “when
are Anna, Bob, and Cindy all staying in New York” might be a non-convex interval.
Furthermore, an appointment scheduler might refer to conjunctions and disjunctions of
temporal constraints expressed in terms of the above-mentioned basic temporal notions.
Each of these basic temporal notions can, in turn, be expressed with calendric types, i.e.
units such as hour, day, week, month, trimester, and semester. Note that some of these
notions might have different interpretations depending on the used calendar. For example,
months are differently defined in the Islamic, Gregorian, Iranian, and Coptic calendars, for
citing a few still widely used.

1.2.3.2 Web-based Event Planning

The events considered in this section are social events (like concerts or theater perfor-
mances), or professional events (like venues of conventions and conferences). An event

10 1. Introduction

planning system is a software aiming at assisting people planning and/or managing a large
number of events subject to possibly complex constraints. For example, planning the con-
certs of a large city might have to ensure a regular distribution over the time if those
concerts aim at similar audiences. Event planning is concerned with inter-related time-
dependent events. The events to be considered might be already finalized, i.e. certain,
or instead potential, i.e. subject to cancellation. In contrast to appointment scheduling,
event planning is in general a continuous, or at least a long lasting process: while schedul-
ing an appointment can be seen and realized as a punctual task, scheduling events often
requires long lasting, intertwined tasks. Thus, the temporal reasoning system subjacent
to an event planning system must be able to manage an ongoing planning process. The
following scenario illustrates the temporal notions and temporal reasoning aspects that an
event planning system in general needs.

Example 1.2 Mary is responsible for planning, managing, and surveying the cultural
events of a large city. For some event, the following might have to be planned: Rent-
ing a service (e.g. a catering service) could involve calling a catering service in due time,
scheduling appointments with a responsible person, conclude a contract, provide with access
to premises and facilities at some point of time, oversee the service provided in due time,
etc. Indeed, consistency with planned events and their sub-tasks must be checked. For
example, two subcontractors cannot necessarily use the same resources, for example rooms.

Thus, an event planning system might recall to work-flow management systems. An
essential difference is that, in contrast to a standard work-flow management system, an
event planning system will have to support common-sense or real life calendar expressions
like “hour”, “day”, “week” or “month”. An event planning system perfectly fitting the
needs of Mary from Example 1.2 will also have to support various calendars and time
zones (e.g. for many artists that come from abroad). Furthermore, the city is likely to have
different cultural communities the celebrations of which have to be taken into account in
planning cultural events.

One probably will have to distinguish between “fully specified events” and “incom-
pletely specified events”. The former refer to specific time and date occurrence and some
event’s sub-tasks having fully specified temporal constraints. The latter refers to sub-tasks
which are already committed but not yet fully scheduled. Most likely, an event planning
system will have to support partially ordered activities (or tasks, or sub-tasks), incomplete
information, and it will have to verify the consistency of temporal constraints between
(inter-related) events.

1.2.3.3 Web-based Budgeting

A budgeting system might be seen as a temporal planning system tuned to financial con-
trol. Budgeting systems take into account both, when and in which order budgeting tasks
occur. They also take into account a task’s evolution for this is often critical for a cor-
rect determination of future budgets and their related budgeting plans. Let us consider a
scenario.

1.3 Thesis’ Contribution: Calendar Types and Constraints 11

Example 1.3 A budgeting system for public schools guides the school’s financial analyst
through the process of creating a budget that can be easily managed, consulted, balanced, and
compared with previous budgets of the school, with the budgeting plan, and with the current
year’s budget. The budgeting system computes (and stores) the budgets of all budget sections
together with some constraints. It also computes monthly reports including absolute and
relative deviations from the running year’s budget and extrapolation for the future based on
previous year’s balance-sheets. Further reports give the budget for each term of references
separately as well as the currently available resources.

Thus, a budgeting system refers to several temporal notions and constraints. Budgeting
refers to different time domains because it uses both histories (past data) and extrapola-
tions (future data).

It is worth stressing that the Web provides an infrastructure making it possible for an
appointment scheduler, event planner, and budgeting system to refer to the calendars of
several persons at different places and possibly moving from place to place. Web applica-
tions like those mentioned above suggest that what one might call “multi-calendar temporal
data modeling and reasoning” is likely to become much more important in the future than
it has been in the past.

1.3 Thesis’ Contribution: Calendar Types and Con-

straints

The work reported about in this thesis is the Calendar and Time Type System CaTTS
[BS04, BRS05]. CaTTS allows for declaratively modeling calendars and calendric data
as types. Furthermore, CaTTS complements such data with machine readable and pro-
cessable semantics based on “theory reasoning” approaches for efficiency reasons. CaTTS
goes far beyond predefined date and time types after the Gregorian calendar. CaTTS con-
sists of two languages, a type definition language, CaTTS-DL, and a constraint language,
CaTTS-CL, of a (common) parser for both languages, and of a language processor for each
language. The system CaTTS is illustrated in Figure 1.4, p.37.

Using the (type) definition language CaTTS-DL, one can specify in a rather simple
manner more or less complex, cultural or professional calendars. Specificities like leap
seconds, leap years, and time zones can be easily expressed in CaTTS-DL. Calendars
expressed in CaTTS-DL can be composed in the sense that the language offers a means for
modules. Thus, one can extend a standard calendar such as the Gregorian calendar used in
Germany with a particular teaching calendar like the one of a specific German university.

Using the language fragment CaTTS-TDL (for Type Definition Language) of CaTTS-
DL, one can define calendric data types specific to a particular calendar – such as “working
day”, “Easter Monday”, “exam week”, or “CS123 lecture” (defining the times when the
Computer Science lecture number 123 takes place). Calendric types are always defined as
subtypes of other (already defined) calendric types by user-defined predicates. For example,

12 1. Introduction

the type “exam week” can be defined from the type “week” by specifying a predicate that
selects those weeks which are examination weeks.

Using the language fragment CaTTS-FDL (for Format Definition Language) of CaTTS-
DL, one can specify date formats for such data types – such as “5.10.2004”, “2004/10/05”,
or “Tue Oct 5 16:39:36 CEST 2004”.

The language processor of CaTTS-DL is a type checker including “meta type checking”
approaches for CaTTS-DL calendar specifications themselves. CaTTS’ type checker can
be used for type checking of programs or specifications in any language (e.g. SQL, XQuery,
XSLT, XML Schema, RDF, OWL), using calendric data and date formats enriched with
type annotations after some calendar specified in CaTTS-DL. In particular, it is used for
(static) type checking of temporal constraint programs in CaTTS-CL the constraint lan-
guage of CaTTS . CaTTS-CL is type checked by translating a CaTTS-CL program into an
equivalent program that can be solved by CaTTS-CL’s language processor. Therefore, the
subtyping relation between calendric types is interpreted by implicit coercion. That means,
whenever α ≤ β (read as “type α is a subtype of type β”) is provable between calendric
types, a conversion from α to β is performed. This conversion remains implicit in CaTTS-
CL expressions. This makes CaTTS-CL programs easier to write and read. CaTTS-CL
programs are evaluated by type checking them using the “high-level” typing and subtyping
rules for CaTTS-CL. The conversion becomes explicit by using a “lower-level” language
without subtyping to evaluate CaTTS-CL programs. This lower-level language is called
CLcatts, the language used by CaTTS-CL’s language processor. Thus, CaTTS provides no
evaluation rules for the high-level constraint language CaTTS-CL. Evaluation of CaTTS-
CL programs is rather achieved by providing a translation of high-level CaTTS-CL expres-
sions with subtyping into lower-level CLcatts expressions, and then using the evaluation
relation of CaTTS-CL’s language processor to obtain the operational behavior of CaTTS-
CL programs. This translation interprets subtyping in CaTTS-CL in terms of conversion
constraints in CLcatts. In particular, the proof that α is a subtype of β (i.e. the derivation
from applying the high-level subtyping and typing rules on CaTTS-CL expressions) gen-
erates a coercion cβα from α to β. This coercion is expressed in terms of CLcatts conversion
constraints.

This thesis claims that types and type checking are as useful and desirable with calendric
data types as with other data types for the following reasons.

• Types complement data with machine readable and processable semantics.

• Types enable (meaningful) annotation of data.

• Type checking is a very popular and well established “lightweight formal method” to
ensure program and system behavior and to enforce high-level modularity properties.

• Type checking enhances efficiency and consistency of programming and modeling
languages like Web query languages.

Specific aspects of calendars make type checking with calendars an interesting challenge:
an appointment scheduler inferring an appointment for a phone conference of two persons

1.4 Thesis’ Outline 13

(where one is in Munich and the other in Tel Aviv) refers not only to several time constraints
formulated by the conference attendees but also to various temporal and calendric data
of different types. Types give such data their intended semantics, for example that some
data refer to days. Type checking ensures certain consistency on the data and constraints
when processing them, for example that a week can never be during a day, i.e. this time
constraint is inconsistent.

Using CaTTS’ constraint language CaTTS-CL, one can express a wide range of time
constraints referring to the types defined in calendar(s) specified in the definition language
CaTTS-DL. For example, if one specifies in CaTTS-DL a calendar defining both, the
Gregorian calendar (with types such as “Easter Monday” or “legal holiday”) and the
teaching calendar of a given university (with types such as “working day”, “CS123 lecture”,
and “exam week”), then one can refer in CaTTS-CL to “days that are neither legal holidays,
nor days within an examination week” and express constraints on such days such as “after
Easter Monday and before June”. Thus, using CaTTS-CL one can express real-life, Web,
Semantic Web, and Web service related problems such as searching for train connections
or making appointments (e.g. for audio or video conferences).

The language processor of CaTTS-CL is a multi-calendar reasoner based on constraint
solving techniques for problems expressed in CaTTS-CL. This solver refers to and relies
on the type predicates generated from a calendar definition in CaTTS-DL. The core of
this solver is a conversion constraint that is applied whenever values of different calendric
types are related in a CaTTS-CL constraint such as X during Y where X has type “day”
and Y has type “teaching term”. CaTTS-CL’s conversion constraint has the following
advantages.

1. It makes constraint solving with domain variables referring to different (calendric)
types possible.

2. It makes search space restrictions possible that would not be possible if the calendar
and temporal notion would be specified in a generic formalism such as first-order
logic and processed with generic reasoning methods such as first-order logic theorem
provers.

Apart from that, CaTTS-CL’s constraint solver is based on an extension of the con-
straint system of finite domains, called typed finite domains including CaTTS’ novel con-
version constraint. The constraint reasoner solves (metric) multi-calendar appointment
scheduling problems over time intervals which are expressed in CaTTS-CL.

1.4 Thesis’ Outline

This thesis consists of seven chapters and three appendices. The chapters are built upon
each other. Whenever necessary, references to other chapters are made explicit. The ap-
pendices are related to specific chapters: Appendix A summarizes the syntax of the type
language CaTTS, including the languages CaTTS-DL and CaTTS-CL as well as some

14 1. Introduction

syntactic and closure restrictions made with CaTTS’ prototype implementation. This ap-
pendix belongs to Chapter 4 which introduces into the language CaTTS. Appendix B
belongs to Chapter 5 which specifies a constraint reasoner to solve multi-calendar tem-
poral reasoning problems, in particular, appointment scheduling problems; its associated
Appendix B summarizes a Sicstus Prolog-based CHR (Constraint Handling Rules) [FA97]
implementation of this constraint solver. Finally, Appendix C contains a Haskell-based
[Tho99] implementation of three algorithms implementing approaches to type checking with
calendric data and constraints: first, an algorithm that tests well-formedness of CaTTS-DL
calendar specifications. Second, a type checking algorithm for CaTTS-CL programs that
refers to a subtype checker.3 Finally, a transformation algorithm that transforms CaTTS-
CL programs into programs of the language CLcatts. This transformation is based on a
coercion semantics for subtyping in CaTTS-CL. CLcatts is used by CaTTS’ multi-calendar
constraint solver. This constraint solver thus defines an operational semantics for the con-
straint language CaTTS-CL. Appendix C belongs to Chapter 6. This chapter defines and
discusses these typing and subtyping algorithms in terms of a declarative type system.

1.4.1 Introduction to the Thesis

Chapter 1 is this introduction. The introduction makes two assertions: first, calendars
and calendric data are more conveniently expressed with dedicated language constructs
using types and type checking approaches than in a set-theoretic or logic-based formalism
such as an ontology, referred to as “calendars as types”. Second, calendars and calendric
data are more efficiently processed with dedicated reasoning methods than with “axiomatic
reasoning”, referred to as “theory reasoning”. The necessity of a dedicated modeling and
reasoning language that is specific for the application domain of time and calendars for
information systems, and, in particular, for Web and Semantic Web applications and Web
services is pointed out: the cultural diversity inherent to calendars and time incorporates
a multitude of different time and calendar expressions and numerous varying interpreta-
tions underlying them. Dealing with such a diversity is unavoidable in a distributed and
extremely heterogenous environment such as the Web and the Semantic Web. The inter-
nationalization and localization efforts of the Web community are pointing out this issue.
Unfortunately, time and calendars are still rather neglected in this community. The in-
troduction illustrates three scenarios – appointment scheduling, planning, and budgeting
– involving arbitrary temporal and calendric data. Those scenarios point out that what
one might call “multi-calendar temporal data modeling and reasoning” is likely to become
much more important in the future than it has been in the past.

1.4.2 Background

Chapter 2 provides with a general background in temporal data modeling and reasoning
approaches, overviewing important and well known approaches to time and calendars in the

3Type checking in CaTTS-CL refers to and relies on calendric types defined in CaTTS-DL.

1.4 Thesis’ Outline 15

Artificial Intelligence, the Database Systems, and the Web and Semantic Web communities.
This chapter serves as an orientation guide and for further background reading in temporal
data modeling and reasoning. It carefully relates the programming language approach
CaTTS and its two language processors, a multi-calendar constraint reasoner and a type
checker, to the considered approaches from research. Additionally, some applications of
time and calendar formalisms, in particular, to Web services, to versioning and change
management of Web resources, and to adaptation on the Web are addressed in Chapter 2.
Sections on

• approaches to temporal knowledge representation and reasoning mainly from research
in Artificial Intelligence and Database Systems,

• calendric computations (in most cases neglected in the approaches to temporal knowl-
edge representation and reasoning), and

• Web and Semantic Web formalisms relevant for calendric data modeling and reason-
ing

are provided. Note that in contrast to the approaches from the Artificial Intelligence
and Database Systems communities, the approaches from the Web and Semantic Web
community are rather generic, i.e. not specific to the application domain of time and
calendars.

Chapter 2 consists of four sections. The main aspects of each of these sections with
regard to the contents are described in the following.

Approaches to Temporal Knowledge Representation and Reasoning. Section
2.1 overviews a large amount of work done in temporal knowledge representation and rea-
soning from research in Artificial Intelligence and Database Systems. Temporal knowledge
representation refers to the symbolic representation of time (and calendars) which allows
for describing temporal objects, i.e. objects which are somehow related to and/or in time,
relations between such objects as well as changes of the reality modeled in some (dy-
namic) system. Usually, such knowledge representation systems for time (and calendars)
are obtained by extending a language (in most cases a logic-based language) with means
to represent temporal data. To process such data, temporal reasoning systems, usually de-
pending on some intended application are defined for such representation systems. Those
reasoners might be incorporated into a more general reasoning system.

Implicit time models focus on time-dependent entities indicating that a change in time
has occurred. Examples of implicit time models surveyed in this section are the Situation
Calculus [MH87, SG88, Web90, LS95, Ram00, McC02, MPP02], the Event Calculus [KS86,
Kow92, Sha90, CMP93, CCM95, Sha95, SK95], and Dynamic Logic [Pra76, Har79, Har84,
Moo85]. Implicit time models are particularly developed and used to model events, changes,
and actions and to specify the effects of actions and to acknowledge and to react on changes
in some dynamic system. Since CaTTS is rather designed to model time and calendars

16 1. Introduction

themselves and not to specify actions and reactions in some dynamic system, implicit time
models are merely addressed for the sake of completeness.

Explicit time models consider time itself independent of anything that could happen
in it. Such time models represent the flow of time by defining (at least) one time line
with time primitives, in particular (time) points and/or (time) intervals. Time lines may
be related either in parallel or vertically. A time model with parallel time lines leads to
a hierarchical model to represent calendar units, so-called time granularities. Vertically
related time lines provide means to define temporal histories, for example to model the
transaction times of objects in a system like a data warehouse. In principle, explicit time
models are either point-based [Bru72, KG77, McD82, Sho87] or interval-based [Ham72,
Dow79, NS80, All83, HA89]. In the former, reasoning is performed on points. In the latter,
reasoning is performed on intervals. The differences in point-based and interval-based time
models refer to their applicability, their complexity concerning temporal reasoning tasks
performed on points or intervals as well as their underlying common-sense understanding
of time. Some proposals have been made to combine point-based and interval-based time
models [Vil82, Boc90, Gal90, VS96]. Such combined time models are rather artifical, raising
several problems. Some of those problems are discussed with the design of a time model
underlying CaTTS in Chapter 3. Furthermore, time models for generalized intervals (i.e.
intervals which are not necessarily convex) exist [LMF86, Lad87, DC91, NS92, Lig98].

Approaches to temporal reasoning in explicit time models based on constraint solving
techniques refer to explicit time model based on points and/or intervals. Two princi-
ple temporal constraint formalisms exist: (1) qualitative temporal constraints, in partic-
ular in Allen’s interval calculus [All83, vBC90, VKvB90, KL91, Mei96], and (2) metric
temporal constraints, mainly based on disjunctive linear relations between time points
[KL91, DMP91, Kou92, Mei96] to manipulate dates and durations. An example of a qual-
itative temporal reasoning problem is the following.

The meeting ran non-stop the whole day. The meeting began while Ms Jones was present.
It finishes while Mr Smith was present who arrived after the meeting has begun. Mr White
who arrived after Ms Jones has left has talked to Mr Smith. Could possibly Ms Jones and
Mr Smith have talked during the meeting?

That is, qualitative temporal constraints refer to the temporal relations that hold between
different objects. A constraint solver propagates new relations that can be inferred from
such a problem. Thus, reasoning in qualitative constraint formalisms is performed by
propagating constraints (in terms of temporal relations) that hold between different ob-
jects. In contrary, metric temporal constraints refer to dates and durations between dates.
Reasoning in metric constraint formalisms is (usually) performed by propagating distances
between objects to infer possible dates such objects might hold at. An example of a metric
time constraint is the following.

1.4 Thesis’ Outline 17

A patient requires three medical exams, each followed within 12 hours. The exams require
specific resources available from the 8th to the 12th and from the 20th to the 21st of the
month.

To summarize, metric and qualitative constraints serve to model inherently different
temporal reasoning problems. Furthermore, to solve metric and qualitative temporal rea-
soning problems, different constraint programming techniques are applied: metric con-
straints can be modeled by disjunctive linear relations in a DLR Horn framework, solved
using backtracking and bounds and/or arc consistency techniques [Apt03] while qualitative
constraints are modeled by the (transitivity property of) temporal relations themselves,
solved using path consistency techniques [Apt03].

Various approaches to explicit time models with approaches to model different cal-
endar units in terms of so-called time granularities [Mon96, Je98, BJW00, Euz01] ex-
ist. Time granularities are discretizations of a totally ordered (continuous or discrete)
time line. A time granularity is a (partial) partition4 of such a time line into a (infi-
nite) countable set of aggregates of points (of such a time line), so-called granules, iso-
morphic to the integers. Examples of granules are “02.01.2005” of time granularity day
and “the first week in the year 2005” of time granularity week. The granules of each
time granularity are non-overlapping, and they preserve the order of the underlying time
line. Numerous different formalizations of the concept of time granularity, various re-
lationships between them, and several temporal operations on them have been proposed.
The formalizations follow set-theoretic [MMCR92, Fre92, CEMP93, Euz93, Her94, GPP95,
BCDE00, And83, CR87, WJL91, WJS95, Wan95, Sno95, BJW00, NWJ02], logic-based
[Hob85, GM89, FM94, CFP04, CEMP93, Mon96], and automata-based [Wij00, LM01] ap-
proaches. Well-known approaches in each of those traditions are surveyed. Furthermore,
an approach to temporal reasoning with time granularities according to [BJW00] is ad-
dressed. This approach is inherently metric and point-based. It is defined in the Horn
DLR constraint framework, extended with time granularity: metric temporal reasoning
problems are expressed in terms of time points and metric distances (i.e. integer intervals)
between two points. A pair of variables only satisfies such a distance constraint, if (up and
down) conversions between each of the points and the distance’s time granularity exist.
That means for example, if a point refers to weeks and another to months, then a conver-
sion does not exist, and the constraint between those two points cannot be propagated.
One could express constraints like “X and Y should fall into the same day”. But it is
neither possible to express a constraint like “X should be 3 days before Y” nor “X and Y
should overlap with January 2005”.

Calendric Computations. Section 2.2 refers to calendric computations. It addresses
the main work on this aspect of time and calendars made by Reingold and Dershowitz in
[DR01]. This section briefly reviews computational aspects of temporal and calendric data,
often disregarded in formalisms for temporal knowledge representation such as those which

4in the mathematical sense of a partition of a set

18 1. Introduction

are reviewed in Section 2.1. Note that although CaTTS allows for importing externally
defined functions as well as that CaTTS provides with arithmetic operations for calendric
computations, if required for some modeling problem, computation with calendric data is
not a primary concern in CaTTS.

Web and Semantic Web Formalisms and Applications. Section 2.3 introduces
the main formalisms to annotate semi-structured data using general-purpose data type
declaration languages as well as ontology languages. Those formalisms are mainly de-
veloped to enrich data and information in Web pages and Web sites, making such data
machine-readable and machine-processable. XML [W3C04a], a Web formalism for data
and knowledge modeling is the basic principle all further languages developed for Web
and Semantic Web applications and Web services directed by the World Wide Web Con-
sortium (W3C) (cf. http://www.w3.org) depend on, for example XML Schema [W3C01],
RDF [W3C04c], and OWL [W3C04b].

XML Schema is a language for restricting the structure of such XML documents. XML
Schema extends XML not only with datatypes but also with a considerably large set of
predefined time and date types dedicated to the Gregorian calendar to specify element
contents, i.e. the data represented in some Web page or Web site. However, XML Schema
provides with no means to specify user-defined temporal data types. Since XML Schema
and similar languages fall short in issues concerning the semantics of documents needed,
for example, to process the content of information, ontology languages such as OWL and
RDF have been developed to overcome those problems. Ontology languages are expressive
enough to formalize (at least some) time models. Some time ontologies are addressed in
this section. The main drawback concerning ontologies is their computational complexity:
existing reasoners for OWL such as FaCT [Hor98] are Exptime-complete [Tob01].

In addition to such Web formalisms, this section addresses the importance of interna-
tionalization and localization in the Web and Semantic Web since temporal and calendric
data are an important matter of internationalization and localization due to their cultural,
legal, business, and/or locational contexts. Beyond, Web and Semantic Web applications
concerning time and calendars, in particular, Web services and temporal and active Web
systems are (briefly) reviewed.

In Comparison with CaTTS. Section 2.4 compares CaTTS with the reviewed ap-
proaches to temporal knowledge representation and reasoning, calendric calculations, and
the addressed Web and Semantic Web formalisms. The main statements of this comparison
are summarized in the following.

CaTTS’ underlying explicit time model is linear, interval-based and discrete. The time
model incorporates the concept of time granularities. It is a simple, however, expressive
time model that carefully selects and defines a minimum set of operations between time
granularities. Furthermore, the time model provides a means to time granularity conversion
between any pair of time granularities based on the definition of a slightly weaker join than
an ordinary lattice join.

http://www.w3.org

1.4 Thesis’ Outline 19

CaTTS’ multi-calendar constraint reasoner operates on metric interval constraints.
Rather than in a DLR Horn framework (as it is commonly used in metric temporal rea-
soning), CaTTS’ constraints are formalized in the constraint system Finite Domains (FD)
[FA97]. Variables represent time intervals with time granularity. Several temporal rela-
tions, in particular, the basic interval relations [All83] and several metric relations may
hold between those variables. Variables in any time granularity can be compared. The
reasoner allows for constraints such as “a visit of 5 working days must overlap with the
meeting two working days”. Thus, CaTTS’ reasoner goes beyond proposals to temporal
reasoning with time granularity made in the literature [BJW00]. Furthermore, in contrast
to [BJW00], CaTTS’ reasoner provides with a complete solution to the problem of time
granularity conversion (addressed in [FM01]).

CaTTS departs from both set-theoretic and logic-based time models with time gran-
ularities as well as from time ontologies for the following reasons: CaTTS considerably
simplifies the modeling of specificities of cultural calendars (such as leap years, sun-based
cycles like Gregorian years, or lunar-based cycles like Hebrew months) as well as the model-
ing of professional calendars often involving “gaps” in time (e.g. “working-day”), “gapped”
data items (e.g. “working-week”), and periodic events (e.g. “CS123-lecture”). The well-
known advantages of statically typed languages such as error detection, language safety,
efficiency, abstraction, and documentation whereas the latter two obtain particular in-
terest due to overloaded semantics of calendric data apply to CaTTS, as well. Beyond
this, CaTTS’ static type checker provides both meta-type checking of predicate subtype
definitions in CaTTS-DL and type checking of constraints in CaTTS-CL, obtaining the
semantics of different time granularities even for reasoning with their granules.

In contrast to time ontologies, CaTTS comes along with a constraint solver dedicated
to calendar definitions in CaTTS-DL; this dedication makes considerable search space re-
strictions, hence gains in efficiency, possible. While (time) ontologies follow the (automated
reasoning) approach of “axiomatic reasoning”, CaTTS is based on a (specific) form of “the-
ory reasoning”, an approach well-known through paramodulation. Like paramodulation
ensures efficient processing of equality in resolution theorem proving, CaTTS provides the
user with convenient constructs for calendric types and efficient processing of data and
constraints over those types.

CaTTS complements data type definition languages and data modeling and reasoning
methods for the Semantic Web such as XML Schema [W3C01], RDF [W3C04c], and OWL
[W3C04b]: XML Schema provides a considerably large set of predefined time and date
data types dedicated to the Gregorian calendar whereas CaTTS enables user-defined data
types dedicated to any calendar. RDF and OWL are designed for generic Semantic Web
applications. In contrast, CaTTS provides with methods specific to particular application
domains, that of calendars and time.

20 1. Introduction

1.4.3 A Time Model for Calendric Data, Types, and Constraints

Chapter 3 introduces the formal time model underlying the calendar type language CaTTS.

CaTTS is based on a discrete, linear and interval-based time model that incorporates
the concept of time granularities [Mon96, Je98, BJW00, Euz01].

CaTTS is not intended for expressing possible futures, hence it is not based on a
“branching time”. Most common-sense applications can be conveniently modeled in a
linear time framework. Temporal data of every kind have a duration. This reflects a
widespread common-sense understanding of time according to which one mostly refer to
time intervals, not to time points. Considering only time intervals and no time points
significantly simplifies data modeling and data processing. However, CaTTS can deal with
time point-like data like the beginning of a week or whether a day d falls into a week w or
not, as well.

Discreteness results from the way time granularities are defined: a time granularity
is a mapping from the integers into subsets of a totally ordered (continuous) time line
isomorphic to the real numbers. The elements of such a time granularity are called granules.
Examples of time granularities are days and weeks with granules such as “20.05.2005” and
“the last week in summer”. Note that by definition, each granule of any time granularity
has a duration. CaTTS does not only allow for referring to granules, but also to finite
sequences of granules, i.e. to (time) intervals in a time granularity.

CaTTS provides with language constructs, in particular, predicate types to define time
granularities as subtypes of other already defined types (time granularities). Those sub-
types are defined in terms of either inclusion or aggregation of time granularities. For
example, a type “working-day” is an inclusion (in the common set-theoretic sense) of the
type “day” since the set of working days is a subset of the set of days; the type “week” is an
aggregation (in constructive set-theory) of the type “day” since each week can be defined
as a time interval of days. Those two relations are sufficient to define most calendar units
and calendars in use today as the examples in this thesis show.

A solution to the problem of time granularity conversion [FM01] is provided: a calendar
(or an aligned set of calendars) is defined by a finite set of partially ordered types (time
granularities) according to a composition of the aggregation and inclusion relations, referred
to as subtype relation, just expressing the fact that a time granularity is always either
(somehow) coarser or (somehow) finer than another time granularity. A conversion between
time granularities ordered in this subtype relation is defined. Built upon this subtype
relation (and its conversion), a concept of a slightly weaker join than the ordinary lattice
join of time granularities is defined. This join ensures time granularity conversion between
pairs of time granularities in a calendar which are not ordered in the subtype relation: the
join of the two types (time granularities) is computed and both are converted into the join
(type). For example, types (time granularities) “week” and “month” are not related with
respect to the subtype relation. The join of “week” and “month” is “day” (because “week”
and “month” are both subtypes of “day”). Values of both “week” and “month” can be
then unambiguously represented in terms of days.

1.4 Thesis’ Outline 21

1.4.4 The Language CaTTS

Chapter 4 introduces the calendar type language CaTTS. CaTTS is a declarative modeling
language to specify calendars and calendric data and constraints. It provides with a (rather
small) set of intuitive, thus, user-friendly language constructs to define time granularities
as types. Thanks to types and type checking approaches, such calendar specifications can
be maintained and reused. Furthermore, the semantics of the different calendric types is
maintained even for reasoning with calendric data and constraints. This chapter comes
with three sections. The main aspects of each of the sections are illustrated by example in
the following.

CaTTS-DL: Definition Language. Section 4.1 introduces into the type definition lan-
guage CaTTS-DL to specify in a rather simple manner more or less complex, cultural
and/or professional calendars. An example calendar that can be modeled in CaTTS-DL is
given in the following.

calendar JapaneseGregorian =
cal

type second ;
type minute = aggregate 60 second @ second (1) ;
type hour = aggregate 60 minute @ minute (1) ;
type day = aggregate 24 hour @ hour (1) ;
type week = aggregate 7 day @ day (1) ;
type month = aggregate

31 day named january ,
alternate month(i)
| (i div 1 2) mod 4 == 0 &&

((i div 1 2) mod 400 != 100 &&
(i div 1 2) mod 400 != 200 &&
(i div 1 2) mod 400 != 300) −> 29 day

| otherwise −> 28 day
end named february ,
31 day named march ,
30 day named ap r i l ,
31 day named may ,
30 day named june ,
31 day named ju ly ,
31 day named august ,
30 day named september ,
31 day named october ,
30 day named november ,
31 day named december

@ day (1) ;
type year = aggregate 12 month @ month (1) ;

22 1. Introduction

group ho l iday = with select day (i) where P
(∗ onse t o f sp r ing : ∗)

type setsubun for P = relative i in f ebruary >= 3 &&
relative i in f ebruary <= 4

(∗ emperor ’ s b i r t hday : ∗)
type showa for P = relative i in select a p r i l (i) where

a p r i l (i) after "1926" && ap r i l (i) before "1989" == 29
type h e i s e i for P = relative i in select december (i) where

december (i) after "1988" == 23
end

group f e s t i v a l = with select day (i) where P
(∗ s t a r f e s t i v a l : ∗)

type tanabata for P = relative i in j u l y == 7
(∗ c h i l d r en f e s t i v a l : ∗)

type sh i ch i go san for P = relative i in november == 15
end

end

A CaTTS calendar specification begins with the keyword calendar and ends with
the keyword end. The above calendar specification binds a calendar to the identifier
JapaneseGregorian (i.e. the name of the calendar that can be referred to). This CaTTS-
DL calendar specification consists of a set of calendric type definitions (each identified by
the keyword type followed by some user-defined name) and two group definitions (identi-
fied by the keyword group followed by some user-defined name). Groups can be used to
collect a set of type definitions having some intended relationship. The first type defined is
second. It has no further properties. The CaTTS system interprets such a type definition
simply as an indexed set isomorphic to the integers. If the programmer wants to relate
his/her type definition for seconds to a real flow of time, he/she can use CaTTS’ pre-
defined type reference. reference is the calendar unit “second” of Unix (UTC seconds
with midnight at the onset of Thursday, January 1 of year 1970 (Gregorian) as fixed point
indexed by 1). The type definition of the type minute is derived from that of the type
second. The CaTTS language processor interprets this type definition as an aggregation
subtype of the type second such that each of its elements comprises 60 seconds5 (denoted
aggregate 60 second) and that the minute that has number 1, i.e. minute(1) comprises
all seconds between second(1) and second(60) (minute(2) those between second(61)

and second(120), etc. (denoted @ second(1)). Such a type definition allows the CaTTS
language processor to compute the seconds contained in a specific minute, i.e. to convert
values from one type to those of another. aggregate 60 second @ second(1) is called
the type’s predicate. The conversion between minutes and seconds is generated from such
a predicate. Any further type definition follows the same pattern. The definitions are

5In CaTTS-DL, it is possible to define a type minute that considers leap seconds, as well (cf. Chapter
4).

1.4 Thesis’ Outline 23

straightforward following the rules of the Gregorian calendar [DR01]. Since Gregorian
months have different lengths, a CaTTS type month is defined with a repeating pattern
of the twelve months. The month February which is one day longer in each Gregorian
leap year is defined by an additional pattern which specifies the leap year rule for the
Gregorian calendar using the CaTTS language construct alternate...end. The above
calendar additionally specifies the groups holiday and festival. The later defines some
important Japanese festivals, in particular Tanabata (the star festival) and Shichigosan.6

For the type definition in these two groups, CaTTS relative construct is used. The par-
ticularities are considered in the following: since onset of spring is celebrated on February
3 and 4, two relative expressions are conjoined (denoted relative i in february >= 3

&& relative i in february <= 4). Another public holiday is the birthday of the em-
peror (tennō no tanjōbi). However, this notion naturally changes with the emperors. From
1926 until 1989, when the Shōwa tennō passed away, the 29th April was celebrated as the
emperor’s birthday7, but from then on changed to 23rd December, the birthday of the new
Heisei tennō. These birthdays are defined by finite types selecting those 29th Aprils be-
tween 1926 an 1989 (denoted relative i in select april(i) where april(i) after

"1926"&& april(i) before "1989"== 29) for the era named Shōwa, and selecting those
23rd Decembers which are after 1988 for the era named Heisei (denoted relative i

in select december(i) where december(i) after "1988"== 23). Note that select

december(i) where december(i) after "1988" is a local CaTTS-DL type definition
without binding an identifier to the type.

Note that as in the different Western calendars, there are also holidays with variable
dates in the Japanese calendar, for example the seijin no hi (the day of Coming of Age).
All young people who turn twenty years old in that year are celebrated always on the
second Monday in January. Such holidays can be expressed in CaTTS-DL, as well. Ad-
ditional aspects of the Japanese calendar are discussed in [BHRS05]. Further note that
particularities like time zones can be easily expressed in a CaTTS-DL calendar specifica-
tion. Calendar specifications of other cultural calendars in CaTTS-DL, in particular the
Islamic and Hebrew calendars are given in [BRS05, BS04].

Each of the CaTTS-DL language constructs of which some have been used in the ex-
ample given above, called (predicate) type constructors (e.g. aggregate 7 day @ day(1)

and select december(i) where december(i) after "1988"== 23), defining some cal-
endric type as a (inclusion or aggregation) subtype of another calendric type are introduced
and exemplified in Section 4.1. CaTTS-DL’s means to specify date formats for the values
of such types are illustrated by example, as well. The module concepts, calendar, calen-
dar signature (i.e. the “type” of a calendar itself), and calendar function are defined and
exemplified.

6“Shichi Go San” means ”Seven Five Three”. On Shichigosan girls of age three and seven and boys of
age three and five are celebrated and it is prayed for their good health and growth.

7Note that each old emperor’s birthday continues to be a public holiday under a different name. For
example, Shōwa tennō’s birthday in today’s calendar is referred to as the Green Day (midori no hi).

24 1. Introduction

CaTTS-CL: Constraint Language. Section 4.2 introduces into the constraint lan-
guage CaTTS-CL. Using CaTTS-CL one can express a wide range of temporal constraints
over activities. Such activities are typed after calendar(s) specified in the definition lan-
guage CaTTS-DL. An example multi-calendar appointment scheduling problem that can
be expressed in CaTTS-CL is given in the following: assume that someone plans a trip (of
10 days) to Japan within July 2005 such that it contains the Tanabata festival. Further-
more, the trip must overlap 2 days with a one week meeting that is sometime after 10th

July 2005. In CaTTS-CL, this problem is expressed as follows, assuming that the used
formats are specified in some CaTTS-FDL catalog:

program JapanTrip
prog

use calendar JapanGregorian ;

Trip i s 10 day && Trip within "07.2007" &&
X i s 1 tanabata && Trip contains X &&
Meeting i s 1 week && Meeting after "10.07.2005" &&
(sh i f t (begin of Meeting) forward 2 day) equals (end of Trip)

end

The program identifier JapanTrip is bound to the CaTTS-CL program within the
keywords prog and end. The program refers to the CaTTS-DL calendar specification
JapaneseGregorian that is given above. The calendar is referred to by the use calendar

construct. The constraint Trip is 10 day associates the variable Trip with a domain of
intervals of 10 days. The condition that the trip should be within July 2005 and that it must
contain the Tanabata festival are expressed by the constraints Trip within "07.2007"

and Trip contains X where X is a variable that is associated with a domain of Tan-
abatas. && denotes a conjunction of constraints. The variable Meeting is associated with
a domain of weeks by the constraint Meeting is 1 week. The constraint Meeting after

"10.07.2005" expresses that the Meeting must be some time after 10th July 2005. Finally,
the constraint (shift (begin of Meeting) backward 2 day) equals end of Trip ex-
presses the condition that the trip must overlap with the meeting for 2 days as follows:
the day that results from shifting the starting time of the meeting forward 2 days in time
must equal the day that ends the trip to Japan. If this constraint holds, the trip overlaps
with the meeting for 2 days.

The different calendar constraints of which some are used in the example given above, in
particular, calendar domain constraints (e.g. Trip is 10 day) and time constraints (e.g.
Trip contains X) that can be used in CaTTS-CL along with the notions of answers and
solutions to multi-calendar appointment scheduling problems that can be expressed in a
CaTTS-CL program are defined and exemplified.

Section 4.3 illustrates a (larger) example, demonstrating CaTTS’ means to model differ-
ent cultural and professional calendars as well as a multi-calendar appointment scheduling
problem.

The complete syntax of CaTTS, separately defined for CaTTS-DL and for CaTTS-CL
is given in this chapter’s associated Appendix A. Appendix A additionally summarizes

1.4 Thesis’ Outline 25

syntactic restrictions enforced for CaTTS’ prototype implementation. Note that CaTTS’
current prototype implements a (rather small) subset of CaTTS. The prototype is merely
for proof of concepts, demonstrating the basic principles of the language.

1.4.5 Constraint Reasoning with Calendric Data

Chapter 5 introduces the language processor of CaTTS-CL, a multi-calendar temporal rea-
soner. This reasoner is defined and implemented using constraint-solving techniques. In
the context of CaTTS, multi-calendar temporal reasoning addresses the problem of finding
free time slots for related activities, i.e. objects with a temporal extend such as a meeting
in the presence of various (temporal) conditions. Such problems are called appointment
scheduling problems. In CaTTS, activities may refer to arbitrary (cultural and/or pro-
fessional) calendars. In particular, CaTTS’ multi-calendar temporal reasoner can solve
appointment scheduling problems expressed in CaTTS-CL. On the implementation side
of CaTTS’ reasoner (which is the contents of Chapter 5), multi-calendar appointment
scheduling problems can be conveniently modeled in the constraint system Finite Domains
(FD) [FA97, MS98]. In such constraint systems, variables range over (finite) domains.
Those domains are usually taken from a number set like integers or reals. In CaTTS,
such domains are used to represent finite, convex (time) intervals. Those intervals are rep-
resented by two associated finite domain constraints, one represents the possible starting
times of the interval and the other the interval’s possible durations. It is specific to CaTTS’
approach to solve multi-calendar temporal reasoning problems, and, in particular, appoint-
ment scheduling problems that can be expressed in a finite domain framework that those
problems involve different calendric types. That is, each domain that represents an interval
has a calendric type attached. Therefore, the constraint system FD is extended to a typed
version of it, called typedFD. Furthermore, CaTTS’ provides with a novel finite domain
constraint, called conversion constraint. This constraint defines a means to relate domains
represent in different calendric types to each other. The conversion constraint relies on
the conversion functions generated from the types’ predicates defined in some CaTTS-DL
calendar specification. The conversion constraint is the core of CaTTS’ constraint solver.
It allows for efficient (in fact linear in the number of the constraints and variables w.r.t.
the domains’ sizes) constraint solving over different domains while maintaining the seman-
tics of the different calendric types. Furthermore, CaTTS’ multi-calendar constraint solver
over the constraint system typedFD including the novel conversion constraint is proved to
be complete.

Chapter 5 consists of six sections: Section 5.1 recalls basics in Constraint (Logic) Pro-
gramming. Section 5.2 illustrates the working of CaTTS’ constraint solver on a multi-
calendar appointment scheduling problem. The constraint system within which this solver
is defined and implemented is given in Section 5.3. The various constraints of the solver are
introduced in Section 5.4. Section 5.5 defines the constraint solver by a finite set of infer-
ence rules (at least) one for each of the supported constraints. Finally, Section 5.6 analyzes
the complexity of the algorithm. Appendix B is associated with Chapter 5: this appendix
summarizes the Sicstus Prolog-based CHR (Constraint Handling Rules) [FA97] implemen-

26 1. Introduction

tation of CaTTS’ multi-calendar constraint solver. In this appendix, completeness of the
multi-calendar constraint solver is shown.

The working of CaTTS’ multi-calendar constraint solver is illustrated by example in
the following.

Multi-Calendar Constraint Reasoning in CaTTS. CaTTS’ constraint solver relies
on and refers to the type predicates generated from a calendar definition in CaTTS-DL.
Those type predicates define functions to convert values of one calendric type to corre-
sponding values in another calendric type. Those conversion functions generated from the
predicates of the calendric types are accessed by the core of CaTTS’ constraint solver, its
conversion constraint. The conversion constraint provides a means to relate a set of values
represented in one calendric type to an equivalent set of values represented in another cal-
endric type. This relationship is maintained during constraint solving of a multi-calendar
appointment scheduling problem expressed in CaTTS-CL. The conversion constraint is
necessary to solve a time constraint like X during Y if X and Y refer to different calendric
types.

Let us consider an example: assume the following CaTTS-CL program with referred
calendric types and data formats defined in CaTTS-DL:

. . .
Trip i s 2 week && Trip during "07.2005"
. . .

This program formulates the constraint, that a trip of 2 weeks must be during July 2005.

To solve this problem using CaTTS’ constraint solver, the program is transformed into
an equivalent program that contains conversion constraints for variables not expressed in
the same calendric type. The type within which the variables8 need to be represented
as well as the transformation into constraints that can be solved by CaTTS’ constraint
solver are inferred by CaTTS’ type checker (cf. Chapter 6). This should not concern
us any further in order to understand the working of CaTTS’ constraint solver in the
following. We simply assume that this transformation has already been done. For a better
understanding of CaTTS’ constraint solver which operates on the integer indices of the
values of the different calendric types, the following indexing for types day, week, and
month is assumed.

month

week

day

1 (“07.2005”) 2

1 2 3 4

↑
“04.07.2005” (Monday)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

8Since Trip has type interval of week and "07.2005" has type month, a good candidate for a common
representation is the type interval of day.

1.4 Thesis’ Outline 27

The variable Trip is represented in terms of weeks and in terms of days and the constant
"07.2005" is represented in terms of months and days as follows according to the illustra-
tion given above: the variable Trip and its associated domains in terms of weeks, written
Trip :: −∞..∞+2..2, week and in terms of days, written Trip day :: −∞..∞+14..14, day.
The calendar domain constraint Trip :: −∞..∞+ 2..2, week is read as “the variable Trip

is associated to the domain −∞..∞+2..2, week that represents intervals of 2 weeks where
the possible starting time of this interval is any integer (denoted −∞..∞) and the possible
duration is in minimum and in maximum 2 (denoted 2..2)”. Intervals that are represented
by this domain constraint are for example the interval from (week) 1 to (week) 2 and
the interval from (week) 2 to (week) 3. Trip day is represented analogously. Since the
duration of one week in terms of days is 7, the duration of two weeks in terms of days
is 14. The interval from (day) 11 to (day) 24 is represented by this domain, for exam-
ple. (This interval corresponds to the (equivalent) interval from (week) 2 to (week) 3).
Similarly, the constant "07.2005" and its associated domains in terms of months, written
“07.2005”:: 1..1+1..1,month and in terms of days, written “07.2005” day:: 1..1+31..31, day
is represented by calendar domain constraints. In addition to those four calendar do-
main constraints, the constraint solver contains the time constraints, Trip day during
“07.2005” day, i.e. the 2-week trip must be during July 2005, both expressed in terms
of days. To ensure that for the trip only “real” weeks are considered and for the month
July only this month, the constraint solver additionally contains the following conversion
constraints: Trip day ' Trip and “07.2005” day ' “07.2005”. The conversion constraint
Trip day ' Trip relates the trip represented in weeks to an equivalent amount of time
that is represented in days and analogously the conversion constraint “07.2005” day '
“07.2005”.

To summarize, the constraint problem given above in CaTTS-CL has the following
(internal) representation:

Trip :: −∞..∞+ 2..2, week, Trip day :: −∞..∞+ 14..14, day,
“07.2005” :: 1..1 + 1..1,month, “07.2005” day :: 1..1 + 31..31, day;
Trip day during “07.2005” day, Trip day ' Trip, “07.2005” day ' “07.2005”

Constraint propagation that is performed by CaTTS’ constraint solver, i.e. the applica-
tion of a constraint like Trip day during “07.2005” day is all about reducing the domains
associated to the variables Trip day and “07.2005” day. The constraint during states the
following:

Trip day

“07.2005” day

In words, July 2005 must start before the trip starts and it must end after the trip ends.
Now, we apply this constraint on our problem:

28 1. Introduction

Trip day during “07.2005” day, Trip day ' Trip, “07.2005” day ' “07.2005”;
Trip :: −∞..∞+ 2..2, week, Trip day :: −∞..∞+ 14..14, day,
“07.2005” :: 1..1 + 1..1,month, “07.2005” day :: 1..1 + 31..31, day

7→during Trip day during “07.2005” day, Trip day ' Trip, “07.2005” day ' “07.2005”;
Trip :: −∞..∞+ 2..2, week, Trip day :: 2..17 + 14..14, day,
“07.2005” :: 1..1 + 1..1,month, “07.2005” day :: 1..1 + 31..31, day

What has happened: the time constraint Trip day during “07.2005” day demands that
the trip starts after July 2005 starts. Thus, the minimal possible starting time of the trip
is (day) 2 as denoted in the constraint Trip day :: 2..17 + 14..14, day. Furthermore, the
time constraint Trip day during “07.2005” day demands that the trip ends before July
2005 ends. Thus, its maximal ending time of trip is (day) 30. The duration of Trip day
is 14 (days). Since the maximal ending time is (day) 30 and the maximal duration is 14
(days), the maximal starting time of Trip day is (day) 17 (i.e. 30 − 14 + 1 = 17)9. Now
the conversion constraint Trip day ' Trip is applied since Trip and Trip day no longer
represent the same amount of time:

Trip day during “07.2005” day, Trip day ' Trip, “07.2005” day ' “07.2005”;
Trip :: −∞..∞+ 2..2, week, Trip day :: −∞..∞+ 14..14, day,
“07.2005” :: 1..1 + 1..1,month, “07.2005” day :: 1..1 + 31..31, day

7→during Trip day during “07.2005” day, Trip day ' Trip, “07.2005” day ' “07.2005”;
Trip :: −∞..∞+ 2..2, week, Trip day :: 2..17 + 14..14, day,
“07.2005” :: 1..1 + 1..1,month, “07.2005” day :: 1..1 + 31..31, day

7→Trip day'Trip Trip day during “07.2005” day, Trip day ' Trip, “07.2005” day ' “07.2005”;
Trip :: 1..2 + 2..2, week, Trip day :: 4..11 + 14..14, day,
“07.2005” :: 1..1 + 1..1,month, “07.2005” day :: 1..1 + 31..31, day

What has happened: the constraint Trip day ' Trip tells us that the amount of time that
is represented by Trip day in terms of days must be equivalent to the amount of time that
is represented by Trip in terms of weeks. After applying the constraint during, Trip day
represents those intervals of 14 days that start earliest at day 2 and latest at day 17. The
constraint Trip day ' Trip finds the weeks started within those day intervals, and, in
turn, find the days that start those selected weeks. Let us consider this by the illustration
of the indices:

week

day

1 2 3

↑
“04.07.2005” (Monday)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

9The addition by 1 results from the fact that a single day has a duration of 1 by itself.

1.4 Thesis’ Outline 29

Before applying the conversion constraint Trip day ' Trip, the calendar constraints
for the different representation of the trip are: Trip day :: 2..17 + 14..14, day and Trip ::
−∞..∞+2..2, week. Applying Trip day ' Trip, enforces Trip day and Trip to represent
the same amount of time (however in different types). So, we have to ask the following
questions:

• Does (day) 2 start a week? – No.

• What is the next week that starts after (day) 2? – (week) 1; thus, the minimal
starting time for Trip is (week) 1.

• Which day starts this week? – (day) 4; thus, the minimal starting time of Trip day
is (day) 4.

• Does (day) 17 start a week? – No.

• Which week contains this day? – (week) 2; thus, the maximal starting time of Trip
is (week) 2.

• Which day starts this week? – (day) 11; thus, the maximal starting time of Trip day
(day) 11.

That is, after applying the conversion constraint Trip day ' Trip, the calendar con-
straints for the different representations of the trip are: Trip day :: 4..11 + 14..14, day and
Trip :: 1..2 + 2..2, week.

This example clarifies that multi-calendar constraint reasoning based on conversion
constraints has the following advantages: first, the semantics of the different calendric
types are maintained during constraint solving. Second, the domains of the variables can
be much more reduced (e.g. the representation of Trip day before and after applying the
conversion constraint Trip day ' Trip); thus, multi-calendar constraint solving becomes
more efficient. Finally, each pair of calendric types, even those which are not aligned such
as months and weeks can be compared; thus, each multi-calendar constraint problem that
is expressed in CaTTS-CL and that refers to calendric types defined in CaTTS-DL can be
solved.

1.4.6 An Approach to Predicate Subtyping with Calendric Types

Chapter 6 introduces the language processor of CaTTS-DL. This language processor in-
cludes “meta type checking” approaches for CaTTS-DL and type checking approaches for
the constraint language CaTTS-CL. The “meta type checker” verifies well-formedness of
CaTTS-DL calendar specifications. Furthermore, it generates conversion functions from
the calendric types’ predicates specified in a calendar specification. A conversion function
“casts” values from one calendric type (e.g. working weeks) into values of another calendric
type (e.g. days). Those conversion functions are accessed by CaTTS-CL’s multi-calendar

30 1. Introduction

constraint reasoner. Type checking CaTTS-CL programs after CaTTS-DL calendar specifi-
cations is based on an approach to subtyping with calendric types. CaTTS-CL’s subtyping
semantics is defined by implicit coercion [BTCGS91]. Coercion obtains a way to evaluate
CaTTS-CL programs using CaTTS’ multi-calendar constraint reasoner such that arbitrary
calendric types defined in a CaTTS-DL calendar specification can be referred to.

Chapter 6 consists of seven (full) sections. Section 6.1 recalls basics in subtyping for
those readers not familiar to. Advantages of CaTTS’ programming language approach
to calendric data modeling and reasoning using types and type checking approaches are
gathered in Section 6.2. The concept of predicate subtypes as it is used in CaTTS is in-
troduced in Section 6.3. Section 6.4 contains definitions for conversion function generation
from CaTTS’ type predicates for those language constructs which are considered in the
current prototype implementation. A type system to check well-formedness of CaTTS-DL
calendar specifications is formalized in Section 6.5. Finally, Section 6.7 defines typing and
subtyping relations for CaTTS-CL programs typed after CaTTS-DL calendar specifications
as well as a coercion semantics for subtyping in CaTTS-CL. Coherence for this coercion
is recovered. This chapter comes with additional sections on the equivalence of calendric
type definitions (Section 6.6) and typing of CaTTS-DL calendar specifications themselves
(Section 6.9). Appendix C is associated with Chapter 6. This appendix summarizes the
Haskell-based [Tho99] implementation of CaTTS’ type checkers testing well-formedness of
CaTTS-DL calendar specifications, type checking CaTTS-CL programs, and transform-
ing CaTTS-CL programs into programs in the language that can be handled by CaTTS’
constraint reasoner.

Both the working of CaTTS’ meta type checker that verifies well-formedness of a
CaTTS-DL calendar specification and the translation of CaTTS-CL programs in terms
of implicit coercion are illustrated by example in the following.

Well-formedness of CaTTS-DL Calendar Specifications. For programming lan-
guages, types and type checking ensure the absence of certain undesirable behaviors during
program execution. Execution is not a primary concern of the calendar definition language
CaTTS-DL. In fact, CaTTS-DL merely provides with means to define for example what
a day, a week, or a working week is. But type checking can still serve to reject calendar
specifications that are erroneous or undesirable in some way. Let us consider the follow-
ing CaTTS-DL calendar specification which defines types for days, weeks, Saturdays, and
Sundays common in the Gregorian calendar.

. . .
type day ;
type week = aggregate 7 day @ day (1) ;
type saturday = select day (i) where relative i in week == 6;
type sunday = select day (i) where relative i in week == 7;

. . .

This CaTTS-DL calendar specification is well-formed, because (1) the syntactic forms
of CaTTS-DL are correctly used, (2) each type definition refers to some other type already

1.4 Thesis’ Outline 31

defined, and (3) each of the types defines a reasonable set of values. Adding the following
type declaration to the calendar given above, the calendar remains well-formed.

. . .
type weekend day = saturday | sunday ;

. . .

The type weekend day defines those days which are Saturdays or Sundays, denoted
saturday | sunday. CaTTS-DL’s type checker verifies that this type definition is well-
formed, because the type weekend day is constructed using the CaTTS-DL or type con-
structor denoted | which is applied to two calendric types saturday and sunday, already
defined and, in turn, well-formed. Furthermore, conjuncting Saturdays and Sundays to
a larger set of weekend days is reasonable, because Saturdays and Sundays are (specific)
days.

The following type definition would however be rejected by CaTTS-DL’s type checker.

. . .
type sunday week = week | sunday ;

. . .

Defining a set that conjuncts the set of Sundays with the set of weeks is not at all
reasonable: Sundays are specific days and weeks are intervals of seven days. In particular,
sunday is an inclusion of days while week is an aggregation of days. Thus, CaTTS-DL’s
type checker rejects this type declaration, because the type constructor | can only be
applied to calendric types which are inclusions of a common calendric type. For example,
sunday and saturday are both inclusions of day while such a type cannot be inferred for
types sunday and week.

Coercion Semantics for Subtyping in CaTTS-CL. Let us reconsider the CaTTS-CL
program addressed above.

. . .
Trip i s 2 week && Trip during "07.2005"
. . .

In this example, the program has been evaluated using CaTTS’ constraint reasoner.
We have merely mentioned that this program can be transformed such that it becomes
reasonable for the solver. In what follows, it is illustrated how this transformation is
performed in terms of coercion. At first, CaTTS-CL’s type checker infers that "07.2005"
is of type month, written "07.2005":month, and that the variable Trip has type week∗

(read as “interval of weeks”), written Trip:week∗, as defined with the constraint Trip is

2 week. Since Trip during "07.2005" is a constraint, it has type boolean, written Trip

during "07.2005":B which is also inferred by the type checker. To evaluate this CaTTS-
CL constraint using CaTTS’ constraint solver, Trip and "07.2005" must have the same
type. Not to charge the programmer with this requirement, subtyping is used; it says: if
there is a common (super)type within which Trip and "07.2005" can be both represented,
the constraint Trip during "07.2005" is well-typed. This is achieved using subtyping.

32 1. Introduction

With subtyping CaTTS-CL’s type checker infers that Trip and "07.2005" can be both
represented in the type of intervals of days (day∗). The subtype checker than verifies the
subtyping statements, i.e. whether week∗ is a subtype of day∗, written week∗≤day∗, and
whether month is a subtype of day∗, written month≤day∗. Having verified those typing
and subtyping statements, we know that Trip during "07.2005" is typeable and that
week∗ and month are both subtypes of day∗. However, to evalute this program using
CaTTS’ constraint reasoner, we need to know why this is the case, because the constraint
reasoner is based on the conversion constraints for values expressed in terms of week∗ and
day∗ as well as for values expressed in terms of month and day∗. That is, the reasoner
must know how to represent the values in the different types. This is achieved using a
coercion semantics for subtyping in CaTTS-CL: the constraint Trip during "07.2005"

is not only type checked and the subtyping statements week∗≤day∗ and month≤day∗ are
not only verified. The constraint is also transformed to a constraint X during Y where the
variables X and Y both have type day∗. Furthermore, the subtyping statements week∗≤day∗
and month≤day∗ are transformed into conversion constraints (of the constraint solver) that
relate X (of type day∗) to Trip (of type week∗), written X ' Trip, and Y (of type day∗)
to "07.2005" (of type month), written Y ' "07.2005". The transformed program

X during Y, X ' Trip, Y ' "07.2005"

can be now evaluated using CaTTS’ constraint solver as demonstrated in the previous
section.

1.4.7 Conclusion of the Thesis

Chapter 7 concludes the thesis. This chapter consists of two sections. In Section 7.1
the results of the work reported about in this thesis are summarized. In particular, this
section shows that the basic principles assumed in the introduction to this thesis are ver-
ified by documentary evidence of the calendar type language CaTTS: CaTTS provides
the user with user-friendly language constructs to model cultural and professional calen-
dars including various irregularities and regulations. CaTTS makes calendric data and
calendars machine readable and processable by virtue of calendric types and type check-
ing approaches. Types and type checking enables to incorporate CaTTS’ calendar type
definintion language, CaTTS-DL (in principle) into any programming or modeling lan-
guage. This has been shown by incorporating CaTTS-DL into the constraint language
CaTTS-CL using type checking approaches dedicated to constraint reasoning. CaTTS-
CL comes along with a multi-calendar temporal reasoner that allows for expressing and
solving appointment scheduling problems that refer to arbitrary calendric types defined
in CaTTS-DL. CaTTS’ reasoner implements an extension of the constraint system finite
domains by means of typed finite domains, i.e. each domain is associated with a calendric
type. Furthermore, the constraint solver implements a novel constraint, called conversion
constraint, that allows for relating domains expressed in terms of different calendric types.
This reasoner is proved to be efficient; in fact linear in the number of constraints and in the

1.4 Thesis’ Outline 33

number of variables according to the size of the domains of the variables. Furthermore, the
constraint solver is proved to be complete. Section 7.2 discusses perserpectives for future
work that comes in two parts: at first, possible extensions and improvements of CaTTS,
including CaTTS-DL and CaTTS-CL and the corresponding language processors are ad-
dressed. Second, an application of CaTTS’ basic principles to other “concrete theories”,
in particular, to data modeling and reasoning with topologies using dedicated language
constructs and reasoning methods is discussed.

34 1. Introduction

Figure 1.1: Sundial with East, Central, and West European Time. Fresco Cloister Osiach,
Carinth

1.4 Thesis’ Outline 35

Figure 1.2: A Japanese calendar illustrations [be96], p.105.

36 1. Introduction

Figure 1.3: A Japanese calendar illustrations [be96], p.102.

1.4 Thesis’ Outline 37

CaTTS-DL

specification of calendar C

?

meta type checking

well-formed version of C �
�

�
�

�
��

type checking
@

@
@

@
@

@R

in principle:
any program with calendric data typed after C

CaTTS-CL

in particular:
multi-calendar appointment scheduling problem P

?

multi-calendar reasoning

answer and solutions to P

Figure 1.4: The system CaTTS.

38 1. Introduction

Chapter 2

Background: Temporal Knowledge
Representation and Reasoning for
Information Systems

“quid est ergo tempus?
si nemo ex me quaerat, scio;

si quaerenti explicare velim, nescio.”
(Aurelius Augustinus, 354 – 430, Confessiones, XI 14)

Temporal knowledge representation and reasoning is a major research field in Artificial
Intelligence, in Database Systems, and in the Web and the Semantic Web. The ability
to model and process time and calendar data is essential for many applications like ap-
pointment scheduling, Web services, temporal and active database systems, and so-called
adaptive Web applications as well as mobile computing applications.

An exhaustive overview of all the approaches, results, and applications on temporal
knowledge representation and reasoning would probably require an entire book by itself.
This chapter has a less ambitious goal: first, it provides the reader with a general back-
ground in temporal data modeling and reasoning approaches, serving as an orientation
guide. Second, it provides with links to further specific reading and application to tempo-
ral knowledge representation and reasoning. Third, it provides with a clear classification
of important and well known approaches to time and calendars in Artificial Intelligence,
Database Systems, and the Web and Semantic Web. Finally, it addresses some applications
of time and calendar formalisms, in particular, to Web services, to versioning and change
management of Web resources, and to adaptation on the Web. This chapter includes ad-
ditional sections on calendric calculations and internationalization and localization efforts
in the Web and the Semantic Web.

40
2. Background: Temporal Knowledge Representation and Reasoning for

Information Systems

This chapter provides with a comprehensive comparison of CaTTS to the reviewed
approaches to temporal knowledge representation and reasoning. CaTTS is a programming
language approach to temporal and calendric data modeling specifying calendars as types
with constraint-based reasoning approaches on calendric data referring to such calendric
types.

2.1 Approaches to Temporal Knowledge Representation and Reasoning 41

2.1 Approaches to Temporal Knowledge Representa-

tion and Reasoning

Knowledge is the symbolic representation of aspects of some discourse universe such as
time and calendars. An example for temporal knowledge represented in natural language is
“John plays tennis every Saturday between 10 a.m. and 11 a.m.”. Modeling formalisms and
computation mechanisms to manipulate the knowledge of some discourse universe, to create
solutions, and to formulate new problems have been developed. Such formalisms have been
proposed as tools to define knowledge in terms of symbols that may be manipulated by
computer programs.

In principle, symbolic representation of temporal knowledge allows for describing changes
of the reality modeled in some system, for example a database. A computer program that
allows for manipulating such knowledge usually provides with inference strategies to reason
about time-dependent objects such as schedules, plans, actions, and changes. These and
further considerations have given birth to a large field of research that can be summarized
as the development of time models. Essentially two different approaches to represent time,
implicit time models and explicit time models, exist. The computation mechanisms to ma-
nipulate temporal knowledge that is defined in such time models are often called temporal
reasoning methods.

Usually, knowledge about time (and calendars) is obtained by extending a language
with means to represent temporal data and to define a temporal reasoning system, i.e.
a technique for reasoning about assertions formulated in the extended language. Such
assertions usually depend on some intended application (e.g. scheduling, planning, changes
and actions), determining which reasoning technique(s) might be applied. A temporal
reasoner is usually part of a more general reasoning system.

Following approaches to temporal data modeling and reasoning are surveyed in this
section.

1. Implicit time models which focus on time-dependent entities indicating that a change
in time has occurred.

2. Explicit time models which consider time itself independent of anything that could
happen in it.

3. Approaches to temporal reasoning in explicit time models based on constraint solving
techniques.

4. Explicit time models with approaches to model different calendar units in terms of
so-called time granularities as well as approaches to temporal reasoning with time
granularities.

42
2. Background: Temporal Knowledge Representation and Reasoning for

Information Systems

2.1.1 Implicit Time Models

In principle, implicit time models consider time dependent entities like events and actions
indicating that a change has occurred in the modeled world, for example a database of
facts. With such systems, time is not made explicit. Instead, time is implicitly specified
in terms of the changes that have occurred in the past or that might occur in the future.

Implicit time models are particularly used to model events and actions that result in
changes in the context of some application. Implicit time models are used to specify the
effects of actions and to acknowledge and to react on changes in such systems.

Almost all implicit time formalisms provide a simplistic notion of time, however useful
for simple problem-solving tasks: a state describes the world at an instantaneous time,
i.e. at a time point. Actions are modeled as functions over states. Well-known implicit
time models are the Situation Calculus [MH87] and the Event Calculus [KS86, Kow92]. In
the field of program verification1, Dynamic Logic [Pra76, Har79, Har84, Moo85] is a well-
known implicit time formalism which is also applied to problems in temporal knowledge
representation and reasoning. Implicit time models are widespreadly applied to active
database systems, and recently, to model and process changes and actions in active Web
and Semantic Web systems (cf. Section 2.3.5).

2.1.1.1 Situation Calculus

The Situation Calculus has been introduced by McCarthy and Hayes in 1969 [MH87]. This
calculus has long been a foundation for temporal knowledge representation and reasoning
in Artificial Intelligence. The Situation Calculus has been modified and/or extended with
several different means [SG88, Web90, LS95, Ram00, McC02, MPP02]. In addition to
research in knowledge representation and reasoning on actions and changes [GLR91, Lif91],
the Situation Calculus is particularly used for practical work in planning [FN71, FHN72,
L9́6, GLL97], active database systems [Rei92, Rei95, BAF98], and in agent programming
and robotics [BCF+98, LLR99, BRST00, MSZ01, ABH+02].

In the Situation Calculus, temporal knowledge is represented as a sequence of so-called
situations, each being a description of the world at an instantaneous time, i.e. at a time
point. The Situation Calculus models a changing world in terms of a totally ordered and
discrete sequence of situations, i.e. the Situation Calculus models a set of points isomorphic
to the integers. The changing world is formalized by a many-sorted predicate calculus with
some reserved predicate and function symbols. The sorts of this calculus are situations,
actions, and objects. Fluents are specific relations and functions defined over the sort of
situations. Fluents are used to describe the world in each situation. Action performances,
action preconditions, and histories are non-decomposable functions from one situation to
another.

The Situation Calculus is feasible only in domains where merely one event can occur

1Note that research on program verification which inherently differs from research on temporal knowl-
edge representation and reasoning for information systems is not considered in this survey.

2.1 Approaches to Temporal Knowledge Representation and Reasoning 43

at a time. Furthermore, no concept of an event taking time is supported. The Situation
Calculus does not provide a notion of persistence: an event that is true at one situation
needs to be explicitly verified at any succeeding situation.

Various axiomatizations of the Situation Calculus in some first-order language [Bak91,
PR93, Rei93, LPR98, Rei01] as well as some formalizations of the Situation Calculus in
terms of logic programs [KS94, BDD95] are proposed.

2.1.1.2 Event Calculus

The Event Calculus has been introduced by Kowalski and Sergot in 1986 [KS86, Kow92].
Various modifications and/or extensions of this calculus exist [Sha90, CMP93, CCM95,
Sha95, SK95]. The most notable variation is the so-called Simplified Event Calculus
[Kow92] that is aware of some of the problems appearing with the original calculus. Those
problems are discussed in [Mis91, DMB92]. This simplified calculus has been applied to
problems in planning [DMB92, YS02] and in active database systems [Kow92, FWP97].

The Event Calculus is a formalism to reason about events. It is based on a many-
sorted first-order predicate calculus or the Horn clause subset of such a calculus. In most
formalizations of the Event Calculus, a linear, point-based time line is assumed. Events
initiate and terminate time intervals over which fluents hold. Fluents are properties that
can have different values which are manipulated by the occurrences of events at different
instantaneous times, i.e. at different time points.

Various axiomatizations of the Event Calculus and of the Simplified Event Calculus are
proposed [Esh88, Sha89, Sha90, Mis91, Kow92, SK95, MS99].

2.1.1.3 Dynamic Logic

Dynamic Logic is based on classical logics, in particular, propositional and predicate logics
and modal logics which are combined with an algebra of regular events. Dynamic Logic
enables verification of imperative programs and program specifications. It has been pro-
posed by Pratt [Pra76] (with an emphasis on the modal nature of program interactions),
Harel [Har79, Har84], and Moore [Moo85].

The basic idea of Dynamic Logic is to model programs by modal operations. Such
programs change the values of variables causing changes of the truth values of some formula.
Among the numerous formalisms for (formal) program reasoning, Dynamic Logic enjoys the
singular advantage being strongly related to classical logics. Therefore, Dynamic Logics
gains from the advantages of classical logics compared to (often more complex) logics
frequently applied to reason about programs.

Although Dynamic Logic has been initially introduced as a formalism for program
verification, it has been turned out to be a formalism for reasoning about some actions in
(natural or artifical) systems. In Artificial Intelligence, Dynamic Logic has been adapted

44
2. Background: Temporal Knowledge Representation and Reasoning for

Information Systems

for tasks such as the description of actions in some common-sense world and for specifying
particular reasoning systems [SWM95, SGdMM96, Mey99].

2.1.2 Explicit Time Models

Explicit time models consider time itself, independently of any event or action that might
occur. The flow of time is explicitly represented, defining a time model that specifies one
(or more) time lines with time primitives, in particular, points and/or intervals. Some time
models specify more than one time line which are either related in parallel or vertically.
The former leads to hierarchical time models, in particular used to define calendar units
like “day”, “week”, or “working year”, so-called time granularities. The latter leads to
multi-dimensional time models, in particular used to define temporal histories, for example
of transactions of objects and/or validities of some properties of those objects stored in a
system like a database.

Explicit time models are either point-based [Bru72, KG77, McD82, Sho87] or interval-
based [Ham72, Dow79, NS80, All83, HA89]. In the former, reasoning is performed on
points. In the latter, reasoning is performed on intervals. Some proposals have been made
to combine point-based and interval-based time models [Vil82, Boc90, Gal90, VS96]. Such
combined time models are rather artifical, raising several problems (cf. Section 3). Further-
more, time models for generalized intervals (i.e. intervals which are not necessarily convex)
have been proposed [LMF86, Lad87, DC91, NS92, Lig98].2

Explicit time models have been widely applied in temporal reasoning [Vil82, All83,
vBC90, VKvB90, KL91, DMP91, Kou92, Mei96], temporal database systems [ÖS95, Sno95,
Gan99], planning and scheduling [RS90, All91], and (time) ontology design for Web and
Semantic Web applications and Web services [DAR02, PH04].

2.1.2.1 Point-based Models

Points are modeled as duration-less portions of time, i.e. their beginning and ending times
are identical. Point-based time models have been influenced by physics [New36] where it is
common to model time as an unbounded, ordered continuum of (partially) ordered points
isomorphic to the real numbers. In Artifical Intelligence, research in this tradition can be
found in [Bru72, KG77, McD82, Sho87].

A point-based time model is defined on a structure (P,<P), where P denotes a set of
points and <p an ordering of P .

A point-based model defines at least a partial (i.e. irreflexive, antisymmetric, and tran-
sitive) order on points. Let p, q, r, s, t ∈ P points.

2Note that combined time models and time models based on generalized intervals are not surveyed
in detail for the following reasons: CaTTS is based on a purely interval-based time model (cf. Chapter
3). CaTTS does not provide any means to deal with generalized intervals. Investigating means to deal
with generalized intervals in CaTTS would probably require an entire thesis by itself. Further reading on
generalized intervals can be found in [Spr02].

2.1 Approaches to Temporal Knowledge Representation and Reasoning 45

An ordering over (P,<P) can be defined as follows:

(irreflexivity) ¬(p <P p)
(antisymmetry) ((p <P q) ∧ (q <P p)) ⇒ (p = q)
(transitivity) ((p <P q) ∧ (q <P r)) ⇒ (p <P r)

Additionally, it may have (some of) the following properties:

• left-linearity or linearity:

(left-linearity) ((q <P p) ∧ (r <P p)) ⇒ ((q <P r) ∨ (q = r) ∨ (r <P q))
(linearity) (p <P q) ∨ (p = q) ∨ (q <P p)

• boundness or unboundness:

(right-boundness) ∀p∃q.(q <P p)
(left-boundness) ∀p∃q.(p <P q)

• discreteness or density:

(discreteness) ∀p, q.(p <P q) ⇒ ∃r.((p <P r) ∧ ¬∃s(p <P s <P r))
∀p, q.(p <P q) ⇒ ∃r.((r <P q) ∧ ¬∃s(r <P s <P q))

(density) ∀p, q.(p <P q) ⇒ ∃r.(p <P r <P q)

Dense and continuous point-based models provide a means to model continuous changes
such that any extend of time can always be partitioned into subintervals. This property is
necessary for example for modeling planning problems where tasks are frequently decom-
posed into subtasks. In dense and continuous models it is not possible to refer to some
next (resp. previous) time. This is however possible in discrete models. Any finite strict
partial order (i.e. if p and q are points, then p < q or q < p) is automatically discrete.

Note: Including a concept of (metric) durations into a time model, i.e. specific amounts
of time with a given length but without begin and end points into a point-based time model,
a distinction between continuous and discrete time becomes important: if the time line is
continuous, a point has no duration, but in discrete time, it always has some duration.

The properties introduced above are sufficient to achieve a certain level of completeness.
Two theories are known to be syntactically complete [vB91]: the unbounded dense linear
theory and the unbounded discrete linear theory.

Point-based models provide with a simplified concept useful in simple problem solving
tasks such as maintaining different states of a system like a database. Points describe the
modeled world, for example in a database of facts at an instantaneous time where events
are represented by dates. Actions are modeled in such systems as functions mapping
between points. For example, if dates are represented by integers, then the temporal order

46
2. Background: Temporal Knowledge Representation and Reasoning for

Information Systems

between two dates could be simply computed using numerical applications. Point-based
time models are predominately applied in temporal databases [ÖS95, Sno95, Gan99]. In
such systems, facts are indexed by dates, each represented by a time point. The temporal
ordering between dates can be computed by some simple operations.

2.1.2.2 Interval-Based Models

In several applications, events simply cannot be assigned to a precise date, for example,
to model the fact that two events cannot happen at the same time. Furthermore, in many
applications events appear that must be decomposed into subparts, for example in plan-
ning tasks where an event might consist of several sub-events. Recall that points cannot
be decomposed. Although some events appear to be instantaneous, for example, one might
argue that “step inside the house” is instantaneous, it also appears that such events might
be either decomposed or varied in their “precision” (e.g. from minute to second). Thus,
point-based time models are neither useful nor expressive enough for many applications.

Starting from a point-based time model, intervals might be implemented into this ap-
proach. In a time model of totally ordered points, an interval can be represented by an
ordered pair of points with the first point less than the second. To ensure that such intervals
can meet (e.g. “the light was on” and the “the light is off”), i.e. only having one endpoint
in common, the endpoints of the intervals must be less, i.e. for an interval i with endpoints
i− and i+, i.e. i− < i+. This can be achieved when the intervals are closed in their starting
points and open on their ending points (or vice versa). However, this requirement points
out that a time model based on points does not correspond with our intuitive notion of
time. Furthermore, there are reasons why the modeling of intervals in terms of endpoints
is still inconvenient: the modeling of temporal knowledge is significantly complicated, be-
cause both, points and intervals have to be considered. Furthermore, having for example
an event e holding sometime during an interval i which in turn is during an interval i′, then
e holds during i′, as well. Thus, relations between intervals and events may be “carried
forward” such that reasoning can be kept local. It is not clear to maintain those properties
when considering intervals modeled by endpoints in a point-based time model.

To overcome the problems of point-based time models, purely intervals-based time
models have been introduced [Ham72, Dow79, NS80, All83, HA89] where intervals are
the time model’s only primitives. An interval-based time modeled well-known and widely
applied in Artificial Intelligence, Knowledge Representation, and Information Systems is
Allen’s interval calculus [All83] exclusively based on intervals and the 13 basic relations
between pairs of them. The thirteen basic interval relations are illustrated in Figure 2.1.

Allen [All83] initially takes a structure (I,R) where I denotes a set of intervals and
and R the set of the 13 relations between pairs of elements of I. R is informally specified
by the following axiom schemas:

2.1 Approaches to Temporal Knowledge Representation and Reasoning 47

i equals j:
i

j

i before j (j after i):
i

j

i meets j (j met by i):
i

j

i starts j (j started by i):
i

j

i finishes j (j finished by i):
i

j

i during j (j contains i):
i

j

i overlaps j (j overlapped by i):
i

j

Figure 2.1: The 13 basic relations between two intervals i and j.

48
2. Background: Temporal Knowledge Representation and Reasoning for

Information Systems

1. For all i ∈ I, there exists an interval j ∈ I, i 6= j with R(i, j) for R ∈ R.

2. The relationships in R are mutually exclusive:
∀i, j ∈ I, R ∈ R.∀R′ ∈ R.(R(i, j) ⇒ ¬R′(i, j)

3. The relationships have a transitivity behavior. For example, if i before j and
j meets k, then i before k. The transitivities between all pairs of the 13 basic
relations are given in a transitivity table in [All83].

The relationships between intervals have also been studied by other researchers: van
Benthem [vB91] has introduced two basic relations, precedes and contained-in which are
consistent with the structure of intervals over the rational numbers. Ladkin [Lad87] has
defined each of the 13 basic interval relations in terms of the relation precedes. Allen and
Hayes [HA89] have re-defined the interval calculus in terms of the relation meet. Charac-
teristics, axiomatizations, comparisons, and expressiveness of those three interval calculi
have been thoroughly investigated by Ladkin in [Lad87].

2.1.2.3 Combined and Generalized Models

In addition to purely point-based and purely interval-based time models, models integrating
points and intervals [Vil82, Boc90, Gal90, VS96] as well as models to represent intervals
which are not necessarily convex, referred to as generalized intervals [LMF86, Lad87, DC91,
NS92, Lig98], have been proposed for different purposes. However, note that most of these
approaches are computationally rather complex, raising several (artificial) problems.

Points and Intervals Combined. Differentiating between events which are instanta-
neous, i.e. duration-less events and events which have a temporal extend, i.e. continuous
events has been motivated by accomplishing events like “to close the door” and contin-
uous changes like a “100-meter sprint”. Although this argumentation is not convincing
(cf. Chapter 3), various time models integrating points and intervals have been proposed
[Vil82, Boc90, Gal90, VS96].

The pioneer work in this tradition by Vilain [Vil82] has combined Allen’s interval cal-
culus [All83] with points and (primitive) relations between points and between points and
intervals, yielding in 26 basic relations holding between points and/or intervals.

Vila and Schwalb [VS96], whose work has been inspired by the works of Bochman
[Boc90] and Galton [Gal90], have defined points from intervals such that an interval is
defined by an ordered pair of ending points. A many-sorted first-order axiomatization is
proposed for this calculus [VS96] with sorts for points and intervals and three primitive
relations “<” (less) over intervals and “begin” and “end” over intervals and points. Dense
and discrete time is differentiated by adding the denseness axiom over points.

Generalized Intervals. Motivated by planning problems [LMF86, NS92, TC95, KM99,
Ter00] that require an abstraction from the number of times an event repeats, or from
the number of times an event occurs in a temporal relation, for example scheduling one’s

2.1 Approaches to Temporal Knowledge Representation and Reasoning 49

office hours, time models for not necessarily convex intervals, so-called generalized intervals
have been proposed [LMF86, Lad87, DC91, NS92, AK94, Lig98]. Generalized intervals are
intended to represent

• periodic events such as “John has breakfast every morning”,

• interrupted events such as “John interrupts his breakfast to answer the phone”, and

• events that consist of several related sub-events such as activities related to a planned
event.

Since generalized time intervals are nothing more than mere collections of (possibly in-
finite many) intervals, most of the proposed models [LMF86, Lad87, DC91, NS92, AK94,
Lig98] are based on Allen’s interval algebra [All83]. Those approach basically define addi-
tional (to the basic interval relations which might be conjuncted) specific relations between
such interval collections. The proposals differ in the description of the generalized inter-
vals as well as in the basic relations defined between pairs of them: Ladkin [Lad87] has
proposed a general taxonomy of the set of all relations between any pair of generalized
time intervals in terms of specific relationships between such intervals. The suggested rela-
tions are derived from applications for task descriptions and management and process and
action algebras. Ligozat [Lig98] has further extended this work. Khatib’s [AK94] frame-
work bases on matrices that represent binary relations between sequences of time intervals.
Those matrices contain the time interval relations between any pair of convex components
of the considered generalized time intervals.

2.1.3 Temporal Constraints

In the following, formalisms for Temporal Constraint Satisfaction Problems (TCSPs) based
upon relating points and/or intervals are surveyed. For all representations in this section,
time is assumed being linear, dense, and unbounded which is common with most proposals.
Two principle temporal constraint formalisms have been introduced in the literature:

1. qualitative temporal constraints, in particular in Allen’s interval calculus [All83,
vBC90, VKvB90, KL91, Mei96], and

2. metric temporal constraints, mainly based on disjunctive linear relations between
time points [KL91, DMP91, Kou92, Mei96] to manipulate dates and durations.

Combined (qualitative and/or quantitative) formalisms, based on points and/or inter-
vals, and binary relations between them are proposed in [Vil82, Mei96].

Recall that a Constraint Satisfaction Problem (CSP) is defined by a finite sequence
of variables X := X1, . . . , Xn where n > 0, with respective domains D := D1, . . . , Dn,
i.e. variable Xi ranges of the domain Di together with a finite set C of constraints, each
defined on a subsequence of X . A constraint C on X is a subset of D1 × . . . × Dn. If C

50
2. Background: Temporal Knowledge Representation and Reasoning for

Information Systems

equals D1 × . . . × Dn, then C is solved. A CSP is solved, if all its constraints are solved
and no domain of it is empty, and failed, if it either contains the false constraint, usually
denoted ⊥, or some of its domains are empty. In a TCSP, variables represent points and/or
intervals and constraints represent temporal relations between them.

A solution to a CSP is a sequence of legal values (d1, . . . , dn) ∈ D1× . . .×Dn if for every
constraint C ∈ C on the variables Xi1 , . . . , Xim , (di1 , . . . , dim) ∈ C, i.e. if for all variables
of the CSP all constraints are satisfied. If a CSP has a solution, it is consistent, otherwise
inconsistent.

Most approaches to TSCPs have focused on satisfiability problems, i.e. consistency, the
problem of deciding whether a set of temporal formula (modeled by a set of constraints)
has a model or not. In the context of Allen’s calculus, the problem of entailed relations is
also considered.

Consider the following temporal reasoning problem.

Example 2.1 John, Mary, and Tom work in the same bank, but in different affiliations.
They plan a phone conference. They have decided to phone in the morning before the bank’s
affiliations open at 9:00. John leaves home between 7:50 and 8:00. It takes him 15 to 20
minutes to reach the office. When he arrives, he can wait 30 minutes, at most 40 minutes.
Mary can phone John 5 to 10 minutes after she arrives at the office or between 8:40 and
8:45. Tom arrives before the bank’s affiliation opens.

Reasoning about such information is the principal task of temporal reasoning systems.
One wants to answer queries like “is the contained temporal information consistent” (i.e.
if there is no conflict between the temporal information modeled), or “what is the earli-
est/latest possible time for the phone conference to take place”.

Properly analyze of such problems leeds to an abstract analyze of events (i.e. activities
that take time) like being present at work, walking to the office, receiving a phone call,
etc. Such events can be identified with (different) time primitives: points, e.g. 8:20, the
time when Tom is soonest at the office, or the time, Mary leaves home, and (generalized)
intervals, [7:50,8:00] the time when John leaves home, the time it takes John between
leaving his home and arriving at the office, or the time Mary is able to phone John.

Such events may be either related by metric constraints or by qualitative constraints.
Metric (time) constraints are dates and durations between two events, placing absolute
bounds on events, for example 9:00, the time the bank opens according to Example 2.1.
Qualitative (time) constraints are relative positions of events, for example John’s presence
at the office overlaps with Mary’s presence at the office or Tom is at the office before the
affiliation opens according to Example 2.1.

Note: Metric and qualitative constraints serve to model inherently different temporal
reasoning problems. To solve metric and qualitative temporal reasoning problems, dif-
ferent constraint programming techniques are applied. In particular, metric constraints
can be modeled by disjunctive linear relations, solved using backtracking (and bounds/arc

2.1 Approaches to Temporal Knowledge Representation and Reasoning 51

consistency) techniques [Apt03] while qualitative constraints are modeled by the (transi-
tivity property of) temporal relations themselves, solved using path consistency techniques
[Apt03].

2.1.3.1 Metric Temporal Constraints

In the simplest case, temporal information is available in terms of dates, durations, or
other precise numeric form. In this case, metric temporal constraints can be formulated,
referring to absolute distances between points. Temporal information can be therefore
represented numerically such that it may be easily computed, merely subtracting numeric
values. Such temporal information can be modeled in so-called acyclic directed graphs.
In such a graph, (temporal) events are represented by nodes, and the distances between
these events are represented by the graph’s edges, obtaining a partial order on temporal
events. A known event occurrence may then be represented by a constraint. Such an event
constraint is represented by a pair of its earliest and latest appearance in time. Those times
are computed by adding up distances between the known event and some other (known)
event. If the graph contains different possible paths between (unknown) events, its earliest
(resp. latest) appearance are modeled by minimal (resp. maximal) path distances.

In the common (more complex) case, the precise numeric information is not available
and/or information about distances is not precise, but expressed as a range of possible dis-
tances. These distances may be either precise distances or completely qualitative distances
like ranges.

Dechter, Meiri, and Pearl [DMP91] have applied the technique of CSPs to model metric
temporal information, aiming at a TCSP where each variable represents a point in time.
Two types of constraints are introduced:

• unary constraints to represent point to date information, i.e. a point t is represented
by a finite domain {i1, ..., in} with n ≥ 1 and t ∈ i1 ∨ ... ∨ t ∈ in, and

• binary constraints to represent point to point information, i.e. the distance between
two points t1, t2 is represented by a finite domain {i1, ..., in} with n ≥ 1 and t2− t1 ∈
i1 ∨ ... ∨ t2 − t1 ∈ in.

Turning attention back to the introducing Example 2.1, the temporal event that John
leaves home between 7:50 and 8:00 may be formulated by an unary constraint t:

t ∈ {(50, 60)}

where 7:00 is chosen as relative origin in time and minute is the chosen time unit.
The temporal event ‘Mary has time to phone John’ may be specified by a binary

temporal constraint t2 − t1:

52
2. Background: Temporal Knowledge Representation and Reasoning for

Information Systems

t2 − t1 ∈ {(65, 70), (100, 105)}

where 7:00 is chosen as relative origin in time expressed in the time unit minute, as well.

Let t and s be two metric constraints with finite domains i and j. Then two operations
over the set of metric temporal constraints are defined as follows:

• Intersection: The intersection of two metric temporal constraints t and s, denoted
t
⊕

s, is the set-theoretic intersection of their domains:

t
⊕

s = {x|x ∈ i ∧ x ∈ j}

• Composition: The composition of two metric temporal constraints t and s, denoted
t
⊗

s, is defined as distance addition on their domains:

t
⊗

s = {z|∃x ∈ i,∃y ∈ j.x+ y = z}

Most of the algorithms proposed to manipulate metric temporal constraints are based
on Disjunctive Linear Relations (DLRs), and in particular, most tractable metric temporal
formalisms [KL91, DMP91, Kou92] are subsumed by the Horn DLR constraint framework
[Apt03].

Known tractable formalisms for metric temporal constraints to express statements such
as “an event e happens 5 time units before event e” which are neither expressible in
Allen’s (qualitative) interval calculus [All83] nor subsumed by the Horn DLR framework
are discussed in [Mei96, DJ97].

2.1.3.2 Qualitative Temporal Constraints

Given two temporal primitives, i.e. points and/or intervals p and q, a qualitative temporal
constraint (p, q) : R says that p and q are supposed to stand in one of the relations R ∈ R,
where R is a finite set of basic temporal relations that may hold between the two temporal
primitives p and q. The set R of basic temporal relations between points and/or intervals
is given in the following:

• basic point to point relations [McD82, Vil82] possibly holding between two points,
illustrated in Table 2.1,

• basic interval to interval relations [All83] possibly holding between two intervals,
illustrated in Table 2.2, and

• basic point to interval and interval to point relations [Vil82, Mei96] possibly holding
between a point and an interval, illustrated in Table 2.3.

2.1 Approaches to Temporal Knowledge Representation and Reasoning 53

Relation Inverse Relation on Endpoints
t before s s after t t < s
t equals s t = s

Table 2.1: The basic binary relations between two points t and s.

Relation Inverse Relation on Endpoints
i equals j i− = j−, i+ = j+

i before j j after i i+ < j−

i during j j contains i j− < i−, i+ < j+

i starts j j started by i i− = j−, i+ < j+

i finishes j j finished by i j− < i−, i+ = j+

i meets j j met by i i+ = j−

i overlaps j j overlapped by i i− < j− < i+ < j+

Table 2.2: The basic binary relations between two intervals i = [i−, i+] and j = [j−, j+].

Relation Inverse Relation on Endpoints
t before i i after t t < i−

t after i i before t t > i−

t during i i contains t i− < t < i+

t starts i i started by t t = i−

t finishes i i finished by t t = i+

Table 2.3: The basic binary relations between a point t and an intervals i = [i−, i+].

54
2. Background: Temporal Knowledge Representation and Reasoning for

Information Systems

Let us turn attention back to the introducing Example 2.1. Let further p and q be two
temporal primitives. An example of a qualitative temporal constraint between p and q,
describing the temporal relation of the fact when Mary and John arrive at the office is:

(p, q) : {before,meets, overlaps}

This qualitative temporal constraint means p before q or p meets q or p overlaps q,
i.e. a qualitative temporal constraint describes a disjunction of the possible basic temporal
relations between a pair of temporal primitives.

In the point algebra, 23 subsets of possible combinations of basic temporal relations
(i.e. qualitative temporal constraints) exist, in the interval algebra, 213, and in the point-
interval and interval-point algebra 25, each, qualitative temporal constraints exist. Two
binary operations are defined over the set of these qualitative temporal constraints:

• Intersection: the intersection of two qualitative temporal constraints R1 and R2,
denoted R1

⊕
R2, is the set-theoretic intersection R1

⋂
R2.

• Composition: the composition of two qualitative temporal constraints R1 and R2,
denoted R1

⊗
R2, is defined by a transitivity table [All83], i.e. the 3-elemental tran-

sitivity: from (p, q) : R′ and (q, r) : R′′, R′ ⊗R′′ is the least restrictive relation
between p and r.

Since the constraint propagation algorithm for computing the closure of a set of propo-
sitions (i.e. to check for consistency) in the interval algebra is sound but not complete,
time intervals are represented by their ending points in many qualitative temporal rea-
soning applications, in particular when points and intervals are “first-class citizens” of the
respective time model, benefiting from the computational advantages of the point algebra
[Mei96].

Note that only a part of Allen’s interval algebra [All83], that of convex intervals, may be
expressed in the point algebra, using the three point relations before, equals, and after. A
complete classification of the computational complexity of Allen’s interval calculus and its
tractable subclasses (in particular those subclasses of the interval algebra which are subsets
of the ORD-Horn algebra) is presented in [KJJ03]. Note further that integrating point-to-
point, interval-to-point, and point-to-interval relations into tractable subclasses of Allen’s
interval calculus does not change its computational complexity [Mei96] in a qualitative
temporal reasoning framework.

2.1.3.3 Metric and Qualitative Constraints Combined

The two kinds of temporal constraints, qualitative and metric, have been combined into
a single representation scheme accepting both kinds of temporal information. Mainly two
different approaches exist:

2.1 Approaches to Temporal Knowledge Representation and Reasoning 55

1. The qualitative and metric temporal constraints are kept and processed separately.
Subsequently the individual parts are composed to a global solution. This approach
has been followed by Kautz and Ladkin [KL91].

2. The qualitative and metric temporal constraints are integrated into a single gen-
eral temporal network where temporal variables represent points (resp. intervals)
along with a set of unary and binary constraints which may be qualitative or metric.
Algorithms solving such temporal networks involve different constraint satisfaction
techniques [Apt03], in particular path consistency and backtracking. This approach
has been followed by Meiri [Mei96].

Different algorithms for TCSPs in which the relationships among temporal constraints
can be modeled by directed graphs have been developed. Algorithms that operate over such
so-called constraint networks are for example question answering and consistency checking.
In those algorithms, constraint propagation is performed on a network of intervals and/or
points. The nodes represent intervals and/or points, and the arcs are labeled with sets of
binary relations (cf. Table 2.1, Table 2.2 and Table 2.3) on intervals and/or points. The
labels represent constraints on the relations among the nodes. A good survey on constraint
propagation algorithms for TCSPs is given in [FGV05].

2.1.4 Time Granularity Systems

The importance of data modeling and reasoning with data referring to different calendar
units like “day”, “week”, or “teaching term” such as the widespread Gregorian times
and dates has been widely recognized in the research areas of Artificial Intelligence and
Database Systems. For example, a person being in Munch from Tuesday to Thursday
and in London from Friday to Sunday will meet another person in London on Friday
at 8 p.m. One might question how to merge the apparently contradictory information:
the informations concerning the first person have to be precised in terms of hours. If
the reasoner has some additional information about the temporal extend of the trip from
Munich to London, one might reason about the time the first person have to leave Munich
at the latest to be in London in time.

In the research areas of Artificial Intelligence and Database Systems one of the most
promising approaches handling such problems has been the introduction of the concept of
time granularity [Mon96, Je98, BJW00, Euz01]. Time granularities may be used to specify
either the occurrence time of different classes of events (modeled for example by points or
intervals) with time granularities or the temporal relations such as Allen’s interval relations
between such events. For example, the temporal event of a flight departure may be given
in the time granularity “minute”, and the temporal event of a student’s examination in
that of “day”, or the temporal relation “during” may be given in the time granularity
of “day”, describing the stay of some person in London. Thus, time granularities can be
used to specify both metric and qualitative temporal reasoning frameworks. To apply time
granularities in such frameworks, not only the granularities themselves, but also meaningful

56
2. Background: Temporal Knowledge Representation and Reasoning for

Information Systems

relations between them are needed: if in some application events are expressed in different
time granularities, the system must “compare” them in a meaningful manner to reason on
relations formulated over such “differently grained” events.

With a common understanding [Mon96, Je98, BJW00, Euz01], time granularities are
discretizations of a totally ordered (continuous) time line isomorphic to the real numbers.
A time granularity is a (partial) partition3 of such a time line into a (infinite) countable
set of aggregates of points (of such a time line), so-called granules, isomorphic to the
integers. Examples of granules are “02.01.2005” of time granularity day and “the first
week in the year 2005” of time granularity week. The granules of each time granularity are
non-overlapping, and they preserve the order of the underlying time line. Granules may
be considered either as points or as intervals.

Numerous different formalizations of the concept of time granularity, various relation-
ships between them, and several temporal operations on them have been proposed. The
formalizations follow set-theoretic, logic-based, and automata-based approaches. Well-
known approaches in each of those traditions are surveyed in the following.

Applications of systems based on time granularities might be planning, scheduling, med-
ical monitoring, temporal databases including temporal data models and temporal query
languages, data mining, and time management in data warehouses and work-flow systems.
Newer applications for time granularities could be found in the Web and Semantic Web, in
Web services, so-called adaptive Web systems, and mobile computing applications. How-
ever, beyond the temporal database query language TSQL2 [Sno95], practical applications,
in particular, implementations of time granularity systems hardly exist.

2.1.4.1 Set-theoretic Time Granularity Systems

A lot of work on set-theoretic approaches to time granularities has been done in Artificial
Intelligence [MMCR92, Fre92, CEMP93, Euz93, Her94, GPP95, BCDE00] and in Database
Systems [And83, CR87, WJL91, WJS95, Wan95, Sno95, BJW00, NWJ02].

In Artificial Intelligence, proposals for metric time granularities based on a hierarchy of
strictly constrained time granularities with upward and downward conversions on points
and intervals have been made [MMCR92, CEMP93]. In [Euz93], a less-constrained metric
formalization has been proposed. Qualitative time granularities have been proposed in
[Fre92, Her94, GPP95]. In this approach, a separate set of relationships is defined at any
granularity level. A qualitative, interval-based framework that uses the same representa-
tion formalism at each granularity level is proposed in [Euz93]. In [Euz93], conversions
between time granularities are defined on the relations rather than on objects between
those relations might hold. Note that these qualitative proposals can only reason in homo-
geneous networks where all relations are given in the same time granularity. The network
can be then converted (into another time granularity) only as a whole. A qualitative for-
malization for time granularities where (point-based) objects are converted is proposed in
[BCDE00].

3in the mathematical sense of a partition of a set

2.1 Approaches to Temporal Knowledge Representation and Reasoning 57

In Database Systems, a large amount of work on time granularities exists. This ap-
proach to time granularities is inherently point-based and metric: conversions which intro-
duce the (unsolved) problem of indeterminacy when converting to a finer time granularity
is performed on point-based objects, i.e. granules are considered as points with time granu-
larity. This approach suffers from some not only theoretically but also practically relevant
problems such as the equivalence problem of time granularities. Furthermore, it only par-
tially works out the problem of time granularity conversions. This problem of the metric,
point-based approach is discussed in [FM01]. A comprehensive presentation of this metric,
point-based approach to time granularities is given in [BJW00]. In what follows, a brief
summary of the historically development of this approach is given.

Initially in [And83], the need to support different time granularities in temporal databa-
ses has been addressed. Based on Anderson’s work [And83], Clifford and Rao [CR87] have
proposed a theoretical model of time granularities underlying a total order which introduces
most of the features of the set-theoretic approach. They introduce granularity conversions
along a finer than relation on this total order (e.g. hours are finer than days), defining a
time granularity in terms of its next finer time granularity. Wiederhold, Jajodia, and Litwin
[WJL91] have advanced this model by adding some specific semantics. These semantics
allow for temporal comparisons regarding to the complete ordering of time granularities.
Their model allows for handling mixed time granularities (i.e. temporal aspects stated in
more than one time granularity). In sequencing papers, Wang and others [WJS95, Wan95]
have generalized this totally ordered set of time granularities to a partially ordered one
allowing for finer and coarser relations between the time granularities comprised in a par-
ticular finite set of partially ordered time granularities. In addition to this finer than
relationship, several further relationships between time granularities have been thoroughly
investigated. A collection of such relations is given in [BJW00]. Furthermore, a calen-
dar algebra [NWJ02] has been proposed to symbolically represent time granularities as
expressions form other (previously defined time granularities) using algebraic operators.

Time Granularities. According to the temporal structure proposed for time granular-
ities in [CR87] which has been generalized in [BJW00], a time granularity G is a function
from an index set into the power set over a linear (dense or discrete) time line. This
function is order preserving and conservating. The elements of a time granularity do not
overlap. The origin of a time granularity is the smallest element according to the order
relation and it is index by 0. The image of a time granularity is the union of its granules,
and the extend of a time granularity is the smallest interval of the underlying time line
that contains the time granularity’s image.

For time granularities G and H, Clifford and Rao [CR87] have introduced a finer than
relation as follows: a time granularity G is finer than a time granularity H iff ∀i ∈ Z∃j ∈ Z
such that G(i) is a subset of H(j). In [BJW00], several additional relations between time
granularities have been suggested:

58
2. Background: Temporal Knowledge Representation and Reasoning for

Information Systems

G�H iff ∀j∃S H(j) =
⋃

i∈S G(i) groups into
G v H iff ∀i∃j such that G(i) = H(i) sub-granularity of
G�H and G � H partitions
G ˆ⊆ H iff the image of G is contained in the image of H covered by
G�H and their exists a periodic repetition of the groups periodically into
grouping pattern of granules of G into granules of H
G↔ H iff ∃k∀i such that G(i) = H(i+ k) shift-equivalent

Apart from the relation for shift-equivalence, all those relations define time granularities
in a way such that G is a “more precise” time granularity than H.

Calendars are defined in this framework as sets of time granularities that contain a time
granularity G such that each of the time granularities groups into the time granularity G
[BJW00].

In [BJW00], specific sets of time granularities are defined within which the granules of
one time granularity can be converted into granules of another time granularity. Note that
in this framework, conversions are not always defined: in particular, a conversion from a
granule into a granule of a coarser time granularity is only defined, if the corresponding time
granularities are related according to the “finer than” relationship [CR87]. A conversion
from a granule into granules of a finer time granularity is only defined, if the corresponding
time granularities are related according to the “group into” relationship [BJW00]. Thus,
a universally valid solution to the problem of time granularity conversion is not provided.
The problem of time granularity conversion in the metric, point-based approach to time
granularities is discussed in [FM01]. In particular, in [BJW00], conversions are only sup-
ported for aligned time granularities, i.e. time granularities which are related according to
the “finer than” relationship. Non-aligned time granularity systems have been considered
for example in [Sno95].

In [NWJ02], a formal algebra to always define coarser time granularities from finer
ones is proposed. The suggested algebraic operators directly refer to and relay on the
afore mentioned relations between time granularities. The afore mentioned problem of
time granularity conversion also appears within this calendar algebra.

Constraint Solving and Query Answering. An extension of the relational data model
of relational database systems to handle time granularities is proposed in [WJS95, Wan95].
In principle, the proposed data model is an extension of the relational data model where
each tuple is timestamped under a time granularity. The goal of this work is to take into
account possible time granularity mismatch in the context of federated databases and data
warehouses. In [BJW00] this work has been further developed for answering queries in
relational databases with time granularities.

In [BJW00], a metric, point-based Temporal Constraint Satisfaction Problem (TCSP)
under time granularities is defined in the Horn DLR constraint framework, extended with
time granularity. In this TCSP (that can be modeled by a directed graph), the nodes
(i.e. the variables) model time points and the arcs are labeled by integer intervals and time
granularities. An arc denotes the metric (temporal) distance between two points. A pair of

2.1 Approaches to Temporal Knowledge Representation and Reasoning 59

variables only satisfies a constraint (i.e. the arc between those variables), if (up and down)
conversions between each of the points and the arc’s time granularity exist. In particular,
this approach only applies for aligned (according to the “finer than” relationship) systems
of time granularities which is not always the case, as the “week/month” example illustrates
it. In [BJW00], the authors provide an arc-consistent algorithm for consistency checking
when the time granularities are periodic with respect to some finer time granularity. An
incomplete algorithm is provided by propagating constraints expressed under the same
time granularity and then converting the new values into the other time granularities.

Qualitative Time Granularity. Time granularity operators for qualitative time repre-
sentation have been first proposed in [Euz93, Euz95]. Those time granularity operators are
defined in the context of relational algebras, applicable to both point and interval algebras.
In principle, a qualitative algebra [All83, VKvB90] is initially augmented with a neighbor-
hood structure [Fre92]. Subsequently, an interval algebra with qualitative granularity in
terms of conversions of the relations according to some coarser and/or finer granularity is
constructed [Hir96]. In [Euz93, Euz95], Euzenat provides with a framework where situa-
tions are described by a set of possible relationships holding between temporal primitives
(i.e. points or intervals). In particular, each layer of the qualitative and relational language
represents a situation in the unalternated language (of the chosen) relational algebra. The
qualitative time granularities are defined by a set of operators. The operators are used to
convert the representation of a (whole) situation into a finer or coarser representation of
the same situation (as a whole). The operators apply to the relationships that might hold
between the temporal primitives (in some situation). The operators transform each of the
relationships that hold in a situation into a coarser (using some upward conversion) or a
finer (using some downward conversion) time granularity.

One of the important aspects of the work by Euzenat [Euz01] is the definition of a set
of (generic) constraints which should be satisfied by any system of granularity conversion
operators:

formal definition name

r ∈→ r self-conversion
∀r,∀r′, r′′,∃r1, . . . rn : neighborhood compatibility
r1 = r′, rn = r′′ and ∀i ∈ {1, .., n− 1}N(ri, ri+1)
→ r−1 = (→ r)−1 conversion reciprocity distributivity
r ∈

⋂
r′∈↑r ↓ r and r ∈

⋂
r′∈↓r ↑ r inverse compatibility

↑↑ r =↑ r and ↓↓ r =↓ r idempotence
→ r =⇐→⇒ r and → r =⇒→⇐ r representation independence

where ↑ denotes upward conversion, ↓ denotes downward conversion, → denotes a neutral
operator (if a time granularity change between two layers is addressed, but it is not nec-
essary to know which one is the coarser), ⇐ and ⇒ denotes an interval relational space,

60
2. Background: Temporal Knowledge Representation and Reasoning for

Information Systems

x and y denote time primitives, and r denotes a relation between time primitives. Self-
conversion means that, independed of the conversion, a relationship must belong to its
own conversion. Neighborhood compatibility contains the conversion of a relation to form
a conceptual neighborhood. Conversion reciprocity distributivity denotes symmetry. It
states that the conversion of the relation between a first object and a second object must
be the reciprocal of the conversion of the relation between the second one and the first
one. Inverse compatibility states that the conversion operators are consistent with each
other. Finally, representation independence states that the conversion must not dependent
on the representation of the temporal primitive, i.e. whether a relation between points or
intervals is converted.

From these constraints, the possible conversion operators for a particular relational
algebra for points and/or intervals such as the algebras proposed in [Vil82, All83, VKvB90]
can be generated. Examples of such relational algebras with conversion operators can be
found in [Euz01].

2.1.4.2 Logic-based Time Granularity Systems

Hobbs [Hob85] has introduced a very general logic-based concept of granularity. He has
considered predicates extracted from a global theory (given in some logic formalism) which
are relevant to some present situation described at a specific granularity. Extracting rele-
vant predicates leads to an indistinguishability relation: variables are indistinguishable to
the situation at hand if no relevant predicates distinguish between them. In this concept of
granularity, a granularity is characterized after some theory has been defined. This work
has been enhanced by Greer and McCalla [GM89].

Different frameworks to deal with time granularities in Linear Temporal Logics (LTL)
has been suggested: for example, in [FM94], Fiadeiro and Maibaum represent each gran-
ularity in the same (classical) temporal logic. Conversions are defined between these dif-
ferent representations. Note that representations with mixed time granularities are not
possible in this framework. Combi, Franceschet and Peron [CFP04] have defined time
granularities as models of LTL formulas using appropriate propositional symbols to mark
endpoints of granules. Demri [Dem04] has generalized the framework of Combi et al. and
the automata-based approach (cf. Section 2.1.4.3) of Montanari and Dal Lago [LM01] to
a first-order language. This language allows for defining time granularities by means of
periodic constraints specified in a first-order logic.

In [CEMP93, Mon96], Montanari and others have proposed a metric temporal logic
with granularities. The authors of this work show how to extend syntax and semantics
of temporal logics to cope with metric temporal properties possibly expressed at differ-
ent time granularity. This work results in a metric and layered temporal logic [Mon96].
This layered logic is based on the idea of a logic of positions, i.e. a topological or metric
logic [RG68, RU71]. Such a metric logic is then generalized to a many-layered metric
temporal logic, embedding the notion of time granularity. The main features of the logic
proposed in [Mon96] are three different operators: a contextual operator (to associate dif-
ferent granularities with different formulas), a displacement operator (to move within a

2.1 Approaches to Temporal Knowledge Representation and Reasoning 61

given granularity), and a projection operator (to move across granularities).

Alternative temporal logics with time granularities are proposed in [Mon96, MP96,
MPP99]. The logics introduced in those works define various theories of time granularity
as extensions of monadic second-order theories. They provide with suitable restrictions to
such languages for time granularities to get decidable temporal logics with time granulari-
ties.

Yet another alternative has been proposed in [OG98]. The authors of this work have
integrated set-theoretic operators for defining time granularities in terms of predicates into
a modal first-order language with modality operators like “next” with time granularity.

2.1.4.3 Automata-based Time Granularity Systems

Wijsen [Wij00] has proposed a string-based approach to represent time granularities, in
particular, to represent infinite periodic time granularities like days or weeks. Such time
granularities are modeled as (infinite) words over an alphabet that consists of three symbols:
� denoting fillers, � denoting gaps, and o denoting separators. A granule is constructed
form fillers and gaps and delimited by a separator. A finite set of granules is used to
describe the repeating pattern of a time granularity. Periodic time granularities can be
identified with ultimately periodic strings, and they can be finitely represented by specify-
ing a (empty) finite prefix and a finite repeating pattern in terms of granules modeled by
combination of the three symbols �, �,and o.

This string-based approach has been further extended by Montanari and Dal Lago
[LM01] to an automata-based approach: a specific subclass of Büchi automata has been
introduced that recognizes languages only consisting of periodic words (described by the
afore mentioned symbols of Wijsen’s string-based approach).

Note: Common to all the afore mentioned approaches to time granularities is that they
disregard irregularities specific to calendar systems like leap seconds and moon and sun
cycles, i.e. no means to handle characteristics of “real-life” calendars within a framework
for time granularities are provided. Comparing problems of time granularities of different
calendars, for example when integrating the Gregorian and the Islamic calendars where
Islamic days begin at sunset4 while Gregorian days begin at midnight are not sufficiently
solved, as well. Furthermore, none of the afore mentioned approaches define a way for
specifying arbitrary date formats for the granules of any time granularity.

Furthermore, except for the temporal database query language TSQL2 [Sno95] (which is
based on the metric, point-based time granularity model) none of the previously surveyed
approaches to time granularities have been applied and implemented in an information
systems.

4Note that sunset cannot be defined in terms of a fixed hour; instead, sunset depends on the day in the
year.

62
2. Background: Temporal Knowledge Representation and Reasoning for

Information Systems

2.2 Calendric Computations

The afore surveyed time formalisms (possibly embedding a concept of time granularity)
provide with symbolic approaches to time and calendars based on logics, relational alge-
bras, or set-theory. A rather practical approach to real-time calendar systems is made
in [DR01]. In their work, Dershowitz and Reingold provide with a large collection and
implementation of 15 calendars in use today (or which have been used in the past); among
others, the Gregorian, the Islamic, the Hebrew, the old and modern Hindu, and the Mayan
calendars along with both all their particularities like leap years and moon cycles and
relevant holidays related.

As an intermediate device for converting from one calendar to another, Reingold and
Dershowitz have chosen a day numbering: Julian day numbers are used to specify days
in any calendar with midnight at the onset of Monday, January 1 in year 1 (Gregorian)
as fixed date indexed by 1, counting forward day by day from there. Note that this date
corresponds to Monday, January 3 in year 1 in the Julian calendar. For each calendar C,
a function fixed form C(C − date) is implemented that converts the date C − date of the
calendar C to its corresponding Julian day number. The function C form fixed(date) does
the inverse computation. These two functions are the backbones for conversions between
dates specified in any of the calendars implemented.

Calendar dates are represented by lists of components (in descending order significance)
having in most cases the form “year month day” where each component is represented by
an integer. Each component can be selected using the corresponding function.

An implementation of the calendars along with the conversions between them presented
in the book of Dershowitz and Reingold [DR01] are provided as a Java-Applet which is avail-
able at http://emr.cs.iit.edu/home/reingold/calendar-book/Calendrica.html.

Further, in deep, algorithms for leap year calculations, including generalizations can be
found in [HR04] and algorithms for calculating Hebrew dates in [DR04], completing the
work made in [DR01].

This short section on calendric computations is provided within this chapter to remind
the reader that particularities and irregularities of real-life calendar systems as they appear
with Hebrew months or leap second insertions is an important aspects that should be
considered in approaches to data modeling and reasoning with calendars.

2.3 Web and Semantic Web Formalisms and Applica-

tions

Section 2.1 has reviewed specific methods and formalisms on temporal knowledge represen-
tation and reasoning proposed in the research areas of Artificial Intelligence and Database
Systems.

Today, several Web and Semantic Web languages exist, developed to enrich data and
information in Web pages and Web sites, making such data machine-readable and machine-

http://emr.cs.iit.edu/home/reingold/calendar-book/Calendrica.html

2.3 Web and Semantic Web Formalisms and Applications 63

processable. XML [W3C04a], a Web formalism for data and knowledge modeling is the
basic principle all further languages developed for Web and Semantic Web applications
and Web services directed by the World Wide Web Consortium (W3C) (cf. http://www.
w3.org) depend on such as XML Schema [W3C01], RDF [W3C04c], and OWL [W3C04b].

This section reviews (generic) data modeling languages for the Web and the Semantic
Web. In particular, this section investigates to what extend data modeling and reasoning
with time and calendars is supported by existing Web and Semantic Web languages. Ap-
plications of calendar and time data modeling and reasoning using languages for calendar
Web services, calendar computation systems, and temporal and active Web systems are
briefly surveyed. Additionally, a section on internationalization and localization efforts on
the Web and the Semantic Web is given.

2.3.1 Data Type Definition Languages

Essentially two different data type definition languages exist for XML, XML-DTD [W3C04a]
and XML Schema [W3C01]: XML and XML-DTD provide a surface syntax for structured
documents, but imposes no semantic constraints on the meaning of these documents. XML
Schema is a language for restricting the structure of XML documents. XML Schema ex-
tends XML with datatypes.

2.3.1.1 XML DTD

Generic markup languages such as SGML (Standard Generalize Markup Language), con-
ceived for modeling texts and XML (eXtensible Markup Language) [W3C04a], conceived
for modeling data and knowledge on the (Semantic) Web are used to specify structures
of documents and data. Such markup languages allow for data modeling independent
from its usage and from possible presentation devices. Thus, it is possible to meaningfully
model the structure of data needed for some specific applications. Layout particularities
for the structural elements specified, for example in XML, can be defined using so-called
XML-based style-sheet languages like CSS or XSL-FO.

Such generic markup languages are based on so-called semi-structured data models
[ABS00]. In particular, they are much richer than the relational data model [Cod70],
because they allow optional elements.

A simple framework for typing XML is provided with XML-DTD [W3C04a]. In princi-
ple, XML-DTD is a semantically weak formalisms for declaring structural types for XML
documents. No support for data types of element contents exists. In particular, XML-
DTD does not support any means for typing time and calendar data to appear in XML
documents.

2.3.1.2 XML Schema

XML Schema [W3C01] is a much richer data type definition language for XML than XML-
DTD. Beyond a rich set of structural types, it provides a means to define structure, content

http://www.w3.org
http://www.w3.org

64
2. Background: Temporal Knowledge Representation and Reasoning for

Information Systems

and semantics of XML documents. And what is relevant for modeling time and calendars,
XML Schema provides predefined data types for specifying element contents, i.e. the data
represented in some Web page or Web site. In the following, XML Schema’s possibilities
for representing times and dates are summarized.

XML Schema provides a considerably large set of predefined time and date types dedi-
cated to the Gregorian calendar. The supported date format is ISO-8601 standard [ISO00].
Time zones and leap years are taken into account. XML Schema provide a means to rep-
resent qualitative and metric points and intervals which may be either dates and times like
“2005-02-10” or periodic like “day”. The data type dateTime is intended to specify points,
and the data type duration is intended to specify intervals. Any point or interval is repre-
sented by specifying Gregorian dateTime coordinates. For example, a point represented by
a Gregorian date is specified by its year, month, and day coordinates. XML Schema allows
for adding some duration to a Gregorian time or date. Several data types are supported
to represent sub-parts of a time or date format, for example the year coordinate from a
Gregorian date. Furthermore, data types are provided to specify annually, monthly, etc.
periodic points. Note that the concept of time granularity (cf. Section 2.1.4) is inherent to
any of the calendric data types supported in XML Schema, i.e. XML Schema provide no
means for abstracting dates and times form their related time granularity.

XML Schema does neither support time and calendar data types that go beyond the
Gregorian calendar nor date formats other than those in ISO-8601 standard. Furthermore,
no means for specifying user-defined temporal data types are supported.

Note: In XML Schema user-defined data type definitions are restricted such that the
user can specify a restricted pattern for a pre-defined XML Schema primitive data type in
terms of a regular expressions as illustrated in Example 2.2.

Example 2.2 In XML Schema, a datatype could be defined that corresponds to the SQL
datatype Year-Month interval that requires a four digit year field and a two digit month
field but required all other fields to be unspecified. This datatype could be defined as follows,
restricting XML Schema’s primitive data type duration by specifying a regular expression.

<simpleType name=’SQL-Year-Month-Interval’>

<restriction base=’duration’>

<pattern value=’P\p{Nd}{4}Y\p{Nd}{2}M’/>

</restriction>

</simpleType>

2.3.2 Ontology Languages

Data modeling languages such as XML are used to syntactically structure Web documents.
XML Schema is a language for restricting the structure of such XML documents. XML
Schema additionally extends XML with datatypes. But such languages fall short in is-
sues concerning the semantics of documents needed, for example, to process the content of

2.3 Web and Semantic Web Formalisms and Applications 65

information. To overcome such kinds of problems, ontologies designed in (Web-based) on-
tology languages are used to give an explicit and unambiguous description and a common
understanding to a certain domain of knowledge such as time, calendars, and location. On-
tologies seam a promising approach to support communication between humans as well as
machine-based processing of data. Therefore, ontology languages became more and more
popular in the last decades in research areas such as knowledge representation and reason-
ing, natural language processing and information retrieval and extraction, and, nowadays,
in particular, the Semantic Web.

In [Gru93], ontologies are defined as “explicit specifications of a conceptualization”
where conceptualization means a (abstract) model of the world. Since relevant concepts
in such a model are defined including their related properties and instances, Description
Logics [BCM03] are the favorite formal languages to design ontology languages. The basic
entities of Description Logics are unary predicates, called concepts, and binary predicates,
called roles. A specific Description Logic is mainly characterized by the provided construc-
tors to build compound concepts and roles from atomic ones. Usually, a Description Logic
additionally has a so-called T-Box. A T-Box is a finite set of (named) concepts, roles,
and constructors. Description Logic systems mainly provide two different reasoning tasks:
subsumption and satisfiability ; the former, to determine subconcept-superconcept relation-
ships, thus the taxonomy of some T-Box considered, and the latter, to test whether a given
concept can ever be instantiated or not. Depending on the expressiveness of the underlying
Description Logic, the complexity of these algorithms vary. Most of these algorithms are
tableau-based reasoning algorithms.

In the Semantic Web, ontologies are intended to defined terminological consensus for
various domains such as Web services. For this purpose, ontology languages such as RDF
[W3C04c], and OWL [W3C04b] have been developed. Those languages are essentially
based on Description Logic systems with corresponding reasoning methods. OWL facili-
tates greater machine-based processing of Web content than that supported by XML and
XML Schema as well as that supported by RDF. OWL is based on the Description Logic
SHIQ [HST99]. SHIQ is an extension of the basic Description Logic ALC with means
such as transitive and inverse roles, number restrictions, and role inclusions. Existing rea-
soners for SHIQ are FaCT [Hor98] and RACER [HM01]. Both are Exptime-complete
[Tob01].

2.3.2.1 RDF: Resource Description Framework

RDF [W3C04c] is an XML-based data model with a simple semantics of directed binary
graphs to identify resources and relations between them.

RDF can be used to model information about Web resources and other entities that
should be identified such as meta data about Web resources, informations about Web
documents or about specifications, items available from some online shopping facility, and
some user’s preferences. RDF is particularly intend for situations in which such information
needs to be processed and/or exchanged by computer programs or applications.

RDF follows up ideas for conceptual graphs, logic-based knowledge representation,

66
2. Background: Temporal Knowledge Representation and Reasoning for

Information Systems

frames, and relational databases. In particular, RDF bases on the idea of identifying
entities like Web documents or resources using Web identifiers, so-called Uniform Resource
Identifiers (URIs). URIs might also refer to entities not directly retrievable on the Web.
Such entities, denoted as subjects, are described by properties, denoted as predicates, which
might have values, denoted as objects. That is, RDF is used to make statements about
entities like Web documents by determining (1) what is described by the statement, i.e. the
subject, (2) what is the property of the entity the statement describes, i.e. the predicate,
and (3) what is the value of this property for the entity described by the statement, i.e.
the object. To make such statements machine-processable, each subject, predicate, and
object is identified by a URI; more precisely by a URI reference, i.e. a URI and a fragment
at the end of the URI. XML is used to represent these statements and to exchange them
between machines.

RDF statements can be represented by a simple graph model: subjects and objects
are represented by nodes and predicates are represented by directed arcs, each from a
subject node to its corresponding object node. Groups of statements are represented by
corresponding groups of nodes and arcs. Note that RDF statements are similar to some
other (simple) formats for recording information, in particular:

• entries in a simple record or catalog listing, describing the resource in a data pro-
cessing system,

• rows in a simple relational database, and

• simple assertions in formal logic.

To give certain additional information to literals such as a price or the age of a person
in an RDF statement, RDF provides with some means to associate a datatype with such a
literal. This is achieved by pairing a string with a URI reference that identifies a particular
datatype, resulting in a single (typed) literal node in the corresponding RDF graph. RDF
does not provide any built-in set of datatypes. It rather defines a means to relate an
externally defined datatype to the corresponding RDF node. Not any kind of datatype is
allowed in this framework: RDF datatype concepts are based on a conceptual framework
from XML Schema datatypes including some additional restrictions. In particular, the
structure of the elements of such data types are limited to character strings that can be
described by regular expressions. Example 2.3 illustrates the use of RDF (using typed
literals) to specify the creation date of a Web page.

Example 2.3 The RDF/XML fragment

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:exterms="http://www.example.org/terms/">

<rdf:Description rdf:about="http://www.example.org/index.html">

2.3 Web and Semantic Web Formalisms and Applications 67

<exterms:creation-date rdf:datatype="&xsd;date">2005-06-26

</exterms:creation-date>

</rdf:Description>

</rdf:RDF>

illustrates how the Web document with URI http: // www. example. org/ index. html

can be annotated with a creation date whose value is “June 26, 2005”. This information
is modeled by the following RDF triple with a typed literal (of XML Schema type date):

ex:index.html exterms:creation-date "2005-06-26"^^xsd:date

where ex:index.html is the RDF subject, exterms:creation-date the RDF predicate,
and "2005-06-26"^^xsd:date the RDF object.

Beyond the rather limited RDF datatype concept, RDF has some further limitations:
RDF only recognizes full URI references, i.e. RDF neither has knowledge about their
structure nor assumes any relationships between them. RDF directly represents only binary
relationships. Explicitly modeling n-ary relationships thus becomes rather complicate in
RDF.

Additionally to RDF, RDF Schema is provided. RDF Schema is a vocabulary for
describing properties and classes of RDF resources. RDF Schema has a semantics for
generalization-hierarchies of such properties and classes. RDF Schema provides the fa-
cilities needed to define the vocabularies (terms) which are intend to be used in RDF
statements. Concepts are provided to indicate that such vocabularies are used to describe
specific classes of resources and that those classes will be described by specific properties.
RDF Schema provides means to indicate which classes and properties are expected to be
used together.

2.3.2.2 OWL: Ontology Web Language

OWL [W3C04b] is more expressive than RDF Schema. OWL is an ontology language to
formally describe the meaning of terminology used in Web documents such that useful
reasoning tasks can be performed on such documents. OWL provides additional language
constructs to those provided with RDF Schema. The language constructs are used to
describe properties and classes, for example relations between classes (e.g. disjointness),
cardinality (e.g. ”exactly one”), equality, richer typing of properties, characteristics of prop-
erties (e.g. symmetry), and enumerated classes. OWL provides with a formal semantics.
OWL facilitates greater machine interpretability of Web content than that supported by
XML, RDF, and RDF Schema.

OWL has three decreasingly-expressive sub-languages: OWL Full, OWL DL, and OWL
Lite. OWL Full is upward compatible with RDF, i.e. every valid OWL Full document is
an RDF document. OWL Full is intractable and undecidable. OWL Full provides with
meta-modeling facilities of RDF Schema. OWL Full can be viewed as an extension of

http://www.example.org/index.html

68
2. Background: Temporal Knowledge Representation and Reasoning for

Information Systems

RDF, while OWL Lite and OWL DL can be viewed as extensions of a restricted view of
RDF. OWL DL is closely related to Description Logics, in particular to the logic SHIQ
[HST99]. It is computationally complete and decidable. OWL Lite’s intended use concerns
situations where only a simple class hierarchy and simple constraints are needed. Due to
its restricted expressiveness, OWL Lite provides with less time consumption reasoning
support than OWL DL5. The development of OWL has been influenced by DAML+Oil,
Description Logics, frame paradigms, and RDF/RDF-Schema.

OWL has three components: classes, individuals (also called instants), and properties
(called roles, relations, or attributes in other formalisms). Classes are used to describe sets
of individuals that belong together and share some properties. Classes can be declared
to be disjoint from each other or by Boolean combination in terms of union, intersection,
or complement. OWL Full and OWL DL additionally allow for describing a class by
enumeration of the individuals that make up the class. An individual is an instance of a
class. Classes may be declared as equivalent to each other and/or in a subclass-superclass
hierarchy. Individuals may be declared as equivalent or not equivalent to each other. Note
that OWL Full allows for declaring complex class descriptions consisting of enumerated
classes, property restrictions, and Boolean combinations. Properties are binary relations
to state relationships between individuals or from individuals to data values that can be,
as it is the case for classes, equivalent to each other and/or in a subproperty-superproperty
hierarchy. Properties may have a domain that limits the individuals to which the property
can be applied and a range that limits the individuals that the property may have as its
value. Properties may be characterized being inverse, transitive, symmetric, functional
(i.e. unique value), and inverse functional to each other. Furthermore, OWL allows for
specifying data type properties in accordance with XML Schema data types. In particular,
OWL uses RDF mechanisms for data values, the OWL built-in datatypes are taken form
the XML Schema datatypes. Example 2.4 illustrates the use of XML Schema data types
in OWL.

In OWL Lite cardinality is restricted to the values 0 and 1.

Example 2.4 OWL distinguishes properties according to whether they relate individuals
to individuals (object properties) or individuals to datatypes (datatype properties). Datatype
properties may range over RDF literals or simple types defined in accordance with XML
Schema datatypes, e.g. the OWL class VintageYear comes with a datatype property rang-
ing over year values:

<owl:Class rdf:ID="VintageYear" />

<owl:DatatypeProperty rdf:ID="yearValue">

<rdfs:domain rdf:resource="#VintageYear" />

<rdfs:range rdf:resource="&xsd;gYear"/>

</owl:DatatypeProperty>

5Recall that reasoners like RACER or FaCT provided for OWL DL are ExpTime-complete.

2.3 Web and Semantic Web Formalisms and Applications 69

At least two reasoners, FaCT [Hor98] and RACER [HM01] (which are both Exptime-
complete [Tob01]), are implemented with OWL. Both support with a subsumption algo-
rithm (determining subclass-superclass relationships), and satisfiability checks.

2.3.2.3 Applications: Time Ontologies

Most existing and emerging time formalisms for Web and Semantic Web applications are
ontology-based. Such time formalisms are based on a generic modeling and reasoning
mechanism: they use a general modeling and reasoning mechanism for temporal and cal-
endric data which is based on description logic systems, i.e. they are modeled using an
ontology language such as OWL.

Various time ontologies, implemented in different ontology languages are available both
from academic (e.g. the Knowledge Interchange Format KIF [GF92], Ontolingua [Kno]) and
industrial sources (e.g. Cycorp (cf. http://www.cyc.com)), varying in expressive power,
formality, and/or coherence. Well-known time ontologies for the Web and the Semantic
Web are the DAML time ontology [DAR02] and time in OWL-S [PH04]. Furthermore, as
time is a necessary notion to deal with in several domains like locations, events, enterprises
and organizations, and natural language text, time has been modeled as a part of various
common-sense ontologies like the Cyc ontology [Cyc97].

Time Ontology in KIF. The time ontology in KIF is developed at the Stanford Knowl-
edge Systems Laboratory (cf. http://www.ksl-svc.stanford.edu). This temporal on-
tology is based on a simple point-based time model. Intervals are modeled by their ending
points. Thus, they differ between open, half-open, and closed intervals. The basic interval
to interval relations are modeled, for example a time interval ?tr1 preceeds a time interval
?tr2 on ending points (which are themselves considered as intervals):

(<= (before ?ti1 ?ti2)

(and (t-interval.limits ?ti1 ?start1 ?end1)

(t-interval.limits ?ti2 ?start2 ?end2)

(t< ?end1 ?start2)))

The time ontology is dedicated to the Gregorian calendar: different “layers” are used
to model the various Gregorian calendar units in terms of KIF classes. For example,
“Calendar-Day-1” through “Calendar-Day-31” is an instance of “Calendar-Month-January”,
or “Wednesday” is an instance of “Regular-Non-Convex-Time-Interval”. Additionally, a
class “Time-Quantity” to represent durations in time is modeled with a relation “Magni-
tude” to convert between different time quantities. However, problems such as converting
the duration of a (Gregorian) month to that of days, yielding in ambiguity is not solved.
Facts about the time quantities of Gregorian calendar units are stored in an additional
library.

http://www.cyc.com
http://www.ksl-svc.stanford.edu

70
2. Background: Temporal Knowledge Representation and Reasoning for

Information Systems

DAML time ontology. The DAML time ontology [DAR02] has been designed for ex-
pressing time-related properties of Web services. The different calendar units of the Gre-
gorian calendar and the different time zones have been axiomatized, i.e. as it is the case
for the previously addressed time ontology in KIF, the DAML time ontology is restricted
to calendar units of the Gregorian calendar. For example weekdays and weekend days are
modeled as follows in the DAML time ontology:

<axiom id = "4.3-12">

weekday(y,x) <-> [Monday(y,x) v Tuesday(y,x) v Wednesday(y,x) v

Thursday(y,x) v Friday(y,x)]

</axiom>

<axiom id = "4.3-13">

weekendday(y,x) <-> [Saturday(y,x) v Sunday(y,x)]

</axiom>

The DAML time ontology is based on a point-based time model, axiomatizing temporal
relations on points and intervals which are modeled by their ending points. Metric axioms
are additionally provided. The axiomatization of this ontology is done actually for the
same point-based time model as that of the KIF time ontology.

Note: The DAML time ontology constitutes a barrier to its use due to its complexity.

Time in OWL-S. OWL-S is an OWL-based Web service ontology to provide Web ser-
vices with constructs for unambiguously describing properties corresponding to time and
calendars as well as capabilities of Web services. Since most real-world Web services in-
volve some notion of time, a subset of the DAML time ontology has been integrated into
OWL-S. OWL-S allows for integrating XML Schema data types.

Time in OWL-S [PH04] is designed as a sub-ontology of the DAML time ontology,
axiomatizing basic temporal concepts and relations, in particular, points, intervals (which
are modeled by their ending points), durations, events, dates and times. As it is the case
for the DAML time ontology, time in OWL-S is dedicated to Gregorian calendar units and
time zones. It is essentially a subset of the complete DAML time ontology, in particular
to overcome the computational complexity of this time ontology.

Socio-Cultural Time Ontology. Within the research unit the work present in this
thesis has been developed, a socio-cultural time ontology [Oez04] has been designed. This
ontology provides with an approach to extend existing time ontologies like time in OWL-S
[PH04] and the DAML time ontology [DAR02] dedicated merely to the Gregorian calendar
with ontological concepts dedicated to cultural aspects of time like the different notions of
weekend days in Germany, Turkey, and Israel. This ontology provides with several classes
of time periods, for example according to nation (e.g. US, Turkey) or to business (e.g.
education). A class such as “time periods of education and business shorter than one day”

2.3 Web and Semantic Web Formalisms and Applications 71

has for example individuals such as “meeting hour”, “exhibition dates”, or “office hours”
which might have properties such as “periodic”.

This socio-cultural time ontology has been modeled in OWL.

2.3.3 Internationalization

Recently, the World Wide Web Consortium W3C (cf. http://www.w3.org) has started the
so-called “Internationalization Activity” (cf. http://www.w3.org/International). This
activity is intended to ensure that Web and Semantic Web technologies like formats, lan-
guages, and protocols, and, in particular, those technologies developed by the W3C are
usable world-wide in all languages and in all writing systems. The W3C Internationaliza-
tion Activity aims at:

1. means for using Web technologies world-wide according to languages, scripts, regions,
and various aspects of cultures,

2. making internationalization aspects of Web technologies better understood, and widely
and consistently used, and

3. providing with a set of elements and attributes for data type definition languages like
XML Schema to support internationalization and localization of Web documents,
Web and Semantic Web applications, and Web services.

These goals require work on different (technical) aspects such as character sets and
character encoding, language, resource identifiers, document structure and meta data, and
locale specific data according to the layout as well as the content of Web and Semantic
Web documents and applications. Locale specific data also addresses problems concern-
ing the display (and interpretation) of date formats according to its cultural context. For
example, the date “12/02/2005” is interpreted in France as 12th February 2005 while it
is interpreted as 2nd December 2005 in the US. Yet, no uniform solution to such kinds of
problems is provided. However, the internationalization activity recommends to use the
HTTP Accept-Language header to determine the locale (which contains date and time
information) of the user.

Note: Locale specific data does not contain information on temporal and calendric data
that goes beyond date format specifications. Problems that have varying common-sense
understanding such as “weekend days” which refer to Saturdays and Sundays in (western)
European countries while they refer to Fridays and Saturdays in Israel. Such cultural con-
texts of temporal and calendric data go far beyond date and time specifications. However,
such data frequently appear in Web documents and Web and Semantic Web applications,
thus, such temporal and calendric contexts are worth to be considered, aiming at both,
internationalization and localization in the (Semantic) Web.

http://www.w3.org
http://www.w3.org/International

72
2. Background: Temporal Knowledge Representation and Reasoning for

Information Systems

A practical impact of internationalization and localization efforts addresses the way
internationalization options are exposed in Web services regarding their definitions, de-
scriptions, messages, and discovery mechanisms [W3C04d].

2.3.4 Web Services for Calendric Data

This short section addresses applicability of ontology markup for Web services involving,
in particular, calendric and temporal data.

In general, a Web service is a (agent-based) software systems to support system interop-
erability across the Web. A Web service has a machine-processable interface and interacts
with other systems using specific messages. XML-based formalisms like WSDL [W3C05]
for modeling and describing such interfaces and SOAP [W3C03] for exchanging structured
and typed information, i.e. messages between peers have been developed. Agents usually
read and process data annotated by some ontology described in a language like RDF or
OWL.

In what follows, the calendar agent RCal [PSS02, SSP02, Sin03] and the calendar Web
server WebCal [Ohl03] are briefly considered as examples of Web services operating with
calendric and temporal data.

2.3.4.1 Web-based Meeting Scheduler

Research on agent programming and robotics has yield several proposals for automated
meeting schedulers in the 1990ies [KM93, MCF+94, GLS96, SD98]. Meeting and appoint-
ment scheduling is a well-known temporal reasoning problem that is often time consuming,
involving several parties and (time) constraints that must be fulfilled. Such systems are
usually realized as multi-agent systems. In such systems, any user has a personal agent
that can cooperate with other agents. However, most of these systems suffer from a lack
of flexibility and power since most of them are stand-alone systems.

Within the Semantic Web, research on Web services implemented as multi-agent sys-
tems has gained in popularity. An example of a Web-based multi-agent system that sup-
ports such appointment scheduling tasks is the RETSINA (Reusable Environment for
Task-Structured Intelligent Network Agents) Calendar Agent, short RCal, proposed in
[PSS02, SSP02, Sin03]. RCal works symbiotically with Microsoft Outlook 2000 and the
Semantics Web (as long as events and schedules are annotated by some ontology markup).
It provides with a lot of features on appointments and schedules, referring to resources on
Web pages or using URIs.

Let us turn attention to the reasoning capabilities of RCal: RCal is designed as a
distributed meeting scheduler to gather and reason about appointments and schedules.
Schedules are collections of such appointments. In addition to several attributes like lo-
cation, subject, and a list of required attendees, each appointment is associated with an
event. Each such event is represented by a start time, an end time, and a duration. Each
start time and end time, in turn, is represented by a (Gregorian) date and time in a twelve

2.3 Web and Semantic Web Formalisms and Applications 73

hour format with am/pm identifier and an optional time zone identifier. An event’s dura-
tion is represented in terms of minutes. Events may be declared as either singular or daily
(resp. weekly, monthly, yearly) recurring. The two temporal queries that can be answered
over such events are (1) checking whether a particular time is free, and (2) finding a free
time slot of a given duration. Those queries take, of course, account of recurring events.
However, both the representation of temporal and calendric data and the scheduling prob-
lems that can be solved by RCal agents are very limited. Both features are predefined
within the system. No means for user-defined events and/or queries are provided.

RCal can browse and download functionality for schedules marked up using the Hybrid
RDF Calendar Ontology, short iCal (cf. http://ilrt.org/discovery/2001/06/schemas/
icalfull/hybrid.rdf). In order to browse events and schedules annotated using other
ontologies, RCal is connected to the DMA2ICal markup translation agent [SSP02] which
provides a translation service (based on DAML-S) for translating into markup using the
iCal ontology.

RCal works synergistically with Microsoft Outlook 2000. It retrieves appointments
form Outlook. The information from some user’s Outlook is used while negotiating (based
on the Contract Net Protocol [Smi80]) and reasoning about available meeting times with
other RCal agents.

2.3.4.2 Calendar Web Server

Numerous calendar converters are provided on the Web. Most of this work, e.g. Kalender-
Rechner (cf. http://www.nabkal.de), Calendar Converter (cf. http://www.fourmilab.
ch/documents/calendar) as well as calendar conversions between particular calendars like
the Western-Chinese Calendar Converter (cf. http://www.mandarintools.com/calendar.
html) is very similar to the work that has been done by Dershowitz and Reingold [DR01],
performing calendar date conversions using Julian day numbers. Those approaches mainly
vary in the number of implemented calendars, additional features such as computing dis-
tances between dates and shifting dates by a number of days, algorithms computing Easter
and moon cycles, week dates, and conversion to Unix Time. A very good survey on com-
putation tools and information material on calendars and time on the Web is collected
in the “Calendar and Time Database” (cf. http://www.greatdreams.com/calndr2.htm).
This collection includes a lot of links concerning additional information and computation
tools of calendars and time like time zones and holidays. Additionally, information and
computation tools on astrology and astronomy basics are collected. However, none of these
calendar converters provide any means for machine-based reading and processing of the
calendric data, thus, none of these converters making calendar conversion usable for Web
services that need to refer to such data and conversions.

A system that provides (function-based) calendric computations in addition to date
conversion is WebCal [Ohl03]. WebCal is a C++ library that is conceived as a Web
server. WebCal provides with calendric calculations on convex (fuzzy) intervals in the
system’s reference time unit. The system’s reference time unit is second. The calendric

http://ilrt.org/discovery/2001/06/schemas/icalfull/hybrid.rdf
http://ilrt.org/discovery/2001/06/schemas/icalfull/hybrid.rdf
http://www.nabkal.de
http://www.fourmilab.ch/documents/calendar
http://www.fourmilab.ch/documents/calendar
http://www.mandarintools.com/calendar.html
http://www.mandarintools.com/calendar.html
http://www.greatdreams.com/calndr2.htm

74
2. Background: Temporal Knowledge Representation and Reasoning for

Information Systems

calculations are performed by a variety of pre-defined functions over such intervals, among
them Allen’s interval relations [All83]. Since computations of such functions (which are
applied to Gregorian dates and times) are performed on such intervals of seconds, the
WebCal system converts each date and time into such a reference interval of seconds.
WebCal provides merely with computations between pairs of intervals of seconds. The
system, thus, does neither provide with means for temporal reasoning and/or scheduling
nor for manipulating time granularities.

The supported calendars and conversions of each of their calendar units to the refer-
ence time unit are implemented in the system. In particular, the Gregorian calendar is
implemented in the WebCal prototype. Thus, this system does not provide any means for
user-defined calendars.

2.3.5 Temporal and Active Web Systems

Temporal Web Systems. Management and processing of time-dependent objects is
a thoroughly investigated research issue of temporal database systems (cf. http://www.
scism.sbu.ac.uk/cios/paul/Research/tdb_links.html, a link collection of research on
temporal database systems). In such systems, time-dependent objects are usually associ-
ated with one or more temporal dimensions, in particular, transaction time, valid time,
and/or event time [Je98]. The transaction time of an object is the time the object is current
in the underlying system. The valid time of a proposition related to some stored object
is the time the proposition is true in the underlying system. Event time is the time a
particular event related to some stored object occurs. Event occurrences change the truth
values of some propositions belonging to that stored object. Those temporal dimensions
are the backbones of a formal representation of the evolution of objects over time. Such
a formal representation is called an object’s history. A history is modeled by a time line
and time primitives (i.e. points or intervals) over the time line. Time-dependent objects
are timestamped by those time primitives, i.e. the time primitives specify the temporal
representation of an object of the real world or of an underlying system.

Similar problems to those investigated in the context of temporal database systems also
apply to Web documents and other Web resources and Web and Semantic Web applications
such as Web resource versioning, change management in Web documents, booking and
reservation systems, news services, and XML warehouses. Several proposals concerning
version management, change representation, and querying of changes in such Web resources
and Web applications, as well as extensions of semi-structured data, in particular, to
timestamp objects regarding their transaction times and/or valid times have been made in
the last years [DBCK96, DBCK98, CTZ00, GM00, CTZ01, Web01, Dyr01, CAM02, Nør02,
DLW04, NLM03].

Active Web Systems Automatically reacting on changes of time-dependent objects is
a thoroughly investigated research issue of active database system (cf. http://www.ifi.
unizh.ch/dbtg/Links/adbs_sites.html, a link collection of research on active database
systems). An active system allows users to specify actions to be taken automatically when

http://www.scism.sbu.ac.uk/cios/paul/Research/tdb_links.html
http://www.scism.sbu.ac.uk/cios/paul/Research/tdb_links.html
http://www.ifi.unizh.ch/dbtg/Links/adbs_sites.html
http://www.ifi.unizh.ch/dbtg/Links/adbs_sites.html

2.4 In Comparison with CaTTS 75

its state reaches a certain pre-defined condition. Automatic responses of active systems are
usually declared by using the Event-Condition-Action (ECA) rules proposed in [DBB+88].
The event belonging to such a rule may be either a primitive event or a composite event.
Usually, primitive events are the basic operations such as insert and delete. A composite
event is a compound set of basic events. Several approaches to model and detect composite
events in active databases exists [GD92, GJS93, Hin03].

Similar problems to those investigated in the context of active database systems also
apply to Web resources and Web and Semantic Web applications. For example, Web ap-
plications evolving automatically according to some user’s actions and background (e.g.
his/her flight bookings, or his/her medical history) are crucial in the context of the so-
called “adaptive Web”. In the last years, proposals have been made, applying the concepts
of active database systems to the (Semantic) Web. In particular, research on adaptive
Web applications and systems concentrates on user models, Web application models and
adaptation models that may be based on ECA rules which exploited, for example, to incor-
porate reactive functionality in XML documents and to incorporate reactivity in ontology
evolution [AYU01, BCP01, PPW03, ABB04, MAB04, AAM05]. Furthermore, a variety of
data models are proposed for specifying adaptive hyper-media [dBHW99, KW02, CTB03].

2.4 In Comparison with CaTTS

A programming language or a query language to be used in an inter-cultural context
such as the Web or the Semantic Web to model and to retrieve calendric data or to offer
world-wide services to process such data should be aware of differences between cultural
and/or professional calendars in use today [BHRS05]: for example, scheduling the phone
conference of three persons in France, Greece, and Japan, the language used to infer a
possible time slot has to consider the personal and professional time constraints of the
persons. Furthermore, everyone’s calendar data should be better expressed in the calendar
and time zone the person is used to. Calendar data conversion, for example from weeks to
months or between Japanese and Gregorian year numbering that must be performed for
calculations should be invisible to the users.

So as to make it possible for every user to express calendar data in the calendar he/she
is used to, the Calendar and Time Type System CaTTS [BS04, BRS05] has been developed.
CaTTS consists of two languages, a type definition language, CaTTS-DL, and a constraint
language, CaTTS-CL, of a (common) parser for both languages, and of a language processor
for each language. In particular, CaTTS provides with predicate subtyping and constraint
solving approaches to calendric data and constraints according to calendric types defined
by some user in a CaTTS-calendar specification. CaTTS is based on a formal time model
[BS03, BLS05] in accordance with the set-theoretic tradition of time granularity systems,
however, purely interval-based.

76
2. Background: Temporal Knowledge Representation and Reasoning for

Information Systems

2.4.1 Approaches to Temporal Knowledge Representation and
Reasoning

CaTTS’ notion of time is linear. CaTTS is not intended for expressing possible futures,
hence it is not based on a “branching time”. Most common-sense, Web and Semantic
Web applications and many Web services can conveniently be modeled in a linear time
framework.

CaTTS’ notion of time is purely interval-based, i.e. temporal data of every kind have
a duration. This reflects a widespread common-sense understanding of time according to
which one mostly refer to interval, not to points. For example, one refers to “2004/10/05”,
a day, or to “1st week of October 2004”, a week. Even point-like data such as 9:25 can be
perceived as having a duration, possibly as small as one second or one millisecond. It has
two advantages to consider intervals only:

1. It significantly simplifies data modeling, an advantage for CaTTS’ users.

2. It simplifies data processing, i.e. type checking and constraint reasoning, an advantage
for CaTTS’ language processors.

However, CaTTS can deal with point-like data like the beginning of a week or whether a
day d falls into a week w or not, as well.

CaTTS’ notion of time is based on a system of time granularities, following this promis-
ing approach form Artificial Intelligence and Database Systems to model and reason with
calendric data. However, CaTTS is a programming language approach defining time gran-
ularities as types. Furthermore, CaTTS gets along with only two (slightly modified) rela-
tions between time granularities and their compositions out of the large set of (possible)
relationships between time granularities.

Implicit Time Models. CaTTS’ time model inherently differs from change-based ap-
proaches such as the Situation Calculus and the Event Calculus following the tradition of
implicit time models. In CaTTS, a notion of time is explicitly introduced. Implicit time
models have been proposed for applications in active databases or active Web and Seman-
tic Web whereas CaTTS is designed for modeling cultural and professional calendars and
for solving multi-calendar appointment scheduling problems referring to such calendars.

Explicit Time Models. CaTTS is based on an explicit time model since CaTTS is
a type language to define calendars and to reason over calendric data of different types.
Since CaTTS’ notion of time is purely interval-based, CaTTS’ time model particularly
bases on Allen’s interval calculus [All83]. Interval-based time models follow the common-
sense intuition of time always having a duration. Purely interval-based time models have
several advantages compared to those which combine (durationless) points and intervals.
Discussions on the advantages and disadvantages of purely interval-based time models
compared to those combining points and intervals are provided in Section 2.1.2 and Chapter
3. CaTTS does not support generalized intervals.

2.4 In Comparison with CaTTS 77

Temporal Constraints. CaTTS provides with a constraint-based approach to solve
multi-calendar appointment scheduling problems involving calendric data of different types
(i.e. time granularities). For example, a person plans a meeting lasting 3 working days after
22nd April 2005 and before May 2005. A colleague’s visit of 5 days must overlap with the
planned meeting. CaTTS’ solver tests for consistency and then calculates several (at least
one) solutions such that all of the stated constraints are satisfied.

Multi-calendar appointment scheduling problems involve metric temporal constraints
over intervals. Thus, metric temporal constraints, merely reasoning on points and distances
between points are not sufficient. For example, the problem “the visit must overlap the
meeting two working days” cannot be expressed in terms of metric, point-based tempo-
ral constraints in a Horn DLR framework. However, such a problem can be expressed in
CaTTS. CaTTS’ reasoner supports metric, interval-based temporal constraints in a finite
domain constraint framework.6 Furthermore, CaTTS allows for reasoning on such con-
straints where the domains of the variables possibly refer to different calendric types (time
granularities).

Multi-calendar appointment scheduling problems inherently differ form qualitative tem-
poral constraint problems: in a qualitative temporal constraint problem some (temporal)
relations (e.g. some interval relations) are specified between objects. An example of a
merely qualitative temporal reasoning problem is the following: different persons come
and leave a bank under certain constraints which are expressed in terms of temporal re-
lations. Then one might ask questions such as “Could possibly persons A and B meet at
the bank’s entrance?”. Such kinds of questions does not appear frequently in appointment
scheduling problems. Qualitative temporal reasoning thus performs reasoning on the tem-
poral relations that hold between the different temporal objects whereas CaTTS’ solver
performs reasoning on the temporal objects (which refer to intervals with calendric type
(time granularity)) themselves.

Although multi-calendar appointment scheduling is a rather metric temporal reasoning
problem, it goes beyond metric temporal reasoning. In particular, CaTTS’ reasoner goes
beyond the “only existing constraint solver with different time granularities” (which is
purely point-based and metric) as the authors of the work presented in [BJW00] claim.
Using merely metric temporal reasoning frameworks (which provide with constraints to
model points and distances between points) one could express temporal constraints such
as “person A is at the bank”, but neither “an event e happens during a task t” nor “an event
e happens 5 time units before an event e”’.7 Such constraints can be however expressed in
CaTTS-CL.

Time Granularity Systems. CaTTS’ time model basically refers to the set-theoretic
approach to time granularities. However, CaTTS is a programming language approach
to model time granularities and calendars as types. CaTTS provides with declarative

6The constraint system finite domain is the common choice for modeling scheduling problems in a
constraint-based framework [FA97].

7Such constraints cannot be expressed in qualitative temporal reasoning frameworks, as well.

78
2. Background: Temporal Knowledge Representation and Reasoning for

Information Systems

language constructs to define time granularities as types and with time constraints to
reason over the elements of such types. CaTTS is particularly designed as a type sys-
tem, in principle, integratable in any Web or Semantic Web language like XQuery, XSLT,
RDF, or OWL. CaTTS provides with type checking approaches to temporal and calendric
data. Furthermore, CaTTS provides with an application to constraint solving of multi-
calendar scheduling problems with time granularity on intervals, whereas constraint solving
in [BJW00] is inherently point-based, dedicated to metric constraints with time granularity
only.

CaTTS yields a complete solution to the problem of time granularity conversion ad-
dressed in [FM01]. Actually, time granularity conversion is inherent to the operational
semantics of the language CaTTS.

2.4.2 Calendric Computations

CaTTS is a declarative modeling and reasoning language to define time granularities and
calendars as types in some CaTTS-calendar specification. Furthermore, CaTTS provides
means to specify calendric constraints over the elements of such types to define multi-
calendar appointment scheduling problems that can be solved by CaTTS’ constraint solver.
CaTTS is not intended as a full-fledged programming language such as Prolog, rather
modeling of calendric types should be preserved as declarative and intuitive as possible.
However, since calendars are often rather complex, involving several particularities and
irregularities, CaTTS can be complemented with algorithms for calendric computations in
the following ways.

1. Basically, CaTTS provides with language constructs to define periodic exceptions
such as Gregorian leap year regulations in months within a CaTTS type declaration.

2. Additionally, more complex calendric calculations that are necessary to define calen-
dric types such as Hebrew months and Gregorian or Orthodox Easter Sunday can be
either specified

(a) by defining CaTTS-macros, or

(b) by importing externally defined functions.

The addressed examples are given below in CaTTS-syntax.

. . .
(∗ Gregorian l eap year ru l e ∗)
type month = aggregate

31 day named january ,
alternate month(i)

| (i div 1 2) mod 4 == 0 &&
((i div 1 2) mod 400 != 100 &&
(i div 1 2) mod 400 != 200 &&
(i div 1 2) mod 400 != 300) −> 29 day

| otherwise −> 28 day

2.4 In Comparison with CaTTS 79

end named february ,
. . . ,
31 day named december

@ day (1) ;
. . .
(∗ Hebrew months ∗)
type month = aggregate

30 day named nisan ,
29 day named iyyar ,
30 day named s ivan ,
29 day named tammuz ,
30 day named av ,
29 day named e l u l ,
30 day named t i s h r i ,
alternate month(i)
| newYearDelay ?(i) == 2 −> 30 day named long marheshvan
| otherwise −> 29 day named short marheshvan

end named marheshvan ,
alternate month(i)
| newYearDelay ?(i) > 0 −> 30 day named l o n g k i s l e v
| otherwise −> 29 day named s h o r t k i s l e v

end named k i s l e v ,
29 day named tevet ,
30 day named shevat ,
alternate month(i)
| isLeapAdarRishon ?(i) −> 30 day named adar r i shon
| otherwise none

end ,
29 day named adar shen i @ day (−21) ˜@ 133 ;

type adar = adar r i shon | adar shen i ;
macro newYearDelay ?(y) = i f ny2 − ny1 == 356 then 2

else i f ny1 − ny0 == 382 then 1
else 0 where

ny0 = y2ed ?(y − 1) ,
ny1 = y2ed ?(y) ,
ny2 = y2ed ?(y + 1) ;

macro y2em?(y) = (235∗y − 234) div 1 9 ;
macro m2y?(m) = i f y2em?(y) == em then y

else y + 1 where
em = m + 70852 ,
y = (19∗em + 234) div 235 ;

macro y2ed ?(y) = i f 3∗ (d + 1) mod 7 < 3 then d + 1
else d where

em = y2em?(y) ,
ep = 12084 + 13753∗em,
d = 29∗em + (ep div 25920) ;

macro isLeapAdarRishon ?(m) = isLeapAdarRishonInCycle ? ((m mod 235) + 1) ;
macro i sLeapAdarRishonInCycle ?(i) =

i == 3 6 | | i == 7 3 | | i == 9 8 | | i == 135
| | i == 172 | | i == 209 | | i == 234;

macro isHebrewLeapYear ?(y) = (7∗y + 1) mod 19 < 7 ;

80
2. Background: Temporal Knowledge Representation and Reasoning for

Information Systems

. . .
(∗ Orthodox Easter ∗)
macro s h i f t e d e p a c t (greg y) = (14 + 11∗ (greg y mod 1 9)) mod 3 0 ;
macro j u l i a n y e a r (greg y) = i f greg y > 0 then greg y

else greg y − 1;
macro j u l i a n ap r i l 1 9 t h ndx (j u l y) = k where

day (k) during Ju l i an . year (j u l y) &&
relative index day (k) in Ju l i an . a p r i l == 19;

macro paschal moon (greg y) = day (k) where
j u l y == ju l i a n y e a r (greg y) &&
k == ju l i a n ap r i l 1 9 t h ndx (j u l y) − s h i f t e d e p a c t (greg y) ;

type o r thodox ea s t e r = with select day (i) where
day (i) within year (y) && sunday (j) after paschal moon (y) &&
day (i) equals min(sunday (j)) ;

. . .
(∗ import o f an e x t e r n a l l y de f ined func t i on ∗)
import g r e g e a s t e r ;

type g r e g o r i a n e a s t e r = with select C. day (i) where
C. day (i) equals g r e g e a s t e r (j) ;

2.4.3 Web and Semantic Web Formalisms and Applications

CaTTS is a programming language approach to data modeling and reasoning with time
and calendars. It considerably simplifies the modeling of peculiarities of cultural calendars
including particularities such as leap years, sun-based cycles like Gregorian years, or lunar-
based cycles like Hebrew months as well as the modeling of professional calendars often
involving “gaps” in time (e.g. “working-day”), “gapped” data items (e.g. data items of
type “working-week”), and periodic events (e.g. “CS123-lecture”) due to user-defined data
types.

The well-known advantages of typed languages such as error detecting, language safety,
gain in efficiency and consistency, abstraction, and documentation apply to CaTTS, as
well.

Furthermore, CaTTS comes along with a constraint solver dedicated to (user-defined)
calendar specifications; this dedication makes considerable search space restrictions, hence
gains in efficiency, possible.

A discussion how CaTTS complements and/or differs from Web and Semantic Web
formalisms and applications, in particular, those formalisms and applications surveyed in
Section 2.3 follows.

Data Type Definition Languages. CaTTS inherently complements data type defini-
tion languages for the Web and the Semantic Web such as XML Schema: XML Schema
provides a considerably large set of predefined time and date data types dedicated to the
Gregorian calendar. In XML Schema, user-defined data type declarations are restricted

2.4 In Comparison with CaTTS 81

to regular expressions over character sets. Whereas CaTTS provides with declarative lan-
guage constructs for user-defined data types dedicated to any calendar.

Ontology Languages and Time Ontologies. CaTTS complements DL-style data
modeling and reasoning methods for the Semantic Web such as RDF and OWL: DL-
style languages are designed for generic Semantic Web applications. In contrast, CaTTS
provides with methods specific to particular application domains, that of calendars and
time. Furthermore, ontology languages such as OWL are based on description logics where
temporal and calendric data is axiomatized in the logic and tableau-based reasoning algo-
rithms are used to solve problems such as checking for consistency. In contrast, CaTTS is
a programming language approach exploiting the advantages of data types, type checking
approaches, and constraint-based reasoning methods.

CaTTS departs from time ontologies such as the KIF time ontology, the DAML time
ontology, and time in OWL-S: while (time) ontologies follow the (automated reasoning)
approach of “axiomatic reasoning”, CaTTS is based on a (specific) form of “theory reason-
ing” [Sti85, BM05], an approach well-known through para-modulation [RW69]. Like para-
modulation ensures efficient processing of quality in resolution theorem proving, CaTTS
provides the user with convenient constructs for calendric types and efficient processing of
data and constraints over those types.

Internationalization and Localization Efforts. CaTTS supports internationalization
and localization efforts in the Web and the Semantic Web specialized on the domain of
time and calendars. It goes far beyond locale specifications of times and dates for Web
resources provided within the W3C Internationalization Activity.

CaTTS is intended to be, in principle, used to type check programs or specifications in
any language (e.g. SQL, XQuery, Sparql, RDF, OWL) [BLOS03, BBL+04], using temporal
and calendric data enriched with type annotations after some calendar specified in CaTTS
as well as to reason with multi-calendar appointment schedules involving arbitrary calendric
data as long as the data is typed after calendric types defined in CaTTS.

Applications: Web Services and Temporal and Active Web. CaTTS comple-
ments Web services such as calendar agents and calendar Web servers with user-defined cal-
endric types and with reasoning approaches to solve multi-calendar appointment scheduling
problems over the elements of such data. CaTTS means for calculating scheduling problems
go far beyond predefined scheduling problems over dates and times with (minute-based)
durations. Furthermore, CaTTS is neither restricted to a finest time granularity nor does it
claim conversions to this finest time granularity to perform any calculations. Furthermore,
in CaTTS it is up to the user whether he/she uses a connection of calendric types defined
in some CaTTS-calendar specification to real-time or not. For example, to infer a schedule
of some student’s examinations within a one-month time slot, a connection to real-time is
useless.

82
2. Background: Temporal Knowledge Representation and Reasoning for

Information Systems

However, CaTTS does not support fuzzy time intervals: primarily, solving appointment
scheduling problems rather has to deal with temporal imprecision (e.g. that a time specified
in terms of month becomes imprecise when it is expressed in terms of days) and user-
preferences which might be solved by specifying so-called soft constraints rather than with
fuzziness.

CaTTS might be used as a time and calendar specification language for the time-related
objects modeled in temporal or active systems.

Note: Research on (annotation) languages for events and temporal expressions in natu-
ral text for Semantic Web applications such as TimeML [IJ04] as well as research on agent-
based creation of temporal categories and concepts from natural language texts based on
machine learning methods [Beu04] inherently differ from CaTTS: the main difference be-
tween CaTTS and languages like TimeML is that TimeML annotates with markup that
can be further used for information extraction and question answering of natural language
text after the used documents have been composed. CaTTS provides a means to annotate
documents before composing them. Furthermore, CaTTS is a type language specialized in
calendar and time modeling and reasoning, addressed to Semantic Web applications and
Web Services, and, in particular, to multi-calendar appointment scheduling problems.

Chapter 3

A Time Model for Calendric Data,
Types, and Constraints

“Zeit ist das, was man an der Uhr abliest.”
(Albert Einstein, 1879–1955)

This chapter introduces into a time model to declaratively define calendric and tem-
poral data, types, and constraints and to reason with such constructs. In particular, this
time model formally introduces the temporal and calendric concepts underlying the type
language CaTTS. The time model is convenient and intuitive to model real-life calendar
expressions. It supports properties such as “gapped” calendric expressions like working
days nevertheless being continuous and point-like calendar dates like “today” neverthe-
less having a duration which are inherent to cultural and professional calendars like the
Gregorian and Hebrew calendars and the academic calendar of a university. The model is
expressive enough to describe most common features of cultural and professional calendars
like leap seconds, leap years, time zones, and “gaps” in time, for example between working
days or within working years. In particular, the time model meets the requirements of the
calendar type language CaTTS regarding its (type) definition language and its constraint
language (cf. Chapter 4), its multi-calendar constraint solver (cf. Chapter 5), and its type
system (cf. Chapter 6).

CaTTS’ time model is linear. CaTTS is not intended for expressing possible futures,
hence it is not based on a “branching time”. Most common-sense, Web and Semantic
Web, and many Web service applications can be conveniently modeled in a linear time
framework like appointment scheduling systems.

CaTTS’ time model is discrete. CaTTS is a language to specify in a rather simple
manner more or less complex, cultural or professional calendars like the Hebrew calendar
and the academic calendar of a University. People use calendars to give names to specific

84 3. A Time Model for Calendric Data, Types, and Constraints

“portions” of time like days, weeks, or years according to some calendar (time) unit. Such
portions of time can be naturally modeled by intervals over a continuous time line which
can be referred to by an (integer) index.

CaTTS’ time model is purely interval-based, i.e. temporal data of every kind have
a duration. CaTTS has no notion of “time points” without duration. This reflects a
widespread common-sense understanding of time according to which one mostly refers to
time intervals, not to time points. For example, one refers to “2004/10/05”, a day, or
to “1st week of October 2004”, a week. Even time point-like data such as “9:25” can be
perceived as having a duration, i.e. one minute. Considering a time model containing only
time intervals and no time points has two advantages. First, it significantly simplifies data
modeling, an advantage for CaTTS’ users. Second, it simplifies data processing, i.e. type
checking and constraint reasoning, an advantage for CaTTS’ language processors.

Since CaTTS’ time model is purely interval-based and discrete, it is aware of the follow-
ing well-known (rather theoretical) temporal modeling and reasoning problems [FGV05]:

1. Point-based events like “start moving”.

2. Continuous changes involving point-based and interval-based events like “100-meter
sprint”.

3. The homogeneity of interval-based events, i.e. if an event e is true on interval i, then
it must hold on any subinterval of i.

4. The concatenation of interval-based events, i.e. if an event e is true on two consecutive
intervals i1 and i2, then e must also be true on the time “concatenating” i1 and i2.

5. Determining the truth value of an event e at point p in a time model considering
points and intervals. For example, assume that e is true on interval i1 and false at
interval i2. Assume further that i1 meets i2 at point p, then different possibilities
appear to model the intervals i1 and i2:

(a) e is true and false at p if the intervals are closed.

(b) There is a “truth gap” at point p if the intervals are open.

(c) The option to model intervals in such a framework are either right-open or
left-open intervals of time points which is rather artificial.

This problem is sometimes referred to as the “divided instant problem” [FGV05].

The first two issues formulated in the list given above introduce a notion of “impre-
cision” in terms of calendars, since a point-based event can only be specified as precisely
as the underlying calendar (time) unit (e.g. millisecond, hour, and month) used. Prob-
lems three to five, formulated in the afore mentioned list does not appear in CaTTS, since
CaTTS’ notion of time is discrete and interval-based.

Note: Inherent to a discrete time model is the fact that each event has a duration, and
that it is possible to refer to some “previous” or “next” event in time (cf. Section 2.1.2).

3.1 Base Time Line 85

3.1 Base Time Line

In order to formalize CaTTS interval-based (see also [BS03], thus, time point-less time
model, however, time points in a continuous time line (cf. Definition 3.1) have to be con-
sidered. This ensures a connection of (temporal) activities1, in particular, events and
tasks2, to a continuous flow of time, in particular, to ensure homogeneity of such activi-
ties. Activities are objects with a temporal extend, defined over the time model that is
introduced in this chapter.

Definition 3.1 (Base Time Line). A base time line is a pair (T ,<T) where T is an
infinite set (isomorphic to R) and <T is a total order on T such that T is not bounded for
<T . An element t ∈ T is called time point.

The time points in the base time line are totally ordered, i.e. <T is an irreflexive,
antisymmetric, transitive, and linear order relation. The time points are further neither
right-bounded nor left-bounded. Finally, the base time line is continuous, i.e. isomorphic
to the real numbers.

3.2 “Discretization” of Time

Each calendric type defined in a CaTTS calendar specification creates a discrete image of
the (continuous) base time line (T ,<T). Thus, CaTTS calendric types specify countable
sets isomorphic to (subsets of) the integers. For example, calendric types “day” and
“working-day” imply two (different) images of the base time line: days partition this time
line, working days correspond to a portion of the day partition of this time line. Both
images of the base time line are discrete, i.e. isomorphic to the integers.

3.2.1 Time Granularities

The notion of time granularity [Mon96, Je98, BJW00, Euz01] (cf. Section 2.1.4) formalizes
such a “discretization” of a (continuous) base time line (T ,<T).

Definition 3.2 (Time Granularity). Let (T ,<T) be a base time line. A time granu-
larity is a (non-necessarily total) function G from Z into the power set of T , P(T), such
that for all i, j ∈ Z with i < j

1. if G(i) 6= ∅ and G(j) 6= ∅ , then for all ti ∈ G(i) and for all tj ∈ G(j) ti <T tj.

2. If G(i) = ∅, then G(j) = ∅.
1The notion “activity” is frequently used in Constraint Programming to describe objects that have a

temporal extent [Apt03].
2The notions “event” and “task” are taken from research on “planning” and “scheduling”, well-known

kinds of Constraint Satisfaction Problems [FA97].

86 3. A Time Model for Calendric Data, Types, and Constraints

month

week

working day

day11 12 13 14 . . . 30 31 32 . . .

7 8 . . . 20 21 22 . . .

3 4 5 6

1 2

Figure 3.1: An illustration of some time granularities.

Examples of time granularities are day, working day, weekend, week, month, holiday,
etc. Definition 3.2 accounts in addition to time granularities which are partitions of the
base time line like “day” or “month”, time granularities with non-continuous elements like
“holiday”, time granularities with non-convex elements like “working week”, and bounded
time granularities like “someone’s exam days during his/her years of study”. Figure 3.1
illustrates some time granularities.

According to Definition 3.2, two different elements of the same time granularity do
not overlap. The first condition of Definition 3.2 induces from the ordering of the inte-
gers the common-sense ordering on elements of time granularities: for example, the day
“10/25/2004” is after the day “10/24/2004”3. The second condition of Definition 3.2 is
purely technical: it makes it possible to refer to the infinite set Z also for finite time
granularities (e.g. someone’s exam days during his/her years of study).

Note: Explicitly defining the “non-existing parts” by an empty set of a (finite) time
granularity provides a means to refer to the inverse of a time granularity like “days except
for exam days during someone’s years of study”, as well.

Each granule of every time granularity G is represented by an integer index (recall that
G is isomorph to Z) as illustrated in Figure 3.1. Since a time granularity G is defined as a
mapping form integers into (generalized) intervals (i.e. intervals which are not necessarily
continuous according to the base time line) over the base time line, each granule of every
time granularity has a duration. Granules may be therefore divided into sub-sets (in some
“finer” time granularity). The definition of time granularities does not enforce a restriction
to a finest time granularity.

At a first glance, a time model considering only time intervals and not time points falls
short in modeling activities like “start moving” if viewed as being instantaneous, i.e. having
no duration. This might be true for a time model that merely defines a single time line

3If corresponding date formats for the integer indices of the elements are defined. Date format specifi-
cations for the granules of some time granularities is provided with CaTTS-FDL (cf. Section 4.1.3).

3.2 “Discretization” of Time 87

isomorphic to R. But the time model introduced in this chapter defines multiple time lines
in terms of time granularities isomorphic to Z. Thus, each activity is defined according to a
time granularity. That means that the afore mentioned problem is no longer applicable: an
activity may only be viewed being instantaneous according to some time granularity. For
example, the activity “start moving” can be expressed in terms of seconds. This kind of
“imprecision” reflects measuring and specifying activities in terms of a time granularity: a
proposition made about an instantaneous activity can only be as precise as the underlying
time granularity.

3.2.1.1 Activities over Time Granularities

Although each element of any time granularity has a duration, point-like data can be
represented in CaTTS, as well. For example, one can determine the beginning of the “44th
week 2004” in terms of days, i.e. “25.10.2004”, the “time point” “25.10.2004” starts the
“time interval” “44th week 2004”.

The following definitions introduce concepts, called activities that define different kinds
of objects that take time in a time granularities.

Definition 3.3 (Activity). Let G be a time granularity.
An activity A over G is either

• an element G(i) of G, called event, or

• a continuous sequence of elements G(i1), . . .G(ik), 1 ≤ k of G, called task.

According to Definition 3.3, an event can be understood as a (time) point with time
granularity, and a task can be understood as a (time) interval with time granularity. Ex-
amples of events are “44th week 2004” in time granularity “week” and “25.10.2004” in
time granularity “day”. “The last two weeks of July 2004” is an example of a task in time
granularity “week”.

Definition 3.4 (Duration). Let G be a time granularity.
A duration D over G is a number (expressed as an unsigned integer) of a continuous,

finite sequence of G.

A duration can be informally understood as an (finite) interval with a time granularity
that has a given length but no specific starting or ending time.

CaTTS’ constraint language, CaTTS-CL provides several relations over activities and
durations of activities to reason about them (cf. Section 4.2).

Note: Since time granularities introduce a “discretization” of time, an event has a dura-
tion, i.e. 1 in terms of its associated time granularity. For example, the event “25.10.2004”
in time granularity “day” has duration 1 (day), and the task “the last two weeks of July
2004” in time granularity “week” has duration 2 (week).

88 3. A Time Model for Calendric Data, Types, and Constraints

3.2.1.2 Time Granularities in CaTTS

CaTTS (cf. Chapter 4) provides with language constructs, so-called type constructors, to
define time granularities as (base) types. Since time granularities are nothing but (infinite)
sets isomorphic to the integers, they can be defined by predicates in a higher-order logic.
Such predicates are used as the type constructors of the language CaTTS. Thus, a (base)
type in CaTTS specifies (in terms of a predicate) a set, referred to as “predicate set”. The
usual set-theoretic operations (e.g. ∪) can be applied to predicate sets. The elements of
such base types in CaTTS are events as defined in Definition 3.3. Events refer to (time)
points with time granularity.

In Chapter 4, type constructors not only for base types, but also for composed types,
in particular, for types of tasks, i.e. interval types and types of durations, i.e. duration
types are introduced for CaTTS. In CaTTS, points, intervals, and durations are denoted
as different kinds of calendric types (time granularity).

3.2.2 Relations between Time Granularities

In CaTTS, calendric types (time granularities) are defined either in terms of inclusion or
in terms of aggregation of other calendric types (time granularities) such that the result-
ing type always defines a specified subset of another calendric type (time granularity).
Those subsets are referred to as subtypes in CaTTS. For example, the calendric type (time
granularity) “working-day” is an inclusion subset (in the common set-theoretical sense) of
“day”, since the set of working days is a subset of the set of days. “Week” is an aggregation
subset (in the sense of constructing sets from other sets as illustrated in Figure 3.2) of the
time granularity “day”, since each week can be unambiguously specified by an interval of
days. Thus, the calendric types (time granularities) “working-day” and “week” are both
subtypes (the former in terms of inclusion and the latter in terms of aggregation) of the
calendric type (time granularity) “day”. Definitions of inclusion and aggregation of time
granularities are given in the following.

3.2.2.1 Aggregations

Set-theoretically, some time granularity can be constructed from another time granularity
by aggregating intervals of elements of a “finer” time granularity to a single element of
a “coarser” (i.e. aggregated) time granularity. A hierarchy of set-aggregations of time
granularities is illustrated in Figure 3.2.

Definition 3.5 (Aggregation). Let G and H be time granularities.
G is an aggregation of H, denoted G � H, if for all i, j ∈ Z H(j) ⊆ G(i), i.e. if every
element of G is an interval over H and every element of H is included in (exactly) one
element of G.

With Definition 3.5, day � day, week � day, month � day, and working week � working
day, but neither week � working day (a week cannot be defined by an interval of working

3.3 Calendars 89

6

?

6

finer

coarser
aggregation

day

week

fortnight

@
@

@
@

@
@@ �

�
�

�
�

��

Figure 3.2: An illustration of aggregations of time granularities.

days, i.e. all days which are neither weekend days nor holidays) nor month � week (a
month cannot be defined by an interval of weeks).

Note that the aggregation G of a time granularity H is equivalent to the union of the
intervals over H, each aggregated by a set of elements of G.

3.2.2.2 Inclusions

Set-theoretically, some time granularity can be constructed form another time granularity
by defining particular subsets such that the (new) time granularity is an inclusion (subset)
of the original time granularity.

Definition 3.6 (Inclusion). Let G and H be time granularities.
G is an inclusion of H, denoted G ⊆ H, if for all i ∈ Z exists j ∈ Z such that H(j) = G(i),
i.e. if every element of G is an element of H.

With Definition 3.6, day ⊆ day, weekend day ⊆ day, and Sunday ⊆ weekend day, but
not day ⊆ working week.

The two relations, inclusion of and aggregation of, are corner stones of CaTTS. As
the examples given in Chapter 4 show, they are very useful in modeling calendars, in
particular, they are sufficient to model any calendar in use today. Indeed, they reflect
widespread forms of common-sense modeling and reasoning with calendric data.

3.3 Calendars

In CaTTS, calendars are specific (finite) sets of calendric types (time granularities) where
each type contained is defined either by aggregation or inclusion of another calendric type
(time granularity). The composition � ⊗ ⊆, denoted ≤, of the relations aggregation of and
inclusion of defines a partial order over calendric types (time granularities) in a calendar C

such that each type (time granularity) is somehow “finer” or “coarser” than another type
(time granularity). For time granularities G and H the composition G ≤ H is defined as
follows:

90 3. A Time Model for Calendric Data, Types, and Constraints

week
�
(≤)

day
�
(≤)

second
�
(≤)

millisecond
@

@
@

month �
(≤)

�
�

�

⊆
(≤)working-day

Figure 3.3: An illustration of a calendar.

Definition 3.7 (Subtype Relation.) Let G and H time granularities. Then G is a
subtype of H, denoted G ≤ H, if ∀i ∈ Z ∃j ∈ Z. H(j) ⊆ G(i).

That is, G is an “aggregated subset” of H. Thus, a subtype is always coarser than its
supertype. For example, if “week” � “day” and “summer week” ⊆ “week”, then “summer
week” ≤ “day”. In particular, if “week” � “day”, then “week” ≤ “day”, and if “working
day” ⊆ “day”, then “working day” ≤ “day”.

The subtype relation ≤ defines a partial order over time granularities in a calendar.
The following formalization of the notion of calendar reflects the central role that subtypes
play in CaTTS.

Definition 3.8 (Calendar). Let G1, . . . ,Gn be time granularities.
A calendar C is a finite set of time granularities {G1, . . . ,Gn} such that there exists a
Gi ∈ C and for all Gj ∈ C, i, j ∈ {1...n} and i 66= j Gj ≤ Gi.
Gi ∈ C is called reference of the calendar C.

Figure 3.3 illustrates a set of time granularities defining a calendar. Each of the il-
lustrated time granularities is a ≤-comparable with “millisecond”. “millisecond” is the
calendar’s reference.

Note: A finite set SC of calendars is also a calendar according to Definition 3.8, if either
the references of the calendars in SC are aligned, i.e. identical except for the numbering
of their indices or there exists a type (time granularity) G0 which is ≤-comparable with
the references of the calendars belonging to SC. In particular, calendar alignment provides
a means to reason with types (time granularities) specified in different calendars. In the
following, with C we refer to both a calendar and a finite set of aligned calendars.

3.4 Time Granularity Conversion

Having defined a means to specify time granularities from other time granularities either
in terms of aggregations or in terms of inclusions as well as a partial order between such
time granularities, a means to convert the elements of one time granularity into (sets of)
elements of another time granularity is introduced now. In the following, we define time

3.4 Time Granularity Conversion 91

granularity conversion for time granularities G and H where G ≤ H.

Note: The conversion for time granularities which are comparable according to the
subtype relation shows a strong relationship between the aggregation of and the inclusion
of relations. Furthermore, this conversion shows that time granularities can be conveniently
ordered according to such an “aggregation-subset” relation (in the sense of constructing
subsets from other sets).

Definition 3.9 (Conversion). Let G and H be time granularities of some calendar C.
The conversion function cG→H, converting elements of G to (sets of) elements of H and
its inverse function cH→G is defined for i, j ∈ Z as follows:

1. if G ⊆ H, then

cG→H(G(i)) := H(j)

cH→G(H(i)) :=
{
G(j) if G(j)=H(i)
∅ otherwise

}
2. if G � H, then

cG→H(G(i)) := {H(j) | H(j) ⊆ G(i)}
cH→G(H(i)) := G(j)

3. if G ≤ H, then

cG→H(G(i)) := {H(j) | H(j) ⊆ G(i)}

cH→G(H(i)) :=
{
G(j) if H(i)⊆G(j)
∅ otherwise

}
For example, cworking day→day(working day(8)) = day(12) if working day ⊆ day (and

thus working day ≤ day) according to the indexing used in the illustration of Figure 3.1.

According to Definition 3.9 we ensure conversions between time granularities in a cal-
endar which are ≤-comparable. But since the subtype relation only defines a partial order
over the time granularities in a calendar C, so far, conversion is not supported for any pair
of time granularities in a calendar.

To ensure time granularity conversion between any pair of time granularities, we define
a join of two time granularities according to the partial order ≤. In CaTTS, a join is
slightly weaker than the ordinary lattice join, which only allows for the first condition
of Proposition 3.1. The second of Proposition 3.1 is an extension to deal with calendars
which are not (always) lattices. This particularity (of CaTTS calendars) results from
the possibility to construct a new time granularity by conjunction of two other (already
defined) time granularities as the following illustration shows:

92 3. A Time Model for Calendric Data, Types, and Constraints

day
�

�
�

�

≤
@

@
@

@

≤

sunday

≤
≤

@
@

@@

birthday

≤
≤
�

�
�

sunday and birthday

sundayAbroad
@

@
@@
≤

birthdayDuringStudies
�

�
�

≤

sundayAbroad and birsdayDuringStudies

With the illustration given above, the join of the time granularities “sunday and birthday”
and “sundayAbroad and birsdayDuringStudies” is “day”. “Sunday” and “birthday” are
both candidates for the join of those two time granularities. “day”, in turn, is the join of
those two candidates. Thus, the second condition (of Proposition 3.1) forces the join to be
the smallest possible unique4 upper bound, i.e. the join of the possible candidates. Then
for each pair of calendric types (time granularities) defined in a CaTTS calendar C such a
join exists:

Proposition 3.1 Let (C,≤) be a calendar.
For any pair of calendric types (time granularities) Ct and Cs of C, there exists a join χ ∈ C

such that Cs ∨ Ct = χ, i.e. Cs ≤ χ, Ct ≤ χ, and for all Ci ∈ C with Ct ≤ Ci and Cs ≤ Ci,
either

1. χ ≤ Ci or

2. Ci < χ, and there exists another Ck ∈ C with Cs, Ct ≤ Ck, Ck < χ and Ci, Ck being
incomparable.

Proof 3.1 For a pair of types C and D of calendar C, consider the set of upper bounds
U(C,D) = {υ|C ≤ υ,D ≤ υ}.
(Existence) If Cs = Ct = α, with α being the top element of C, then U(Cs, Ct) = {α}, and
our proposition is satisfied through (1). So, if Cs ∨ Ct exists, so does C ′s ∨ Ct, with C ′s direct
subtype of Cs: If Cs ≤ Ct so is C ′s ≤ Ct and in this case Ct is the join, as Ct ∈ U(C ′s, Ct)
satisfies (1). In case of Ct < Cs, either Ct ≤ C′s and thus C ′s ∈ U(C ′s, Ct) satisfies (1), or else
Ct and C ′s are incomparable and thus Cs ∈ U(C ′s, Ct) satisfies (1). Finally, if Ct and Cs are
incomparable, C ′s cannot be greater than or equal to Ct, because then Ct would have to be less
than of equal Cs; either C ′s, too, is incomparable to Ct and thus C ′s ∨Ct = Cs ∨Ct ∈ U(C ′s, Ct)
satisfies (2), or else C ′s ≤ Ct and thus Ct ∈ U(C ′s, Ct) satisfies (1).
(Uniqueness) Be χ = Cs∨Ct. Let’s assume χ′ would also qualify as a join of Cs and Ct. If χ′

4in terms of equality

3.4 Time Granularity Conversion 93

and χ were incomparable, then neither χ′ ≤ χ nor χ < χ′ and thus χ′ violates (1) and (2).
If χ′ < χ, then χ must have satisfied (2), thus exist an upper bound σk incomparable to χ′;
however, all upper bounds are comparable to χ′ if it is a join (1,2). Finally, if χ < χ′, then
χ′ must satisfy (2), thus exist an upper bound σk incomparable to χ, failing analogously.

The join provides a means to specify conversions between any pair of calendric types
(time granularities) as follows: let G and H be time granularities. If neither G ≤ H nor
H ≤ G, then specify the join J of G andH according to ≤ and perform conversions between
G and J and between H and J . In this way, the elements of time granularities G and H
can be compared in terms of the corresponding elements in the time granularity J . For
example, neither “week”≤“month” nor “month”≤“week”, but “month”∨“week”=“day”.
Then week and month granules might be both unambiguously represented by intervals of
day granules which can be compared.

Note: Time granularity conversion according to such a join is a corner stone of CaTTS’
multi-calendar constraint solver (cf. Chapter 5). In fact, time granularity conversion en-
sures constraint solving with arbitrary time granularities defined in a calendar C without
loss of semantics. Furthermore, multi-calendar constraint solving based on time granu-
larity conversion is more efficient than constraint solving where all elements are initially
converted into the reference type of some calendar.5

5For example, the set of some elements of time granularity “week” is much smaller if represented in
terms of “day” than it would be if represented in terms of “second”.

94 3. A Time Model for Calendric Data, Types, and Constraints

Chapter 4

The Language CaTTS

(sun-based stone of the Aztecs
comprising 365 days within 18 months each of 20 days and 5 additional days)

The time model introduced in the previous chapter defines a formal framework to
specify time granularities and calendars as types. In this framework, the formal concepts,
calendric type (time granularity) and calendar, and relations between calendric types, in
particular aggregation and inclusion as well as a means to compare and convert values of
such calendric types are defined.

This chapter introduces the Calendar and Time Type System (CaTTS). CaTTS is a
programming language approach to data modeling and reasoning with time and calendars.
CaTTS consists of two languages, a type definition language, CaTTS-DL, and a constraint
language, CaTTS-CL, of a (common) parser for both languages, and of a language processor
for each language, in particular, a constraint solver (cf. Chapter 5) and type checking
approaches (cf. Chapter 6). The formal specification of the language CaTTS, including

96 4. The Language CaTTS

CaTTS

CaTTS-DL
CaTTS-CL

CaTTS-TDL CaTTS-FDL

Figure 4.1: Languages of CaTTS.

CaTTS-DL and CaTTS-CL, in a BNF-like notation is given in Appendix A. Figure 4.1
surveys the languages that are part of CaTTS.

CaTTS-DL provides a means to specify in a rather simple manner more or less complex,
cultural and/or professional calendars. Calendars expressed in CaTTS-DL are can be com-
posed in the sense that the language offers a means for (possibly parameterized) modules.
Thus, one can, for example, extend a standard calendar such as the Gregorian calendar
used in Germany with the particular teaching calendar of a specific German university.
Calendric data types specific to a particular calendar – such as “working day”, “Easter
Monday”, “exam week”, or “CS123 lecture” (defining the time the Computer Science lec-
ture number 123 takes place) – can be defined using the language fragment CaTTS-TDL
(for Type Definition Language) of CaTTS-DL. Date formats for such data types – such
as “5.10.2004”, “2004/10/05”, or “Tue Oct 5 16:39:36 CEST 2004” – can be defined using
the language fragment CaTTS-FDL (for Format Definition Language) of CaTTS-DL.

CaTTS-CL provides a means to express a wide range of temporal constraints over
activities, i.e. objects with a temporal extend, in particular events and tasks. CaTTS-CL
refers to the types defined in calendar(s) specified in the definition language CaTTS-DL.
For example, if one specifies in CaTTS-DL a calendar defining both, the Gregorian calendar
(with types such as “Easter Monday” or “legal holiday”) and the teaching calendar of a
given university (with types such as “working day ”, “CS123 lecture”, and “exam week”),
then one can refer in CaTTS-CL to “days that are neither legal holidays, nor days within
an examination week”. Furthermore, constraints on such days can be expressed such as
“after Easter Monday and before August”.

This chapter introduces the various syntactic forms of the language CaTTS and how
two use them. This chapter consists of three sections. First, CaTTS-DL’s forms to specify
calendric types, calendars, and date formats for the values of such calendric types are
introduced. Subsequently, specifying calendric reasoning problems, in particular (multi-
calendar) appointment scheduling problems using time constraints that refer to such data
and types in CaTTS-CL is introduced. Finally, the expressiveness of CaTTS (including
CaTTS-DL and CaTTS-CL) is illustrated by example.

4.1 CaTTS-DL: Definition Language 97

4.1 CaTTS-DL: Definition Language

CaTTS’ definition language, CaTTS-DL, consists of a type definition language, CaTTS-
TDL, and a date format definition language, CaTTS-FDL. CaTTS-DL is designed as a
modeling language for applications, systems, and services (in particular, in the Web and
the Semantic Web) that require specific modeling and processing tools in the application
domain of time and calendars.

CaTTS-TDL provides a set of type constructors to define calendric types (that satisfy
Definition 3.2) like “day”, “week”, or “working day”. Such calendric types are declared by
defining predicates. Thus, in CaTTS a calendric type specifies a set in terms of a predicate.

In CaTTS, calendars (cf. Definition 3.8) are themselves “typed” by calendar signatures.
Typed calendars have essentially the same advantages as valid XML documents (“typed”
by a DTD or an XML Schema declaration). In particular, this makes CaTTS calendar
specifications reusable, maintainable, and easy to extend. Furthermore, CaTTS’ calendar
type definitions allow for user-defined calendar functions that parameterize calendars. For
example, one can parameterize any CaTTS calendar specification having a common “type”
by a calendar function mapping some defined calendar to another time zone. Calendar
functions specify parameterized calendars: a calendar function may be applied to each
calendar “typed” by the calendar type definition appearing as parameter of the calendar
function. Thus, calendar functions provide a means to specify different calendar versions
all having the same calendar type definition.

CaTTS-FDL provides with means to specify date formats for time and dates associated
with an internal integer index for each value of calendric types defined in a CaTTS-TDL
calendar specification.

4.1.1 Reference Time

Each CaTTS implementation has a single predefined (base) type called reference. refere-
nce is a base type, because it has no internal structure as far as the type system of CaTTS
is concerned. reference is a time unit such as “second” or “hour”, chosen e.g. depend-
ing on the operating system. If a CaTTS calendar specification refers to the reference

type, then all further (user-defined) types defined are expressed directly or indirectly in
terms of reference, using CaTTS’ aggregation and/or inclusion subtype constructors. If
reference is for example the calendric type “second”, a convenient choice with the Unix
operating system, then one can specify (using CaTTS-DL) coarser types such as “day”,
“week”, and “year” as well as finer types such as “millisecond”. The reference type makes
conversions among any other types defined in different CaTTS-DL calendar specifications
(in terms of aggregation and/or inclusion) possible.

In CaTTS’ prototype implementation, reference is the time unit “second” following
the Unix operating system with midnight at the onset of Thursday, January 1 of year 1970
(Gregorian) as fixed point indexed by 1.

98 4. The Language CaTTS

Note: CaTTS does not require calendar specifications to contain the pre-defined refe-

rence type. It is rather left to the programmer if his/her calendar specification requires a
connection with some “real time”, or if a mere symbolic specification is sufficient for his/her
intended needs. For example, planning the lectures in a teaching term at a university
usually does not require a connection to “real time”. However, if the pre-defined reference

type is not used in different CaTTS calendar specifications which shall be compared, the
programmer has to define a connection between the user-defined reference types of the
different calendars. A user-defined reference type is nothing more than an identifier, i.e. a
parameterless type constructor.

4.1.2 CaTTS-TDL: Type Definition Language

The language fragment CaTTS-TDL (for Type Definition Language) of CaTTS-DL gives
rise to define calendric data types specific to a particular calendar – such as “working day”,
“Easter Monday”, “exam week”, or “CS123 lecture” (defining the time when the Computer
Science lecture number 123 takes place).

4.1.2.1 Predicate Subtypes

In common-sense set theory, infinite sets are logically encoded by predicates: for any set A,
the predicate p : A→ B defines the set of those elements of A that satisfy (the predicate)
p. Such sets are called predicate sets. Examples of predicate sets are non-negative integers
(in set notation {x : Z | x > 0}) and integer lists with n ∈ N members (in set notation
{l : Z∗ | length(l) = n}).

In type theory, predicate sets are used to define dependent types [Hof97] as well as to
define types in specification languages of proof assistents and theorem provers [ROS98].
CaTTS uses predicate sets in different manners:

1. CaTTS uses predicate sets as a means to define time granularities like “month”,
“working day”, “teaching term”, or “exam week” as (calendric) types either in terms
of aggregation (according to Definition 3.5) or in terms of inclusion (according to
Definition 3.6) of another calendric type.

2. CaTTS uses type predicates as a means to define conversions between (values of)
calendric types. Such conversions are expressed in terms of conversion functions
(cf. Section 6.4), automatically generated from the types’ predicates defined in a
CaTTS-DL calendar specification.

Refinements: Defining finer Calendric Types. The predicate type constructor re-
finement defines calendric types finer than the pre-defined type reference or a user-
defined reference type. Refinements must be explicit aggregation supertypes of such a

4.1 CaTTS-DL: Definition Language 99

reference type. For example, a CaTTS-DL type defining milliseconds is defined as a re-
finement of reference as follows:1

type mi l l i s e c ond = refinement 1000 @ reference (1) ;

The calendric type millisecond is defined as a thousandth refinement of a second;
recall that in CaTTS’ reference implementation the type reference defines the time unit
“second” of the Unix operating system. millisecond partitions each second into intervals
of 1000 milliseconds, and, in turn, each second may now be represented by an interval of
milliseconds. Thus, the type millisecond is an aggregation supertype of the CaTTS-DL
type reference. The type millisecond is anchored at (denoted @) second 1 (denoted
reference(1)). In this way, millisecond(1) becomes the first millisecond in the interval
of milliseconds specifying the first second (i.e. reference(1)). Thus, in CaTTS, types
such as reference or millisecond induces clear integer indices of their values.

The indexing of values through type definitions in CaTTS-DL turns out to be extremely
useful in practice. Examples for indexing of the calendric types defined throughout this
section are illustrated in Figure 4.2, p.104. Of course, in addition to such an index one
may define a time and date format for the elements of the type millisecond (or any other
type defined in CaTTS-TDL) in CaTTS-FDL (cf. Section 4.1.3).

Aggregations: Defining coarser Calendric Types. To define calendric types which
are aggregation subtypes (according to Definition 3.5) of other (user-defined) calendric
types, CaTTS-DL provides with aggregation-based predicate type constructors.

For example, one can describe the calendric type “week” as the subset of those intervals
over the type “day” having a duration of 7 days and beginning on Mondays. This can be
directly expressed in CaTTS-DL as follows:

type week = aggregate 7 day @ day (1) ;

The calendric type week is an aggregation of days such that each of its elements corre-
sponds to an interval over type day with a duration of 7 days. The first week (i.e. week(1))
is anchored at (denoted @) day(1), i.e. the first day of the interval of days aggregated to
the element week(1). Any further index i can be computed relatively to this anchor by
applying the type’s predicate, i.e. aggregate 7 day @ day(1). The calendric type week

defined by the predicate week:day∗ → B (day∗ denotes the type of intervals of days, cf.
Appendix A) specifies the infinite set of those intervals constructed from day data, short
day intervals, satisfying the predicate of type week. The type week is an aggregation subtype
of the type day, written week � day.

In CaTTS-DL, aggregation subtypes which are partitions of other pre-defined or user-
defined types in CaTTS are constructed using CaTTS’ data type constructor aggregate.
CaTTS supports the definition of aggregations with elements of different durations involv-
ing often complex conditions (e.g. Gregorian or Hebrew months), as well. For example,

1In this example and the following examples, identifiers of user-defined type constructors begin with
lower case letters.

100 4. The Language CaTTS

Gregorian months, including the leap year conditions for the month February (including
the Gregorian leap-year rule), may be defined as a CaTTS-DL type as follows:

type month = aggregate
31 day named january ,
alternate month(i)
| (i div 1 2) mod 4 == 0 &&

((i div 1 2) mod 400 != 100 &&
(i div 1 2) mod 400 != 200 &&
(i div 1 2) mod 400 != 300) −> 29 day

| otherwise −> 28 day
end named f ebruary ,
31 day named march ,
30 day named ap r i l ,
31 day named may ,
30 day named june ,
31 day named ju ly ,
31 day named august ,
30 day named september ,
31 day named october ,
30 day named november ,
31 day named december

@ day (1) ;

The calendric type month is an aggregation of days such that each of its elements
corresponds to an interval over type day with a duration of either 28, 29, 30, or 31 days
within a repeating period of 12 months, i.e. the repetition of months in Gregorian years.

As demonstrated in this example, the different months defined can be named using
CaTTS’ reserved word named. The named “subsets” of the type month are locally defined
types. They actually define inclusion subtypes of the type month. The leap-year rule for
the Gregorian calendar is directly defined using a CaTTS alternate-expression to define
the type february. The div operator allows to refer to the year-index the corresponding
month-index is contained in. For example, month(23) is contained in year(1) (i.e. 23 div

12 == 1) according to the type declaration for type month as specified above.
The first month (i.e. month(1)) is anchored at (denoted @) day(1), i.e. the first day

of the interval of days aggregated to the element month(1). Any further index i can be
computed relatively to this anchor by applying the type’s predicate following the keyword
aggregate.

Aggregation subtypes defining only a portion of a partition of the base time line like
“weekend”, “working year”, or “academic term” may be constructed in two different man-
ners using CaTTS-TDL:

First, if such aggregation subtypes define periodic calendric types (with finite many
exceptions), i.e. types which can be defined by a periodically repeating pattern of intervals
of their aggregation supertype, like “weekend”, CaTTS’ previously introduced aggregate

4.1 CaTTS-DL: Definition Language 101

type constructor may be used. For example, assuming that a CaTTS type weekend day is
defined by the predicate set specifying those days which are either Saturdays or Sundays,
the CaTTS’ type weekend may be defined as follows:

type weekend = aggregate 2 weekend day @ weekend day (1) ;

The calendric type weekend is an aggregation of weekend days such that each of its
elements corresponds to an interval over type weekend day with a duration of 2 weekend
days. The first weekend (i.e. weekend(1)) is anchored at (denoted @) weekend day(1), i.e.
the first weekend day of the interval of weekend days aggregated to the element weekend(1).
The internal indexing of the type weekend is specified in the same manner as the indexing
of the previously defined type week by CaTTS’ language processor (cf. Figure 4.2, p.104).

Second, if such aggregation subtypes define non-periodic calendric types like “working
week” which cannot be defined by a periodically repeating pattern of (continuous) intervals
of their aggregation supertype, CaTTS-DL’s predicate type constructor “#<” (read as
“restricted aggregation”) may be used. This type constructor is a set-aggregation based
operation. Its definition refers to the aggregation of predicative sets. For example, assume
that a CaTTS type working day is defined by a predicate set specifying those days which
are neither weekend days nor holidays, the CaTTS’ type working week may be defined as
follows:

type working week = week #< working day ;

The calendric type working week is a restricted aggregation of working days into weeks
such that each of its elements correspond to an interval over type working day with varying
durations but aligned to the duration of weeks. Constructing working weeks in this way in
CaTTS-DL, the internal indexing of the type working week is aligned to that of the type
week (cf. Figure 4.2, p.104).

Let us turn our attention back to the anchor used when defining aggregation subtypes in
CaTTS-DL using the predicate type constructor aggregate. In all previously considered
examples, the anchor has been defined absolutely (denoted @, read “anchored absolutely
to”) to that of the corresponding aggregation supertype. Besides absolute anchoring,
CaTTS provides the possibility to define the anchor relatively (denoted ˜@, read “anchored
relatively to”) to that of the corresponding aggregation supertype. For example, to align
the indexing of Gregorian years with the actual year numbering in use today, the anchor
of the type year can be shifted such that the year previously indexed by 1 (1972, if a
connection to the reference type is assumed) is indexed by 1970 using CaTTS’ relative
anchoring construct as follows:

type year = aggregate 12 month @ month (1) ˜@ 1970 ;

Inclusions: Defining Calendric Types by selecting Subsets. To define calendric
types which are inclusion subtypes (according to Definition 3.6) of other (user-defined)
calendric types, CaTTS-DL provides with inclusion-based predicate type constructors.

102 4. The Language CaTTS

For example, one can describe the calendric type “weekend day” as the subset of those
elements of type “day” that are either Saturdays or Sundays. This can be directly expressed
in CaTTS-DL as follows:

type weekend day = select day (i) where
relative i in week >= 6 && relative i in week <= 7;

or alternatively as follows:

type saturday = select day (i) where relative i in week == 6;
type sunday = select day (i) where relative i in week == 7;
type weekend day = saturday | sunday ;

depending whether the programmer wants to refer not only to weekend days but also to
Saturdays and Sundays.

Considering the first possibility to model the calendric type weekend day in CaTTS-
DL, it is defined as a selection of those days which are between the 6th and the 7th day in
each week (denoted relative i in week >= 6 && relative i in week <= 7).

Considering the second possibility to model the (calendric) type weekend day in CaTTS-
DL, it is defined as a union (denoted |) of the types saturday and sunday. The type
saturday is a selection of the 6th day in each week (denoted relative i in week == 6)
and sunday a selection of the 7th day in each week. (Assuming that the day with index 1 is
a Monday.) The elements belonging to those types must thus satisfy those predicates. The
elements of the previously defined type weekend day must satisfy either the predicate of
type saturday or (“|”, read as “or”) the predicate of type sunday. The types saturday,
sunday, and weekend day are inclusion subtypes of the type day, written saturday ⊆
day, sunday ⊆ day, and weekend day ⊆ day. Furthermore, since the type weekend day

is constructed by union form types saturday and sunday and since this type must sat-
isfy either of those two types’ predicates, saturday and sunday are inclusion subtypes of
weekend day, as well.

Figure 4.2, p.104 illustrates the indexing of the previously defined inclusion subtypes
saturday, sunday, and weekend day. As illustrated, the indexing of inclusion subtypes
is successive. The indexing of any inclusion subtype is implicitly related to that of its
inclusion supertype, appropriately choosing the element indexed by 0 relative to that one
of the supertype. The indexing of the values of some inclusion subtype can be computed
from the type’s predicate.

CaTTS-DL provides different inclusion (predicate) subtype constructors, presented and
discussed in the following. The select type constructor (previously used to define the
types saturday, sunday, and weekend day) can be used to define a predicate subtype of
some type τ by specifying a predicate over the elements of type τ using (conjunctions)
of pre-defined constraints supported in CaTTS-DL. See Appendix A for the supported
syntactic forms. Additionally, three general set-theoretic operations, in particular union,
intersection, and set difference, are supported as predicate type constructors, written “|”
(read as “or”), “&” (read as “and”), and “\” (read as “except”). Assuming that a type
holiday is defined as a CaTTS type, the following types can be defined using those set-

4.1 CaTTS-DL: Definition Language 103

theoretic predicate type constructors:

type ho l iday or sunday = sunday | ho l iday ;
type hol iday on sunday = sunday & ho l iday ;
type weekday = day \ weekend day ;

The calendric type holiday or sunday defines the set of those days which are either
holidays or Sundays or both. The calendric type holiday on sunday defines the set of
those days which are both, Sundays and holidays. Finally, the calendric type weekday

defines the set of days except for weekend days.

Note: Those predicate type constructors for disjunctions, conjunctions, and exceptions
may only be applied to inclusion subtypes that have a common inclusion supertype (e.g.
day in the previously illustrated examples). This restriction is enforced with CaTTS’ type
checker that tests well-formedness of CaTTS-DL calendar specifications (cf. Chapter 6).

Groups: Defining Collections of Inclusion Subtypes. CaTTS-DL allows for defin-
ing groups which are named collections of inclusion subtype definitions introducing less
specific “kinds” a type explicitely belongs to. Group identifiers can be referred to in the
same way as type identifiers of types defined in a CaTTS-DL calendar specification.

For example, one can describe the (calendric) type of weekend days not only by a
CaTTS’ predicate type as previously illustrated, but also as a collection of the types
saturday and sunday in terms of a CaTTS-DL group. This can be directly expressed in
CaTTS-DL using the group constructor as follows:

group weekend day =
with select day (i) where relative i in week == j

type saturday where j == 6
type sunday where j == 7

end

The group weekend day collects (denoted by with ...end) the (locally) defined types
saturday and sunday. The group weekend day is defined as an inclusion subtype of type
day using CaTTS’ select ...where ... construct, however with a syntactic form dif-
ferent from the “usual” inclusion subtype constructions in CaTTS-DL: the (user-specified)
predicate following the reserved word where may contain place holders for constraints
(following the reserved word where) and/or for types (following the reserved word for)
instantiated with concrete values for each of the types contained in the respective group.
In the previously mentioned example, the specified predicate (i.e. relative i in week

== j) contains the constraint place holder j instantiated for type saturday with 6 and for
type sunday with 7.

Kinding. CaTTS’ typing features considered so far provide a means to define arbitrary
calendric types satisfying Definition 3.2 using type constructors (e.g. the type constructors

104 4. The Language CaTTS

day-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

week0 1 2 3

weekend0 1 2

saturday-1 0 1

sunday0 1 2

weekend day-1 1 30 2 4

Figure 4.2: Indexing of the types defined in Section 4.1.2.

for predicate types like reference, aggregate, and &) defining either aggregation sub-
types or inclusion subtypes. The elements of such types are (time) points with calendric
type such as “20.05.2005” of type day. Such elements are referred to as events in CaTTS.
The type of an event is denoted τ for every calendric type defined in a CaTTS-DL calendar
specification. We say that events have kind point.

In many applications, one would not only refer to events but also to more complex sets
of time like “my two weeks summer holidays” or “4 years”. To refer to such temporal
objects in some program or specification using CaTTS-DL, CaTTS provides in addition to
kind point, the kinds interval and duration.

Intervals: To define intervals (i.e. finite continuous sequences of elements of any
calendric type), the kinding operator ∗ (read as “interval of”) is useful for CaTTS. For
every calendric type τ (defined in CaTTS-DL), the type τ ∗ describes the set of those
intervals whose elements are drawn from τ . For example, day∗ is the type of intervals over
the type day, and “my summer holidays in 2004” is an element of this type. Such elements
are referred to as tasks in CaTTS.

CaTTS provides different value constructors with kind interval: An interval constructed
by its “ending points” has the form [t1..t2] with t1 and t2 both of type τ , e.g. “[09.12.2004..14.
12.2004]”. An interval constructed by its “starting point” (resp. “ending point”) and a du-
ration has the form d downto t (resp. d upto t) with t of type τ and d a duration over type
τ , e.g. “4 working day downto 09.12.2004” (resp. “4 working day upto 14.12.2004”). The
supported syntactic forms are summarized in Appendix A.

Durations: To define durations (i.e. the length of convex sequences of elements of
any calendric type), the kinding operator n (read as “duration of”) is useful for CaTTS.

For every calendric type τ (defined in CaTTS-DL), the type τn describes the set of those
durations whose elements are drawn from τ . For example, dayn is the type of durations of
days, and “the duration of my summer holidays in 2004” is an element of this type. Such
elements are referred to as durations in CaTTS.

CaTTS provides a single value constructor for elements of duration types of the form
n τ where n is a natural number with n > 0 and τ is the identifier of a calendric type

4.1 CaTTS-DL: Definition Language 105

defined in a CaTTS-DL calendar specification. For example, the element 2 working day

has type working dayn. The supported syntactic forms are summarized in Appendix A.

Note: Possible extensions of CaTTS with further kinding operators, for example for
generalized time intervals and appropriate value constructors are discussed in Chapter 7.

4.1.2.2 Calendar as Type

In programming languages like Modula 2, C, and SML modules are used as a means for
documentation of programs, abstraction of implementations, maintenance of large systems,
and reusability of software. Modules defined by DTDs or XML Schemas are used for similar
reasons. Furthermore, one might conceive any concrete problem implemented in OWL or
any other ontology language like an ontology of time as a (reusable) module, however with-
out providing any means of abstraction. CaTTS uses the ideas of modular programming
and abstraction by interpreting “calendars as types” for the following purposes.

• Define different views of a calendar specification by specifying different calendar
functions for this calendar.

• Reuse, combine, and extend calendars specified in CaTTS-DL in any (Semantic)
Web language if the language uses calendar data typed after CaTTS-DL calendar
specifications.

• Context aware interpretation of calendar data typed after calendars specified in
CaTTS-DL.

A CaTTS calendar specification (or a finite set of aligned CaTTS-DL calendar speci-
fications) is a calendar in terms of Definition 3.8, p.90. The basic entities of CaTTS-DL
calendar specifications are calendars, calendar signatures, and calendar functions.

Calendars. A calendar is a packaged, finite collection of CaTTS type definitions and
calendar specifications, assigning types to type identifiers, groups to group identifiers, and
calendars to calendar identifiers, similar to ML structures [MTH90] or XML documents
[W3C04a]. The types and calendars specified in a calendar are delimited by the keywords
cal and end. The following specification binds a calendar to the identifier Cal. This calen-
dar defines an environment mapping weekend day, week, and weekend to their respective
group and type definitions.

calendar Cal =
cal

group weekend day =
with select day (i) where relative i in week == j

type saturday where j == 6
type sunday where j == 7

106 4. The Language CaTTS

end
type week = aggregate 7 day @ day (1) ;
type weekend = week #< weekend day ;

end

The reserved word cal appears redundant in the previous example. It is useful for both
the programmer and the parser in case of nested calendar specifications.

The identifiers in a calendar are qualified. For example, the qualified identifier Cal.week
refers to the component week in the calendar definition Cal.

Calendar Signatures. A calendar signature is a kind of “type” for a calendar defined
in CaTTS-DL, similar to ML signatures [MTH90] or XML Schema declarations [W3C01].
Calendar signatures specify identifiers and abstract types in terms of inclusions or aggrega-
tions for each of the components of a calendar implementing the signature. The following
specification binds a calendar signature to the identifier SIG.

calendar type SIG =
sig

(∗”c : ” denotes the i n c l u s i on r e l a t i o n ”⊆” in CaTTS−syntax ∗)
group weekend day c : day ;

(∗ ”< :” denotes the agg rega t i on r e l a t i o n ”�” in CaTTS−syntax ∗)
type week < : day ;
type weekend < : weekend day ;

end

This calendar type definition describes those calendars having a group weekend day,
where each type belonging to must be an inclusion subtype of day, and types week as
aggregation subtype of day and weekend as aggregation subtype of weekend day. Since
the calendar Cal introduced above satisfies this calendar type definition, it is said to match
the calendar type definition SIG. Note that a defined calendar usually matches more than
one calendar type definition, and a calendar type definition may be implemented by more
than one calendar. Calendar type definitions in CaTTS-DL may be used to define views
of calendars due to ascription, i.e. specifying less components than implemented in any
matching calendar. The non-specified components are then local to the underlying calendar
specification.

Calendar Functions. Calendar functions are user-defined functions on calendars using
a syntax similar to function declarations in many programming languages such as SML.
A calendar function HebrewWeekend defining Hebrew weekend days can be declared in
CaTTS as follows:

cal fun HebrewWeekend (C: SIG) : SIG =
cal

group weekend day =
with select C. day (i) where relative i in C. week == j

4.1 CaTTS-DL: Definition Language 107

type f r i d ay where j == 5
type saturday where j == 6

end
end

The calendar function HebrewWeekend takes as argument any calendar C matching the
calendar type definition SIG, and yields as result a calendar also matching SIG. When
applied to a suitable calendar, the calendar function HebrewWeekend yields as result the
calendar whose group weekend day is that of (Hebrew) weekend days, i.e. Fridays and
Saturdays. Furthermore, any type definition in C depending on that of weekend day

is changed according to the calendar function HebrewWeekend when applied to C. For
example applying HebrewWeekend to the previously illustrated calendar definition Cal

yields a “new” group weekend day and the type weekend is changed, as well. Since the
calendar function HebrewWeekend may be applied to any calendar matching the signature
SIG (e.g. it can be applied to the Gregorian calendar if its specification matches the “type”
SIG), the function is polymorph, thus, it defines a parameterized calendar.

CaTTS provides with this mechanism to define functions used in type definitions to
ensure the advantages of modular programming. The advantages cover modularization,
maintenance, and reusability of (parts of) CaTTS calendar specifications. Modules increase
readability of CaTTS-DL calendar specifications.

Macros and Imports of External Functions. CaTTS allows for type definitions
containing functions defined elsewhere either externally (e.g. in a programming language
like Prolog, Haskell, or Java) or internally, i.e. in a CaTTS calendar specification.

Imports: Externally defined functions, e.g. a Prolog program, can be used within
CaTTS type definitions by importing the respective file(s) into some CaTTS calendar
specification using the reserved word import. For example, defining the calendric type
“Pentecost”, i.e. the set of days which are always 49 days after Easter Sunday, an externally
defined function computing Easter Sundays may be used as follows in a CaTTS-DL calendar
specification where easterSunday denotes the externally defined function for computing
the Easter Sunday in some year:

import easterSunday ;
. . .
type pentecos t = select day (i) where

shi f t easterSunday (j) forward 49 day == day (i) ;

CaTTS supports the import of externally defined functions to ensure that any calendric
type that may appear within a cultural or professional calendar can be expressed in CaTTS.

Macros: Internal function definitions are identified by the reserved word macro fol-
lowed by a macro identifier and its definition. The definition follow the equals sign using
syntactic forms defined with CaTTS (cf. Appendix A). For example, defining the type

108 4. The Language CaTTS

month in a CaTTS calendar specification (in terms of the Gregorian calendar), an inter-
nally defined function for computing leap years may be used as follows:

macro i sLeapYear (i) =
i mod 4 == 0 && i mod 400 != 100 &&
i mod 400 != 200 && i mod 400 != 300

type month = aggregate
31 day named january ,
alternate month(i)
| i sLeapYear (i div 12) −> 29 day
| otherwise −> 28 day

end named f ebruary ,
31 day named march ,
30 day named ap r i l ,
31 day named may ,
30 day named june ,
31 day named ju ly ,
31 day named august ,
30 day named september ,
31 day named october ,
30 day named november ,
31 day named december @ day (1) ;

Definitions of more complex macros in CaTTS-DL such as Easter Sunday are given in
[BHRS05].

4.1.3 CaTTS-FDL

With most applications, one would appreciate not to specify dates and times using indices
of the elements of CaTTS types like day(23) or second(-123), but instead date formats
like “5.10.2004”, “2004/10/05”, or “Tue Oct 5 16:39:36 CEST 2004”. CaTTS-FDL provides
a means to define date formats. As user-defined predicate types, user-defined date formats
are defined by a set of predicates. CaTTS’ constraint solver (cf. Chapter 5) is used to
compute to and from integer indices and user-defined date formats for any calendric type
defined in a CaTTS-DL calendar specification.

CaTTS-FDL date formats are defined by (none-recursive) regular grammars using syn-
tactic forms supported with CaTTS. A date format specification maps place holders to the
actual (numeric or in words) representation of a date. Each date is clearly associated with
the respective index of the element of the corresponding CaTTS-TDL type defined. The
programmer does not have to explicitly refer to grammars, but instead straightforwardly
define a date format in CaTTS-FDL. Let’s assume a CaTTS-DL calendar specification
with types defining Gregorian days, months, and years. Furthermore, we assume that
the CaTTS calendar specification uses CaTTS’ pre-defined reference type. Thus, the

4.1 CaTTS-DL: Definition Language 109

year “1972” is internally indexed by 1.2 For example, a standard date format for the
Gregorian days defined in the given CaTTS calendar specification according to the ISO
8601 Standard, e.g. “2004-11-12” (12th November 2004) can be defined in CaTTS-FDL as
follows:

format STD date : day = y ’-’ m ’-’ d where
STD date within year (y − 1972 + 1) ,
M i s 1 month ,
STD date within M,
m == relative index M in year ,
d == relative index STD date in month ;

This CaTTS-FDL format specification binds the variable STD date to an element of
type day. The date format itself is specified by a (user-defined) pattern (in this example
y ’-’ m ’-’ d) where y, m, and d represent numbers (or indices) computed according to
the formulated constraints. For example, the corresponding day index of the date “1972-
01-27” is computed in CaTTS as follows by evaluating the (user-defined) predicates: the
first condition (STD date within year(y - 1972 + 1) where y is 1972 in this example)
computes for the year-index 1 the interval of days contained, i.e. day(1) to day(366).
(Note that 1972 is a leap year.) The second condition (m == relative index M in year)
where m is 1 reduces the interval of possible days to those not only contained in the
considered year but also in the considered month of this year, i.e. the day interval day(1)
to day(31) remains.3 The last condition (d == relative index STD date in month)
where d is 27, further reduces the interval of days so that it satisfies this condition, i.e.
the day day(27) remains which actually is the corresponding internal index of the date
“1972-01-27”. In the same manner, the date format for the day day(27) can be computed.

Formats are grouped into (format) catalogs specifying to which calendar type definition
a set of formats can be applied. These catalogs may be nested, applying to common scoping
rules. For example, one could nest a catalog for the extended ISO standard date format
(having hyphens between year, month, and day identifiers) into a catalog for the ISO
standard date format (having no hyphens between the identifiers) as follows:

catalog ISO : STD =
cat

(∗ nes ted ca t a l o g f o r extended ISO formats ∗)
catalog Extended =

cat
format STD date : day = y ’-’ m ’-’ d where

STD date within year (y − 1972 + 1) ,
M i s 1 month ,
STD date within M,

2If this assumption is not made, the user has to specify a respective relation to the types’ indices within
his/her CaTTS-FDL date format definitions.

3M is 1 is a constraint that introduces a variable M of type month of values with duration 1.

110 4. The Language CaTTS

m == relative index M in year ,
d == relative index STD date in month ;

end
end

As with calendars, identifiers defined within a catalog are qualified, e.g. ISO.Extended.
STD date is the full name of the above format. Date formats specified in CaTTS-FDL may
be imported into a program in the language CaTTS-CL, XQuery, or any other language
using calendric data typed after CaTTS-DL calendar specifications by CaTTS’ import
mechanism for formats use format.

4.2 CaTTS-CL: Constraint Language

CaTTS-CL, CaTTS’ constraint language, is typed after CaTTS-DL type definitions. CaTTS-
CL is a language to declaratively express a wide range of temporal and calendric problems
over domains of calendric types. In particular, CaTTS-CL allows for modeling Constraint
Satisfaction Problems (CSPs) over events and tasks. Such problems are solved by CaTTS-
CL’s (multi-calendar) constraint reasoner (cf. Chapter 5).

4.2.1 Specifying Constraint Problems

Given a CaTTS-DL specification of the Gregorian calendar (with types “day”, “working
day”, and “month”) and CaTTS-FDL format specifications for types “day” and “month”,
the following (simple) appointment scheduling problem:

A person wants to plan a meeting of three working days after April 22nd 2005 and before
May 2005. A colleague’s visit of 5 days must overlap with the planned meeting.

can be formulated in CaTTS-CL as follows:4

Meeting i s 3 working day &&
Meeting after "22.04.2005" && Meeting before "05.2005" &&
Vi s i t i s 5 day && V i s i t overlaps Meeting

The variable Meeting represents the domain of three-working-day long intervals (de-
noted Meeting is 3 working day). The constraint Meeting after "22.04.2005" for-
mulates the condition that Meeting starts after the day "22.04.2005". The constraint
Meeting before "05.2005" formulates the condition that Meeting ends before the month
"05.2005". The variable Visit represents intervals of 5 days (denoted Visit is 5 day).
The constraint Visit overlaps Meeting formulates the condition that Visit and Meeting

such that Visit starts before Meeting starts and ends before Meeting ends and such that
there is at least one (working) day that is shared by both activities.

4In this and the following examples, constraint variables start with capital letters.

4.2 CaTTS-CL: Constraint Language 111

CaTTS-CL provides with language constructs to model (multi-calendar) appointment
scheduling problems such as the one previously mentioned over activities (cf. Definition
3.3) with durations (cf. Definition 3.4) referring to calendric types defined in some CaTTS-
DL calendar specification. Such activities (e.g. Meeting and Visit) are represented by
constraint variables. The CaTTS-CL constraint X is D relates to the variable X a domain
D. The domain D represents intervals (possibly with a known duration) over a calendric
type. For example, the constraint Visit is 5 day represents the domain of all five day
long intervals. In general, the domain D is specified by a (possibly unknown duration)
of a calendric type following the constraint is, i.e. by the constraint X is τ (read as “X
represents the domain of all intervals of values of the type τ”) or by the constraint X is

n τ (read as “X represents the domain of all intervals of duration n of values of the type
τ”), where X is a variable, n a natural number, and τ a calendric type defined in CaTTS-
DL. Examples for activities that are defined using such a CaTTS-CL calendar domain
constraint are Meeting and Visit as defined in the previously given example.

In addition to the calendar domain constraints to model activities, CaTTS-CL sup-
ports several time constraints. Such time constraints like before and overlaps (as used
in the previously given example) can be used to model “conditions” that must hold be-
tween activities like Meeting before "05.2005" and Visit overlaps Meeting. Such
time constraints (usually) restrict the domains of its variables according to the formulated
“conditions”. The time constraints provided with CaTTS-CL are, in particular, Allen’s
interval algebra [All83] and additional metric relations like shift...forward..., e.g. to
shift a day forward by 3 days. CaTTS-CL’s syntax is given in Appendix A.

4.2.2 Answers and Solutions to Constraint Problems

Answers and solutions to problems modeled in CaTTS-CL like the one discussed in the
previous section are computed by CaTTS’ constraint solver (cf. Chapter 5).

An answer to a problem specified in CaTTS-CL is itself a CaTTS-CL constraint, that
can no longer be simplified, i.e. no further rule of CaTTS’ constraint solver can be applied.
Thus, an answer corresponds to the result computed by CaTTS’ constraint solver. The
answer to the problem modeled in the section above is given by the following in CaTTS-CL:

Meeting i s 3 working day && V i s i t i s 5 day &&
Meeting after "22.04.2005" && Meeting before "05.2005" &&
Vi s i t overlaps Meeting &&
(begin of Meeting) within ["25.04.2005" . . "27.04.2005"] &&
(begin of Vi s i t) within ["21.04.2005" . . "24.04.2005"]

CaTTS’ constraint solver adds two new constraints to the problem which restrict the
possible starting days of the variables Meeting and Visit (denoted (begin of Meeting)

within ["25.04.2005".."27.04.2005"] and (begin of Visit) within ["21.04.2005"

.."24.04.2005"]). The constraint (begin of Meeting) within ["25.04.2005".."27.

04.2005"] has the following meaning: the first working day of the three working day long
meeting must be either the 25th, or the 26th, or the 27th of April 2004. The constraint

112 4. The Language CaTTS

(begin of Visit) within ["21.04.2005".."24.04.2005"] is interpreted respectively.
The user may ask the CaTTS system to compute (at least one) solution to the answer

given above.5 One possible solution to the answer given above in CaTTS-CL syntax is:

Meeting = ["25.04.2005" . . "27.04.2005"]
V i s i t = ["22.04.2005" . . "26.04.2005"]

With the above given solution, Meeting is bound (using the equality sign “=”) to the
interval starting at (working day) 25th April 2005 and ending (three working days later)
at (working day) 27th April 2005 (denoted ["25.04.2005".."27.04.2005"]). Similarly,
Visit is bound to the interval starting at (day) 22nd April 2005 and ending (five days
later) at (day) 26th April 2005.

Note: Answers and solutions are closely related: an answer is a compact, constraint-
based, representation of several solutions (e.g. the above given answer contains 3 possible
solutions). In some cases, an answer might contain unsatisfiable parts.6 As a consequence,
solutions are necessary. Solutions are computed by searching (using back tracking) the
answer. CaTTS-CL provides the user with the possibility to ask the system to compute
one (or all) possible solutions from an answer.

4.2.3 Programs

A CaTTS-CL program is a finite conjunction (expressed by the keyword &&) of CaTTS-CL
constraints Calendars defined in CaTTS-TDL are referred to by the use calendar con-
struct, data formats defined in CaTTS-FDL are referred to by the use format construct,
and external libraries are referred to by the import construct. The constraints specified
in a CaTTS-CL program are delimited by the reserved words prog and end. CaTTS’
complete syntax including the syntactic forms for CaTTS-CL are given in Appendix A.

4.3 Example: Modeling Calendars and Constraints in

CaTTS

This section illustrates CaTTS’ expressiveness to model cultural and professional calen-
dars using CaTTS-DL and a multi-calendar temporal reasoning problem using CaTTS-CL
referring to some of the calendric types specified in the example calendars.

In what follows, different cultural and professional calendars are modeled in CaTTS-
DL. To clarify CaTTS’ possibility to connect different calendars and thus to provide with
a means for conversions between arbitrary calendars, a CaTTS-DL calendar signature is

5A solution to a Constraint Satisfaction Problem is an assignment of values taken from the domains of
the variables, one to each variable, such that each of the specified constraints is satisfied.

6The reason for possible unsatisfiable parts results from constraint propagation that results in a locally
consistent Constraint Satisfaction Problem (CSP) (cf. Chapter 5). To ensure (global) consistency, solutions
may be computed by searching the reduced domains to some user’s request.

4.3 Example: Modeling Calendars and Constraints in CaTTS 113

calendar type STANDARD =
sig

type second ;
type minute <: second ;
type hour <: minute ;
type day <: hour ;
type week <: day ;
type month <: day ;
type year <: month ;
group day of week c : day ;

end

Figure 4.3: A CaTTS-DL calendar signature for standard calendars.

given first. Recall that CaTTS treats a (finite) set of such aligned calendars as a single
calendar specification. Any of the CaTTS-DL calendars modeled in the following matches
this calendar signature. The CaTTS-DL calendar signature given in Figure 4.3, assigned
to the identifier STANDARD describes standard calendar types that are matched by most
calendars.

4.3.1 Calendar Signature

In the calendar signature STANDARD given in Figure 4.3, second is a non-further specified
type identifier. second is intended to define a reference type. minute is specified as an
aggregation subtype of second (denoted type minute<:second). As it is the case for the
type specification of minute, the further common time units hour, day, week, month, and
year are specified as aggregation subtypes. The group specification day of week (i.e. a
finite set of related type specifications) is specified as an inclusion subtype of day (denoted
group day of week c:day).

Any calendar that matches the CaTTS-DL calendar signature STANDARD (cf. Figure
4.3) must at least declare (i.e. implement) the specified types considering the subtype
specifications. Any matching CaTTS-DL calendar may, of course, enrich the CaTTS-DL
calendar signature STANDARD.

4.3.2 Gregorian Calendar

In Figure 4.4 the standard Gregorian calendar is given in CaTTS-DL. The calendar is bound
to the identifier Gregorian which has “type” STANDARD (denoted Gregorian:STANDARD),
i.e. which matches the calendar signature for standard calendars given in Figure 4.3.

CaTTS allows for importing external libraries using the reserved word import. The
calendar Gregorian imports a library LeapSeconds, containing, among other things, a

114 4. The Language CaTTS

calendar Gregorian :STANDARD =
cal

import LeapSeconds ;
type second = reference ;
type minute = aggregate

alternate minute (i)
| i == 1051200 (∗ 1 .1 .1972 ∗) −> 70 second
| hasLeapSec ?(i) −> 61 second
| otherwise −> 60 second

end @ second (1) ;
type hour = aggregate 60 minute @ minute (1) ;
type day = aggregate 24 hour @ hour (1) ;
type week = aggregate 7 day @ day (−2);
type month = aggregate

31 day named january ,
alternate month(i)
| (i div 1 2) mod 4 == 0 &&

((i div 1 2) mod 400 != 100 &&
(i div 1 2) mod 400 != 200 &&
(i div 1 2) mod 400 != 300) −> 29 day

| otherwise −> 28 day
end named february ,
31 day named march ,
30 day named ap r i l ,
31 day named may ,
30 day named june ,
31 day named ju ly ,
31 day named august ,
30 day named september ,
31 day named october ,
30 day named november ,
31 day named december @ day (1) ;

type year = aggregate 12 month @ month (1) ˜@ 1970 ;
group day of week =

with select day (i) where relative i in week == j
type monday where j == 5
type tuesday where j == 6
type wednesday where j == 0
type thursday where j == 1
type f r i d ay where j == 2
type saturday where j == 3
type sunday where j == 4

end
end

Figure 4.4: The standard Gregorian calendar in CaTTS-DL.

4.3 Example: Modeling Calendars and Constraints in CaTTS 115

boolean function hasLeapSec? over minutes. Leap second insertion into UTC-time (recall
that reference is the time granularity of UTC-seconds) has started in 1972 (Gregorian);
10 leap seconds have been inserted into the first minute of the year 1972. In the present
CaTTS-DL modeling, the index of this minute is directly referred to. The type identifier
second is assigned to the predefined base type reference. The rules for the Gregorian
leap month February are expressed by a suitable combination of operations predefined in
CaTTS. The group day of week defines in a set the types for the seven Gregorian weekdays.
The weekdays are defined by CaTTS’ “relative in” predicate. The predicate of the group
day of week defined after the keyword where selects specific elements i of type day such
that they are the jth element relative in a week (denoted relative i in week == j). j
is a placeholder that is substituted for each of the cases for the weekdays. For simplicity
reasons, the internal indexing of this calendar is chosen relative to the Unix epoch (“1
January 1970” (Gregorian)). Any further type definition is straightforward following the
rules of the Gregorian calendar [DR01].

4.3.3 Hebrew Calendar

In Figure 4.5 the standard Hebrew calendar is given in CaTTS-DL. The calendar is bound
to the identifier Hebrew which has “type” STANDARD (denoted Hebrew:STANDARD), i.e. which
matches the calendar signature for standard calendars given in Figure 4.3.

The Hebrew day “23 Tevet 5730”, a Wednesday (yom revii) is the day correspond-
ing to the Unix epoch (“1 January 1970” (Gregorian)). To implement an alignment of
Hebrew regaim7 and halaqim8, i.e. Hebrew partitions of hours with CaTTS’ reference
type (and thus with the Gregorian calendar defined in CaTTS-DL which is given in Fig-
ure 4.4) a (shifted) refinement of CaTTS’ pre-defined reference type reference is de-
fined (denoted by ref = refinement 114 @ reference(-43199)). The type identifiers
second and minute are only used to match the Hebrew calendar with the standard sig-
nature STANDARD9. These two types define regaim and halaqim: rega is 5/114 usual sec-
ond (denoted type ref = refinement 114 @ reference(-43199) and then type rega

= aggregate 5 ref @ ref(1)) and a heleq aggregates 1080 regaim (denoted aggregate

1080 heleq @ heleq(1)). Further types are defined straightforward following the rules
of the Hebrew calendar according to those suggested in [DR01]. Note that Hebrew weeks
start on Sundays (yom rishon), and that the first month in any Hebrew year is Tishri.
Since Hebrew leap year computations depend on the Metonic cycle aligning 19 sun-based
years to 235 lunar-based months, the index 1 for Hebrew months is respectively moved
from “Tevet 5730” to “Nisan 5720” by resetting this month’s index (133) relatively to the
index 1 (denoted ~@133).

Now let us turn our attention to the functions newYearDelay?, isLeapAdarRishon?,

7Plural of rega.
8Plural of heleq.
9Whether such an alignment of the Hebrew calendar to the STANDARD calendar signature is appropriated

or not, does not have to be discussed here. The present example aims at showing that it is possible and
easy to express with CaTTS.

116 4. The Language CaTTS

calendar Hebrew :STANDARD =
cal

type r e f = refinement 114 @ reference (−43199);
type rega = aggregate 5 r e f @ r e f (1) ;
type he l eq = aggregate 76 rega @ rega (1) ;
type second = rega ;
type minute = he leq ;
type hour = aggregate 1080 he l eq @ he leq (1) ;
type day = aggregate 24 hour @ hour (1) ;
type week = aggregate 7 day @ day (−2);
type month = aggregate

30 day named nisan ,
29 day named iyyar ,
30 day named s ivan ,
29 day named tammuz ,
30 day named av ,
29 day named e l u l ,
30 day named t i s h r i ,
alternate month(i)
| newYearDelay ?(i) == 2 −> 30 day named long marheshvan
| otherwise −> 29 day named short marheshvan

end named marheshvan ,
alternate month(i)
| newYearDelay ?(i) > 0 −> 30 day named l o n g k i s l e v
| otherwise −> 29 day named s h o r t k i s l e v

end named k i s l e v ,
29 day named tevet ,
30 day named shevat ,
alternate month(i)
| isLeapAdarRishon ?(i) −> 30 day named adar r i shon
| otherwise none

end ,
29 day named adar shen i @ day (−21) ˜@ 133 ;

type adar = adar r i shon | adar shen i ;
type year = aggregate

alternate year (i)
| isHebrewLeapYear ?(i) −> 13 month
| otherwise −> 12 month

end @ month (7) @ month (7) ;
group day of week =

with select day (i) where relative i in week == j
type yom rishon where j == 5
type yom sheni where j == 6
type yom she l i s h i where j == 0
type yom rev i i where j == 1
type yom hamishi where j == 2
type yom shish i where j == 3
type yom shabbat where j == 4

end
end

Figure 4.5: The standard Hebrew calendar in CaTTS-DL.

4.3 Example: Modeling Calendars and Constraints in CaTTS 117

and isHebrewLeapYear. Such functions can be implemented in CaTTS-DL using the
macro construct. Any macro that is defined in a CaTTS-DL calendar can be used in
the same manner as any CaTTS-DL type defined by accessing indices. In the following
CaTTS-DL macro definitions for the three previously addressed functions used to model
the Hebrew calendar given in Figure 4.5 are specified:

macro newYearDelay ?(y) = i f ny2 − ny1 == 356 then 2
else i f ny1 − ny0 == 382 then 1
else 0 where

ny0 = y2ed ?(y − 1) ,
ny1 = y2ed ?(y) ,
ny2 = y2ed ?(y + 1) ;

macro y2em?(y) = (235∗y − 234) div 1 9 ;
macro m2y?(m) = i f y2em?(y) == em then y

else y + 1 where
em = m + 70852 ,
y = (19∗em + 234) div 235 ;

macro y2ed ?(y) = i f 3∗ (d + 1) mod 7 < 3 then d + 1
else d where

em = y2em?(y) ,
ep = 12084 + 13753∗em,
d = 29∗em + (ep div 25920) ;

macro isLeapAdarRishon ?(m) =
isLeapAdarRishonInCycle ? ((m mod 235) + 1) ;

macro i sLeapAdarRishonInCycle ?(i) =
i == 3 6 | | i == 7 3 | | i == 9 8 | | i == 135
| | i == 172 | | i == 209 | | i == 234;

macro isHebrewLeapYear ?(y) = (7∗ y + 1) mod 19 < 7 ;

The new year delay (denoted newYearDelay?(y)) is computed for Hebrew years y.
This macro uses three further macros: y2em?(y) computes the number of elapsed months
before the year indexed by y. m2y?(m) computes the year that contains an elapsed month
month(m). Finally, y2ed?(y) computes the number of elapsed halaqim before the year
indexed by y where em denotes the number of months elapsed and eq denotes the number
of part halaqim elapsed. The macro isLeapAdarRishon?(m) computes the last month in
a Hebrew year which depends on the Metonic cycle. The macro isHebrewLeapYear?(y)

merely applies the Hebrew leap year rule on Hebrew years.

4.3.4 An Academic Calendar

In the following, an enrichment of standard calendars matching the CaTTS-DL calendar
signature STANDARD (cf. Figure 4.3) modeling (fictive) academic calendar types is modeled
in CaTTS-DL. The calendar function given in Figure 4.6 binds the identifier Academic

to CaTTS-DL calendars which match the calendar signature STANDARD (denoted cal fun

Academic(C:STANDARD):STANDARD).

118 4. The Language CaTTS

cal fun Academic (C:STANDARD) : STANDARD =
cal

type term = aggregate
6 C. month named winter term ,
6 C. month named summer term

@ C. month (1 0) ;
type term break = select C. month(i) where relative i in term == 6;
type c 1 2 3 l e c t u r e = select C. hour (i) where

(relative i in C. monday) >= 8 &&
(relative i in C. monday) <= 10;

type c 0 815 l e c t u r e = select C. hour (i) where
(relative i in C. wednesday) >= 14 &&
(relative i in C. monday) <= 17;

group exam week = with select C. week (i) where max(relative i in P)
type winter exam for P = winter term
type summer exam for P = summer term

end
type weekend day = C. saturday | C. sunday ;
group ho l iday = with select C. day (i) where (relative i in M) == j

type new year where j == 1 for M = C. january
type a l l s a i n t s where j == 2 for M = C. november
type chr i s tmas where j == 25 for M = C. december

end
type day o f f = weekend day | ho l iday ;
type working day = C. day \ day o f f ;

end

Figure 4.6: An academic calendar in CaTTS-DL.

4.3 Example: Modeling Calendars and Constraints in CaTTS 119

(∗ CET: Centra l European Time , GMT + 1 hour ∗)
cal fun CET(C:STANDARD) : STANDARD =

cal
type day = aggregate 24 C. hour @ C. hour (2) ;

end
(∗ EET: Eastern European Time , GMT + 2 hours ∗)
cal fun EET(C:STANDARD) : STANDARD =

cal
type day = aggregate 24 C. hour @ C. hour (3) ;

end

Figure 4.7: Calendars in different time zones in CaTTS-DL.

The calendar function Academic specifies CaTTS-DL calendars defining (in addition
to the types defined in any calendar C matching STANDARD) academic calendar notions.
The type term, an aggregation subtype of type C.month (i.e. the type month which is
defined in the calendar C) defines winter terms and summer terms, each of a duration of
6 months where winter terms always begin in October (denoted @ C.month(10)). The
type term break denotes those months which are the 6th in each term, i.e. March and
September, denoted select C.month(i) where relative in in term == 6, specifying
an inclusion subtype of type C.month. The group exam week represents those examination
weeks which are the last weeks in each term (denoted max(relative i in P) where P

either refers to winter terms or to summer terms). The computer science lecture with
identifier cs123 lecture is an inclusion subtype of type hour, selecting the hours between
8 a.m. and 10 a.m on each Monday. Similarly, the computer science lecture with identifier
cs0815 lecture is an inclusion subtype of hour, selecting the hours between 2 p.m. and
5 p.m. on each Wednesday. Weekend days are all Saturdays and Sundays. The group
holidays defines some holidays common in western countries. The type day off specifies
those days which are either holidays or weekend days (denoted (weekend day|holiday),
and finally, working days are those days which are not free days (denoted C.day\day off).

4.3.5 Time Zones

Since CaTTS-DL’s pre-defined type reference corresponds to UTC-time and since UTC-
time is adjusted to the time zone Greenwich Mean Time (GMT), the previously modeled
calendars Gregorian (cf. Figure 4.4) and Hebrew (cf. Figure 4.5) correspond to this time
zone.

Any further calendar C also matching the CaTTS-DL calendar signature STANDARD

(cf. Figure 4.3), but which should refer to another time zone can be expressed by a (user-
defined) CaTTS-DL calendar function, redefining the definition of type day by choosing
suitable anchors for the considered time zones (cf. Figure 4.7). If the calendar function

120 4. The Language CaTTS

EET is applied for example to the calendar Gregorian or to the calendar Hebrew, then any
(aggregation and/or inclusion) subtype of day is respectively changed.

4.3.6 Date Formats

Apart from calendars themselves, formats used to render dates of the types of such cal-
endars also depend on culture, in particular in some common-sense use. For example the
order of units in a date format is frequently determined by the natural language they are
used in, for example

(US) “November fifth, two thousand three” → “11/5/2003”
(F) “Le cinq novembre deux mille trois” → “5/11/2003”
(D) “Fünfter November Zweitausenddrei” → “5.11.2003”
(J) “Nisensannen jūichigatsu itsuka” → “2003.11.5”

Roughly speaking, formats could be (and are in CaTTS-FDL) constructed from num-
bers and delimiters, both of which are of arbitrary representation and order. CaTTS-FDL
supports definition of any such format in an elegant and intuitive manner.

A definition of a so-called “catalog” of formats in CaTTS-FDL begins with the keyword
catalog. This is followed by an identifier and the actual collection of formats (within cat

and end). The definition given in Figure 4.8 binds a catalog of four formats to the identifier
SampleCatalog.

Every format is introduced by the keyword format immediately followed by an identifier
and a type signature, then by a format description (consisting of a series of identifiers
and/or string constants) and finally by a list of constraints relating the format to the
intended value. Inside these constraints, the identifier of the format serves as a constraint
variable representing the value of the format. For example, the corresponding CaTTS
internal day index of the US date “01/24/2005” is computed in CaTTS by inferring the
constraint specified in the format US in Figure 4.8 for each of the values of the identifiers
m, d, and y.

4.3.7 Multi-Calendar Appointment Scheduling Problem

Assume that a student’s fellow wants to visit his colleague during the term break of the
running term for 4 days such that the visit contains at least one weekend day (i.e. a
Saturday or a Sunday) and that he leaves at least one week before the examination week
starts. This scheduling problem (that refers to the Gregorian and the academic calendars
as previously specified in CaTTS-DL) can be straightforwardly expressed in CaTTS-CL as
follows:

The program identifier Visit is bound to the CaTTS-CL program within the keywords
prog and end. The program refers to two different CaTTS-DL calendar specifications,

4.3 Example: Modeling Calendars and Constraints in CaTTS 121

catalog SampleCatalog =
cat
format US: day = m "/" d "/" y where

US within year (y) ,
M i s month && US within M,
m == relative index M in year ,
d == relative index US in month ;

format French : day = d "/" m "/" y where
French within year (y) ,
M i s month && French within M,
m == relative index M in year ,
d == relative index French in month ;

format German : day = d "." m "." y where
German within year (y) ,
M i s month && German within M,
m == relative index M in year ,
d == relative index German in month ;

format JapanDot : day = y "." m "." d where
JapanDot within year (y) ,
M i s month && JapanDot within M,
m == relative index M in year ,
d == relative index JapanDot in month ;

format JapanRomaji : day = y "nen" m "gatsu" d DayReading where
JapanRomaji within year (y) ,
M i s month && JapanRomaji within M,
m == relative index M in year ,
d == relative index JapanRomaji in month ,
DayReading reads i f d <= 10 | | d mod 10 == 4 then "ka"

else "nichi" ;

(∗ a non−s tandard format f o r the Academic Calendar in Figure 4.6∗)
format AcademicBreak : term break = "Term_break" y where

AcademicBreak within year (y) ;
end

Figure 4.8: A sample catalog of various formats in CaTTS-FDL.

122 4. The Language CaTTS

program Vi s i t
prog

use calendar Gregorian ;
use calendar unqualified Academic (Gregorian) ;
use format unqualified AcademicBreak ;

V i s i t i s 4 Gregorian . day && V i s i t within "Term_break 2005" &&
X i s 1 weekend day && V i s i t contains X &&
Y i s 1 exam week && (sh i f t Vi s i t forward 7 Gregorian . day) before Y

end

Figure 4.9: A multi-calendar appointment scheduling problem in CaTTS-CL.

Gregorian (cf. Figure 4.4) and Academic(Gregorian)10 (cf. Figure 4.6). The calendars
are referred to using the use calendar construct. The types in the Academic calendar
may be referred to using short identifiers. The constraint Visit is 4 Gregorian.day

associates the variable Visit with a domain of intervals of 4 days. The condition that the
visit should be during the term break of the running term is expressed by the constraint
Visit within "Term break 2005" where "Term break 2005" is a CaTTS-FDL format
AcademicBreak (as specified in the catalog given in Figure 4.8), the program refers to (de-
noted use format unqualified AcademicBreak). The constraint X is 1 weekend day

&& Visit contains X formulates the condition that the visit must contain (at least) one
weekend day. Finally, the condition that the student-fellow leaves his friend at least one
week before the examination week starts is denoted by the constraint Y is 1 exam week

&& (shift Visit forward 7 Gregorian.day) before Y11.

10The calendar function Academic(C:STANDARD) is instantiated with the Gregorian calendar specifica-
tion in this program.

11Note that CaTTS’ current implementation does not allow for subtyping between durations to avoid
any form of imprecision. Thus, the duration of a week needs to be specified in terms of days in this
constraint.

Chapter 5

Constraint Reasoning with Calendric
Data

(Salvador Daĺı, 1904 – 1989)

So far, the calendar type language CaTTS, its language constructs to declaratively de-
fine both time granularities1 and calendars as types has been presented (cf. Chapter 4).
We have introduced CaTTS’ means to define multi-calendar temporal reasoning problems
using time constraints on calendric data referring to such calendric types (cf. Chapter 4).
Furthermore, CaTTS’ underlying interval-based time model with time granularities has
been formalized (cf. Chapter 3).

This chapter is dedicated to an approach to constraint-based reasoning on calendric
data in CaTTS to solve multi-calendar temporal reasoning problems, in particular, multi-
calendar appointment scheduling problems that can be expressed in the constraint language

1Recall that CaTTS provide with type constructors to define time granularities as calendric types by
specifying predicates.

124 5. Constraint Reasoning with Calendric Data

CaTTS-CL (cf. Section 4.2). CaTTS’ reasoner is based on a (specific form of) “theory
reasoning” (also known as “theory resolution”) [Sti85, BRS05, BM05], a well-known exam-
ple of which is paramodulation [RW69]. Like paramodulation ensures efficient processing
of equality in resolution theorem proving, CaTTS provides the user with convenient con-
structs for calendric types and efficient processing of data and constraints over those types.
This reasoner thus complements general purpose “axiomatic reasoning” approaches such
as ontology reasoning, frequently used in Semantic Web applications. CaTTS’ reasoner
refers to and relies on user-defined calendric types of calendars specified in CaTTS-DL.
This makes search space restrictions possible that would not be possible if calendars and
temporal notions would be specified in a generic formalism such as first-order logic and
processed with generic reasoning methods such as first-order logic theorem provers.

In CaTTS, multi-calendar temporal reasoning addresses the problem of finding free
time slots for related activities2 such as a meeting in the presence of various (temporal)
conditions. Such problems are called appointment scheduling problems. In the case of
multi-calendar appointment scheduling problems, such activities may refer to arbitrary
(cultural and/or professional) calendars. Multi-calendar appointment scheduling problems
can be conveniently modeled in the constraint system finite domains (FD) [FA97, MS98].
In such constraint systems, variables range over finite domains. Those constraint systems
form a well-studied and useful class of constraint problems which are often called Constraint
Satisfaction Problems (CSPs) in Artificial Intelligence. They are important because they
can be used to model combinatorial problems such as scheduling, timetabling, or plan-
ning which have widespread commercial applications. Specific to the approach to solve
multi-calendar temporal reasoning problems, and, in particular, appointment scheduling
problems that can be expressed in a finite domain framework, reported about in this chap-
ter, is that those problems involve different calendric types. Therefore, we suggest an
extension of the type system FD to typed finite domains, denoted typedFD. To support
conversions between domains of different calendric types, a conversion constraint is pro-
posed. Conversions are supported for any pair of calendric types defined in a CaTTS-DL
calendar specification. Conversions rely on and refer to the type predicates of calendric
types specified in some CaTTS-DL calendar specification.

At first, this chapter recalls the basic notions and concepts of Constraint (Logic) Pro-
gramming, in particular, CSPs, necessary to understand CaTTS’ constraint solver as pre-
sented in this chapter. Subsequently, it introduces the CSPs to be solved by CaTTS’
constraint solver, i.e. the problem of multi-calendar appointment scheduling by example.
The necessary extensions to the constraint system FD, in particular, typed finite domains
and the conversion constraint are introduced. Subsequently, the various constraints, called
calendric constraints to model multi-calendar appointment scheduling problems of CaTTS’
reasoner in this constraint system are introduced. The constraint propagation algorithm is

2The notion activity is frequently used in temporal reasoning, referring to objects with a temporal
extend [Apt03, FGV05]. In CaTTS, such activities are restricted such that they can be represented by
(finite) intervals over some calendric type.

125

given by a finite set of proof rules. A reference implementation of the algorithm in CHR
(Constraint Handling Rules) embedded into Sicstus Prolog is given in Appendix B. This
solver is proved to be complete. This chapter concludes with a section on the algorithm’s
complexity.

126 5. Constraint Reasoning with Calendric Data

5.1 Constraint Programming in a Nutshell

This section can be skipped by readers familiar with Constraint Programming.

This section briefly recalls the main aspects of Constraint (Logic) Programming, intro-
ducing its main concepts, in particular, the class of constraint problems which are so-called
Constraint Satisfaction Problems (CSPs) [FA97, MS98, Apt03]. It illustrates an example of
a well-known Constraint Satisfaction Problem. Furthermore, a formal framework for proof
rules and derivations convenient to specify constraint propagation algorithms for CSPs is
introduced.

Constraint Programming is an alternative approach to programming. Constraint Pro-
gramming is particularly used to solve those kinds of problems for which efficient algorithms
are lacking such as computationally intractable problems. For example combinatorial prob-
lems where each variable can be at most applied to finite many values (of the variable’s
domain) such as scheduling, timetabling, or planning.

The main difference to conventional programming is that in Constraint Programming
the problem to be solved is modeled by means of relations, expressing the relationships
between (partially unknown) objects, i.e. certain conditions that must hold between such
objects. Those objects are usually modeled by variables. Modeling a problem by means
of such relationships allows for more flexibility and for use of such programs for different
purposes. In principle, a constraint programming process is determined by generation of
requirements, so-called constraints, and a solution to these constraints by means of com-
bining general reasoning methods with domain specific reasoning methods. The former are
usually techniques to reduce the search space and specific search methods such as back-
tracking. The latter are special purpose algorithms for specific relations between objects
of a particular domain, so-called constraint solvers (implementing a specific constraint
propagation algorithm), such as an implementation of the unification algorithm.

In the last decades, Constraint Programming has been successfully applied in several
domains such as operations research (e.g. scheduling problems), business applications (e.g.
transporting and logistics), and molecular biology (e.g. DNA sequencing).

5.1.1 Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) consists of a finite set of relations, so-called con-
straints, over some domains. An example of a domain is a (finite) subset of the integers.
In practice, variables are used to represent those domains such that each variable is as-
sociated with a domain. A constraint over a finite sequence of variables is then a subset
of the Cartesian product of the variables’ domains. Relevant definitions are given in the
following, taken from [FA97, Apt03].

Definition 5.1 (Constraint Satisfaction Problem (CSP)). A Constraint Satis-
faction Problem (CSP) is a finite sequence of variables X := X1, . . . , Xn, n > 0 with
corresponding domains D := D1, . . . , Dn together with a finite set C of constraints, each on

5.1 Constraint Programming in a Nutshell 127

a subsequence of X .
A constraint C ∈ C on X is a subset of D1 × . . .×Dn. If C equals D1 × . . .×Dn, C is
solved.
A CSP is solved, if all its constraints are solved and no domain is empty, and failed
either if the CSP contains the false constraint, denoted ⊥, or if at least one of its domains
is empty.

CSPs are usually written as pairs 〈C;DE〉 where DE := X1 ∈ D1, . . . , Xn ∈ Dn. Xi ∈ Di

is called domain expression.
Intuitively, a solution to a CSP is a sequence of legal values for all of its variables such

that all its constraints are satisfied.

Definition 5.2 (Solution). Let 〈C;DE〉 a CSP, and let DE := X1 ∈ D1, . . . , Xn ∈ Dn.
An n-tuple (d1, . . . , dn) ∈ D1 × . . . × Dn is a solution to 〈C;DE〉 if for every constraint
C ∈ C on the variables Xi1 , . . . , Xim, (di1 , . . . , dim) ∈ C.
If a CSP has a solution, then it is consistent, otherwise inconsistent.

To solve a CSP, it is often transformed in a specific way until all solutions have been
found, or until it is clear that no solution exists, i.e. that the CSP is inconsistent. Such
transformations need to be such that their equivalence is preserved according to some
appropriate sense.

Definition 5.3 (Equivalence of CSPs). Let P1 and P2 two CSPs and let X a sequence
of common variables of P1 and P2.
P1 and P2 are equivalent if

• for every solution d to P1 a solution to P2 exists that coincides with d on the variables
in X , and

• for every solution d to P2 a solution to P1 exists that coincides with d on the variables
in X .

Note: Solved constraints can be deleted from any CSP without effect on equivalence.

In practice, one is usually interested in determining (one of) the following answers when
having modeled a problem as a CSP:

• Determine whether the CSP has a solution, i.e. whether the CSP is consistent.

• Finding a solution (resp. all solutions) to a CSP.

• Fining an optimal solution (resp. all optimal solutions) to a CSP according to some
quality measure.

In some cases, one is additionally interested in entailment of the CSP.

128 5. Constraint Reasoning with Calendric Data

•
•

•
•

Figure 5.1: One solution to the 4 queens problem.

5.1.2 Example

Let us consider a well-known CSP, the so-called n queens problem: the problem is to place
n queens on an n× n chess board, where n ≥ 4, so that they do not “attack” each other.
Two queens attack each other, if they are either in the same row, in the same column,
or in the same diagonal. Figure 5.1 illustrates an example with a solution for n = 4. To
represent this problem as a CSP, we use n variables X1, . . . Xn, each associated with the
domain 1..n. The idea is that the variable Xi represents the position of the queen on the
ith row. For example, the solution for n = 4 that is presented in Figure 5.1 corresponds to
the sequence of values [3, 1, 4, 2]. The appropriate constraints can be formulated in terms
of the following inequalities (over integers) for i ∈ 1..n− 1 and j ∈ i+ 1..n:

• Xi 6= Xj (i.e. no two queens in the same column)

• Xi − Xj 6= i − j (i.e. no two queens in the same diagonal from the top left to the
bottom right corner of the chess board)

• Xi−Xj 6= j − i (i.e. no two queens in the same diagonal from the bottom left to the
top right corner of the chess board)

All these constraints are inequalities. Thus, they can only be propagated if at least one
of the variables is associated with a value. To enumerate possible values for the variables,
a specific predicate is used. This specific predicate sequentially associates each variable
with each of its possible values from its domain.

5.1.3 Proof Rules and Derivations

In what follows, a formal framework for proof rules and derivations that is used to define
CaTTS’ constraint propagation algorithm is introduced. Those rules allow for a straight-
forward implementation of the algorithm.

Proof rules are of the form

φ
ψ

where φ := 〈C;DE〉 and ψ := 〈C ′;D′
E〉 are CSPs, assumed that φ is not failed and its set of

constraints is not empty. Where C and C ′ denote sets of constraints and DE and D′
E sets

of domain expressions.

5.2 Multi-Calendar Appointment Scheduling Problems 129

month

week

working day

day

1 (April 2005) 2

17 18 19 20
↑

20.4.2005 (Wednesday)

21 22 23 24 25 26 27 28 29 30 31 32
↑

1.5.2005 (Sunday)

13 14 15 16 17 18 19 20 21 22 23

4 5

Figure 5.2: Indexing of the calendric types addressed in Example 5.1.

Proof rules are distinguished between domain reduction rules and transformation rules.
In domain reduction rules, new domains are corresponding subsets of the old domains,
and the new constraints are corresponding restrictions of the old constraints to the new
domains. Transformation rules introduce or remove constraints without reducing domains.

Applying a proof rule to a CSP means that those parts in a CSP are replaced that
coincides with the premise by the conclusion. Furthermore, applying a proof rule restricts
the “old” constraints to the new domains in case the rule has reduced the domains. This
is done such that possible variable clashes are prevented.

Note: From the way the proof rules of CaTTS’ constraint propagation algorithm are
introduced in the subsequent sections, it will be clear that all of them are equivalence
preserving (w.r.t. a sequence of variables X), i.e. φ and ψ are equivalent (w.r.t. X) according
to Definition 5.3.

5.2 Multi-Calendar Appointment Scheduling Problems

Recall that the type language CaTTS provides with language constructs to conveniently
model cultural calendars like the Gregorian and Hebrew calendars or some professional
calendar (e.g. an academic calendar of a university) including various calendric types like
“month”, “week”, or “teaching term” using CaTTS’ type definition language CaTTS-
DL (cf. Section 4.1). Additionally, CaTTS provides with means to model multi-calendar
temporal reasoning problems, in particular, appointment scheduling problems over calendric
data referring to such types using CaTTS’ constraint language CaTTS-CL (cf. Section 4.2).

An example of a multi-calendar appointment scheduling problem that can be modeled
and solved in CaTTS is given in the following:

Example 5.1 (An Appointment Scheduling Problem). A person plans a meeting
lasting 3 working days after 20th April 2005 and before May 2005. A colleague’s visit of 1
week must overlap with the planned meeting.

To properly analyze and solve such a problem, we are led to an abstract analyze of
activities that take time, such as “meeting” and “visit”. In CaTTS, such activities can

130 5. Constraint Reasoning with Calendric Data

be identified with (time) intervals. Activities may refer to different calendric types. For
example, “meeting” refers to working days (i.e. Monday to Friday)3 while “visit” refers
to weeks. Figure 5.2, p.129 illustrates the different calendric types addressed in Example
5.1. Activities are temporally related – either to calendric information, for example “the
meeting must be before 20th April 2005” or relatively to each other, for example “the
visit must overlap the meeting”. Such temporal relations can be conveniently expressed
in terms of specific constraints which are called time constraints in CaTTS. In order to
apply such time constraints if the related variables have different calendric types, then the
variables’ domains have to be converted into domains that represent the equivalent sets
of times, however in another calendric type. For example, to apply the time constraint
“visit (in terms of weeks) overlaps with meeting (in terms of working days)” according to
Example 5.1, then the variables’ domains have to be converted into domains that represent
the equivalent sets of times, however in another calendric type. CaTTS supports such
conversions by means of a specific, novel constraint, called conversion constraint. The
conversion constraint relies on and refers to calendric types defined in some CaTTS-DL
calendar specification.

Appointment scheduling problems such as that illustrated in Example 5.1 can be con-
veniently modeled in a constraint network. Constraint networks are illustrated by directed
graph where the variables (with associated (finite) domains) are represented by nodes and
the constraints by directed arcs between those variables. In case of CaTTS’ multi-calendar
appointment scheduling problems, the nodes represent activities and the arcs represent
time constraints that must hold between those activities. In modeling activities, we differ
between events and tasks for efficiency reasons. An event X is defined by a time SX and
a calendric type τ . Domain expressions for events are represented by X :: n..m, τ where
n ≤ X ≤ m. For short, we write Xτ , read as “X has kind point over calendric type τ”.4 A
task X is defined by a starting time SX , a duration dX

5, and a calendric type τ . Domain
expressions for tasks are represented by X :: n..m + d−..d+, τ where n ≤ SX ≤ m and
n + d− − 1 ≤ EX ≤ m + d+ − 1. For short, we write Xτ∗ , read as “X has kind interval
over calendric type τ”. τ denotes a calendric type defined in some CaTTS-DL calendar
specification.

The appointment scheduling problem described in Example 5.1 can be represented by
the constraint network illustrated in Figure 5.3 according to the internal indexing illus-
trated in Figure 5.2, p.129: the domain expression “Meeting :: 1..∞ + 3..3, working day”
is read as follows. The variable “Meeting” which represents a task is associated with
the finite domain 1..∞ + 3..3, meaning that the possible starting time of the meeting is
any working day (denoted 1..∞, i.e. 1 less or equal than “start of Meeting” less or equal
than ∞), represented by its internal integer index and that “Meeting” has a duration of
(minimal and maximal) 3 (working days) (denoted 3..3). Possible values Meeting can be
instantiated with are the interval [1, 3] (i.e. [1, 1 + 3 − 1]), the interval [2, 4], etc. The

3One might also define the type “working day” by excluding weekend days and holidays in CaTTS-DL
and refer to those in CaTTS-CL.

4≤ denotes the finite domain constraint “less than or equal” over integers.
5From those two values the ending time EX can be easily computed: EX := SX + dX − 1.

5.2 Multi-Calendar Appointment Scheduling Problems 131

Meeting :: 1..∞+ 3..3, working day

“20.04.2005”:: 20..20, day “05.2005”:: 2..2, month

Visit :: 1..∞, week

6

overlaps

@
@

@
@

@@R

before
�

�
�

�
��	

after

Figure 5.3: Illustration of the appointment scheduling problem of Example 5.1 as constraint
network.

time constraint “Meeting after 20.04.2005” is modeled by a directed arrow. The domain
expression ““20.04.2005”:: 20..20, day” is read as follows. The variable “20.04.2005” which
represents an event is associated with the finite domain 20..20, i.e. 20 less or equal than
“20.04.2005” less or equal than 20, meaning that the possible day “20.04.2005” can be in-
stantiated with is the day indexed with 20 (according to Figure 5.2, p.129). The remaining
constraints and domain expressions which are illustrated in Figure 5.3 are modeled in the
same manner.

The idea to solve problems that can be modeled in such constraint networks is to re-
move those values from the domains of the variables that do not participate in a solution
to the problem.6 That is, each time a time constraint like “after” is applied, the domains
of the variables that participate in the domains are reduced. But if we try to apply the
time constraint “Meeting after 20.04.2005” according to Figure 5.3, the following problem
appears: “Meeting” is associated with a domain whose values are drawn from the cal-
endric type “working day” while “20.04.2005” refers to days; essentially, “Meeting” and
“20.04.2005” have different calendric types; thus, their associated domains cannot be com-
pared. For example, the index 20 from the domain of days refers to another extend of
time (i.e. 20th April 2005) than the index 20 from the domain of working days (i.e. 27th

April 2005) as illustrated in Figure 5.2, p.129. To overcome this problem, we have to
convert the domains of the variables participating in a time constraint such as “after” to
some appropriate “common calendric type”, apply the time constraint on the variables in
this common type and “relate” the domains’ representation in their original types to that
in the common type. This common type is inferred by CaTTS-CL’s subtype checker (cf.
Section 6.7). In particular, the join according to Proposition 3.1 is computed. In case of
the constraint “Meeting after 20.04.2005” that means that the set of (intervals of) working
days that is represented by the domain “1..∞ + 3..3, working day” must be represented

6Recall that a solution to a CSP is an assignment of each of the variables to values from their domains
such that all the constraints in the CSP are satisfied.

132 5. Constraint Reasoning with Calendric Data

Meeting :: 1..∞+ 3..3,
working day

-'� Meeting :: 1..∞+ 3..5, day

“20.04.2005”:: 20..20, day “05.2005”:: 31..31 + 31..31,
day

-'� “05.2005”:: 2..2, month

Visit :: 1..∞, week -'� Visit :: 1..∞+ 7..7, day

6

overlaps

@
@

@
@

@
@@R

before

�
�

�
�

�
��	

after

Figure 5.4: Illustration of the appointment scheduling problem of Example 5.1 with con-
version constraints as constraint network.

by an equivalent set of time intervals, however referring to days. This kind of “equivalence
relation” between variables that refer to different calendric types is supported by CaTTS’
conversion constraint, denoted with '. The appointment scheduling problem of Example
5.1 with conversions is illustrated in Figure 5.4. Now we can reduce the domains in the
domain expressions in this constraint network by applying the different time constraints
which always involve applications of the related conversion constraints: applying the time
constraint “after” on “Meeting” and “20.04.2005”, reduces the domain of “Meeting” such
that its smallest possible starting time is the day “21.04.2005”, i.e. Meeting :: 21..∞+3..5,
day7, and, therewith, Meeting :: 16..∞ + 3..3, working day according to the indexing
used in Figure 5.2. That is, we have removed all those days possibly starting the interval
“Meeting” that do not satisfy the constraint “Meeting after 20.04.2005”. We say, that
the constraint “after” propagates to the Meeting that it cannot start before “21.04.2005”
which, in turn propagates this information into an equivalent set expressed in terms of
working days. In the same way, we proceed by applying the remaining time constraints
until the CSP is not further reducible, i.e. until no further constraint propagation would
reduce any of the considered domains. The not further reducible CSP is illustrated in
Figure 5.5.

Once CaTTS’ constraint solver has reduced a CSP such as the one defined in Example
5.1 to an equivalent CSP that is not further reducible, this result is provided as an answer in
CaTTS-CL. The answer to the problem illustrated in Example 5.1 that would be computed
by CaTTS’ constraint solver (as illustrated in Figure 5.5) is given in the following:

7Note that the variable duration of this constraint (denoted 3..5) results from the conversion: three
consecutive working days might be Friday-Monday-Tuesday. In terms of days this would be Friday-
Saturday-Sunday-Monday-Tuesday, i.e. 5 days.

5.2 Multi-Calendar Appointment Scheduling Problems 133

Meeting :: 16..17 + 3..3,
working day

-'� Meeting :: 21..22 + 3..5, day

“20.04.2005”:: 20..20, day “05.2005”:: 31..31 + 31..31,
day

-'� “05.2005”:: 2..2, month

Visit :: 4..4, week -'� Visit :: 18..18 + 7..7, day

6

overlaps

@
@

@
@

@
@@R

before

�
�

�
�

�
��	

after

Figure 5.5: Illustration of the answer to the appointment scheduling problem of Example
5.1 as constraint network.

Example 5.2 (An Appointment Scheduling Problem: Answer). The meeting last-
ing 3 working days must either start at working day 21st April 2005 or at working day 22nd
April 2005. The 1 week visit must be the 4th week in April 2005, i.e. the week from 18th
April 2005 to 24th April 2005.

The solutions to this answer that can be requested by the user in CaTTS-CL are given
in Example 5.3. A solution is computed by searching the reduced CSP using backtracking.
The solutions to the considered problem are given in the following:

Example 5.3 (An Appointment Scheduling Problem: Solutions).

1. The meeting starts at working day 21st April 2005 and ends (three working days
later) at working day 25th April 2005 and the visit is the 4th week of April 2005 (i.e.
the week from 18th April 2005 to 24th April 2005).

2. The meeting starts at working day 22nd April 2005 and ends (three working days
later) at working day 26th April 2005 and the visit is the 4th week of April 2005 (i.e.
the week from 18th April 2005 to 24th April 2005).

The previously illustrated and discussed appointment scheduling problem can be mod-
eled in CaTTS-CL as follows8:

(∗ the appointment s chedu l i n g problem accord ing to Example 5.1 , p .129 ∗)
Meeting i s 3 working day &&
Meeting after "20.04.2005" && Meeting before "05.2005" &&
Vi s i t i s 1 week && V i s i t overlaps Meeting

8Assuming that the date formats used are specified in CaTTS-FDL (cf. Section 4.1.3).

134 5. Constraint Reasoning with Calendric Data

(∗ the answer to t h i s problem accord ing to Example 5.2 , p .133 ∗)
Meeting i s 3 working day &&
(begin of Meeting) within ["21.04.2005" . . "22.04.2005"] &&
V i s i t i s 1 week && (begin of Vi s i t) within ["W04.2005" . . "W04.2005"]

(∗ the s o l u t i o n s to t h i s problem accord ing to Example 5.3 , p .133 ∗)
(Meeting = ["21.04.2005" . . "25.04.2005"] && V i s i t = "W04.2005") | |
(Meeting = ["22.04.2005" . . "26.04.2005"] && V i s i t = "W04.2005")

5.3 The Underlying Constraint System

In the following, we consider the formal constraint theory and its embedding constraint
system underlying CaTTS’ constraint solver to model and to solve multi-calendar ap-
pointment scheduling problems such as the problem illustrated in Example 5.1. For the
definition of the constraint system, we use an abstract syntax. A constraint system for-
mally defines the set of allowed constraints along with their specifications. The constraint
theory restricts the possible interpretations of the constraint symbols. In the subsequent
Section 5.4, CaTTS’ calendar constraints which can be expressed in terms of the allowed
constraints of the underlying constraint system are introduced.

Multi-calendar appointment scheduling problems such as that illustrated in Exam-
ple 5.1 can be conveniently modeled using the constraint system FD (finite domains)
[FA97, MS98]. Since CaTTS deals with different calendric types, the original constraint
system FD needs to be extended in a certain sense. In particular, the constraint system
underlying CaTTS’ constraint solver is based on a typed constraint system over finite do-
mains including a novel kind of constraint, called conversion constraint to related domain
expressions of different calendric types to each other. A definition of the constraint system
typedFD underlying CaTTS’ constraint solver is given in the following:

Definition 5.4 (Constraint System typedFD). The constraint system typedFD is a
triple (Σ, CT, C) where

• the signature Σ consists of

– function symbols: integers, lists, +, and

– constraint symbols: =, ≤, <, >, ≥, 6=, ::, ',

• the constraint theory CT is Presburger Arithmetic, i.e. a linear fragment of the
integer arithmetic including natural numbers, +, and =, and

• the set C of allowed constraints

C := true | false | X :: n..m, τ | X :: [k1, . . . , kl], τ | Xτ � Y τ |
Xτ + Y τ = Zτ | Xσ ' Y τ | C ∧ C

where

5.4 Calendric Constraints 135

• n,m, k1, . . . , kl are integers of type (also called sort in logics) τ , 1 ≤ l,

• � ∈ =,≤, <,>,≥, 6=,

• Xτ , Y τ , Zτ variables or constants over type τ , and

• τ , σ types.

Note: Presburger Arithmetic is complete and decidable. Extending the underlying con-
straint theory of the constraint system typedFD to Peano Arithmetic (including ∗ and
induction principle) would lead to an incomplete constraint theory.

Disregarding the conversion constraint Xσ ' Y τ , the constraint system underlying
CaTTS’ constraint solver is a typed version of the constraint system FD [FA97, MS98].
In the constraint system typedFD, each type represents a calendric type defined in some
CaTTS-DL calendar specification. The additionally introduced conversion constraint, de-
noted Xσ ' Y τ , is a novel constraint introduced with CaTTS’ constraint solver. This
conversion constraint provides with means to related domains of different calendric types
to each other such that both domains refer to the same amount of time, however ex-
pressed in different calendric types. That is, the conversion constraint represents a kind of
equivalence relation between domains represented in different types. Conversions become
necessary whenever calendric data of different calendric types need to be compared in an
appointment scheduling problem modeled in CaTTS-CL.

Let us turn attention to the domain expressions: X :: Dτ means that X ∈ Dτ , i.e. the
variable X represents the domain Dτ of values over τ . Two different representations for
the domains are possible:

• X :: [k1, . . . , kl], τ denotes an enumeration domain, i.e. X = k1 ∨ . . . ∨X = kl, and

• X :: n..m, τ denotes an interval domain, i.e. n ≤ X ∧X ≤ m.

The representation of CaTTS-CL calendar domains in the application of the constraint
system typedFD (cf. Definition 5.4) to model multi-calendar appointment scheduling prob-
lems as well as the implementation of the constraints provided with CaTTS-CL over such
domains, i.e. activity constraints, time constraints, and conversion constraints expressed
in the constraint system typedFD are introduced and discussed in the subsequent Section
5.4.

5.4 Calendric Constraints

CaTTS’ constraint solver applies the constraint system typedFD (cf. Definition 5.4) to
model and solve multi-calendar appointment scheduling problems which can be modeled
in CaTTS-CL such as that illustrated in Example 5.1, p.129. The constraints supported
by this solver are referred to as calendric constraints which are defined over calendar do-
mains. CaTTS’ constraint solver supports three different kinds of calendric constraints:

136 5. Constraint Reasoning with Calendric Data

∀α, β.(α :: τ ∨ α :: τ∗),
(β :: σ ∨ β :: σ∗)

C ::= true | false | X :: n..m, τ | X :: n..m + dX , τ | dX :: d−..d+, τ |
iX :: [i1, . . . , il], τ | Xα R Y α | dXα � dY α | M XαdY α = Zα |
I iXστ � i | E Xα = Y τ | I Xτ = iXτ | D Xα = dXα |
Xα ' Y β | C,C

where
τ, σ calendric type defined in a CaTTS-DL calendar specification
X, Y, Z variable
Xτ variable X has kind point of type τ
Xτ∗ variable X has kind interval of type τ
dX variable associated with duration domain of activity X
iX variable associated with index domain of activity X
E ∈ {begin of, end of}
I ∈ {index}
D ∈ {duration}
R ∈ {equals, before, after, starts, started by, finishes, finished by,

meets, met by, during, contains, overlaps, overlapped by,
within, on or before, on or after}

� ∈ {=, <,≤,≥, >, 6=}
M ∈ {shift forward, shift backward, extend by, shorten by}
I ∈ {relative in, relative to}
n, m, d−, d+, i1, il, i integers

Table 5.1: The abstract syntax of the language CLcatts.

activity constraints to model calendar domain expressions (that consist of a variable and
a calendar domain), time constraints to model temporal relations between calendar do-
mains over the same calendric type, and the conversion constraint to model conversions
between calendar domains of different calendric types. The conversion constraint defines
an equivalence relation between the calendar domains of activity constraints of different
calendric types. Those conversion constraints relay on and refer to calendric types defined
in some CaTTS-DL calendar specification. In particular, the conversion constraint applies
conversion functions (cf. Section 6.4) generated from the type predicates. The abstract
syntax of the language of CaTTS’ constraint solver, called CLcatts that is used throughout
this text is given in Table 5.1.

5.4 Calendric Constraints 137

Constraint: Definition Description:
X :: n..m, τ n ≤ X ≤ m interval domain expression for

events
X :: n..m + d−..d+, τ n ≤ SX ≤ m ∧ interval domain expression for

n + d− − 1 ≤ EX ≤ m + d+ − 1 tasks
SX :: n..m, τ interval domain expression for

starting time SX of X
dX :: d−..d+, τ interval domain expression for

duration dX of X
EX :: nE ..mE , τ nE := n + d− − 1, interval domain expression for

mE := m + d+ − 1 ending time EX of X
iX :: [i1, . . . , il], τ iX = i1 ∨ . . . ∨ iX = il enumeration domain expression for

index iX of X

Table 5.2: Activity constraints.

5.4.1 Activity Constraints

Activity constraints represent specific calendar domain expressions, denoted ∀α. α :: τ∨α ::
τ ∗. X ∈ Dα where X is a variable and Dα is the calendar domain that is associated to
X. ∀α. α :: τ ∨ α :: τ ∗ is a kinding expression read as “for all CaTTS types α which are
either of kind point of some type τ , written α :: τ , or of kind interval of some type τ ,
written α :: τ ∗”. That means, X either refers to a time point or to a time interval in some
calendric type τ defined in a CaTTS-DL calendar specification. If X refers to time points,
we say that X is an event. Events are used to represent point-like data like “22nd April
2005” or the starting day of a week. If X refers to time intervals, we say that X is a task.
Tasks are used to represent intervals (with specific durations) like “from 22nd April 2005
until 24th April 2005” or “the last two weeks in April 2005”.9 In particular, we only take
into account the fact that activities (i.e. events and tasks) take a finite, continuous period
of time, expressed in some calendric type defined in a CaTTS-DL calendar specification.10

Recall that CaTTS’ underlying time model is interval-based and discrete (cf. Chapter 3).
Thus, events and tasks both refer to (convex) intervals in time. A differentiation is made
in the internal presentation of the activities’ domains for efficiency reasons. The activity
constraints are summarized in Table 5.2.

In the case that activities have a duration and take a finite, continuous period of time
according to a calendric type, they can be identified with closed, non-empty intervals of
(integer) indices of calendric types defined in some CaTTS-DL calendar specification. Such
intervals are written [a, b] where a ≤ b where a is the starting point and b the ending point

9The notions “event” and “task” are taken from research on “planning” and “scheduling”, well-known
kinds of CSPs over finite domains [FA97].

10Constraint reasoning over possibly non-continuous activities with calendric types, for example (infinite)
periodic activities like someone’s consultation hours is a further (more complex) reasoning problem that
might appear with multi-calendar appointment scheduling problems. Although it is an interesting, yet,
unsolved constraint problem over calendar domains, it is not considered within this research project.

138 5. Constraint Reasoning with Calendric Data

of the interval. If such an interval refers to an event, then a = b.11

5.4.1.1 Events

Events represent point-like calendric data such as “22.4.2005” or the starting day of a
week. In particular, events represent single values of a calendric type like “22.4.2005” of
type “day” or “05.2005” of type “month”. Recall that in a CaTTS-CL program (cf. Section
4.2) an event can be declared as follows:

X i s 1 day

This CaTTS-CL activity constraint is read as follows: the variable X represents an
event of type day. That is, X can be assigned to any value of type day with duration
1 (day). In terms of Constraint Programming, we say that the variable X represents
the domain of days, written X ∈ Dday, where Dday := {x | x : day}. Such domain
constraints are implemented by (ordinary) finite domain constraints (over integers) in the
constraint system typedFD which are represented in terms of interval domains. Specific
to the constraint solver of CaTTS is, that such domain expressions additionally have a
calendric type attached. In terms of finite domain constraints in the language CLcatts, the
activity constraint X ∈ Dday is represented as follows by an interval domain constraint in
the constraint system typedFD:

X :: n..m, day, i.e. n ≤ X ∧X ≤ m.

where n,m ∈ Z represent indices in type day.

CaTTS-CL constraints to model events are transformed into such activity constraints
in the language CLcatts which can be handled by CaTTS’ constraint solver. Transformation
of CaTTS-CL into CLcatts is introduced in Chapter 6.

5.4.1.2 Tasks

Tasks represent calendric data with finite durations such as a visit that lasts for five days.
In particular, tasks represent finite, continuous sequences of values of a calendric type like
“from April 22nd 2005 until April 24th 2005” of type “day” or “the last two weeks in April
2005” of type “week”. Such sequences can be always represented by their starting points
and their duration both in a calendric type, for example “from April 22nd 2005 until April
24th 2005” can be represented by its starting point “April 22nd 2005” and its duration “3
day”. Recall that in CaTTS-CL (cf. Section 4.2) a task can be declared as follows:

X i s 3 day

11Since CaTTS’ underlying time model is purely interval-based, activities can be identified with closed
intervals. For example, the interval “20.04.2005” meets the interval “21.04.2005” and there exists no
(durationless) time point that might be true at “20.04.2005” and “21.04.2005”.

5.4 Calendric Constraints 139

This CaTTS-CL activity constraint is read as follows: the variable X represents a task
of type day∗ with duration 3 (days). Recall that τ ∗ denotes the kind of intervals of type τ .
That is, X can be assigned to any value of type day∗ that has a length of 3 (days). In terms
of Constraint Programming, we say that the variable X represents the domain of intervals
of days of duration 3 (days), writtenX ∈ Dday∗ , whereDday∗ := {x+d | x : day ∧ d : dayn};
in this example, d = 3. Recall that τn denotes the kind of durations of type τ . Such ac-
tivity constraints are implemented by (specific) finite domain constraints (over integers) in
the constraint system typedFD with the following representation: starting times are rep-
resented by finite domain constraints (over integers) in the constraint system typedFD in
terms of interval domains. Durations (which are added to the starting times) are also rep-
resented by finite domain constraints.12. Specific to the constraint solver of CaTTS is, that
such calendar domain constraints additionally have a calendric type attached. In terms
of finite domain constraints in the language CLcatts, the activity constraint X ∈ Dday∗ is
represented as follows:

X :: n..m+ d−..d+, day, i.e. n ≤ SX ∧ n+ d− − 1 ≤ EX ∧ SX ≤ m ∧ EX ≤ m+ d+ − 1.

where n,m ∈ Z represent indices in type day and d−, d+ ∈ Z represent durations in type
day. Recall that SX denotes a starting time of the (time) interval represented by X and EX

an ending time of this interval with EX := SX +dX−1 where SX = n..m and dX = d−..d+.

CaTTS-CL constraints to model tasks are transformed into such activity constraints in
the language CLcatts which can be handled by CaTTS’ constraint solver. Transformation
of CaTTS-CL into CLcatts is introduced in Chapter 6.

5.4.2 Time Constraints

CaTTS provides with a considerably large set of time constraints over the calendar domains
of activity constraints. Time constraints are used to specify the (temporal) conditions that
must hold between different activities in a multi-calendar appointment scheduling problem
such as that illustrated in Example 5.1. For example “the meeting must be before May
2005 and after 20th April 2005” and “the visit must overlap with the meeting 2 days”.
Table 5.3 summarizes the time constraints supported in CLcatts. Those time constraints
are the time constraints supported by CaTTS-CL (cf. Table A.4), but on calendar domains
with the same calendric type. The translation of CaTTS-CL time constraints into CLcatts

time constraints and conversion constraints is introduced in Chapter 6. CaTTS’ conversion
constraint is introduced in the subsequent Section.

The definitions of CLcatts time constraints in terms of finite domain constraints in the
constraint system typedFD are illustrated in Figure 5.6, Figure 5.7, and Figure 5.8: each
time constraints is defined by a set of built-in arithmetic constraints {=,≤, <,≥, >6=}

12Durations need to be represent by interval domains to meet conversion constraints. For example,
converting months to days yields in a range of durations form 28 to 31 (days) if the Gregorian calendar is
used.

140 5. Constraint Reasoning with Calendric Data

time constraints, X, Y ∈ τ :
X :: SX + dX , EX := SX + dX − 1
Y :: SY + dY , EY := SY + dY − 1

X equals Y X

Y

X before Y
Y after X := X before Y

X

Y

X starts Y
Y started by X := X starts Y

X

Y

X finishes Y
Y finished by X := X finishes Y

X

Y

X during Y
Y contains X := X during Y

X

Y

X meets Y
Y met by X := X meets Y

X

Y

X overlaps Y
Y overlapped by X := X overlaps Y

X

Y

X within Y := X equals Y ∨ X starts Y ∨ X finishes Y ∨ X during Y
X on or before Y := X equals Y ∨ X before Y X on or after Y := Y on or before X

definition on end points:

SX = SY ∧ EX = EY

SX ≤ EX < SY ≤ EY

SX = SY ≤ EX < EY

SY < SX ≤ EX = EY

SY < SX ≤ EX < EY

SX ≤ EX = SY ≤ EY

SX < SY < EX < EY

Figure 5.6: Illustration of CLcatts time constraints that define interval relations on activities.

5.4 Calendric Constraints 141

time constraints, X, Y ∈ τ :
X :: SX + dX , EX := SX + dX − 1
Y :: SY + dY , EY := SY + dY − 1

definition on end points:

begin of(X,Y) X Y= SX

end of(X,Y) X Y = EX

index(X,Y) X Y = iX

shift forward(X,d,Y)
shift backward(Y,d,X) := shift forward(X,d,Y)

X d. Y SX + d = SY

EX − d = EY

extend(X,d,Y)
shorten(Y,d,X) := extend(X,d,Y)

X d.
Y

SX = SY

EX + d = EY

relative in(iX ,τ ,i), X ∈ σ
X X

τ
σi i

σ in τ(iX)

relative to(iX ,τ ,i), X ∈ σ
X X

τ
σi i

σ to τ(iX)

Figure 5.7: Illustration of CLcatts time constraints that define metric relations on activities.

142 5. Constraint Reasoning with Calendric Data

Constraint: Description:
∀α.(α :: τ ∨ α :: τ∗)
Xα R Y α interval relations between Xα and Y α

dXα � dY α comparisons of durations of Xα and Y α

M XαdY α = Zα shift in time or alternation of the duration of Xα by
duration of Y α to Zα

I iXστ � i relating indices of Xσ relative to values from τ such that iXσ in τ � i
E Xα = Y τ ending point of Xα

I Xτ = iXτ index of Xτ

D Xα = dXα duration of Xα

where

R ∈ {equals, before, after, starts, started by, finishes, finished by,meets, met by,
during, contains, overlaps, overlapped by, within, on or before, on or after}

� ∈ {=, <,≤,≥, >, 6=}
M ∈ {shift forward, shift backward, exten by, shorten by}
I ∈ {relative in, relative to}
E ∈ {begin of, end of}
I ∈ {index}
D ∈ {duration}

Table 5.3: Time constraints.

on activity starting and ending times and/or durations. This is possible since the starting
and ending times and the durations of activity constraints are represented by finite domain
constraints (over the same calendric type) in the constraint system typedFD.

5.4.3 The Conversion Constraint

As already mentioned above, CaTTS’ constraint solver propagates time constraints in
the language CLcatts like “after” only for activities over the same calendric type. To
propagate activities of different calendric types in a CSP defined in CaTTS-CL, and, thus,
in the language CLcatts of CaTTS’ constraint solver, the domains of those activities need
to be related to each other such that they become comparable. For this purpose, CaTTS
provides with a novel constraint, the conversion constraint, written ∀α, β. (α :: τ ∨α :: τ ∗),
(β :: σ ∨ β :: σ∗) Xα ' Y β, and read as “for all types α, either of kind point or interval of
calendric type τ and β, either of kind point or interval of calendric type σ, X (of type α)
is related in the equivalence relation ' to Y (of type β)”. Thus, the conversion constraint
Xα ' Y β defines a certain kind of equivalence relation between the activities Xα and
Y β: the activities Xα and Y β represent the same continuous, amount of time, however,
expressed in terms of different calendric types.

5.4 Calendric Constraints 143

time constraints, X, Y ∈ τ :

duration(X,Y) X

X = Y X

Y

X < Y
Y > X := X < Y

X

Y

X ≤ Y
Y ≥ X := X ≤ Y

X

Y

X 6= Y X

Y

definition on durations:

Y = dX

dX = dY

dX < dY

dX ≤ dY

dX 6= dY

Figure 5.8: Illustration of CLcatts time constraints that define metric relations on durations.

For example,

X :: 1..8 + 7..7, day ' Y :: 1..2 + 1..1, week

according to the following illustration.

week

day1 2 3 . . . 8 9 . . .

1 2

Then the time interval [8, 15] of days represented by X corresponds to the time interval
[2, 2] of weeks represented by Y , for example.

Note that since CaTTS’ constraint solver merely implements bounds consistency and
not arc consistency, the conversion constraint just enforces that the bounds of the start-
ing times (resp. the bounds of the ending times) of the activity constraint start (resp.
finish) intervals in each case of the related type. That is, the days 1 and 8 start weeks
(namely weeks 1 and 2), but for example day 3 in the domain of X does not start a week.
Nevertheless, bounds consistency is sufficient for CaTTS’ multi-calendar constraint solver
since the equivalent representation (in the example in terms of weeks) which excludes any
incompatible solutions remains in the constraint store during constraint propagation.

144 5. Constraint Reasoning with Calendric Data

The conversion constraint relies on and refers to calendric types defined in some CaTTS-
DL calendar specification. In particular, the conversion constraint applies the conversion
functions generated from the type predicates (cf. Section 6.4).

5.5 The Constraint Propagation Algorithm

A constraint propagation algorithm is a specific algorithm that transforms a given CSP
into another one such that the reduced CSP is equivalent (according to Definition 5.3, p.
127) to the original CSP. Recall that the constraints of such equivalent CSPs have the
same set of solutions, but those of the transformed CSP are easier to solve. A constraint
propagation algorithm can be specified by a finite set of proof rules.

In what follows, a constraint propagation algorithm to solve multi-calendar appointment
scheduling problems that can be specified in CaTTS-CL is introduced. This algorithm
implements the previously introduced time constraints and the conversion constraint of
the language CLcatts. The algorithm is specified by a finite set of proof rules. Following
conventions are used for the notations in the proof rules: whenever constraint propagation
requires that the corresponding variables have the same type, type information for variables
and corresponding domains is omitted. Whenever variables may have different types or
whenever the type influences constraint propagation, type information is explicitly given
for variables and corresponding domains. Side conditions that must hold for some proof
rule are given in the premise of the rule following “|”. A reference implementation of this
algorithm in CHR (Constraint Handling rules) is given in the Appendix B.

CaTTS’ constraint propagation algorithm to solve multi-calendar appointment schedul-
ing problems tests consistency, simplifies constraints (i.e. the algorithm tries to transform
a given constraint C into an equivalent, but simpler constraint C ′), and, if possible, solves
constraints. Since the consistency test for combinatorial problems such as multi-calendar
appointment scheduling is NP-complete, no efficient algorithm exists. Therefore, CaTTS’
constraint solver implements a constraint propagation algorithm that is based on a local-
consistency method, in particular bounds consistency [FA97, MS98, Apt03]. To ensure
global consistency the algorithm needs to be interleaved with a search method.13

5.5.1 Achieving Local Consistency

Algorithms that achieve a kind of reduction of a CSP into an equivalent, but easier to solve
CSP usually aim at reaching some form of local consistency. Informally, local consistency
means that some subparts of the considered CSP are consistent (i.e. have a solution).
That means, a small, fixed-size sub-problem of the initial CSP is considered repeatedly
until a fixpoint is reached. Those sub-problems are simplified, and new implied (redun-
dant) constraints are propagated from them such that those added constraints (hopefully)

13Since CaTTS’ constraint solver is implemented in CHR integrated into Prolog, Prolog search, i.e.
backtracking is used.

5.5 The Constraint Propagation Algorithm 145

cause simplification. In general, achieving local consistency consists either in reducing the
domains of the considered variables or in reducing the considered constraints.

A basic method to simplify constraints over finite domains are so-called consistency
techniques [FA97, MS98, Apt03], ensuring local consistency of a CSP. For the implemen-
tation of CaTTS’ constraint propagation algorithm on interval domains, we apply the con-
sistency technique of bounds consistency [FA97, MS98]. Bounds consistency is a weaker,
but analogous, form of arc consistency [FA97, MS98, Apt03] which is adapted such that
only interval boundaries are considered instead of the enumerated lists. Arc consistency
originates from Montanari [Mon74]. Bounds consistency (also called interval consistency)
has been introduced by various authors, e.g. [vHSD92]. Arc and bounds consistency are
algorithms that ensure local consistency. Classical consistency algorithms have been first
explored for constraint networks in Artificial Intelligence research in the late 1960ies.

Bounds consistency is defined as follows [FA97, MS98, Apt03].

Definition 5.5 (Bounds Consistency). A constraint C ⊆ D1×. . .×Dn on the variables
X1,. . . , Xn with respective domains D1,. . . , Dn is bounds consistent, if for all i ∈
{1, . . . , n} and for all bounds vi ∈ Di (vi ∈ {ni,mi}) the constraint ∃(X1 ∈ D1∧ . . .∧Xi =
vi ∧ . . . ∧Xn ∈ Dn ∧ C(X1, . . . , Xn)) is satisfiable.

A CSP is bounds consistent if all its constraints are bounds consistent.

Intuitively, a constraint C is bounds consistent if for every involved interval domain
over the same type there exists a solution (d1, . . . , di, . . . , dn) to C such that ni ≤ di ≤ mi.
An algorithm implementing bounds consistency makes constraints bounds consistent by
tightening their interval domains. A conjunction of constraints, in particular, a CSP is
made bounds consistent by making the participating constraints bounds consistent. The
algorithm implementing bounds consistency for CaTTS’ constraint solver is based on the
logical formulation of Definition 5.5:

If X1 ∈ D1 ∧ . . . ∧Xi = vi ∧ . . . ∧Xn ∈ Dn ∧ C(X1, . . . , Xn) → Xi = v′i, then
vi ∩ v′i is a new interval bound of Xi, vi ∈ {ni,mi}.

That means, whenever a constraint C has been propagated during constraint solving, the
intersection of the interval bound v′i and the old interval bound vi of the variable Xi in C
is computed. The result of applying this bounds consistency rule then yields in the new
(reduced domain) of Xi, i.e. vi ∩ v′i which replaces the interval bound vi.

Note: v′i is defined by the proof rule of the constraint C.

The notion of bounds consistency (and its implementation in terms of the bounds
consistency rule) formulates the terminates criterion for CaTTS’ constraint propagation
algorithm, i.e. the algorithm terminates (and returns an equivalent but smaller CSP) if the
CSP is bounds consistent and fails otherwise.

Lemma 5.1 A CSP is bounds consistent iff it is closed under the application of the “bounds
consistency rule”.

146 5. Constraint Reasoning with Calendric Data

Proof 5.1 Since the algorithm achieving bounds consistency is based on the logical for-
mulation of Definition 5.5, it is sufficient to note that a constraint C on the variables
X1,. . . ,Xn with respective interval bounds v1,. . . , vn is bounds consistent iff for every
i ∈ {1, . . . , n} and for every vi ∈ {ni,mi}, vi ∩ v′i = vi, i.e. iff vi = v′i where v′i is de-
fined as in the proof rule of C.

5.5.2 Proof Rules for Time Constraints

In Section 5.4.2, we have introduced the set of time constraints (over the same calendric
types) supported in CaTTS, i.e. CLcatts time constraints. The (informal) definitions of the
time constraints on starting and ending times and/or durations are illustrated in Figure
5.6 p.140, Figure 5.7, p.141, and Figure 5.8, p.143. In the following, at least one proof rule
is specified for each of those time constraints, formalizing the previously given illustrations.
Those proof rules allow for manipulating time constraints on activities during constraint
propagation. In particular, those proof rules either reduce the domains of the associated
activities or transform the constraints in the constraint store. The proof rules for CLcatts

time constraints are given subsequent to this section in Tables, 5.6, 5.4, 5.5, 5.8, and 5.7.
The “bounds consistency algorithm” (cf. Section 5.5.1) is directly incorporated into each
of the subsequently introduced proof rules for time constraints.

Since the proof rules of CaTTS’ time constraints are all defined analogously according
to the illustrations given in Figure 5.6, Figure 5.7, and Figure 5.8, the rules for one of these
constraints are discussed in detail. Any further rule should be then explanatory by itself.

So, let us turn attention to the time constraint before. The constraint X before Y
(where X and Y have the same type) says that any (time) interval that can be represented
by X must end before any (time) interval that can be represented by Y starts, i.e. SX ≤
EX < SY ≤ EY where X :: SX + dX , τ and Y :: SY + dY , τ and EX := SX + dX − 1 and
EY := SY +dY −1. Since the conditions SX ≤ EX and SY ≤ EY , i.e. that the starting time
of a (time) interval must less or equal than its ending time is formulated with the activity
domain constraint itself, the condition EX < SY formulates the criterion under which the
constraint X before Y is bounds consistent. For example, assume the following CSP:

〈X before Y ;X :: 20..25 + 1..1, τ, Y :: 18..23 + 2..4, τ〉

I.e. the constraint X before Y is in the constraint store with associated activity con-
straints X :: 20..25 + 1..1, τ and Y :: 18..23 + 2..4, τ . X represents the time intervals
[20, 20], [21, 21], . . . , [25, 25] and Y represents the time intervals [18, 19], [18, 20], [18, 21], . . . ,
[23, 24], [23, 25], [23, 26]. Applying the domain reduction rule for the time constraint before
on this CSP:

〈X before Y ;X :: nX ..mX + d−X ..d+
X , Y :: nY ..mY + d−Y ..d+

Y 〉
〈X before Y ;

X :: nX ..min(mX , (min(mEX
,mY − 1)− d−X +1))+ d−X ..min(d+

X , (min(mEX
,mY − 1)−nX +1))

Y :: max(nY , nEX
+ 1)..mY + d−Y ..d+

Y 〉

5.5 The Constraint Propagation Algorithm 147

〈X equals Y ;X :: DX , Y :: DY 〉
〈X equals Y ; X :: DX ∩DY , Y :: DX ∩DY 〉

〈X before Y ;X :: nX ..mX + d−X ..d+
X , Y :: nY ..mY + d−Y ..d+

Y 〉
〈X before Y ;

X :: nX ..min(mX , (min(mEX
,mY − 1)− d−X + 1)) + d−X ..min(d+

X , (min(mEX
,mY − 1)− nX + 1))

Y :: max(nY , nEX
+ 1)..mY + d−Y ..d+

Y 〉

〈X starts Y ;X :: SX + dX , Y :: SY + dY 〉
〈X starts Y ; X :: SX ∩ SY + d−X ..d+

X , Y :: SX ∩ SY + d−Y ..d+
Y 〉

〈X starts Y ;X :: nX ..mX + d−X ..d+
X , Y :: nY ..mY + d−Y ..d+

Y 〉
〈X starts Y ;

X :: nX ..min(mX , (min(mEX
,mEY

− 1)− d−X + 1)) + d−X ..min(d+
X , (min(mEX

,mEY
− 1)− nX + 1)),

Y :: max(nY , (max(nEY
, nEX

+ 1)− d+
Y + 1))..mY + d−Y ..d+

Y 〉

〈X finishes Y ;X :: SX + dX , Y :: SY + dY 〉
〈X finishes Y ; X :: (((SX + dX − 1) ∩ (SY + dY − 1))− dX + 1) + dX ,

Y :: (((SX + dX − 1) ∩ (SY + dY − 1))− dY + 1) + dY 〉

〈X finishes Y ;X :: nX ..mX + d−X ..d+
X , Y :: nY ..mY + d−Y ..d+

Y 〉
〈X finishes Y ; X :: nX ..min(mX ,mY − 1) + d−X ..d+

X , Y :: max(nY , nX + 1)..mY + d−Y ..d+
Y 〉

〈X during Y ;X :: nX ..mX + d−X ..d+
X , Y :: nY ..mY + d−Y ..d+

Y 〉
〈X during Y ; X :: max(nX , nY + 1)..mX + d−X ..d+

X , Y :: nY ..min(mY ,mX − 1) + d−Y ..d+
Y 〉

〈X during Y ;X :: nX ..mX + d−X ..d+
X , Y :: nY ..mY + d−Y ..d+

Y 〉
〈X during Y ;

X :: nX ..min(mX , (min(mEX
,mEY

− 1)− d−X + 1)) + d−X ..min(d+
X , (min(mEX

,mEY
− 1)− nX + 1)),

Y :: max(nY , (max(nEY
, nEX

+ 1)− d+
Y + 1))..mY + max(d−Y , (max(nEY

, nEX
+ 1)−mY + 1))..d+

Y 〉

〈X meets Y ;X :: SX + dX , Y :: SY + dY 〉
〈X meets Y ; X :: ((EX ∩ SY)− dX + 1) + dX , Y :: (EX ∩ SY) + dY 〉

〈X overlaps Y ;X :: nX ..mX + d−X ..d+
X , Y :: nY ..mY + d−Y ..d+

Y 〉
〈X overlaps Y ; X :: max(nX , nY + 1)..mX + d−X ..d+

X , Y :: nY ..min(mY ,mX − 1) + d−Y ..d+
Y 〉

〈X overlaps Y ;X :: nX ..mX + d−X ..d+
X , Y :: nY ..mY + d−Y ..d+

Y 〉
〈X overlaps Y ;

X :: max(nX , (max(nEX
, nY + 1)− d+

X + 1))..mX + max(d−X , (max(nEX
, nY + 1)−mX + 1))..d+

X

Y :: nY ..min(mY ,mEX
− 1) + d−Y ..d+

Y 〉

〈X overlaps Y ;X :: nX ..mX + d−X ..d+
X , Y :: nY ..mY + d−Y ..d+

Y 〉
〈X overlaps Y ;

X :: nX ..min(mX , (min(mEX
,mEY

− 1)− d−X + 1)) + d−X ..min(d+
X , (min(mEX

,mEY
− 1)− nX + 1))

Y :: max(nY , (max(nEY
, nEX

+ 1)− d+
Y + 1))..mY + max(d−Y , (max(nEY

, nEX
+ 1)−mY + 1))..d+

Y 〉

Table 5.4: The domain reduction rules for time constraints on activities according to the
illustrations in Figure 5.6, p.140.

148 5. Constraint Reasoning with Calendric Data

〈shift forward(X,d,Y);X :: nX ..mX + d−X ..d+
X , d :: d−..d+〉

〈shift forward(X,d,Y); Y :: nX + d−..mX + d+ + d−X ..d+
X〉

〈shift forward(X,d,Y); d :: d−..d+, Y :: nY ..mY + d−Y ..d+
Y 〉

〈shift forward(X,d,Y); X :: nY − d−..mY − d+ + d−X ..d+
X〉

〈relative to(iXσ , τ, i); iX :: DXσ

〈relative to(iXσ , τ, i); iXσ :: σ to τ(i, DXσ)〉

〈relative in(iXσ , τ, i); iX :: DXσ 〉
〈relative in(iXσ , τ, i); iXσ :: σ in τ(i, DXσ)〉

〈extend by(X,d,Y);X :: nX ..mX + d−X ..d+
X , d :: d−..d+〉

〈extend by(X,d,Y); Y :: nX ..mX + d−X + d−..d+
X + d+〉

〈extend by(X,d,Y); d :: d−..d+, Y :: nY ..mY + d−Y ..d+
Y 〉

〈extend by(X,d,Y); X :: nY ..mY + d−Y − d−..d+
Y − d+〉

〈end(X,Y);X :: SX + dX〉
〈end(X,Y);Y :: EX〉

〈begin(X,Y);X :: SX + dX〉
〈begin(X,Y);Y :: SX〉

〈duration(X,Y);X :: SX + dX〉
〈duration(X,Y);Y :: DX〉

〈index(X,Y);X :: SX〉
〈index(X,Y);Y :: iSX

〉

Table 5.5: The domain reduction rules for time constraints on activities according to the
illustrations in Figure 5.7 p.141.

5.5 The Constraint Propagation Algorithm 149

〈X equals X;X :: DX〉
〈;X :: DX〉

〈X I X;X :: DX〉
〈;X :: ∅〉

〈X during Y ;X :: SX + dX , Y :: SY + dY 〉 | dX ≥ dY

〈;⊥〉

〈X overlaps Y ;X :: SX + dX , Y :: SY + dY 〉 | dX = 1
〈;⊥〉

〈X overlaps Y ;X :: SX + dX , Y :: SY + dY 〉 | dY = 1
〈;⊥〉

〈X overlaps Y ;X :: SX + dX , Y :: SY + dY 〉 | dX = dY

〈;⊥〉

〈X equals Y ;X :: SX + dX , Y :: SY + dY 〉 | dX 6= dY

〈;⊥〉

where I ∈ {before, starts, finishes, during, overlaps, meets}

Table 5.6: The transformation rules for time constraints on activities.

〈X = Y ;X :: SX + dX , Y :: SY + dY 〉
〈X = Y ; X :: SX + dX ∩ dY , Y :: SY + dX ∩ dY 〉

〈X ≤ Y ;X :: SX + d−X ..d+
X , Y :: SY + d−Y ..d+

Y 〉
〈X ≤ Y ; X :: SX + d−X ..min(d+

X , d+
Y), Y :: SY + max(d−Y , d−X)..d+

Y 〉

〈X < Y ;X :: SX + d−X ..d+
X , Y :: SY + d−Y ..d+

Y 〉
〈X < Y ; X :: SX + d−X ..min(d+

X , d+
Y − 1), Y :: SY + max(d−Y , d−X + 1)..d+

Y 〉

〈X 6= Y ;X :: SX + d−X ..d+
X , Y :: SY + d−Y ..d+

Y 〉 | d
−
X = d−Y , d−Y = d+

Y

〈X 6= Y ; X :: SX + d−X + 1..d+
X , Y :: SY + d−Y ..d+

Y 〉

Table 5.7: The domain reduction rules for time constraints on durations according to the
illustrations in Figure 5.8, p.143.

〈X ≥ Y ;X :: DX , Y :: DY +〉 〈X > Y ;X :: DX , Y :: DY 〉
〈Y ≤ X; X :: DX , Y :: DY 〉 〈Y < X; X :: DX , Y :: DY 〉

〈X 6= Y ;X :: DX , Y :: DY 〉 | dX ∩ dY = ∅
〈; X :: DX , Y :: DY 〉

Table 5.8: The transformation rules for time constraints on durations.

150 5. Constraint Reasoning with Calendric Data

The application of before on those time intervals represented by X and Y removes those
values of the domains of X and Y which do not satisfy the condition that the ending time
of the interval represented by X is smaller than the starting time of the interval represented
by Y . Let’s start with the (time) intervals represented by X: none of the intervals [23, 23],
[24, 24], and [25, 25] satisfies the condition of the constraint before, i.e. their ending times
are larger than the starting times of those intervals with the largest possible starting time
of Y . That is, the intervals [20, 20], [21, 21], and [22, 22] remain in the domain of X which
is now represented by X :: 20..22 + 1..1, τ . Remain the (time) intervals represented by
Y : none of the intervals [18, 19], [18, 20], [18, 21], . . . , [20, 22] satisfy the condition of the
constraint before, i.e. their starting times are smaller than the ending times of intervals
represented by X. That is, the intervals [21, 22], . . . [23, 24], [23, 25], and [23, 26] remain in
the domain of Y which is now represented by Y :: 21..23 + 2..4, τ .

The proof rule makes this a little bit more elegant. It merely considers the maximal
starting time of X and the minimal ending time of Y according to the condition SX < EY

that must hold for the constraint X before Y. Thus, formally, the domain reduction rule
for the time constraint before is read as follows: if the constraint X before Y is in the
constraint store of a CSP with associated activity constraints X :: nX ..mX + d−X ..d

+
X and

Y :: nY ..mY + d−Y ..d
+
Y , then new domain expressions for the activities X and Y (over the

same calendric type) are propagated as follows according to the condition EX < SY , i.e.
the ending time of X must be before, i.e. less than the starting time of Y . The condition
EX < SY implies that the maximal ending time of X (i.e. mEX

) must be less than the
minimal starting time of Y (i.e. mY). Therefore, the minimum of mEX

and mY − 1 is
computed (denoted min(mEX

,mY −1)). Since the activity X is represented by its starting
time and duration, a new maximal starting time for X must be computed from the value
min(mEX

,mY − 1). This is dome by subtracting the minimal duration of X plus 1 from
this value (denoted min(mEX

,mY −1)−d−X +1) and taking the minimal value from X’ old
maximal starting timemX and this value (denotedmin(mX , (min(mEX

,mY−1)−d−X+1))).
The same is done to compute the new maximal duration of X. The condition EX < SY

further implies that the minimal starting time of Y (i.e. nY) must be larger than the
minimal ending time of X (i.e. nEX

). Therefore, the maximum of these two values is
added as a new minimal starting time for Y (denoted max(nY , nEX

+ 1)).

The proof rule for the time constraint X before Y thus ensures that the bounds that
represent the interval domain of the ending times of X are always smaller than the bounds
that represent the interval domain of the starting times of Y . The conditions that take the
minimum of the old and new upper bounds and the maximum of the old and new lower
bounds define the bounds consistency rule: the bounds consistency rule is applied and the
domains of X and Y are replaced by the new, reduced domains.

The application of this rule (that incorporates the application of the bounds consistency
rule) is illustrated by the following example which applies the rule for before in two steps,
first to X and then to Y (where X :: 20..25 + 1..1, τ and Y :: 18..23 + 2..4, τ and, thus,
EX = 20..25 and EY = 19..26):

5.5 The Constraint Propagation Algorithm 151

X before Y ; X :: 20..25 + 1..1, τ , Y :: 18..23 + 2..4, τ

7→before x X before Y ;
X :: 20..min(25, (min(25, 23− 1)− 1 + 1) + 1..min(1, (min(25, 23− 1)− 20 + 1)), τ ,
Y :: 18..23 + 2..4, τ
X before Y ; X :: 20..min(25, (min(25, 22)− 1 + 1) + 1..min(1,min(25, 22)− 20 + 1), τ ,
Y :: 18..23 + 2..4, τ
X before Y ; X :: 20..min(25, 22) + 1..min(1, 3), τ , Y :: 18..23 + 2..4, τ
X before Y ; X :: 20..22 + 1..1, τ , Y :: 18..23 + 2..4, τ

7→before y X before Y ; X :: 20..22 + 1..1, τ , Y :: max(18, 20 + 1)..23 + 2..4, τ
X before Y ; X :: 20..22 + 1..1, τ , Y :: max(18, 21)..23 + 2..4, τ
X before Y ; X :: 20..22 + 1..1, τ , Y :: 21..23 + 2..4, τ

In addition to this domain reduction rule, the following transformation rule is defined
for the time constraint before.

〈X beforeX;X :: DX〉
〈;X :: ∅〉

This rule is read as follows: if the constraint X beforeX is in the constraint store
of a CSP and the variable X represents a domain DX , denoted X :: DX

14, then the
constraint X beforeX is deleted from the constraint store and X represents an empty
domain, denoted X :: ∅. Thus, an application of this rule would, in particular, terminate
constraint propagation with the result, that the considered CSP is inconsistent, i.e. the
algorithm fails. For example, X :: 2..10+3..3, day, i.e. a tasks of 3 days starting earliest at
day indexed by 2 and latest at day indexed by 10, and the time constraint X beforeX is in
the constraint store, then the interval domain constraint X :: ∅ is propagated since there
does not exist an interval domain for which the constraint X beforeX is bounds consistent
according to Definition 5.5. In particular, the activity X activity cannot be before itself.

5.5.3 The Proof Rule for the Conversion Constraint

CaTTS’ constraint propagation algorithm provides with a specific proof rule for the con-
version constraint ∀α, β.(α :: τ ∨ α :: τ ∗), (β :: σ ∨ β :: σ∗), Xα ' Y β with α ≤ β (or
β ≤ α) according to the subtype relation (cf. Definition 3.7) over time granularities (calen-
dric types defined in a CaTTS-DL calendar specification). The conversion constraint relies
on and refers to the calendric type definitions in a CaTTS-DL calendar specification. In
particular, for each pair of calendric types α and β where α ≤ β in a CaTTS-DL calendar
specification, a conversion function is generated from the (user-defined) type predicates
by CaTTS-DL’s language processor. Those functions are applied during constraint solving
whenever a conversion constraint is propagated on activities of types α and β. Conver-
sion function generation from CaTTS-DL calendric type predicates is formally introduced

14Recall that a CSP is represented by a pair 〈C;DE〉, where C is a set of constraint, the constraint store,
and DE a set of associated domain expressions.

152 5. Constraint Reasoning with Calendric Data

∀α, β.(α :: τ ∨ α :: τ∗), (β :: σ ∨ β :: σ∗)

〈Xα ' Y β ;Xα :: nX ..mX + d−X ..d+
X , Y β :: nY ..mY + d−Y ..d+

Y 〉 | α ≤ β

〈Xα ' Y β ;
Xα :: max(nX , c+

β→α(nY))..min(mX , cβ→α(mY))+
max(d−X , (cβ→α(nEY

)− cβ→α(mY) + 1))..min(d+
X , (c−β→α(mEY

)− c+
β→α(nY) + 1)),

Y β :: max(nY , c−α→β(nX))..min(mY , c−α→β(mX))+
max(d−Y , (c+

α→β(nEX
)− c−α→β(mX) + 1))..min(d+

Y , (c+
α→β(mEX

)− c−α→β(nX) + 1))〉

Table 5.9: The domain reduction rule for the conversion constraint.

and discussed in Section 6.4. For α ≤ β, the conversion function is written cα→β, c−α→β

for predecessors, and c+α→β for successors, and cβ→α denotes its inverse (c−β→α inverse for

predecessors, and c+β→α inverse for successors).

Let us now consider the proof rule for the conversion constraint Xα ' Y β. This rule
applies the conversion functions form α to β, where α ≤ β, for starting times and ending
times and its inverse functions. The rule for CaTTS’ conversion constraint is given in Table
5.9.

This rule is read as follows: if the constraint Xα ' Y β is in the constraint store
with corresponding domain expressions Xα :: nXα ..mXα + d−Xα ..d+

Xα and Y β :: nY β ..mY β +
d−

Y β ..d
+
Y β where α ≤ β, then new domain expressions are added for X and Y . The new

domains are such that the possible time intervals of X in type α correspond to the possible
time intervals of Y in type β. This is achieved by adapting the bounds of the starting times
of X and Y such that the bounds of X (which refer to type α) are started by the bounds
of Y (which refer to type β) and by adapting the bounds of the durations of X and Y
such that the bounds of X (which refer to durations of type α) correspond to the bounds
of Y (which refer to durations of type β). The proof rule for the conversion constraint
thus ensures that the bounds of the interval domains that represent the starting times of
X in type α are always equivalent to the bounds of the interval domains that represent
the starting times of Y in type β. Furthermore, this proof rule ensures that the bounds of
the intervals that represent the durations of X in type α always correspond to the bounds
of the intervals domains that represent the durations of Y . For example, if X represents
weeks of duration 1 with starting times 1 to 2 and Y represents corresponding intervals
of days, then the duration of Y must be 7 (i.e. the duration of 1 week in terms of days is
7) and the minimal bound of the interval domain that represents its starting times must
start the week 1 and the maximal bound of the interval domain that represents its starting
times must start the week 2. If the day with index 1 starts the week 1, then the minimal
bound of the interval domain that represents its starting times of Y is 1 and the maximal
bound is 8.

The application of the conversion constraint is illustrated by the following example.

〈X ' Y ; X :: 2..4 + 1..1,working week, Y :: 9..19 + 7..7, day〉

5.5 The Constraint Propagation Algorithm 153

where EX = 2..4,working week and EY = 15..25, day and the following indexing of the
values of types working week and day is assumed.

working week

day

1 2 3 4

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

The rule for the conversion constraint is now applied stepwise, first on X and subse-
quently on Y .

X ' Y ; X :: 2..4 + 1..1,working week, Y :: 9..19 + 7..7, day

7→' x X :: max(2, c+

day→working week(9))..min(4, cday→working week(19))+

max(1, (cday→working week(15)− cday→working week(19) + 1))..
min(1, (c−day→working week(25)− c+

day→working week(9) + 1)),working week

X :: max(2, 2)..min(4, 3) + max(1, (2− 3 + 1))..min(1, (3− 2 + 1)),working week
X :: 2..3 + 1..1,working week

7→' y X ' Y ; X :: 2..3 + 1..1, working week, Y :: 9..19 + 7..7, day
Y :: max(9, c−working week→day(2))..min(19, c−working week→day(3))+

max(7, (c+

working week→day(2)− c−working week→day(3) + 1))..

min(7, (c+

working week→day(3)− c−working week→day(2) + 1)), day

Y :: max(9, 11)..min(19, 18) + max(7, 17− 18 + 1)..min(7, 24− 11 + 1), day
Y :: 11..18 + 7..7, day

X ' Y ; X :: 2..3 + 1..1,working week, Y :: 11..18 + 7..7, day

5.5.4 Example: Application of Proof Rules

Let us turn attention back to the Example 5.1 discussed in Section 5.2:

A person plans a meeting lasting 3 working days after 20th April 2005 and before May
2005. A colleague’s visit of 1 week must overlap with the planned meeting.

where the following internal indexing of the values of the involved calendric types is as-
sumed.

month

week

working day

day

1 (April 2005) 2

17 18 19 20
↑

20.4.2005 (Wednesday)

21 22 23 24 25 26 27 28 29 30 31 32
↑

1.5.2005 (Sunday)

13 14 15 16 17 18 19 20 21 22 23

4 5

154 5. Constraint Reasoning with Calendric Data

Recall that this problem can be expressed in CaTTS-CL as follows:

Meeting i s 3 working day &&
Meeting after "20.04.2005" && Meeting before "05.2005" &&
Vi s i t i s 1 week && V i s i t overlaps Meeting

Transformed into CLcatts, the problem is expressed as follows:

〈M ′ after A,M 'M ′,M ′ before B′, B ' B′, V ′ overlapsM ′, V ' V ′;
M :: 1..∞+ 3..3,w day, M ′ :: 1..∞+ 3..5, day, A :: 20..20, day, B :: 2..2,month,
B′ :: 31..31 + 31..31, day, V :: 1..∞,week, V ′1..∞+ 7..7, day〉

whereM denotes Meeting, A denotes "20.04.2005", B denotes "05.2005", and V denotes
Visit.

The application of the previously introduced proof rules is now demonstrated on this
example:

〈M ′ after A,M ' M ′,M ′ before B′, B ' B′, V ′ overlaps M ′, V ' V ′;
M :: 1..∞+ 3..3,w day, M ′ :: 1..∞+ 3..5, day, A :: 20..20, day, B :: 2..2,month,
B′ :: 31..31 + 31..31, day, V :: 1..∞, week, V ′1..∞+ 7..7, day 〉

7→after 〈M ′ after A,M ' M ′,M ′ before B′, B ' B′, V ′ overlaps M ′, V ' V ′;
M :: 1..∞+ 3..3,w day, M ′ :: 21..∞+ 3..5, day, A :: 20..20, day, B :: 2..2,month,
B′ :: 31..31 + 31..31, day, V :: 1..∞,week, V ′1..∞+ 7..7, day 〉

7→M'M ′ 〈M ′ after A,M ' M ′,M ′ before B′, B ' B′, V ′ overlaps M ′, V ' V ′;
M :: 16..∞+ 3..3,w day, M ′ :: 21..∞+ 3..5, day, A :: 20..20, day, B :: 2..2,month,
B′ :: 31..31 + 31..31, day, V :: 1..∞,week, V ′1..∞+ 7..7, day 〉

7→before 〈M ′ after A,M ' M ′,M ′ before B′, B ' B′, V ′ overlaps M ′, V ' V ′;
M :: 16..∞+ 3..3,w day, M ′ :: 21..27 + 3..5, day, A :: 20..20, day, B :: 2..2,month,
B′ :: 31..31 + 31..31, day, V :: 1..∞,week, V ′1..∞+ 7..7, day 〉

7→M'M ′ 〈M ′ after A,M ' M ′,M ′ before B′, B ' B′, V ′ overlaps M ′, V ' V ′;
M :: 16..20 + 3..3,w day, M ′ :: 21..27 + 3..5, day, A :: 20..20, day, B :: 2..2,month,
B′ :: 31..31 + 31..31, day, V :: 1..∞,week, V ′1..∞+ 7..7, day 〉

7→overlaps 〈M ′ after A,M ' M ′,M ′ before B′, B ' B′, V ′ overlaps M ′, V ' V ′;
M :: 16..20 + 3..3,w day, M ′ :: 21..22 + 3..5, day, A :: 20..20, day, B :: 2..2,month,
B′ :: 31..31 + 31..31, day, V :: 1..∞,week, V ′18..18 + 7..7, day 〉

7→V'V ′ 〈M ′ after A,M ' M ′,M ′ before B′, B ' B′, V ′ overlaps M ′, V ' V ′;
M :: 16..20 + 3..3,w day, M ′ :: 21..22 + 3..5, day, A :: 20..20, day, B :: 2..2,month,
B′ :: 31..31 + 31..31, day, V :: 4..4,week, V ′18..18 + 7..7, day 〉

7→M'M ′ 〈M ′ after A,M ' M ′,M ′ before B′, B ' B′, V ′ overlaps M ′, V ' V ′;
M :: 16..17 + 3..3,w day, M ′ :: 21..22 + 3..5, day, A :: 20..20, day, B :: 2..2,month,
B′ :: 31..31 + 31..31, day, V :: 4..4,week, V ′18..18 + 7..7, day 〉

5.6 Complexity of the Multi-Calendar Constraint Solver 155

Since no further rule is applicable at this step, CaTTS’ constraint propagation algorithm
terminates with this (bounds consistent) reduced problem. The CaTTS’ user may request
one or all solutions to this problem which are searched using backtracking.

5.6 Complexity of the Multi-Calendar Constraint Solver

CSPs as introduced in Section 5.1 date back to work in Artificial Intelligence, in particular,
picture processing and computer vision [Mon74, Wal75, Ste81].

It follows from the NP-completeness of SAT [GJ79], a well-known NP-complete prob-
lem, that solving arbitrary CSPs is (at least) NP-complete. SAT is essentially the problem
of finding if a Boolean formula (expressed in propositional logics) is satisfiable or not.
Thus, it can be considered as a particular type of CSP. Multi-calendar constraint solving
in CaTTS can be reduced to the SAT problem by redefining the proof rules introduced in
Section 5.5 and summarized in Table 5.6, Table 5.4, Table 5.5, Table 5.8, Table 5.7, and
Table 5.9 in a SAT solver.

In what follows, the complexity of CaTTS’ multi-calendar constraints propagation al-
gorithm is analyzed.

Property 5.1 CaTTS’ constraint propagation algorithm for multi-calendar appointment
scheduling problems expressed by time constraints on events and tasks, modeled by typed
interval domains with conversion constraints has a worst time complexity of O((c+ c ∗n) ∗
(v + c ∗ n) ∗ s) where (c+ c ∗ n) is the number of constraints, (v + c ∗ n) is the number of
variables, and s is the size of the interval domains representing activities.

Proof 5.2 The time constraints are implemented using the arithmetic built-in Prolog con-
straints {=,=<,<,>,>=, \ =} which take constant time to compute. Associated domain
constraints of each variable can be found in constant time since CHR uses indexing.15

CaTTS’ activities, i.e. events and tasks are represented by interval domains with addi-
tional type information. The type information associated with each variable can be found
in constant time. The (maximal) size of the interval domains to represent activities is
determined as follows.

• s := m− n+ 1 maximal size of an event X :: n..m

• s := (m− n+ 1) ∗ (d+ − d− + 1) maximal size of a task X :: n..m+ d−..d+

A CSP P modeled in CaTTS-CL contains the following (maximal) number of different
variable and time constraints.

• v number of different variables

• c number of different n-ary time constraints

15Recall that the prototype implementation of CaTTS’ constraint solver is implemented in CHR em-
bedded into Sicstus Prolog.

156 5. Constraint Reasoning with Calendric Data

Each CaTTS-CL time constraint Xα C Y β is transformed into the following set of CLcatts

constraints:

X ι C Y ι ∧Xα ' X ι ∧ Y β ' Y ι

where ι := α ∨ β is the join of types γ and β according to Proposition 3.1 such that
α ≤ ι and β ≤ ι (recall that ≤ denotes CaTTS’ subtype relation). This transformation
is done before constraint propagation. Thus, it has no influence on the complexity of the
constraint propagation algorithm. But it increases the (maximal) number of constraints
and variables:

• In the worst case, each n-ary time constraint must be replaced by an equivalent con-
straint with activities over the same type and n conversion constraints. Therefore,
the worst case number of conversion constraints is O(c ∗ n). The overall worst case
number of constraints then is O(c+ c ∗ n).

• In the worst case, each n-ary constraint must be replaced by an equivalent constraint
with activities over the same type and n conversion constraints, i.e. O(c ∗ n) con-
version constraints. Each conversion constraint introduces an additional variable.
Therefore, the worst case number of variables is O(v + c ∗ n).

The number of variables O(v+ c∗n) and the number of constraints O(c+ c∗n) both do
not increase during constraint propagation: each time a proof rule of CaTTS’ constraint
propagation algorithm is applied which either transforms the constraints in the constraint
store or adds new interval domains to already existing variables. The propagated new
interval domain of a variable and its old interval domain are replaced by a single interval
domain by applying the bounds consistency rule.

Each application of a proof rule generates a fixed number of new interval domain con-
straints. For each new interval domain constraint the bounds consistency rule is applied.
In the declarative proof rules given in Table 5.6, Table 5.4, Table 5.5, Table 5.8, Table
5.7, and Table 5.9, bounds consistency is directly incorporated. Furthermore, each appli-
cation of a proof rule generates a fixed number of applications of the conversion constraint
where each conversion constraint, in turn, generates a fixed number of new interval domain
constraints which require application of bounds consistency, as well.

Each application of a conversion constraints requires an application of a conversion
function. Since those conversion functions are generated before constraint propagation
(from the type predicates of calendric types defined in a CaTTS-DL calendar specification),
a conversion function is applied in constant time. The worst case number of rule tries
(where each rule try has constant time) therefore is O(c+ c ∗ n).

With this result, the worst case number of rule applications is O((v + c ∗ n) ∗ s), i.e.
each rule can be applied for a variable at most in the maximal size of the corresponding
interval domain. To conclude, the overall worst time complexity is O((c + cn)(v + cn)s).
In particular, the overall worst time complexity is linear in the number of constraints as
well as in the number of variables.

5.6 Complexity of the Multi-Calendar Constraint Solver 157

Note: CaTTS’ current prototype implementation provides conversion function gener-
ation from the type predicates only for some predicate type constructors and not for the
complete language CaTTS-DL. So far, conversion function generation from type predicates
including irregularities or exceptions is done by approximating lower and upper bounds for
the conversions. When extending this implementation to full CaTTS-DL, it might become
necessary to search the whole domain (up to its origin) of some type to find a better approx-
imation than the domain itself. Consequently, constraint solving in CaTTS would become
quadratic, since conversion functions would be then applied in linear time complexity in
the size of the type’s domain.

158 5. Constraint Reasoning with Calendric Data

Chapter 6

An Approach to Predicate Subtyping
with Calendric Types

(astronomical clock, Eberhard Baldewein, Hans Bucher, Hermann Diepel, by order on the
elector of Saxonia, 1563–1568)

Having defined the calendar type language CaTTS (cf. Chapter 4) that consists of the
two sub-languages CaTTS-DL, a type definition language for calendars and CaTTS-CL, a
constraint language to express calendric constraints as well as a multi-calendar constraint
solver for CaTTS-CL (cf. Chapter 5), a formalization of calendric types in CaTTS is still
missing.

This chapter is dedicated to the type system underlying CaTTS. A type system is a
formal specification of a type language (usually a sub-language of a more complex language)
together with a finite set of inference rules, the typing relation, defining conditions under
which expressions (in the object language to be typed) are well-formed and well-behaved.

CaTTS’ type system serves the following objectives:

160 6. An Approach to Predicate Subtyping with Calendric Types

1. Checking well-formedness of calendars specified in CaTTS-DL, i.e. “meta-type check-
ing” of the type language itself.

2. Generating conversion functions from the (well-formed) type predicates.

3. Checking correctness and (to some extend) consistency of constraint programs writ-
ten in the language CaTTS-CL and typed after CaTTS-DL calendar specifications
using subtyping approaches.

4. Transforming CaTTS-CL programs into the language CLcatts which is used by CaTTS’
constraint solver. That means in particular that CaTTS-CL programs are evaluated
by transforming their typing and subtyping derivations into another language, i.e.
the language CLcatts. This is obtained in terms of a coercion semantics for subtyping.

Furthermore, CaTTS’ type language is based on predicate subtypes rather than on
structural type constructors commonly used in programming languages.

This chapter, provides with a type system and discussions on typing CaTTS-DL cal-
endar specifications and CaTTS-CL constraint programs with a good choice concerning a
minimum of type annotations, however easy to read and write programs and an efficient
(i.e. in polynomial time complexity) static type checker with additional dynamic checks.
At first, some basic notions and concepts of typing, in particular of subtyping necessary to
understand CaTTS’ type system are recalled. Advantages of CaTTS’ programming lan-
guage approach to calendric data modeling and reasoning using types and type checking
approaches are gathered and the concept of predicate subtypes as it is used in CaTTS
is introduced. Subsequently, conversion function generation from CaTTS-DL type pred-
icates is specified and illustrated by example. A type system to check well-formedness
of CaTTS-DL calendar specifications is formalized, complemented with a discussion on
equivalence of calendric type definitions. Typing and subtyping relations for CaTTS-CL
programs typed after CaTTS-DL calendar specifications as well as a coercion semantics
for subtyping in CaTTS-CL are defined. Coherence for an implementation of this coer-
cion semantics is recovered. Finally, typing CaTTS-DL calendars themselves is addressed.
Whenever advisable, larger examples conclude the several sections.

Appendix C is associated with this chapter. This appendix summarizes the Haskell-
based [Tho99] implementation of CaTTS’ type checkers testing well-formedness of CaTTS-
DL calendar specifications, type checking CaTTS-CL programs, and transforming CaTTS-
CL programs into programs in the language CLcatts of CaTTS’ constraint solver (as intro-
duced in the previous Chapter 5). Soundness and completeness of the implementation is
sketched.

6.1 (Sub-)Typing in a Nutshell 161

6.1 (Sub-)Typing in a Nutshell

This section can be skipped by readers familiar with type checking and subtyping.

This section briefly recalls the main aspects of (sub)typing in the areas of (theoretical)
computer science including logics, proof assistents, and automated theorem provers. A
well-known type system with subtyping, the simply type lambda calculus with subtypes
is recalled. Different subtyping semantics are addressed as well as advanced forms of
subtyping, in particular, predicate subtyping and dependent types.

In modern software engineering, types and type checking are applied for different pur-
poses: types complement data with machine readable and processable semantics. Type
checking is a very popular and well established “lightweight formal method” to ensure
program and system behavior and to enforce high-level modularity properties. Types and
type checking enhance efficiency and consistency of (modern) programming and modeling
languages.

Answers to the questions “what are types?” and “what is type checking?” can hardly
be given since types and type checking cover various usages of programming and model-
ing languages. Usually, a type system (i.e. the formal specification of types and a type
checking algorithm) is defined by a sub-language of the complete language. This type
expression sub-language should be sufficiently rich to support types for all object language
expressions with which one wishes to compute, but sufficiently tractable to permit decid-
able and efficient (i.e. in polynomial time complexity) type checking1. In general, the type
expression sub-language is specified by a context-free grammar. The type checker (i.e.
the algorithm that implements the rules for typing object language expressions specified
by the type system) is typically build into a compiler such that it must be able to do its
job automatically before running a program, i.e. static (at compile time), with no man-
ual intervention or interaction with the programmer, i.e. the type checker must embody
computationally tractable analyses. But the programmer may “guide” the type checker
in the form of explicit type annotations in programs. Usually, these annotations are kept
fairly light, to make programs easier to write and read. A well-designed statically typed
language will never require huge amounts of type information to be explicitly maintained
by the programmer. It is a matter of language design how much explicit type annotation is
too much. For example, the designers of Standard ML keep type annotation to a minimum,
using type inference methods to recover the necessary type information. In general, type
checking algorithms perform two different tasks:

1. check whether the type annotations made in a program are fulfilled, and

2. infer the type of an object language expression in a program (this is also called type
reconstruction).

1The notion type checking is used whenever static type checking is referred to; otherwise the notion
dynamic checking is used.

162 6. An Approach to Predicate Subtyping with Calendric Types

A type checker should not just be static and automatic in principle, but it should come with
efficient algorithms for checking types. Efficient here means in polynomial time complexity.
However, what exactly counts as efficient, and when dynamic checking (i.e. at run time) is
necessary is a matter of debate depending on concrete problems of a specific programming
or modeling language.

Besides type checking programs, one is also interested in the semantics of the type
expression sub-language, in particular, what types denote, and what relations among type
expressions exist. The most basic relation among type expressions is type equivalence.
But also similar relations, weaker than type equivalence, exist such as (type) inclusion or,
more general, subtyping. Subtyping gives rise to deal with subtypes and inheritance. In
languages with subtyping, an element can be viewed as belonging to many different types.
Those types need not to be disjoint, i.e. they may be inclusions of types. Here a language
expression can be viewed as belonging to any different types which are inclusions of each
other. That means that in a language with subtyping, many types may be given to a
single object language expression. Similarity relations among type expressions that permit
a type expression to denote more than one type, or to be compatible with many types, are
referred to as polymorphism2.

6.1.1 The Simply Typed Lambda Calculus with Subtyping

The simply typed lambda calculus is the (theoretical) foundation for most existing statically
typed languages such as ML, Haskell, and OCaml. In the 1930s, Church [Chu36, Chu40]
invented a formal system in which all computation is reduced to function definition and
application, the lambda calculus. In the 1960s, Landin [Lan64, Lan65, Lan66] took the
lambda calculus as a core to formulate a complex programming language. McCarthy’s
work on Lisp [McC62] has led to widespread use of the lambda calculus in programming
language design and implementation as well as to various enrichments and combinations
of this calculus with other calculi such as the object calculus [AC96].

Syntax. The syntax of the lambda calculus has three sorts of expressions3. The syntax
is given in a BNF-like grammar:

e ::= expressions:
x variables
λx.e abstractions
e e applications

A variables x itself is an expression. The abstraction of a variable x from an expression
e1, written λx.e1, is an expression. Finally, the application of an expression e1 to another
expression e2, written e1 e2, is an expression.

2Subtyping is usually considered as a specific form of polymorphism, called inclusion (or subtype)
polymorphism [Mit96, Pie02]

3In this text, the notion expression refers to object language expression.

6.1 (Sub-)Typing in a Nutshell 163

Types. To construct a type system for the language of the lambda calculus, typing rules
for variables, abstractions, and applications are needed that

1. maintain safety (also called soundness), i.e. that well-typed expressions4 do not reach
a stuck state, i.e. do not go wrong, and

2. are not too conservative, i.e. they should assign types to most programs.

Since the lambda calculus is essentially a calculus for representing functions, a type clas-
sifying expressions whose evaluation results in functions is needed. Such a type is usually
called arrow type and it is denoted by →. Adding a typing rule for → to lambda abstrac-
tions, one might classify the types of the variables to be abstracted. Furthermore, to give
a useful type to the result of an application, one might need to know what is the type
of the result the function returns. To keep track of this information, the following type
expression (type, for short) is needed:

τ ::= types:
τ → τ function types

τ1 → τ2 denotes an infinite family of types, each classifying functions that expect
arguments of type τ1 and return results of type τ2. Note that the type constructor → is
right-associative. For example, assuming a type Bool for booleans in the given framework,
Bool → Bool is the type of functions mapping boolean arguments to boolean results.

The Typing Relation. A typing relation assigns a type to any expression in the con-
sidered language. In the simply typed lambda calculus, variables, abstractions, and appli-
cations must be typed. The typing relation for the simply typed lambda calculus is given
in Table 6.1.

A variable (cf. the typing rule (T-Var) in Table 6.1) has whatever type one might
currently assume it to have. The premise x:τ ∈ Γ is read: “the type assumed for x in the
context Γ is τ”.

A typing context (context, for short) is given by the following:

Γ ::= contexts:
∅ empty contexts
Γ, x:τ variable binding

A context is a sequence of variables and their types. The “comma” operator extends
the context Γ by adding a new binding (i.e. a variable and its type) on the right. The
empty context is written ∅. Note that always “fresh” variables are chosen to avoid naming
conflicts between a new binding and any bindings that may be in the context Γ.

4A well-typed expression is either a value or it can take a step according to the language’s evaluation
rules.

164 6. An Approach to Predicate Subtyping with Calendric Types

x:τ ∈ Γ (T-Var)
Γ ` x : τ

Γ,x:τ1 ` e2:τ2 (T-Abs)
Γ ` λx:τ1.e2:τ1 → τ2

Γ `e1:τ11 → τ12 Γ `e2:τ11 (T-App)
Γ `e1 e2:τ12

Table 6.1: Typing relation of the simply typed lambda calculus.

Assigning a type to an abstraction like λx:τ the following informations need to be
calculated. What happens when the abstraction is applied to some argument? And how
to know what type of arguments to expect? In the typing rule (T-Abs) for lambda
abstractions given in Figure 6.1, the intended type of a function’s arguments is annotated,
written λx:τ1.e2, where the annotation on the bounded variable tells the type checker to
assume that the argument x is of type τ1. Knowing the type of the argument to the lambda
abstraction, the type of the function’s result obviously is the type of the body, denoted e2,
where occurrences of x in e2 are assumed to have type τ1. The typing rule (T-Abs) given
in Figure 6.1 mirrors this reading.

The typing rule (T-App) for function applications (cf. Figure 6.1): if the expression
e1 evaluates to a function mapping elements of type τ11 to elements of type τ12, and if
e2 evaluates to a result of type τ11, then the result of applying e1 to e2 is of type τ12.
This rule applies under the assumption that the values represented by the free variables in
expression e1 have the types assumed for them in the context Γ.

Subtyping. One of the simplest type systems with subtyping is an extension of the
previously recalled simply typed lambda calculus to subtyping. The syntax of the language
remains unchanged. The type Top is added to the type expression sub-language:

τ ::= types:
. . .
Top maximum type

The existing typing relation (cf. Figure 6.1) remains also unchanged. Only a single
typing rule is added, that of subsumption:

Γ `e:σ σ ≤ τ (T-Sub)
Γ `e:τ

6.1 (Sub-)Typing in a Nutshell 165

Γ ` σ <: σ (S-Refl)

Γ ` σ <: ρ Γ ` ρ <: τ (S-Trans)
Γ ` σ <: τ

Γ ` σ <: Top (S-Top)

Γ ` τ1 <: σ1 Γ ` σ2 <: τ2 (S-Arrow)
Γ ` σ1 → σ2 <: τ1 → τ2

Table 6.2: Subtyping relation for the simply typed lambda calculus.

That means, if σ is a subtype of τ (denoted σ ≤ τ) and if e is an element of type σ
(denoted e:σ), then every such e is also of type τ (denoted e:τ).

The subsumption rule provides with a formalization of the intuitive notion of subtyping,
the so-called subset semantics. The subsumption rule is used to connect the typing relation
(cf. Table 6.1) to the subtyping relation (cf. Table 6.2) for the simply typed lambda calculus.

The subtyping relation for the simply typed lambda calculus with subtypes is given in
Figure 6.2. The subtyping relation is defined as a reflexive and transitive relation with
a maximal element called Top, i.e. the type of all well-typed expressions. The subtyping
rule for arrow types says that σ1 → σ2 is a subtype of τ1 → τ2 if τ1 is a subtype of σ1 and
σ2 a subtype of τ2.

Note: For any type one may add to the simply typed lambda calculus with subtyping
like records, variants, products, and unions one may add (simple) subtyping rules. Usually,
one have to add a single subtyping rule for each type constructor, taking care that the
subtyping rule is sound in conjunction with the subsumption rule. Good and exhaustive
surveys on type systems with subtypes are given for example in [CW85, Car96, Pie02].

6.1.2 Subtyping Semantics

Giving semantics to a language with subtyping has been thoroughly investigated and var-
ious approaches to subtyping have been developed. For example in [OB88], subtyping has
been expressed similarly to polymorphism in ML-style languages, in [CW85], subtyping has
been expressed through explicit mechanisms as parts of the type checking system, and in
[BTCGS91], subtyping has been expressed as implicit coercion. Good surveys on semantic
models of subtyping can be found in [GM94, Mit96].

Very common and wide-spreadly used semantic models of subtyping, inclusion poly-
morphism and implicit coercion, are recalled in the following.

166 6. An Approach to Predicate Subtyping with Calendric Types

6.1.2.1 Inclusion Polymorphism

Inclusion polymorphism is one possibility that gives rise to deal with subtypes and inheri-
tance. In inclusion polymorphism, an element can be viewed as belonging to many different
types which do not need to be disjoint, i.e. there may be inclusions of types. Thus, sub-
typing and inheritance are forms of polymorphism: many different types may be given to
a single object language expression.

Inclusion polymorphism achieves polymorphic behavior through an inclusion relation
(in the common set-theoretic sense) between types or sets of values, introduced into a type
system by means of the rule of subsumption:

Γ `e:σ σ ≤ τ (T-Sub)
Γ `e:τ

This rule formalizes the intuition that some types are more informative than others: we
say that σ is a subtype of τ , written σ ≤ τ , to mean that any object language expression e
of type σ can be used in a context where an expression of type τ is expected. In fact, every
value of type σ is also described by τ (i.e. the elements of σ are a subset of the elements
of τ). This interpretation of a subtype relation is therefore often called subset semantics.

For example, a record type e-mail-address describing e-mail addresses with fields for
name and e-mail address is more informative than a record type name-address with a
single field for names. Thus, the former record type is a subtype of the later one. With the
afore mentioned subsumption rule, any expression of type e-mail-address can be used in
a context where an expression of type name-address is expected.

Inclusion polymorphism can be found in many programming languages, in particular in
object-oriented programming languages, using a specific form of inclusion polymorphism,
called inheritance. Simula 67 is the earliest example of an inclusion polymorphic language.
Further developments in such languages are for example Smaltalk and Java.

6.1.2.2 Implicit Coercion

Using a subset semantics in terms of inclusion polymorphism follows the intuition that
subtyping is “semantically insignificant”, i.e. it has no effect on the way programs are
evaluated. But some “intuitively reasonable” inclusions between base types such as integers
and floats may have effect on this semantics. For example, introducing the axiom integer ≤
float implies under the subset semantics that integer values must be a subset of the
set of floats. However, integers and floats have entirely different representations in most
language implementations. Similar problems also arise when record types are combined
with subtyping.

To overcome such problems with the subset semantics, a different semantics of subtyping
is adopted: implicit coercion (also called coercion semantics (of subtyping)). With such a
coercion semantics of subtyping, subtyping is “compiled away” by replacing it with run-
time coercion. Intuitively, coercion semantics for subtyping is expressed by a function
that transforms expressions of the high-level language with subtyping into expressions of

6.1 (Sub-)Typing in a Nutshell 167

a lower-level language without subtyping. No evaluation rules are given for the high-level
language. Instead, expressions of the high-level language are type checked (using the high-
level typing and subtyping rules), their typing derivations are translated into the lower-level
language, and finally, the evaluation relation of this lower-level language is used to obtain
the high-level language expressions’ operational behavior.

Implicit coercion is wide-spreadly used in object-oriented languages such as Java for
base types such as integers and floats as well as for method invocation between subclasses.

6.1.3 Predicate Subtypes and Dependent Types

Predicate subtypes and dependent types are stronger forms of typing and subtyping that
enable to encode more information in types. They have been investigated in type theory,
logics, proof assistents, and theorem proving.

Predicate Subtypes. Using subtyping as in the simply type lambda calculus with sub-
typing, one can consider for example a value of type N also to be of type Z, i.e. it allows one
type to be a subtype of another type. But this means for subtyping does not solve prob-
lems of statically check violations such as division by zero or out-of-bound array references.
Predicate subtypes [ROS98] allow for such kinds of checks.

Predicate subtypes allow for encoding more (compared to “usual” types) information in
types. Therefore, they enable a stronger form of subtyping. A predicate subtype is created
as a subtype from another type τ by a corresponding predicate p as follows. For any type
τ , the predicate p : τ → B defines the set of those elements of τ that satisfy p. Examples
of predicate subtypes are non-negative integers (i.e. in set notation {x : Z | x > 0}),
a predicate subtype of type integer, and integer lists with n ∈ N members (i.e. in set
notation {l : Z∗ | length(l) = n}), a predicate subtype of type list of integers. In
general, predicate subtyping allows type expressions to contain arbitrary predicates.

Predicate subtypes are particularly used in specification languages for proof assistents
and theorem provers, for example in [ROS98]. In such systems, predicate subtypes are
used

• to express side conditions of theorems,

• to statically check violations such as division by zero, and

• to allow for more consistency checks.

Although predicate subtypes seam a promising approach to enhance the advantages
of static type checking, static type checking becomes undecidable in type systems with
predicate subtyping. Consequently, the programmer has to annotate programs with hints
and explanations to guide the type checker and/or theorem proving efforts are required for
type checking.

168 6. An Approach to Predicate Subtyping with Calendric Types

Note: Predicate subtypes are powerful enough to express dependent types [SNP90,
Tho91, Luo94, Hof97]. But in contrast to dependent types, predicate subtypes incorporate
the concept of subtyping.

Dependent Types Dependent types, mostly investigated in theoretical computer science
and logics [SNP90, Tho91, Luo94, Hof97], provide an abstraction mechanism for applying
types to different object language expressions.

Dependent types provide a means to describe programs much more precisely than
ordinary types. In the following, dependent types are exemplified. Assume a built-in
type IntList (denoting the type of lists of integers) with some related functions:

nil : IntList

cons : Int → IntList → IntList

head : IntList → Int

isnil : IntList → Bool

Assuming a language with dependent types, the type IntList can be refined to a type
of lists with n elements, denoted by IntList n. To take advantage of this refinement and
to give more precise types to the functions, dependencies between function arguments and
function results need to be expressed. This is achieved by a refinement of the arrow type to
a dependent function type. Dependent function types are denoted with Πx:τ1.τ2, precising
the arrow type τ1 → τ2. The variable x represents the function’s argument (of type τ1)
such that it can be mention in the result type τ2. This dependent function type captures
the dependencies between the values of the arguments and that of the results of a function.
The refined versions of the list functions using dependent types then have the following
types:

nil : IntList 0

cons : Πn:Nat.Int → IntList n → IntList (succ n)

head : Πn:Nat.IntList (succ n) → Int

Note that a function isnil is no more needed since the type IntList can be now tested
whether n is 0 or not.

Checking that functions with dependent types actually belong to the intended types
yields in proving that a function meets its specification. The idea for such proofs is based
on the observation that a constructive proof of a theorem of the form “ for every x exists
a y such that a predicate p holds” can be viewed as a function from x to y. That this
function has the property p is of evidence for the type checker. Unfortunately, type check-
ing with dependent types (which requires a combination with theorem proving) becomes
computationally intractable.

Since dependent types lack in computational tractability, attempts have been made to
restrict the power of those types. Dependent types (and also predicate types) are used in

6.2 Properties and Advantages of Calendric Types 169

building proof assistants and automated theorem provers and work on theorem proving
environments such as AutoMath [dB80], NuPRL [CAB+84], LEGO [LP92], ELF [Pfe94],
and PVS [ROS98]. A survey on such work is given in [Pfe96].

Combination of dependent types with subtyping has been initially investigated by
Cardelli [Car88]. This work has been advanced and generalized in [Asp94, CL96, Zwa99,
AC01].

6.2 Properties and Advantages of Calendric Types

For programming languages, type systems and their associated type checkers are intended
to ensure the absence of certain undesirable behaviors during program execution. Such
checks that obey the typing rules of the language are usually performed at compile time, i.e.
statically before running a program. The undesired behaviors generally include untrapped
errors such as adding a boolean to an integer. If the language is “type safe”, then all
programs that can exhibit these undesired behaviors will be rejected during type checking.

Execution is not a primary concern of the calendar type specification language CaTTS-
DL. In fact, it is merely a language to specify what a day or a teaching term (in some
specific context of the calendar used) is. But (meta-) type checking CaTTS-DL calendar
specifications can still serve to reject calendar specifications that are erroneous or unde-
sirable in some way. For example, a calendric type that is constructed by conjunction of
hours and working weeks is not reasonable at all and should be rejected (statically) before
using such a type declaration in some program.

Of course, we want to ensure that no CaTTS-CL program is executed that contains
undesired behavior that can be syntactically determined such as shifting an activity by an
activity rather than a duration. But the primary concern of a constraint problem is to check
whether the problem is consistent. Calendric types can be used to make consistency checks
of such programs more efficient, and they allow for earlier inconsistency detection during
constraint propagation. For example, a CaTTS-CL constraint problem that contains two
event variables X of type day and Y of type week and the time constraint Y during X fails
without any further constraint propagation taking place, because the duration of Y in terms
of days, i.e. 7 is larger than the duration of X in terms of days, i.e. 1 such that Y cannot
be during X. Such simplifications of CaTTS-CL constraints can be implemented into the
constraint solver thanks to the calendric types’ semantics. Since CaTTS is an environment
that contains a constraint solver, it is feasible to contemplate that type checking CaTTS-CL
can rely on constraint solving, and is thus not restricted to syntactic checks of untrapped
errors.

Above all, calendric types and type checking in CaTTS-CL provide multi-calendar con-
straint solving with the semantics of the different calendric types. Calendric types enable
earlier and larger domain reduction during constraint propagation (cf. Chapter 5) which
makes multi-calendar constraint solving much more efficient. Furthermore, constraint prob-
lems that are (obviously) inconsistent can be rejected by the type checker.

170 6. An Approach to Predicate Subtyping with Calendric Types

6.2.1 Concise Modeling, Documentation, and Annotation

The definition language CaTTS-DL (cf. Chapter 4), as a means for modeling temporal
and calendric data and calendars in a declarative way to allow for context-aware modeling
and reasoning, is open inasmuch that the definition language is neither restricted to a
particular calendar nor to specific calendric and temporal data. Instead, a programmer
can specify any cultural and/or professional calendar his/her application might need. The
definition language provides with a small, but powerful set of type constructors based on
specifying predicate sets. Such types complement the temporal and calendric data with
machine readable and processable semantics.

Calendric data such as dates are probably more than any other data domain a subject
to user interpretation: for example, the date “12/02/2005” is interpreted in France as
12th February 2005 while it is interpreted as 2nd December 2005 in the US or the calendric
expression “Friday evening” might either refer to the eve of Friday or to the eve of Thursday.
Calendric types can be used to give such data their intended meanings. Thus, calendric
types are essentially another form of program and document annotation than ontologies
that hardly becomes outdated.

6.2.2 Multi-Calendar Support: Modularity, Reuse, and Mainte-
nance

To model and query temporal data in information systems like the (Semantic) Web, the
calendar used by some programmer along with his/her cultural, legal, business, or even
private context must be taken into account. Having in mind the Web sites of a university,
for example basing on temporal data of an educational calendar involving concepts like
lectures, courses, examinations, consultation hours, and teaching terms, or of a personal
appointment book, basing on temporal data of a business calendar involving business
conferences, meetings as well as personal work out times, for example. Those kinds of
calendars, which might be called professional calendars, are usually established over any
cultural calendar used. Cultural calendars like the Gregorian calendar or the Islamic cal-
endar base on the cultural context a person lives and works in. Since the (Semantic) Web
is international and thus, inherently heterogeneous, the possibility to define and used arbi-
trary professional and cultural calendars in CaTTS for Web languages suggests itself and
it is thus indispensable.

Having once defined a cultural calendar such as the Gregorian or Islamic calendars in
CaTTS, it should be reusable several times, for example to be extended with an educa-
tional calendar in one case and with a business calendar in some other case. Reuse, and
thus, modularity and maintenance of CaTTS-DL calendar specifications is supported since
calendars are defined in terms of reusable, extensible, and parametric modules (cf. Chapter
4).

6.2 Properties and Advantages of Calendric Types 171

6.2.3 Calendar-Conversion Functionality

The various cultural and professional calendars in use today define miscellaneous concepts
to capture calendric data like days, lessons, working shifts, a person’s birthday date, con-
sultation hours of a physician, etc. A computer implementation dealing with such data
needs a way to compare and compute it in a uniform manner without loss of semantics
inherent to the different calendric concepts. Fortunately, in CaTTS-DL, calendric types
are always defined in terms of aggregation and/or inclusion subtypes of other calendric
types by specifying predicate sets. Defining subtyping with such calendric types using a
subtype semantics of implicit coercion introduces a means to convert values from one type
to another whenever required in a program. In fact, this conversion functionality (based on
subtyping) provides a means to perform multi-calendar constraint solving efficiently and
without loss of semantics as it would be the case if any calendric data would be converted
to a single reference type like seconds.

6.2.4 Multi-Calendar Constraint Solving

As mentioned in the previously stated objectives and as introduced with CaTTS’ constraint
solver (cf. Chapter 5), multi-calendar constraint solving is performed independently, effi-
ciently and without loss of semantics of the data. The reason for this is that type predicates
specify a conversion from values of one calendric type to those of another which are related
to each other in CaTTS’ conversion constraint. Efficiency of multi-calendar constraint
solving is enhanced due to calendric types.

6.2.5 Use in Different Web Languages

CaTTS is in principle designed to be used for calendric data modeling and reasoning in
any language, in particular, Web and Semantic Web languages such as XML Schema,
XQuery, RDF, and OWL. Similar, to ensure the meaning of XML Schema base types
like float, string, or date and dateTime in an XQuery program or an OWL ontology,
arbitrary calendric data could be represented and processed in an XQuery program or
an OWL ontology by using calendric data and date and time formats enriched with type
annotations after some calendars specified in CaTTS-DL. Type checking such annotated
data ensures the desired semantics and program behavior: consider a calendar C specified
in CaTTS-DL and a program P in the language XQuery, OWL, or any other program P
with type annotations referring to types and/or formats specified in the calendar C. An
appropriate type checker verifies and/or extends the type annotations in P generating a
type checked version P ′ of P :

172 6. An Approach to Predicate Subtyping with Calendric Types

calendar C program P

type checker for
calendric types

type checked version P ′ of P

@
@

@
@@R

�
�

�
��	

?

Note: Depending of the language in mind CaTTS should be used with, type checking
calendric data typed after calendars specified in CaTTS-DL needs to be adapted to the
requirements of the considered language. The subsequently introduced (simple) static type
checking rules for CaTTS-CL programs and the coercion semantics of subtyping for CaTTS-
CL meet the requirements of a constraint language with calendric reasoning approaches to
express and solve multi-calendar appointment scheduling problems referring to calendric
types defined in some CaTTS-DL calendar specifications.

6.3 Predicate Subtypes in CaTTS

Recall that CaTTS-DL is a programming language approach to modeling time and calendar
data using calendars as types. One of CaTTS-DL’s fundamental principles is to define time
granularities by means of predicate subtypes as calendric types either by aggregation or
inclusion of another calendric type. Predicate subtypes defined in a CaTTS-DL calendar
specification are referred to by CaTTS-CL and its constraint solver. CaTTS-DL uses
predicate types in a different manner than predicate types are used for both dependent
types and specification languages of proof assistents and theorem provers (cf. Section 6.1):

1. CaTTS uses predicate types as a means to define time granularities as calendric types
such that they can be manipulated by computer programs. CaTTS’ predicate types
represent time granularities including complex ones like Hebrew months. Calendric
data types defined in CaTTS-DL belong to (possibly different) CaTTS-DL calendar
specifications.

2. In CaTTS, the definition of predicate subtypes is syntactically restricted: predicate
subtypes define either aggregations or inclusions of other calendric types (cf. Chapter
3 and Chapter 4). To this aim, type constructors for aggregation subtypes and for
inclusion subtypes are supported which have been introduced in Chapter 4.

3. In CaTTS, predicate subtypes are used to define a coercion semantics for subtyping
with calendric types, meeting the requirements of multi-calendar constraint solving

6.4 Conversion Function Generation from Type Predicates 173

over arbitrary calendar domains that refer to calendric types defined in a CaTTS-
DL calendar specification. In particular, predicate subtypes provide a means to
relate calendric data represent in different calendric types to each other such as the
set of weeks {1, 2} to the set of intervals of days {{1, 2, . . . , 7}, {8, 9, . . . , 14}} and
to efficiently manipulate such related time sets during constraint solving. That is,
predicate subtypes are used to generate conversions from values of one calendric type
to values in some other calendric type which are applied during constraint solving.

4. Since CaTTS’s typing and subtyping relations are developed not only for a calendar
type definition language (i.e. CaTTS-DL) but also for a calendar constraint language
(i.e. CaTTS-CL) some design choices can be considered that are not available for
programming languages. In particular, CaTTS comes along with a constraint solver
(cf. Chapter 5). Therefore, it is feasible to contemplate that type checking can be
composed with constraint solving. In particular, CaTTS’ predicate subtypes can
be used for consistency checks in CaTTS-DL calendar specifications such as out-off
bound violations of a finite type like the era of the current Japanese emperor, called
“Heisei” as well as in CaTTS-CL programs such as the inconsistency of the constraint
X during Y if X is of type week and Y is of type day. In CaTTS’ current prototype
implementation, such checks are performed dynamically during constraint solving.

Note: In CaTTS’ current implementation consistency checks are exclusively performed
dynamically during constraint solving. Dynamic checks fit perfectly well with CaTTS-
CL’s coercion subtype semantics. Furthermore, CaTTS constraint solver just implements
a consistency test for time constraints on calendar domain constraints that refer to calendric
types defined in CaTTS-DL. However, one might figure out at least a small set of CaTTS-
CL language constructs for which consistency checks can be performed statically before
running the constraint solver. This issue is further discussed in Section 7.2.1.3.

6.4 Conversion Function Generation from Type Pred-

icates

From each (user-defined) predicate that defines a calendric type as a subtype of another
calendric type either by aggregation or inclusion using CaTTS-DL language constructs
in a CaTTS-DL calendar specification, a conversion function is automatically generated
by CaTTS-DL’s language processor. The conversion constraint of CaTTS’ multi-calendar
constraint solver (cf. Table 5.9, p.152) applies those conversion functions.

174 6. An Approach to Predicate Subtyping with Calendric Types

6.4.1 Definition of the Conversion Function

Formally, a conversion function cσ→τ for calendric types σ and τ defined in a CaTTS-DL
calendar specification C5 where σ ≤ τ (i.e. σ is a subtype of τ) and its inverse cτ→σ are
defined as follows.

Definition 6.1 (Conversion Function). Let σ and τ calendric types defined in calendar
C and σ ≤ τ . The conversion function cσ→τ and its inverse cτ→σ are defined as follows
for indices i, j ∈ Z

cσ→τ (σ(i)) := [τ(j1), . . . , τ(jk)] where [τ(j1), . . . , τ(jk)] = σ(i)
1 ≤ k

σ(j) if τ(i) ⊆ σ(j)

cτ→σ(τ(i)) := {
{max({k | k < i ∧ τ(k) ⊆ σ(l)}),
min({k | k > i ∧ τ(k) ⊆ σ(l)})} otherwise

With Definition 6.1, cweek→day(1) yields the interval of days [day(1), day(2), . . . , day(7)],
assumed that week ≤ day and that weeks are defined from days such that each week
contains 7 days, always starting on Mondays and such that day(1) refers to a Monday.
Inversely, cday→week(6) yields the week week(1), i.e. the week that contains the day with
index 6. To give another example, cworking day→day(6) yields the day day(8), assumed that
working day ≤ day and that working days are defined from days such that they refer to
the weekdays Monday to Friday in each week and such that day(1) refers to a Monday. In-
versely, cday→working day(6) yields the set of working days {working day(5), working day(6)},
i.e. the set of those working days which immediately preceed and succeed the day day(6),
since day(6), a Saturday, is not a working day.

According to Definition 6.1, [τ(j1), . . . , τ(jk)] denotes a (finite) interval of values in the
type τ and {max({k | k < i∨ τ(k) ⊆ σ(l)},min({k | k > i∨ τ(k) ⊆ σ(l)}} denotes the set
of the immediate predecessor and the immediate successor according to τ(i) in type σ, if
no corresponding value to τ(i) in σ exists.

Applying this conversion function during constraint propagation in CaTTS’ conversion
constraint requires in some cases a variation: for example, if a day d should explicitly refer
to a starting time of a week w, this is only possible if d starts this week w; otherwise, the
week that succeeds the week d is contained in must be chosen. Similarly, if a day d should
explicitly refer to an ending time of a week w, this is only possible if d finishes this week
w; otherwise the week that preceeds the week d is contained in must be chosen.6. For such

5Recall that C refers to an aligned set of calendars which is considered as a single calendar by CaTTS-
DL’s processor.

6in terms of the interval relations starts and finishes

6.4 Conversion Function Generation from Type Predicates 175

cases, the conversion function from Definition 6.1 comes with two versions, denoted c−σ→τ

and c+σ→τ (resp. c−τ→σ and c+τ→σ), the former to compute the immediate predecessor and the
latter to compute the immediate successor.

Definition 6.2 (Conversion Function for Predecessors and Successors). Let σ
and τ calendric types defined in calendar C and σ ≤ τ . The conversion function for
predecessors c−σ→τ and its inverse c−τ→σ and the conversion function for successors
c+σ→τ and its inverse c+τ→σ are defined as follows for indices i, j ∈ Z:

c−σ→τ (σ(i)) := τ(j1) where [τ(j1), . . . , τ(jk)] = σ(i), 1 ≤ k

c+
σ→τ (σ(i)) := τ(jk) where [τ(j1), . . . , τ(jk)] = σ(i), 1 ≤ k

σ(j) if τ(i) equals σ(j) ∨ τ(i) finishes σ(j)

c−τ→σ(τ(i)) := {
max({k | k < i∧
(τ(k) equals σ(l)∨
τ(k) finishes σ(l))}) otherwise

σ(j) if τ(i) equals σ(j) ∨ τ(i) starts σ(j)

c+
τ→σ(τ(i)) := {

min({k | k > i∧
(τ(k) equals σ(l)∨
τ(k) starts σ(l))}) otherwise

With Definition 6.1, c−week→day(1) yields the day day(1) that starts the week week(1),
assumed that week ≤ day and that weeks are defined from days such that each week
contains 7 days, always starting on Mondays and such that day(1) refers to a Monday. And
c+week→day(1) yields the day day(7) that finishes the week week(1). Inversely, c−day→week(6)
yields the week week(0), i.e. the week that preceeds the week that contains the day with
index 6. And c+day→week(6) yields the week week(2), i.e. the week that preceeds the week

that contains the day with index 6. To give another example, c−working day→day(6) yields the
day day(8), assumed that working day ≤ day and that working days are defined from days
such that they refer to the weekdays Monday to Friday in each week and such that day(1)
refers to a Monday as it is also the case for c+working day→day(6). Inversely, c−day→working day(6)
yields the working day working day(5), i.e. the working day that immediately preceeds
the day day(6) in terms of working days, since day(6), a Saturday, is not a working day.
And c+day→working day(6) yields the working day working day(6), i.e. the working day that
immediately succeeds the day day(6) in terms of working days.

An illustration of the conversion function and its specialized forms for immediate pre-
decessors and immediate successors is given in Figure 6.1.

176 6. An Approach to Predicate Subtyping with Calendric Types

The conversion function, σ ≤ τ :

. σ

i︷ ︸︸ ︷ i + 1︷ ︸︸ ︷
τ

j1 j2 j3 j4 j5 j6

cσ→τ (σ(i)) = [τ(j1), τ(j2), τ(j4)]

c−σ→τ (σ(i)) = τ(j1)

c+
σ→τ (σ(i)) = τ(j4)

Inverse of the conversion function, σ ≤ τ :

. σ

︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷j − 1 j j + 1

τ
i

cτ→σ(τ(i)) = σ(j)

c−τ→σ(τ(i)) = σ(j − 1)

c+
τ→σ(τ(i)) = σ(j + 1)

Figure 6.1: Illustration of the conversion function cσ→τ and its inverse cτ→σ for σ ≤ τ .

6.4 Conversion Function Generation from Type Predicates 177

6.4.2 Conversion Function Generation from Aggregation Sub-
types

In what follows, the different possibilities to define an aggregation subtype in a CaTTS-DL
calendar specification using CaTTS’ language constructs for aggregation subtype predi-
cates are considered. The conversion function and its inverse generated from such a type
predicate by CaTTS-DL’s language processor are given together with an example for each
case.

6.4.2.1 Periodic Aggregations

In CaTTS-DL, periodic aggregation subtypes can be declared using the following CaTTS-
DL language construct.

type σ = aggregate d1 τ , . . . , dk τ @ τ (a) ;

where

• di, i ∈ {1, . . . k} is the duration of some value of type σ in terms of values of type τ ,

• k ∈ N is the length of the ordered periodic pattern of k values of type σ according
to values of type τ ,

• a ∈ Z the anchor index of type σ in type τ ,

• σ � τ , and thus, σ ≤ τ .

For example, the type week can be defined by a periodic aggregation of the type day

since each week contains 7 days.

From such a periodic aggregation predicate, the conversion function cσ→τ , its two vari-
ants c−σ→τ and c+σ→τ and its inverse cτ→σ with variants c−τ→σ and c+τ→σ are generated as
follows:

178 6. An Approach to Predicate Subtyping with Calendric Types

cσ→τ (i) := let i mod k = m

in
⋃(d1+...+dm)−1

j=d1+...+dm−1
(d1 + . . . + dk)× ((i− 1) div k) + a + j

c−σ→τ (i) := let i mod k = m
in (d1 + . . . + dk)× ((i− 1) div k) + a + (d1 + . . . + dm−1)

c+
σ→τ (i) := let i mod k = m

in (d1 + . . . + dk)× ((i− 1) div k) + a + (d1 + . . . + dm − 1)

cτ→σ(i) := (i− a) ∗ k div (d1 + . . . + dk) + 1

c−τ→σ(i) := if (i− a) ∗ k mod (d1 + . . . + dk) == d1 + . . . + dk − 1
then (i− a) ∗ k div (d1 + . . . + dk) + 1
else (i− a) ∗ k div (d1 + . . . + dk)

c+
τ→σ(i) := if (i− a) ∗ k mod (d1 + . . . + dk) == 0

then (i− a) ∗ k div (d1 + . . . + dk) + 1
else (i− a) ∗ k div (d1 + . . . + dk) + 2

Assume an internal indexing of type week and type day as given in the following illus-
tration:

week

day

1 2

1 2 3 4 5 6 7 8 9 10 11 12 13

Further assume that the type week is defined as an aggregation subtype of type day by
the following predicate subtype in a CaTTS-DL calendar specification.

type week = aggregate 7 day @ day (1) ;

Then the following conversions can be computed by applying the previously given patterns
to generate conversions for periodic aggregation subtypes.

cweek→day(2) = {8, . . . , 15} the interval of days that define week(2)
c−week→day(2) = 8 the day that starts week(2)

c+week→day(2) = 14 the day that finishes week(2)

cday→week(9) = 2 the week which contains day(9)
c−day→week(9) = 1 the week that preceeds the week containing day(9)

c+day→week(9) = 3 the week that succeeds the week containing day(9)

6.4 Conversion Function Generation from Type Predicates 179

Note: c−day→week(8) yields week(2) because day(8) starts this week according to Defini-
tion 6.2, p.175.

6.4.2.2 Periodic Aggregations with finite many Exceptions

In CaTTS-DL, periodic aggregation subtypes with finite many exceptions can be declared
using the following CaTTS-DL language construct.

type σ = aggregate
alternate σ(i)

cond11 → d11τ
. . .
cond1l → d1lτ

end
. . .
alternate σ(i)

condk1 → dk1τ
. . .
condkl → dkmτ

end
@ τ (a) ;

where

• Di∈{1,...k}, where every Di is the set of possible durations for a specific phase i, and
D =

⋃
Di∈{1,...k}, i.e. D = {{d11, . . . , d1l}, . . . , {dk1, . . . , dkm}}

• k is the length of the ordered pattern of values of type σ in terms of intervals of
values of type τ ,

• a the anchor index of type σ in τ ,

• cond a condition formulated using arithmetic expressions supported in CaTTS-DL,

• σ � τ , and thus, σ ≤ τ .

For example, the type (Gregorian) month can be defined by a periodic aggregation with
finite many exceptions from type (Gregorian) day since each month contains either 28, 30
or 31 days with the exception that the February contains from time to time an extra day
(due to leap year regulations).

Let d1i
∈ D1, . . . , dki

∈ Dk the durations of σ(i) satisfying the conditions cond1i
to

condki
specified in the predicate of σ for the value of type σ with index i. Then the

conversion function is defined as follows for starting times and ending times.

180 6. An Approach to Predicate Subtyping with Calendric Types

cσ→τ (i) := let i mod k = m

in
⋃(d1i

+...+dmi)−1

j=d1i
+...+dmi−1

(d1i + . . . + dki
)× ((i− 1) div k) + a + j

c−σ→τ (i) := let i mod k = m
in (d1i + . . . + dki

)× ((i− 1) div k) + a + (d1i + . . . + dmi−1)

c+
σ→τ (i) := let i mod k = m

in (d1i + . . . + dki
)× ((i− 1) div k) + a + (d1i + . . . + dmi − 1)

Inversely, the conversion function is defined by approximation to the minimal and the
maximal length of the k elements in a cycle. Let for i ∈ {1, . . . ,m} min(d1i

+ ...+ dki
) the

minimal length of one cycle and for i ∈ {1, . . . ,m} max(d1i
+ ...+ dki

) the maximal cycle.
Let further K denote the number of cycles of length k i is contained in. Then the inverse
of the conversion function is defined as follows.

cτ→σ(i) := min(i)..max(i)

min(i) := (i− a) ∗ k ∗K div max(d1i + . . . + dki
) ∗K + 1

max(i) := (i− a) ∗ k ∗K div min(d1i + . . . + dki
) ∗K + 1

min−(i) := if (i− a) ∗ k ∗K mod (max(d1i + . . . + dki
) ∗K) ==

max(d1i + . . . + dki
) ∗K

then (i− a) ∗ k ∗K div (max(d1i + . . . + dki
) ∗K)

else (i− a) ∗ k ∗K div (max(d1i + . . . + dki
) ∗K)− 1

max−(i) := if (i− a) ∗ k ∗K mod (min(d1i + . . . + dki
) ∗K) ==

min(d1i + . . . + dki
) ∗K

then (i− a) ∗ k ∗K div (min(d1i + . . . + dki
) ∗K)

else (i− a) ∗ k ∗K div (min(d1i + . . . + dki
) ∗K)− 1

c−τ→σ(i) := min−(i)..max−(i)

min+(i) := if (i− a) ∗ k ∗K mod (max(d1i + . . . + dki
) ∗K) == 0

then (i− a) ∗ k ∗K div (max(d1i + . . . + dki
) ∗K)− 1

else (i− a) ∗ k ∗K div (max(d1i + . . . + dki
) ∗K) + 1

max+(i) := if (i− a) ∗ k ∗K mod (min(d1i + . . . + dki
) ∗K) == 0

then (i− a) ∗ k ∗K div (min(d1i + . . . + dki
) ∗K)− 1

else (i− a) ∗ k ∗K div (min(d1i + . . . + dki
) ∗K) + 1

c+
τ→σ(i) := min+(i)..max+(i)

Assume an indexing of type month and type day as given in the following illustration:

6.4 Conversion Function Generation from Type Predicates 181

month

day

1 2

1 2 3 4 . . . 31 32 33

and assume that month is defined from day by the following predicate subtype in a CaTTS-
DL calendar specification.

type month = aggregate
31 day named january ,
alternate month(i)
| ((i div 1 2) mod 4 == 0 &&

((i div 1 2) mod 400 != 100 &&
(i div 1 2) mod 400 != 200 &&
(i div 1 2) mod 400 != 300) −> 29 day

| otherwise −> 28 day
end named f ebruary ,
31 day named march ,
30 day named ap r i l ,
31 day named may ,
30 day named june ,
31 day named ju ly ,
31 day named august ,
30 day named september ,
31 day named october ,
30 day named november ,
31 day named december @ day (1) ;

Then the following conversions can be computed. Where min(d1i
+ ... + dki

) is 365 and
max(d1i

+ ...+ dki
) is 366 and K is 1 (when month(2) is considered).

cmonth→day(2) = {32, . . . , 59} the interval of days that define month(2)
c−month→day(2) = 32 the day that starts month(2)

c+month→day(2) = 59 the day that finishes month(2)

cday→month(33) = 2..2 the month which contains day(33)
c−day→month(33) = 1..1 the month that preceeds the month containing

day(33)
c+day→month(33) = 3..3 the month that succeeds the month containing

day(33)

Note: Non-periodic aggregations need additional facilities of constraint solving and
memorization. This makes them not fit into the above mentioned pattern. They are not

182 6. An Approach to Predicate Subtyping with Calendric Types

considered in CaTTS’ current prototype implementation. An example of a non-periodic
aggregation is the specification of Hebrew months from Hebrew days.

6.4.2.3 Restricted Aggregations

In CaTTS-DL, restricted aggregation subtypes (e.g. the type working week can be defined
by a restricted aggregation from type working day according to type week). Such a type
can be declared using the following CaTTS-DL language construct.

type σ = ρ #< τ ;

From such a restriction predicate to specify an aggregation subtype, the conversion
function (and its two variants) is generated by concatenation of the conversion functions
from ρ to τ and its inverse is generated from concatenation of the inverse conversion
functions form τ to ρ.7

Assume an indexing of type working week and working day as given in the following
illustration:

. working week

working day1 2 3 4 5 6 7 8 9 10

1 2

and assume that working week is defined from working day (assuming that working
days are specified as Monday to Friday in each week) according to type week by the
following predicate subtype in a CaTTS-DL calendar specification.

type working week = week #< working day ;

Then the following conversions can be computed.

7Recall that the internal indexing of σ and ρ is the same.

6.4 Conversion Function Generation from Type Predicates 183

cworking week→day(2) = {6, . . . , 10} the interval of working days that define
working week(2)

c−working week→day(2) = 6 the working day that starts

working week(2)
c+working week→day(2) = 10 the working day that finishes

working week(2)

cworking day→working week(7) = 2 the working week which contains
working day(7)

c−working day→working week(7) = 1 the working week that preceeds the

working week containing working day(7)
c+working day→working week(7) = 3 the working week that succeeds the

working week containing working day(7)

In this case, the conversion function cworking week→day is defined by concatenation of
the conversion functions cweek→day and cday→working day (denoted cweek→day.cday→working day).
Analogously, the inverse conversion function cworking day→working week is defined by concate-
nation of the inverse conversion functions cworking day→day and cday→week (denoted
cworking day→day.cday→week).

6.4.3 Conversion Function Generation from Inclusion Subtypes

In what follows, the different possibilities to define an inclusion subtype in a CaTTS-DL
calendar specification using CaTTS’ language constructs for inclusion subtype predicates
are considered. The conversion functions generated from such inclusion subtype predicates
by CaTTS-DL’s language processor are given.

6.4.3.1 Selections

An inclusion subtype predicate can be specified using the CaTTS-DL selection language
construct that has the following general syntactic form.

type σ = select τ(i) where P;

where P can be specified using the following CaTTS-DL language constructs.

• relative i in[to] τ � k, � ∈ {=,≤, <,>,≥, 6=},

• q(relative i in[to] τ), q ∈ {min,max}, and

• conjunctions (denoted &&) and disjunctions (denoted ||) of such constructs.

Since the patterns for conversion function generations for selections using (disjunctions
and conjunctions of) the relative in/to language constructs are very similar, only two cases
are given for demonstration purposes.

184 6. An Approach to Predicate Subtyping with Calendric Types

Case 1:

type ρ = select σ (i) where relative i in τ == k ;

Defining ρ as an inclusion subtype of σ, i.e. ρ ⊆ σ.
From such an inclusion type declaration in CaTTS-DL the following pattern for con-

version function generation is derived.

cρ→σ(i) := d× (i− 1) + a + k − 1
c−ρ→σ(i) := cρ→σ(i)
c+
ρ→σ(i) := cρ→σ(i)

cσ→ρ(i) := let τ of σ = ((i− 1) div d) + 1 in
if cρ→σ(τ of σ) == i
then τ of σ
else {c−σ→ρ(i), c

+
σ→ρ(i)}

c−σ→ρ(i) := let τ of σ = ((i− 1) div d) + 1 in
if (((i− 1) mod d) + 1) < k
then τ of σ − 1
else τ of σ

c+
σ→ρ(i) := let τ of σ = ((i− 1) div d) + 1 in

if (((i− 1) mod d) + 1) <= k
then τ of σ
else τ of σ + 1

where

• σ � τ

• d denotes the duration of σ(i) in τ which is computed by converting σ(i) to τ using
cσ→τ (i) and then the duration of the corresponding interval in terms of σ in τ is
determined

• a denotes the anchor of σ in τ (according to the aggregation subtype definition of τ
from σ)

• k ≤ d

Assume an indexing of type saturday and type day as given in the following illustration:

saturday

day1 2 3 4 5 6 7 8 9 10 11 12 13

1 2

6.4 Conversion Function Generation from Type Predicates 185

Further assume that saturday is defined from day by the following predicate subtype in a
CaTTS-DL calendar specification.

type saturday = select day (i) where relative i in week == 6;

Then the following conversions can be computed.

csaturday→day(2) = 13 the day that corresponds to saturday(2)
c−saturday→day(2) = 13

c+saturday→day(2) = 13

cday→saturday(9) = {1, 2} the Saturdays that preceed and succeed day(9)
c−day→saturday(9) = 1 the Saturday that preceed day(9)

c+day→saturday(9) = 2 the Saturday that succeed day(9)

Case 2:

type ρ = select σ (i) where
relative i in τ >= l && relative i in τ <= k ;

Defining ρ as an inclusion subtype of σ, i.e. ρ ⊆ σ.
From such an inclusion type declaration in CaTTS-DL the following pattern for con-

version function generation is derived:

cρ→σ(i) := d× ((i− 1) div length([l..k])) + a + ((i− 1) mod length([l..k]))
c−ρ→σ(i) := cρ→σ(i)
c+
ρ→σ(i) := cρ→σ(i)

cσ→ρ(i) := let τ of σ = ((i− 1) div d) + i in
if cρ→σ(τ of σ) == i
then τ of σ
else {c−σ→ρ(i), c

+
σ→ρ(i)}

c−σ→ρ(i) := let τ of σ = ((i− 1) div d) + i in
if (((i− 1) mod d) + 1) >= l and (((i− 1) mod d) + 1) <= k
then (length([l..k])× τ of σ)− length([l..k]) + (i mod d)
elseif (((i− 1) mod d) + 1) < l then length([l..k])× (τ of σ)− 1)
else length([l..k])× τ of σ

c+
σ→ρ(i) := let τ of σ = ((i− 1) div d) + i in

if (((i− 1) mod d) + 1) >= l and (((i− 1) mod d) + 1) <= k
then (length([l..k])× τ of σ)− length([l..k]) + (i mod d)
elseif (((i− 1) mod d) + 1) < l then (length([l..k])× (τ of σ)− 1)) + 1
else (length([l..k])× τ of σ) + 1

where

186 6. An Approach to Predicate Subtyping with Calendric Types

• σ � τ

• d denotes the duration of σ(i) in τ which is computed by converting σ(i) to τ using
cσ→τ (i) and then the duration of the corresponding interval in terms of σ in τ is
determined

• a denotes the anchor of σ in τ (according to the aggregation subtype definition of τ
from σ)

• length([l..k]) denotes the length of the list [l..k] (from element l to element k), l ≤ k

• k ≤ d

Assume an indexing of type working day and type day as given in the following illus-
tration:

working day

day1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10

Further assume that working day is defined from day by the following predicate subtype.

type working day = select day (i) where
relative i in week >= 1 && relative i in week <=6;

Then the following conversions can be computed.

cworking day→day(7) = 9 the day that corresponds to working day(7)
c−working day→day(7) = 9

c+working day→day(7) = 9

cday→working day(6) = {5, 6} the working days that preceed and succeed
day(6)

c−day→working day(6) = 6 the working day that preceeds day(6)

c+day→working day(6) = 5 the working day that succeeds day(6)

Note: Selections specified by conditions using time constraints other than relative in/to
such as after additionally need facilities of constraint solving. They are not considered in
CaTTS’ current prototype implementation. The time constraint relative in/to (with con-
junctions and disjunctions of it) has been chosen as the first constraint to be implemented
since with such predicates most inclusion subtypes that might appear in a calendar speci-
fication can be expressed as illustrated by the examples given Chapter 4.

6.4 Conversion Function Generation from Type Predicates 187

Note: Approximations to lower and upper bounds for conversions between inclusion
subtypes defined using the relative construct are used whenever the type within which the
values of some other type are related is defined by aggregation with finite many excep-
tions. For example, the type first week in month defined for week(i) by the predicate
relative i in month == 1. In this case, the join of types week and month is computed
which is day. For the types week and month the minimal and maximal number of days
that could be included are computed. The conversion function is then approximated by a
range from the number of times the minimal length of week in terms of days is included in
the minimal length of month in terms of days to the number of times the maximal length
of week in terms of days is included in the maximal length of month in terms of days.

6.4.3.2 Conjunctions

An inclusion subtype predicate can be specified using the CaTTS-DL type constructor for
conjunctions that has the following general syntactic form.

type σ = τ1 & τ2 ;

The conversion function for conjunction types is defined by (set-theoretic) conjunction
of the type predicates defining types τ1 and τ2 such that the previously defined patterns
for conversion function generation of selections can be used.

For example, a CaTTS-DL type that specifies those days which are Mondays and the
first days in a month can be defined by conjunction of the type monday and first day in month

as follows in CaTTS-DL.

type monday and f i r s t in month = monday & f i r s t day i n month ;

Assuming that the type monday is defined by selection with

type monday = select day (i) where relative i in week == 1;

and first day in month is defined by selection as follows

type f i r s t day i n month = select day (i) where
relative i in month == 1;

Then the conversion function for the type monday and first in month to type monday and
the conversion function for the type monday and first in month to type first day in month

can be defined by conjunction of those two predicates using the previously introduced pat-
tern for conversion function generation for inclusion subtypes defined by the selection
constructor.

6.4.3.3 Disjunctions

An inclusion subtype predicate can be specified using the CaTTS-DL type constructor for
disjunctions that has the following general syntactic form.

type σ = τ1 | τ2 ;

188 6. An Approach to Predicate Subtyping with Calendric Types

The conversion function for disjunction types is defined by (set-theoretic) disjunction
of the type predicates defining types τ1 and τ2 such that the previously defined patterns
for conversion function generation of selections can be used.

Note: Defining an inclusion type by disjunctions results in a supertype of the two types
the disjuncted type is constructed from. Thus, conversion functions are generated, from
each of the subtypes to the (new) supertype and from this supertype to its possible sub-
types.

For example, a CaTTS-DL type that specifies those work days which are working days
(as previously defined) or Saturdays (as previously defined) as follows using the disjunction
type constructor.

type work day = working day | saturday ;

Then the conversion function from the type working day to type work day and the
conversion function from type saturday to type work day (as well as the inverse functions)
can be defined by disjunction of those two predicates using the previously introduced
pattern for conversion function generation for inclusion subtypes defined by the selection
constructor.

6.4.3.4 Exceptions

An inclusion subtype predicate can be specified using the CaTTS-DL type constructor for
exceptions that has the following general syntactic form.

type σ = τ1 \ τ2 ;

The conversion function for exception types is defined by (set-theoretic) conjunction
type predicates defining types τ1 and τ2 where the predicate of type τ2 is replaced by its
inverse. Thus, as it is the case for conjunctions and disjunctions, the conversion function
for exceptions can be defined by the previously defined conversion function patterns for
selections.

For example, a CaTTS-DL type that specifies those days which are not Saturdays (as
previously defined) as follows using the exception type constructor.

type not saturday = day\ saturday ;

Then the conversion function for the type not saturday to type day can be defined
by conjunction of the predicate specifying days and the inverse of the predicate specifying
Saturdays (i.e. select day(i) where relative i in week != 6). The previously in-
troduced pattern for conversion function generation for inclusion subtypes defined by the
selection constructor can be now used.

6.5 Well-Formed CaTTS-DL Calendar Specifications 189

τ ::= type expressions:
rC reference type of C

aggregate τ tei∈1..n
i @ te (abs. anchored) aggregation

aggregate τ tei∈1..n
i ˜@ z (rel. anchored) aggregation, z ∈ Z

select τ X:τ where te selection
τ&τ conjunction
τ | τ disjunction
τ \ τ exception
τ# < τ restriction

K ::= kinding expressions:
τ point
τ∗ interval
τn duration

te ::= CaTTS-TDL expressions:
X variable
i index
τ(i) part, i ∈ Z, index
index te index of te
n τ duration, n ∈ N
relative te in/to τ � i relative related values in/to τ
m(relative te in/to τ) minimal/maximal value of values relatively related in/to τ
te && te conjunction
te || te disjunction
alternate te | te → te {| te → te} alternate

where � ∈ {==, <=, <, >, >=, ! =}
m ∈ {min,max}

Table 6.3: The (abstract) syntax of CaTTS-DL.

6.5 Well-Formed CaTTS-DL Calendar Specifications

In what follows, a set of inference rules is introduced to ensure well-formedness of CaTTS-
DL calendar specifications. Those rules specify how calendric types can be defined from
other calendric types in a CaTTS-DL calendar specification to yield new calendric types.
Once a CaTTS-DL calendar specification has been checked for well-formedness, it can be
used without hesitation in any language such as XQuery, XSLT, RDF, or OWL, and, in
particular, in CaTTS-CL where constraint expressions refer to calendric types defined in
such a CaTTS-DL calendar specification. The section concludes with an example testing
well-formedness of a CaTTS-DL calendar specification.

190 6. An Approach to Predicate Subtyping with Calendric Types

6.5.1 Syntax

The (abstract) syntax of CaTTS-DL expressions is given in Table 6.3. This syntax is the
output from parsing a CaTTS-DL calendar specification. It is used to define the typing
relation for CaTTS-DL type and object language expressions. Thus, the abstract syntax
is used by the type checker of CaTTS-DL.

The following notational conventions are used in the syntax in Table 6.3 and throughout
this text: the symbol τ on the right-hand side of the CaTTS-DL syntax is metavariable,
i.e. it is a placeholder for some particular calendric type. Throughout this text, we use the
metavariable τ and nearby letters such as σ and ρ and variants such as τ1 or τ ′. Similarly,
other letters are used as metavariables, standing for expressions drawn from other syntactic
categories such as te, a metavariable for CaTTS-TDL expressions (cf. Table 6.3). To refer
to a type of another kind than a (time) point, we use a kinding statement of the form
∀α. α :: K read as “the type α is assumed to have kind K”), i.e. α is a type that is a
placeholder for some particular calendric type (e.g. day with values such as “20th April
2005”), or for some particular interval type over a calendric type (e.g. day∗ with values
such as “from 20th April 2005 to 22nd May 2005”), or for some particular duration type
over a calendric type (e.g. dayn with values such as “3 day”). Writing ∀α. α :: τ ∨ α :: τ ∗,
α is a placeholder for a point type or an interval type over some particular calendric type
τ .

Apart from that, the syntactic forms given in Table 6.3 are a subset of the CaTTS-TDL
expressions introduced in Chapter 4, as they appear after parsing a CaTTS-DL calendar
specification. This subset is chosen such that the language remains expressive enough to
define cultural calendars such as the Gregorian as well as professional calendars such as an
academic calendar of a university. This subset corresponds to those CaTTS-DL expressions
to construct type predicates for which conversion function generation is defined, yet.

Further differences from the CaTTS-DL syntax given in Appendix A appear from some
parser outputs: a (finite set of aligned) CaTTS-DL calendar specification(s) C may include
at most one calendric type defined by the refinement constructor (cf. Chapter 4) as
supertype of C’s reference type ref. During parsing, this type is translated to the type rC

and ref to an aggregation subtype of rC. Therefore, refinement and ref do not appear
in the abstract syntax used to check calendar specifications for well-formedness. The
type constructor for aggregations aggregate as well as the type constructor for selections
select have a type attached from the parser according to their declarations.

6.5.2 Typing Relation

The rules to check well-formedness of CaTTS-DL calendric type constructors are defined
straightforward on the syntactic forms of CaTTS-DL type expressions. The rules to check
for well-formedness of the type declarations in a calendar specification C are given in
Table 6.4. Those rules are completed by a collection of rules to check the correctness
of CaTTS-DL expressions that can be used to declare calendric types. The rules for
CaTTS-DL expressions are given in Table 6.5. To the collection of rules given in Table

6.5 Well-Formed CaTTS-DL Calendar Specifications 191

6.4 and Table 6.5 to check for well-formedness of calendric types in a (finite set of aligned)
calendar specification(s) C, we add a collection of rules for an aggregation relation between
calendric types σ and τ , written σ � τ and an inclusion relation between calendric types
σ and τ , written σ ⊆ τ . Those two relations are used to check well-formedness of some
of the CaTTS-DL type constructors. Recall that in a CaTTS-DL calendar specification a
calendric type is always defined either by aggregation of by inclusion of another, already
defined calendric type. This design principle of CaTTS-DL is now exploited to enhance
concise modeling of calendar specifications. The aggregation relation is given in Table 6.6
and the inclusion relation is given in Table 6.7.

The rules used to test for well-formedness of some CaTTS-DL calendar specification
are defined as inference rules commonly used in “natural deduction style” presentations of
logical systems. Such an inference rule has the form

p1. . . pn

c
Read as: if the statements (often called premises) p1 , . . . pn listed above the line have
been established, then the conclusion c below the line may be derived. Rules without any
premises are often called axioms.

Before turning attention to CaTTS-DL’s typing relation for well-formedness of calendar
specifications, we need to introduce typing statements. A typing statement has the form
∀α :: K. Γ ` e : α, read as “the expression e is assumed to have type α of kind K”. Γ is
called a typing context (context, for short). It is defined as follows:

Γ ::= contexts:
∅ empty contexts
Γ, x:τ variable binding

A context is a sequence of variables and their types. The “comma” operator extends
the context Γ by adding a new binding (i.e. a variable and its type) on the right. The
empty context is written ∅. Note that always “fresh” variables are chosen to avoid naming
conflicts between a new binding and any bindings that may be in the context Γ.

Formation Rules. The formation rules (denoted with an F) followed by the name of
the inference rule to form a (new) calendric type from another, already defined calendric
type in a CaTTS-DL calendar specification are given in Table 6.4. The formation rule
for aggregations (F-Aggr) is read as follows: if for all expressions tei where i ∈ 1..n
have type τn and if the expression te has type τ , then aggregate tei∈1..n

i @ te forms
a new calendric type. The rules (F-Aggr˜) and (F-Sel) are defined analogously. The
expressions tei and te are type checked using the rules for checking correctness of CaTTS-
DL expressions which are given in Table 6.5. The formation rule for conjunction types
(F-And) restricts the construction of conjunction types such that the conjunction τ1&τ2
is well formed, if types τ1 and τ2 have a common inclusion supertype τ , denoted τ1 ⊆ τ and
τ2 ⊆ τ . This rules prevents from construction unreasonable types such as the conjunction

192 6. An Approach to Predicate Subtyping with Calendric Types

for all i, Γ ` tei : τn Γ ` te : τ (F-Aggr) for all i, Γ ` tei : τn Γ ` z : Z (F-Aggr˜)

Γ ` (aggregate τ tei∈1..n
i @te)type Γ ` (aggregate τ tei∈1..n

i ˜@z)type

Γ, X : τ ` te : B (F-Sel) Γ ` τ1 ⊆ τ Γ ` τ2 ⊆ τ (F-And)

Γ ` (select τ X : τ where te)type Γ ` (τ1&τ2)type

Γ ` τ1 ⊆ τ Γ ` τ2 ⊆ τ (F-Or) Γ ` τ1 ⊆ τ Γ ` τ2 ⊆ τ (F-Ex)
Γ ` (τ1 | τ2)type Γ ` (τ1 \ τ2)type

Γ ` τ1 � τ Γ ` τ2 ⊆ τ (F-Res)
Γ ` (τ1# < τ2)type

Table 6.4: Formation rules for CaTTS-DL type declarations.

X : τ ∈ Γ (T-Var) Γ ` i : Z (T-Part)
Γ ` X : τ Γ ` τ(i) : τ

Γ ` te1 : τ1 (T-Index) Γ ` n : N (T-Dur)
Γ ` index te1 : Z Γ ` n τ1 : τn

1

for all i, Γ, x : τ ` ci : BΓ ` tei : τn (T-Alter) Γ ` te1 : Z Γ ` i : Z τ2type (T-Rel)

Γ ` alternate x : τ | ci∈1..n
i → tei : τn Γ ` relative te1 in/to τ2 � i : B /

Γ ` m(relative te1 in/to τ2) : B

Γ ` te1 : B Γ ` te2 : B (T-Conj) Γ ` te1 : B Γ ` te2 : B (T-Disj)
Γ ` te1 && te2 : B Γ ` te1 || te2 : B

Table 6.5: Typing rules for expressions used in CaTTS-DL type declarations.

of months and holidays. The subtyping statements used in this rule are checked by the
inclusion relation (cf. Table 6.7). The formation rules for disjunction types and exception
types are defined analogously. Finally, the formation rule for restriction types (F-Res)
prevents from constructing unreasonable restrictions like the restriction of hours by working
weeks as follows: the type τ1# < τ2 is well-formed only if there exists a type τ which is
an aggregation supertype of τ1, denoted τ1 � τ an an inclusion supertype of τ2, denoted
τ2 ⊆ τ . The subtyping statements used in this rule are checked by the aggregation relation
(cf. Table 6.6) and the inclusion relation (cf. Table 6.7).

Typing Rules for CaTTS-DL expressions. The inference rules that check for correct
CaTTS-DL expressions which can be used to defined calendric types in a CaTTS-DL
calendar specification are given in Table 6.5. According to the rule (T-Var) a variable
has whatever type one might currently assume it to have. The premise X:τ ∈ Γ is read: “the
type assumed for X in the context Γ is τ”. A part τ(i) has type τ , if i is an integer according

6.5 Well-Formed CaTTS-DL Calendar Specifications 193

σ � σ (AS-Refl) ρ � σ σ � τ (AS-Trans)
ρ � σ

(aggregate τ tei∈1..n
i ˜@te) � τ (AS-Aggr) (aggregate τ tei∈1..n

i ˜@z) � τ (AS-Aggr˜)

σ# < τ � τ (AS-Res)

Table 6.6: The aggregation relation over calendric types.

to the rule (T-Part). The axiom (T-Index) states that an index is of type integer.8 A
duration n τ has type τn, if n is a natural number according to rule (T-Dur). The rule
(T-Rel) for extracting relative indices of some activity’s values formulates the condition
that the language construct relative te1 in/to τ2 � i (resp. min/max(relative te1

in/to τ2)) is of type boolean (denoted B), if expressions te1 and i are integers and
τ2 must be a calendric type defined in the considered CaTTS-DL calendar specification.
The conjunction (resp. disjunction) of relations of type boolean has again type boolean
according to rule (T-Conj) (resp. (T-Disj)). Finally, to express exceptions in the periodic
pattern of aggregations, CaTTS-DL provides with the language construct alternate to
specify alternative matches. The typing rule (T-Alter) is read as follows: if variable X

is assumed to have type τ , if the conditions ci in each of the branches have type B, and
if each of the results in the branches has type duration of τ (denoted τn), then the whole
alternate expression has type τn.

The Aggregation Relation. The aggregation relation between (some) calendric types
defined in a CaTTS-DL calendar specification that is called by some formation rule when
testing for well-formedness is given in Table 6.6. The first two rules (AS-Refl) and
(AS-Trans) state that the aggregation relation between calendric types is a pre-order.
The other three rules are mere axioms. The rules (AS-Aggr) and (AS-Aggr˜) state
that calendric type defined by aggregation is an aggregation of the type it is defined from.
Similarly, the rule (AS-Res) states that a calendric type defined by restriction is an
aggregation of the type its values are restricted to.

The Inclusion Relation. The inclusion relation between (some) calendric types defined
in a CaTTS-DL calendar specification that is called by some formation rule when testing for
well-formedness is given in Table 6.7. The first two rules (IS-Refl) and (IS-Trans) state
that the inclusion relation between calendric types is a pre-order. The axiom (IS-Sel)
states that a calendric type defined by selection is an inclusion of the type it is defined from.
CaTTS’ inclusion constructor for disjunctions has two different subtyping rules (IS-Dj1)

8The basic types for natural number, integers, characters, strings, booleans, and lists are provided
together with their usual operations for CaTTS’ implementation.

194 6. An Approach to Predicate Subtyping with Calendric Types

σ ⊆ σ (IS-Refl) ρ ⊆ σ σ ⊆ τ (IS-Trans)
ρ ⊆ τ

(select τ X : τ where te) ⊆ τ (IS-Sel) τ \ σ ⊆ τ (IS-Ex)

i ∈ {1, 2}, τi ⊆ τ1 | τ2 (IS-Dj1) i ∈ {1, 2}, σi ⊆ τ (IS-Dj2)

σ1 | σ2 ⊆ τ

i ∈ {1, 2}, τ1&τ2 ⊆ τi (IS-Cj1) i ∈ {1, 2}, σ ⊆ τi (IS-Cj2)

σ ⊆ τ1&τ2

Table 6.7: The inclusion relation over calendric types.

and (IS-Dj2). The former states that the types τ1 and τ2, the type τ1 | τ2 is constructed
from, are both inclusion of τ1 | τ2. The latter states that if either σ1 or σ2 is an inclusion
of τ , then the disjunction of σ1 and σ2 (denoted σ1 | σ2) is also an inclusion of τ . The
two rules for the conjunction constructor (IS-Cj1) and (IS-Cj2) formulate the conditions
that (1) a conjunction τ1&τ2 is an inclusion of the types τ1 and τ2 it is constructed from,
and that (2) an inclusion σ of either τ1 or τ2 is also an inclusion of the types’ conjunction
τ1&τ2. CaTTS’ constructor for exception types has a single rule (IS-Ex) stating that the
exception τ \ σ is an inclusion of τ .

6.5.3 Example: Checking Well-Formedness of a CaTTS-DL cal-
endar specification

The following example shows the application of the previously introduced inference rules to
check for well-formedness of a (finite set of aligned) CaTTS-DL calendar specification(s).
Given a CaTTS-DL calendar specification CalendarExample specifying types for days,
weeks, working days, and working weeks:

calendar CalendarExample : S ig =
cal

type day ;
type week = aggregate 7 day @ day (1) ;
type working day = select day (i) where

relative i in week >= 1 && relative i in week <= 5;
type working week = week #< working day ;

end

The rules to check well-formedness of this calendar are applied to each of the defined
types. Note that a type defined by aggregation as well a type defined by selections get a
type attached from the parser (according to its syntactic form). Furthermore, a CaTTS-DL
expression like relative i in week >= 1 as it appears in the type constructor for type
working day is a syntactic sugaring for the user not having to write relative (index

6.6 Note: Equivalence of Calendric Type Definitions 195

day(i)) in week >= 1. The parser performs this replacement. The type day is parsed
to the calendar’s reference type rC. The rules to check for well-formedness operate on this
(abstract) syntax (cf. Table 6.3) output from the parser. Thus, the type checker operates
on the following syntactic forms.

daytype := rC

weektype := aggregate 7 day @ day(1)
working daytype := select day day(i) where relative (index day(i)) in week >= 1 &&

relative (index day(i)) in week <= 5
working weektype := weektype# < working daytype

Checking well-formedness of type working daytype yields the following typing derivation.

day(i) : day ∈ {day(i) : day} (T-Var)

{day(i) : day} ` day(i) : day (T-Index) ∗
{day(i) : day} ` index day(i) : Z {day(i) : day} ` 1 : Z weektype (T-Rel)

{day(i) : day} ` relative (index day(i)) in week >= 1 : B
... (T-Conj)

{}, day(i) : day ` relative (index day(i)) in week >= 1 && relative (index day(i)) in week <= 5 : B (F-Sel)

{} ` working daytype

where ∗

{day(i) : day} ` 7 : N (T-Dur) {day(i) : day} ` 1 : Z (T-Part)

{day(i) : day} ` 7 day : dayn {day(i) : day} ` day(1) : day (F-Aggr)

{day(i) : day} ` weektype

And checking well-formedness of type working weektype yields the following typing deriva-
tion.

(AS-Aggr) (IS-Sel)
{} ` weektype � daytype {} ` working daytype ⊆ daytype (F-Res)

{} ` working weektype

6.6 Note: Equivalence of Calendric Type Definitions

When talking about the semantics of the type language CaTTS-DL, we are interested
in subtype relations (in terms of aggregation and inclusion) between calendric types that
can be defined in a CaTTS-DL calendar specification as previously introduced. For some
programming languages one might be also interested in a more basic relation among type
expressions, type equivalence. Type equivalence gives the possibility to write the same type
in different ways.

CaTTS-DL is expressive enough to define the same calendric type using different lan-
guage constructs, i.e. two types which specify the same set of values, however in different
ways. For example, New Year can be specified either as the first day in a year or as the
first day of January as follows:

196 6. An Approach to Predicate Subtyping with Calendric Types

type new year1 = select day (i) where relative i in year == 1;
type new year2 = select day (i) where relative i in january == 1;

Although obvious for humans, types new year1 and new year2 define the same set
of days, and, thus, equivalent calendric types, this equivalence cannot be detected by
CaTTS-DL’s type checker. To detected equivalence during type checking, we can formulate
the equivalence of two types like new year1 and new year2 by a definitional equivalence
relation on calendric types, written σ ≡ τ . This relation can be defined by the following
clause:

∀σ, τ ≤ ι. σ ≡ τ iff ∀x ∈ ι.pσ(x) ⇔ pτ (x)

That is, two types σ and τ with a common supertype ι9 are equivalent if for every
value x that satisfies the predicate specified with type σ, denoted pσ, the predicate of type
τ , denoted pτ , is satisfied, as well. To perform such “theorem proving” problems gener-
ated during type checking equivalence of CaTTS-DL type definitions, additional constraint
solving techniques are required which are currently not supported in CaTTS. In particular,
constraint solving on predicate sets (in fact, an interesting open research problem) would
become necessary.

6.7 Typing and Subtyping in CaTTS-CL

So far, a set of inference rules has been specified that defines a system to (statically) check
well-formedness of a (finite set of aligned) CaTTS-DL calendar specification(s). To check
well-formedness of such calendar specifications, each of the syntactic forms to construct
a calendric type is considered by the system. This is done be specifying a rule for each
syntactic CaTTS-DL language expression. Such a rule describes how the corresponding
calendric type can be constructed from other expressions of some particular syntactic form.
Additionally, well-formedness exploits CaTTS’ property that any calendric type is either
defined by inclusion or by aggregation of another (already) defined calendric type. This
property is used to statically check unreasonable calendric type declarations such as the
union of Saturdays and weeks.

In what follows, a set of inference rules is specified that defines a type system to (stat-
ically) check correctness of CaTTS-CL programs. In this way, calendric types defined in
some CaTTS-DL calendar specification can be referred to in CaTTS-CL (or any other
program using calendric data typed after CaTTS-DL type definitions). Furthermore, the
calendric types can be then applied by CaTTS’ multi-calendar constraint solver to solve
multi-calendar appointment scheduling problems expressed in CaTTS-CL.

Although calendric types and type checking is absolutely necessary for CaTTS-CL or
any other language using calendric data typed after CaTTS-DL type definitions, typing
CaTTS-CL should concern the user as little as possible. That means, the typing rules for

9Recall that ≤ defines a subtype relation on calendric types.

6.7 Typing and Subtyping in CaTTS-CL 197

CaTTS-CL expressions must be specified as flexible as possible, however without violat-
ing the correctness of some CaTTS-CL program. This flexibility is achieved in terms of
subtyping between calendric types.

Since CaTTS-CL is a constraint language for calendric data, erroneous or undesirable
CaTTS-CL programs always refer to the problem whether they are consistent. Consistency
is the matter tested by CaTTS’ constraint solver. However, calendric types can be used
to check statically for consistency of CaTTS-CL programs – at least in some cases – that
can be drawn from the syntactic forms of the constraints.

6.7.1 Syntax

The (abstract) syntax of CaTTS-CL expressions is given in Table 6.8. This syntax is
used by CaTTS-CL’ s type system, typing CaTTS-CL after calendric types defined in
CaTTS-DL (cf. Table 6.3, p.189 for the syntactic forms of CaTTS-DL types). The syntax
corresponds to set of syntactic forms that have been defined for CaTTS-CL in Chapter 4.
The syntax is given in a BNF-like notation. The syntax given in Table 6.8 corresponds to
the output of CaTTS’ parser. Type checking is performed on this syntax.

6.7.2 Subsumption

For the present10, the goal of subtyping in CaTTS-CL is to type CaTTS-CL expressions
such that we can write a CaTTS-CL program like

X i s 2 working week && Y i s 1 month && X during Y

where the CaTTS-CL constraint X during Y is typeable without demanding explicit type
casts. Since X and Y are both variables that refer to time, explicit type casts would be very
unnatural: with common-sense understanding of time, working weeks and months can be
related and compared. In fact, any pair of temporal activities independent of their time
granularities (i.e. calendric types) should be comparable.

Specifying a typing rule for the CaTTS-CL time constraint during, it might look like
as follows:

Γ ` ce1 : τ ∗1 Γ ` ce2 : τ ∗1
Γ ` ce1 during ce2 : B

This rule is read as follows: if the CaTTS-CL expressions ce1 and ce2 both have kind
interval of some calendric type τ1, denoted τ ∗1 , then the CaTTS-CL time constraint has type
boolean, denoted Γ ` ce1 during ce2 : B. Without subtyping, this rule would reject the
CaTTS-CL expression given above, because the type of X is working week∗ and the type
of Y is month11 while the typing rule for the time constraint during, given above, demands

10In the subsequent Section 6.8, we will see that there is an additional goal of subtyping in CaTTS.
11Recall that events like Y (specified by duration 1) in a CaTTS-CL program refer to time points

according to some calendric type, and tasks like X refer to time intervals according to some calendric type.

198 6. An Approach to Predicate Subtyping with Calendric Types

ce ::= CaTTS-CL expressions:
true
false
k constant
X variable
n τ duration, n ∈ N
[ce..ce] endpoint interval
ce to ce duration interval
X is 1 τ event
X is τ task
X is n τ task with duration n ∈ N
ce R ce interval constraint
ce � ce metric constraint
duration ce duration of ce
index ce index of ce
b/e ce starting or ending point of ce
shift ce f/b ce shift in time
e/s ce by ce extension/shortening of an interval
relative ce in/to τ � i relate values relatively in/to τ
m(relative ce in/to τ) min/max values related relatively in/to τ
ce && ce conjunction

R ∈ {equals, before, after, starts, started by, finishes, finished by, during,
contains, meets, met by, overlaps, overlapped by, within, on or before,
on or after}

� ∈ {==, <=, <, >, >=, ! =}
to ∈ {upto, downto}
b/e ∈ {begin, end}
f/b ∈ {forward,backward}
e/s ∈ {extend, shorten}
m ∈ {min,max}

Table 6.8: The (abstract) syntax of CaTTS-CL.

6.7 Typing and Subtyping in CaTTS-CL 199

the expressions e1 and e2 having the same type τ ∗1 . But, clearly, the time constraint during
just requires that its two expressions are activities (i.e. events and/or tasks), independent
of their underlying calendric types. To propagate this constraint, we just have to be sure
that we can find some type τ ∗1 , X and Y can be represented in. For example, one might
express both the interval of working days X and the month Y in terms of intervals of days,
because both an interval of working weeks like “calendar week 20 and 21 in 2005” is a
specific interval of days and a month like “July 2005” is a specific interval of days.

Using subtyping, we can refine this typing rule for the CaTTS-CL time constraint
during such that it can accept constraints like the one above. This is accomplished by
formulating the intuition that some calendric type is coarser (and thus, more informative)
than another calendric type. For example, working week∗ is coarser and more informa-
tive than day∗ and month is coarser and more informative than day∗. For example, an
interval of 31 days must not necessarily refer to a month like January. That is, month is a
subtype of day∗, written month ≤ day∗. This intuitive subtype relation between calendric
types (possible of different kinds, e.g. point or interval) refers to the subtype relation (cf.
Definition 3.7) over time granularities (calendric types) as defined in Chapter 3.

This intuition that values of a “finer” calendric type (i.e. a supertype) can be used
instead of values of some corresponding “coarser” calendric type (i.e. a subtype), expressing
an equivalent extend of time however in another granularity of temporal precision, can be
formulated by adding the following typing rule of subsumption:

∀α, β :: K Γ ` ce : α α ≤ β (T-Sub)
Γ ` ce : β

In CaTTS-CL, the rule of subsumption (T-Sub) is read as follows: if for every calendric
types α and β independent of their kinds, written ∀α, β :: K (i.e. α and β might be
points, intervals, or durations over some calendric type τ defined in a CaTTS-DL calendar
specification) α is a subtype of β, then every value of of type α can be expressed in terms
of some value of type β. For example, if CaTTS-CL’s subtyping relation is defined such
that month ≤ day∗ and working week∗ ≤ day∗, then the rule (T-Sub) can be used to
derive ` Y: day∗ (e.g. Y = "July 2005") and ` X: day∗ (e.g. X = ["W20 2005".."W21

2005"]) which is what is needed to make the motivating example type checked.

6.7.3 The Subtype Relation

CaTTS’ subtype relation is defined by a finite collection of inference rules deriving state-
ments of the form ∀α, β :: K. α ≤ β, read as “for all types α and β of kind K, i.e. either of
kind point, interval, or duration, α is a subtype of β”. The subtype relation considers each
form of calendric type and kind of calendric type (e.g. aggregate, #<, |, interval types,
etc.) separately. For each syntactic construct one or more inference rules are defined for
situations when it is allowed to uses values of one type of this syntactic form where another
type is expected. CaTTS-CL’s subtype relation is summarized in Table 6.9. The different
inference rules are introduced in the following.

200 6. An Approach to Predicate Subtyping with Calendric Types

∀α :: K. α ≤ α (S-Refl) ∀α, β, γ :: K. α ≤ β β ≤ γ (S-Trans)
α ≤ γ

σ ≤ σ∗ (S-ICoer) σ ≤ rC (S-Ref)

σ ≤ τ (S-Dur) σ ≤ τ (S-Int)
σn ≤ τn σ∗ ≤ τ∗

(select τ X : τ where te) ≤ τ (S-Sel) τ \ σ ≤ τ (S-Ex)

i ∈ {1, 2}, τi ≤ τ1 | τ2 (S-Dj1) i ∈ {1, 2}, σi ≤ τ (S-Dj2)

σ1 | σ2 ≤ τ

i ∈ {1, 2}, τ1&τ2 ≤ τi (S-Cj1) i ∈ {1, 2}, σ ≤ τi (S-Cj2)

σ ≤ τ1&τ2

(aggregate τ tei∈1..n
i ˜@te) ≤ τ (S-Aggr) (aggregate τ tei∈1..n

i ˜@z) ≤ τ (S-Aggr˜)

τ1# < τ2 ≤ τ2 (S-Res)

Table 6.9: The subtype relation of CaTTS-CL.

Before the rules for the different syntactic forms are introduced, we stipulate that the
subtype relation ≤ defines a pre-order on (possibly different kinds of) calendric types
defined in a CaTTS-DL calendar specification C12. That ≤ is a pre-order is stated by the
following two rules, i.e. that ≤ is reflexive (S-Refl) and that ≤ is transitive (S-Trans):

∀α :: K. α ≤ α (S-Refl) ∀α, β, γ :: K. α ≤ β β ≤ γ (S-Trans)
α ≤ γ

Having stated that ≤ is a pre-order, we make some further general stipulations on
subtyping in CaTTS: the subtype relation of CaTTS-CL refers to the composition of the
aggregation subtype relation (cf. Definition 3.5) and the inclusion subtype relation (cf.
Definition 3.6) as formalized in Definition 3.7. That means in particular, if for example
week is defined by aggregation from day in a CaTTS-DL calendar specification, i.e. week �
day, then week ≤ day. Similarly, if for example working day is defined by inclusion from
day in a CaTTS-DL calendar specification, i.e. working day ⊆ day, then working day ≤
day.

Defining subtyping in CaTTS-CL by composition of aggregation and inclusion requires
some basic coercion between the kinds of points over calendric types, i.e. σ and the kinds
of intervals over calendric types, i.e. σ∗:

σ ≤ σ∗ (S-ICoer)

12Recall that C refers to a finite set of aligned CaTTS-DL calendar specifications.

6.7 Typing and Subtyping in CaTTS-CL 201

Meaning, that any calendric type σ (defined in some CaTTS-DL calendar specification)
is a subtype of the type of intervals over the same type, i.e. σ∗. This coercion is very natural
for calendric types since a point is nothing but an interval of duration 1.13 Furthermore,
this coercion makes explicit what is implicitly hidden in the aggregation relation: inferring
that week is a subtype of day means that if at some point in a CaTTS-CL program a value
of type week is expected, one might use an interval of days instead, i.e. a value of type
day∗. With the rule (S-ICoer), we can now use intervals whenever points are expected.

Now we can consider the rules for the different syntactic forms to construct aggregation
types:

(aggregate τ tei∈1..n
i ˜@te) ≤ τ (S-Aggr) (aggregate τ tei∈1..n

i ˜@z) ≤ τ (S-Aggr˜)

τ1# < τ2 ≤ τ2 (S-Res)

Those three rules are mere axioms. The rules (S-Aggr) and (S-Aggr˜) state that a
calendric type defined by aggregation is a subtype of the type it is defined from. Similarly,
the rule (S-Res) states that a calendric type defined by restriction is a subtype of the type
its values are restricted to.

The rules for the different syntactic forms to construct inclusion types are the following.

(select τ X : τ where te) ≤ τ (S-Sel) τ \ σ ≤ τ (S-Ex)

i ∈ {1, 2}, τi ≤ τ1 | τ2 (S-Dj1) i ∈ {1, 2}, σi ≤ τ (S-Dj2)

σ1 | σ2 ≤ τ

i ∈ {1, 2}, τ1&τ2 ≤ τi (S-Cj1) i ∈ {1, 2}, σ ≤ τi (S-Cj2)

σ ≤ τ1&τ2

The axiom (S-Sel) states that a calendric type defined by selection is a subtype of the
type it is defined from. CaTTS’ inclusion constructor for disjunctions has two different
subtyping rules (S-Dj1) and (S-Dj2). The former states that the types τ1 and τ2 the type
τ1 | τ2 is constructed from are both subtypes of τ1 | τ2. The latter states that if either σ1 or
σ2 is a subtype of τ , then the disjunction of σ1 and σ2 (denoted σ1 | σ2) is also a subtype
of τ . The two rules for the conjunction constructor (S-Cj1) and (S-Cj2) formulate the
conditions that (1) a conjunction τ1&τ2 is a subtype of the types τ1 and τ2 it is constructed
from, and that (2) a subtype σ of either τ1 or τ2 is also a subtype of the types’ conjunction
τ1&τ2. CaTTS’ constructor for exception types has a single axiom (S-Ex) stating that the
exception τ \ σ is a subtype of τ .

Furthermore, we need subtyping statements for the forms to construct kinds of intervals
(S-Int) and kinds of durations (S-Dur):

σ ≤ τ (S-Dur) σ ≤ τ (S-Int)
σn ≤ τn σ∗ ≤ τ ∗

13Recall that CaTTS is based on an interval-based time model, i.e. durationless time points do not exist.

202 6. An Approach to Predicate Subtyping with Calendric Types

That means, if σ is a subtype of τ , then duration of σ is also a subtype of duration of τ
(denoted σn ≤ τn), and then interval of σ is also a subtype of interval of τ (denoted σ∗ ≤
τ ∗), respectively.

Note: In CaTTS’ current prototype implementation, subtyping is not support with
kinds of durations over calendric types, i.e. the rule (S-Dur) is not implemented with the
subtype checker. Subtyping with durations is not supported in CaTTS current implemen-
tation because it would introduce a form of imprecision into the language. For example,
shifting a day d forward by 1 month would result in a set of possible days. Similar kinds of
imprecision would appear when comparing for example the duration of 4 weeks to that of
1 month. So far, CaTTS only supports modeling and processing of precise calendric data
and constraints. Section 7.2.1.3 provides with a discussion on dealing with imprecision
caused by duration subtyping in CaTTS.

Finally, each (finite set of) CaTTS-DL calendar specification(s) C has a calendric type
that is a supertype of any other calendric type defined in C, denoted rC, read as “r is the
reference type of the calendar specification C”. This type comes with an inference rule that
makes rC a maximum element of the calendric types defined in C according to the subtype
relation ≤.

σ ≤ rC (S-Ref)

Note: The subtype relation (i.e. the composition of calendric type aggregation and
inclusion) is the corner stone of CaTTS-CL. This relation defines the central feature of
some calendric type being either coarser or finer than some other calendric type. In fact,
this relation defines a means to compare any pair of calendric types defined in a (finite
set of aligned) CaTTS-DL calendar specifications C, thus, reflecting a widespread form of
common-sense reasoning with calendric data.

6.7.4 The Typing Relation

This section introduces a typing relation for the CaTTS-CL expressions given in Table 6.8,
p.198. CaTTS-CL expressions are typed after types defined in some CaTTS-DL calendar
specification. The syntax of CaTTS-DL types is given in Table 6.3, p.189. CaTTS-CL’s
typing relation is defined by a finite collection of inference rules deriving statements of the
form ∀α :: K Γ ` ce : α, read as “the CaTTS-CL expression ce has type α of kind K in
the context Γ”. The typing relation considers each form of CaTTS-CL expressions (e.g.
shift expressions, interval relations, interval construction) separately. For each syntactic
construct one or more rules are defined for sub-expressions, a CaTTS-CL expression like a
shift can be constructed from. CaTTS-CL’s typing relation is summarized in Table 6.10.
The different inference rules are introduced in the following.

6.7 Typing and Subtyping in CaTTS-CL 203

∀α, β :: K. Γ ` ce : α α ≤ β (T-Sub)

Γ ` ce : β

Γ ` k : τ (T-Const) ∀α :: K. X : α ∈ Γ (T-Var)
Γ ` X : α

Γ ` n : Z (T-Dur) Γ ` ce1 : τ1 (T-Index)
Γ ` n τ1 : τn

1 Γ ` index ce1 : Z

Γ ` ce1 : τ∗1 (T-Duration) Γ ` ce1 : τ∗1 (T-EndP)

Γ ` duration ce1 : τn
1 Γ ` b/e ce1 : τ1

Γ ` ce1 : τ1 Γ ` ce2 : τ1 (T-EndpI) Γ ` ce1 : τn
1 Γ ` ce2 : τ1 (T-DurI)

Γ ` [ce1..ce2] : τ∗1 Γ ` ce1 to ce2 : τ∗1

Γ ` ce1 : τ∗1 Γ ` ce2 : τn
1 (T-Shift) Γ ` ce1 : τ∗1 Γ ` ce2 : τn

1 (T-ExSh)

Γ ` shift ce1 f/b ce2 : τ∗1 Γ ` e/s ce1 by ce2 : τ∗1

true : B (T-True) false : B (T-False)

Γ, X : τ ` ce : B (T-Event) Γ, X : τ∗ ` ce : B (T-Task)

Γ ` (X is 1 τ) && ce : B Γ ` (X is < n > τ) && ce : B

Γ ` ce1 : τ∗1 Γ ` ce2 : τ∗1 (T-Interval) Γ ` ce1 : τn
1 Γ ` ce2 : τn

1 (T-Metric)

Γ ` ce1 R ce2 : B Γ ` ce1 � ce2 : B

Γ ` ce1 : Z Γ ` i : Z τ2type (T-Rel) Γ ` ce1 : B Γ ` ce2 : B (T-Conj)

Γ ` relative ce1 in/to τ2 � i : B / Γ ` ce1 && ce2 : B
Γ ` m(relative ce1 in/to τ2) : B

Table 6.10: The typing relation of CaTTS-CL.

204 6. An Approach to Predicate Subtyping with Calendric Types

Initially, the intuition that values of a “finer” calendric type (i.e. a supertype) can be
used instead of values of some corresponding “coarser” calendric type (i.e. a subtype) has
been already formulated in Section 6.7.2 with the rule of subsumption (T-Sub). This
inference rule defines a connection between subtyping in CaTTS-CL and the typing rules
for the different syntactic forms of CaTTS-CL expressions.

Let us now consider the further rules given in Table 6.10. Those rules enforce some
simple syntactic restrictions on CaTTS-CL expressions. The rules does not include any
particularities. But note that the rules are carefully defined whether the expressions refer
to kind of points, intervals, or durations over some calendric type τ . Further note that
whenever a rule requires an expression of type interval of τ , i.e. τ ∗, an expression of type τ
may also be used due to the subtype rule for interval coercion (S-ICoer), inferring τ ≤ τ ∗.

In the following, the meaning of the different typing rules in the typing relation is
addressed.

According to the rule (T-Var), a CaTTS-CL variable has whatever type one might
currently assume it to have. The premise ∀α :: K. X:α ∈ Γ is read: “ for every kind of
calendric type, the type assumed for X in the context Γ is α”. The axiom (T-Const)
states that a (date) constant has any calendric type (according to its format definition).

A duration n τ has type τn, if n is a natural number according to rule (T-Dur).
Three rules to extract duration, end points, or the index from activities are defined:

the duration duration ce1 of an expression ce1 of type τ ∗1 has type τn
1 according to rule

(T-Duration). The index index ce1 of an expression ce1 of type τ1 has type Z according
to rule (T-Index). The begin (resp. end) point b/e ce1 of an expression ce1 of type τ ∗1
has type τ1 according to rule (T-EndP).

Two different forms of task constructions are supported. (T-EndpI) allows for con-
structing tasks from ending points ce1 and ce2 of some type τ1. Such tasks have the form
[ce1..ce2] of type interval of τ1, τ

∗
1 . The rule (T-DurI) permits the construction of a

tasks from a duration ce1 of some type τ1, i.e. τn
1 and an event ce2 over the same calendric

type, however of kind point, i.e. τ1. Such tasks has the form ce1 to ce2 of type τ ∗1 (i.e.
interval of τ1).

The rule for shifting activities (T-Shift) formulates the condition that the expression
shift ce1 f/b ce2 has type τ ∗1 , if ce1 is of type τ ∗1 and ce2 of type duration of τ1, τ

n
1 .

The rule for extending or shortening an activity (T-ExSh) formulates the condition
that the expression e/s ce1 by ce2 has type τ ∗1 , if ce1 is of type τ ∗1 and ce2 of type
duration of τ1, τ

n
1 .

Calendar domain constraints to specify activities (in particular events and tasks) are
constructed using CaTTS-CL’s is constraint followed by a duration. The typing rules for
such domain constraints, (T-Event) and (T-Task), state the following: the intended
type of the event (resp. task) is given by its associated duration, written X is n τ where
n must be a natural number greater than zero (as stated in the premise of the rules). The
associated duration tells the type checker to assume that the variable X is of type τ (resp.
τ ∗ if it is a task, i.e. n > 1). Knowing the type of the variable which is τ (resp. τ ∗), the
type of the time constraint ce the calendar domain expression is associated with is boolean
(denoted B).

6.7 Typing and Subtyping in CaTTS-CL 205

Time constraints over activities according to rule (T-Interval) as well as time con-
straints over durations of activities according to rule (T-Metric) are of type boolean, if
their participating expressions ce1 and ce2 have the same type τ ∗1 of intervals (resp. τn

1 of
durations).

The rule (T-Rel) for extracting relative indices of some activity’s values formulates the
condition that the language construct relative ce1 in/to τ2 � i (resp. min/max(relative
ce1 in/to τ2)) has type boolean (denoted B), if expressions ce1 and i are integers and
τ2 must be a well-formed calendric type defined in the underlying CaTTS-DL calendar
specification.

Finally, the conjunction of constraints of type boolean has again type boolean according
to rule (T-Conj).

6.7.5 Example: Type Checking a CaTTS-CL Program

In the following, the typing derivation for the CaTTS-CL program

X i s 2 working week && Y i s 1 month && X during Y

is given. Assume that the used calendric types are specified in a CaTTS-DL calendar
specification as follows:

. . .
type day ;
type week = aggregate 7 day @ day (1) ;
type month = aggregate

31 day ,
alternate month(i)
| (i div 1 2) mod 4 == 0 &&

((i div 1 2) mod 4 0 0 != 1 0 0 | |
(i div 1 2) mod 400 == 0) −> 29 day

| otherwise −> 28 day
end ,
. . .
31 day @ day (1) ;

type working day = select day (i) where
relative i in week >= 1 && relative i in week <= 5;

type working week = week #< working day ;
. . .

The typing derivation is given by a derivation tree applying some of the previously
introduced typing and subtyping rules according to Table 6.9, p.200 and Table 6.10, p.203.
The tree has to be read from bottom to top.

206 6. An Approach to Predicate Subtyping with Calendric Types

Y : month ∈ {X : w week∗, Y : month} (T-Var) ∗∗
{X : w week∗, Y : month} ` Y : month month ≤ day∗ (T-Sub)

X : w week∗ ∈ {X : w week∗, Y : month} (T-Var) ∗
{X : w week∗, Y : month} ` X : w week∗ w week∗ ≤ day∗ (T-Sub)

↑ ↑
{X : w week∗, Y : month} ` X : day∗ {X : w week∗, Y : month} ` Y : day∗ (CT-Interval)

{X : w week∗, Y : month} ` X during Y : B (T-Event)

{X : w week∗} ` Y is 1 month && X during Y : B (T-Task)

{} ` X is 2 w week && Y is 1 month && X during Y : B

where at the derivation step denoted with ∗, CaTTS-CL’s subtype checker is called. The
subtype checker computes the following derivation tree.

(S-Res) (S-Sel)
w week ≤ w day (S-Int) w day ≤ day (S-Int)
w week∗ ≤ w day∗ w day∗ ≤ day∗ (S-Trans)
w week∗ ≤ day∗

as well as at the derivation step denoted with ∗∗. At this step, the following derivation
tree is computed by the subtype checker.

(S-Aggr) (S-ICoer)
month ≤ day day ≤ day∗ (S-Trans)
month ≤ day∗

6.7.6 Consistency Checks based on Calendric Types

So far, some very basic type checking rules testing for correctness of CaTTS-CL programs
are defined. Those rules does not consider possible differences inherent to events (i.e.
points in time) and tasks (i.e. intervals in time). Reconsidering the typing rule for interval
relations between activities:

Γ ` ce1 : τ ∗1 Γ ` ce2 : τ ∗1 (T-Interval)

Γ ` ce1 R ce2 : B

This rule merely tells the type checker that a time constraint like X equals Y is well-
typed, if he can infer a common type τ ∗1 for the expressions X and Y. Assume that X

is declared by the constraint X is 1 day, i.e. X has type day and Y is declared by the
constraint Y is 1 week, i.e. Y has type week. According to the typing rules in Table 6.10,
p.203 and the subtyping rules in Table 6.9, p.200, the type checker infers that X equals

Y of type B is well-typed as follows:

Γ := {X : day, Y : week}

X : day ∈ Γ (T-Var) ∗ X : week ∈ Γ (T-Var) ∗∗
Γ ` X : day day ≤ day∗ (T-Sub) Γ ` Y : week week ≤ day∗ (T-Sub)
Γ ` X : day∗ Γ ` Y : day∗ (T-Interval)
Γ ` X equals Y : B

6.7 Typing and Subtyping in CaTTS-CL 207

where

∗ ∗∗
(S-Aggr) (S-ICoer)

(S-ICoer) week ≤ day day ≤ day∗ (S-Trans)
day ≤ day∗ week ≤ day∗

assuming that week := aggregate day 7 day @ day(1).
From the stand point of type checking used to test whether a CaTTS-CL program is

syntactically correct, this typing derivation for the CaTTS-CL time constraint X equals

Y where X:day and Y:week is perfectly well. But from the stand point of CaTTS-CL which
is a constraint language to express multi-calendar appointment scheduling problems, this
CaTTS-CL time constraint is obviously erroneous or undesirable in some way: the con-
straint is inherently inconsistent (which would be inferred by CaTTS’s constraint solver),
because a day X can never equal a week Y (in the common-sense definition of days and
weeks according to the Gregorian calendar).

Carefully considering the typing derivation for the constraint X equals Y, X:day,

Y:week, we make the following observation: while X can be represented in kind point of
day, Y must be represented in kind interval of day. That is, if we can infer a common
calendric type τ1 for the expressions ce1 and ce2 in the rule (T-Interval) (whenever R
refers to the time constraint equals) where one of those expressions can be represented
in τ1 and the other must be represented in type τ ∗1 , then the constraint ce1 equals ce2 is
inconsistent. To test such kinds of consistency statically during type checking a CaTTS-CL
program, an additional rule for the time constraint equals that has the supplement to fail
need to be introduced:

Γ ` e1 : τ1 Γ ` e2 : τ ∗1 (CT-EqualFail)

Γ ` e1 equals e2 : B | fail

Using this rule instead of the rule (T-Interval) in the typing derivation given above,
the CaTTS-CL constraint X equals Y, X:day, Y:week is rejected by the type checker.
That means in particular, that we can check consistency of CaTTS-CL constraints (at least
in some cases) statically, before running CaTTS’ constraint solver, making reasoning with
time constraints in CaTTS more efficient. In the following, some further rules for specific
CaTTS-CL time constraints that check for consistency of CaTTS-CL programs statically
during type checking are given. Those rules are similar to the previously discussed rule
(CT-EqualFail) for the time constraint equals.

Γ ` e1 : τ∗1 Γ ` e2 : τ1 (CT-IntFail) Γ ` e1 : τ1 Γ ` e2 : τ∗1 (CT-Int’Fail)

Γ ` e1 I e2 : B | fail Γ ` e1 I ′ e2 : B | fail
Γ ` e1 : τ1 Γ ` e2 : τ1 (CT-OverlapsFail)
Γ ` e1 overlaps e2 : B | fail

208 6. An Approach to Predicate Subtyping with Calendric Types

where I ∈ {starts, finishes, during, within} and I ′ ∈ {started by, finished by, cotains, }.

Note: Such consistency checks of CaTTS-CL programs are currently not implemented
with CaTTS’ type checker. In CaTTS’ prototype implementation, any form of consistency
checks are left to CaTTS’ constraint solver, and are thus performed dynamically at run-
time.

6.8 Coercion Semantics for Subtyping in CaTTS-CL

The subtyping mechanism introduced for CaTTS so far is just a way to obtain addi-
tional flexibility in typing CaTTS-CL expressions. In particular, the user is not obliged
to annotate expressions with additional type cast informations in a program that refers
to calendric data and constraints typed after calendric types defined in some CaTTS-DL
calendar specification like

X i s 2 working week && Y i s 1 month && X during Y

That is, the CaTTS-CL constraint X during Y can be specified without explicit type cast
declarations although X and Y have different types.

This flexibility in CaTTS-CL programs is achieved by subsumption in terms of the
rule (T-Sub). Recall that the subsumption rule merely tells the type checker that some
set of values represented by one type are a subset of the set of values represented by
some other (super)type such that the supertype also types the subset. This interpretation
of the subsumption rule for CaTTS-CL expressions is farely simple and natural when
talking about time: according to the CaTTS-CL program given above, CaTTS-CL’s type
checker infers (by applying the rules given in Table 6.10, p.203) the subtyping statements
that working week∗, i.e. the type of X is a subtype of intervals of days, day∗ (denoted
working week∗ ≤ day∗) and that month, i.e. the type of Y is a subtype of day∗ (denoted
month ≤ day∗), as well. Those two statements are then tested by CaTTS-CL’s subtype
checker that applies the rules given in Table 6.9, p.200. The subtype checker is called by
the type checker whenever a subtyping statement is inferred within a typing derivation.
Thus, a CaTTS-CL user may specify the time constraints mentioned above in a CaTTS-CL
program without hesitation about the different calendric types used.

From the subtyping statements working week∗ ≤ day∗ and month ≤ day∗ the type
checker knows that working week∗ and month are subtypes of day∗, but not why this is the
case. However, to efficiently solve the above specified CaTTS-CL program using CaTTS’
constraint solver, the constraint solver needs to know why some type is a subtype of another
type such that values of the one type can be represented in terms of values of another type.
Recall that this representation of equivalent sets of values of different types is required
to perform multi-calendar constraint reasoning in CaTTS. In particular, this equivalent
representation of calendric values in different types is the basis of CaTTS’ conversion
constraints, making multi-calendar constraint solving both reasonable and efficient. For
example, the month month(1) is represented by the calendar domain 1..1,month in terms

6.8 Coercion Semantics for Subtyping in CaTTS-CL 209

of type month, whereas it is represented by the calendar domain 1..1+ 31..31, day in terms
of type day∗, assuming that the month with index 1 refers to a January in the Gregorian
calendar.

To relate these two different representations for the same amount of time to each other
and to translate one representation into the other whenever required by the constraint
solver, CaTTS’ conversion constraint (cf. Section 5.4.3) is used. To reconcile the conversion
constraint (without burdening the programmer with conversions between different repre-
sentations of the variables’ associated domains) with the subset semantics of subtyping in
CaTTS-CL, each subtyping statement inferred during type checking some CaTTS-CL pro-
gram is translated into a conversion constraint that can be obtained by CaTTS’ constraint
solver. Such a translation is achieved by adapting a coercion semantics for subtyping in
CaTTS-CL.

This coercion semantics is introduced in the following. Subsequently, a transformation
of CaTTS-CL programs into CLcatts programs (cf. Table 5.1, p.136 to recall the syntax of
CLcatts) that can be solved by CaTTS’ constraint solver is defined. This transformation is
based on the coercion semantics. Finally, a translation of a CaTTS-CL program into an
equivalent CLcatts program is exemplified. What is meant by “equivalence” is formalized
in terms of coherence of the transformation.

6.8.1 Coercion Semantics

To formally relate CLcatts’s conversion constraint with subtyping in CaTTS-CL, and thus
to evaluate CaTTS-CL programs using CaTTS’ multi-calendar constraint solver, a different
semantics for subtyping is adopted. This semantics is called coercion semantics [BTCGS91,
Mit96, Pie02]. Coercion semantics replaces the subset semantics of subtyping introduced
with the rule of subsumption (T-Sub).

In principle, a coercion semantics “compiles away” subtyping by replacing it with run-
time coercion. For example, if in the CaTTS-CL program

X i s 2 working week && Y i s 1 month && X during Y

the interval of working weeks X is promoted to an interval of days and the month Y is
promoted to an interval of days during type checking this CaTTS-CL program, i.e. type
checking infers the subtyping statements working week∗ ≤ day∗ and month ≤ day∗, then
(at run time) CaTTS’ processor transforms this time constraint into an equivalent time
constraint X’ during Y’ where X’ and Y’ both have type day∗ and conversion constraints
X ' X’ and Y ' Y’. The conversion constraints then obtain the different representations
for X and Y in terms of intervals of working weeks and intervals of days (resp. months and
intervals of days) during constraint solving using CaTTS’ constraint solver.

CaTTS-CL’s coercion semantics for subtyping is expressed by a function that trans-
forms CaTTS-CL expressions (cf. Table 6.8, p.198 for the syntactic forms of CaTTS-CL)
into CLcatts expressions (cf. Table 5.1, p.136 for the syntactic forms of CLcatts), the language
used by CaTTS’ multi-calendar constraint solver. CLcatts essentially is a language with-
out subtyping that, instead, contains the conversion constraint. In accordance with this

210 6. An Approach to Predicate Subtyping with Calendric Types

translation function, no evaluation rules for the language CaTTS-CL are defined. Rather,
CaTTS-CL expressions are evaluated by type checking them using the afore introduced
typing and subtyping relations (cf. Table 6.10, p.203 and Table 6.9, p.200). Subsequently,
their typing derivations are translated into the language CLcatts, and then the evaluation
relation of this language (i.e. CaTTS’ constraint propagation algorithm, cf. Section 5.5) is
used to obtain the operational behavior of these CaTTS-CL expressions.

Formally, the coercion semantics, i.e. the compilation from CaTTS-CL expressions to
CLcatts expressions consists of three functions, one for calendric types, one for subtyping,
and one for typing. The transformation function for CaTTS-DL types and CaTTS-CL
expressions is called translation, and the function for subtyping in CaTTS-CL is called
coercion.

Transformation of Calendric Types. Calendric types (cf. Table 6.3 for the syntactic
forms of CaTTS-DL types and kinds of types) remain unaffected by the translation. The
translation function is written trans(·).

trans(rC) = rC

trans(aggregate τ tei∈1..n
i @te) = aggregate τ tei∈1..n

i @te
trans(aggregate τ tei∈1..n

i ˜@z) = aggregate τ tei∈1..n
i ˜@z

trans(select τ X : τ where te) = select τ X : τ where te
trans(τ1&τ2) = trans(τ1) & trans(τ2)
trans(τ1 | τ2) = trans(τ1) | trans(τ2)
trans(τ1 \ τ2) = trans(τ1) \ trans(τ2)
trans(τ1# < τ2) = trans(τ1)# < trans(τ2)
trans(τ∗) = trans(τ)∗

trans(τn) = trans(τ)n

Coercion of the Subtype Relation. For subtyping, the translation generates a coer-
cion from one calendric type to another calendric type. To generate such a coercion, and,
thus, to transform values of some type σ to values of some other type τ where σ ≤ τ ,
CaTTS-CL’s language processor needs to know (i) that σ is a subtype of τ and (ii) why σ
is a subtype of τ . The first condition is obtained by inferring a subtyping derivation for
the subtyping statement σ ≤ τ using CaTTS-CL’s subtyping relation given in Table 6.9,
p.200. The second condition is accomplished by generating coercions from such a subtyp-
ing derivation. Such a coercion is expressed in terms of a CLcatts conversion constraint.
The following notation is used to formalize this coercion: write C :: σ ≤ τ to mean “C is
the subtyping derivation tree whose conclusion is σ ≤ τ”. Such a derivation generates a
coercion cτσ(·). The coercion is then defined as follows.

Definition 6.3 (Coercion). Let C a derivation for the subtyping statement σ ≤ τ derived
using CaTTS-CL’s subtyping relation (cf. Table 6.9, p.200). The translation generates a
coercion cτσ, i.e. a function from type σ to type τ in the language CLcatts. This coercion
is defined by case on the final rule used in the derivation C as follows.

6.8 Coercion Semantics for Subtyping in CaTTS-CL 211

(S-Refl) ∀α :: K cα
α

def
= X : α, Y : α, X ' Y

(S-Trans) ∀α, β, γ :: K cγ
α

def
= X : α, cγ

β(cβ
α(X))

(S-ICoer) cσ∗

σ
def
= X : σ, Y : σ∗, X ' Y

(S-Ref) crC
σ

def
= X : σ, Y : Z, X ' Y

(S-Dur) cτn

σn
def
= X : σn, (cτ

σ)n(X)
(S-Int) cτ∗

σ∗
def
= X : σ∗, (cτ

σ)∗(X)
(S-Sel) cτ

(select τ X:τ where te)
def
= X : (select τ X : τ where te), Y : τ, X ' Y

(S-Dj1) c
τ1|τ2
τi

def
= X : τi, Y : τ1 | τ2, X ' Y

(S-Dj2) cτ
σ1|σ2

def
= X : σ1 | σ2, cτ

σ1
(X) | cτ

σ2
(X)

(S-Cj1) cτi

τ1&τ2

def
= X : τ1&τ2, Y : τi, X ' Y

(S-Cj2) cτ1&τ2
σ

def
= X : σ, cτ1

σ (X)&cτ2
σ (X)

(S-Ex) cτ
τ\σ

def
= X : τ \ σ, Y : τ, X ' Y

(S-Aggr) cτ
(aggregate τ tei∈1..n

i @te)
def
= X : (aggregate τ tei∈1..n

i @te), Y : τ, X ' Y

(S-Aggr˜) cτ
(aggregate τ tei∈1..n

i ∼@z)
def
= X : (aggregate τ tei∈1..n

i ∼ @z), Y : τ, X ' Y

(S-Res) cτ
σ#<τ

def
= X : σ# < τ, Y : τ, X ' Y

Transformation of the Typing Relation. For typing, the translation transforms
CaTTS-CL expressions into CLcatts expressions. This translation refers to the previously
defined coercion. To translate a CaTTS-CL expression into a CLcatts expression without
subtyping, CaTTS-CL’s language processor needs to know where the subsumption rule
(T-Sub) is used in type checking a CaTTS-CL expression. The translation then inserts
(run-time) coercion (i.e. it applies the coercion according to Definition 6.3) whenever this
subsumption rule is applied during type checking a CaTTS-CL expression. A convenient
way to formalize this observation is to define the translation form CaTTS-CL expressions
to CLcatts expressions as a function on derivations of typing statements inferred during type
checking a CaTTS-CL expression using the typing relation given in Table 6.10, p.203. The
following notation is used to formalize this translation: write D :: ∀α. α :: K. Γ ` ce : α
to mean “D is the typing derivation tree whose conclusion is ∀α. α :: K. Γ ` ce : α”. Such
a derivation generates a translation trans(∀α. α :: K. Γ ` ce : α) into a CLcatts expression
ce of type α in CLcatts. The translation is then defined as follows.

Definition 6.4 (Translation Function). Let D a derivation for the typing statement
∀α. α :: K Γ ` ce : α derived using CaTTS-CL’s typing relation (cf. Table 6.10, p.203).
Then its translation trans(∀α. α :: K Γ ` ce : α) is a CLcatts expression of type α in
CLcatts. The translation is defined by case on the final rule used in the derivation D as
follows.

212 6. An Approach to Predicate Subtyping with Calendric Types

(T-Sub) if ∀α, β :: K Γ ` ce : β is derived from Γ ` ce : α using α ≤ β, then
trans(Γ ` ce : β) = cβ

α(trans(Γ ` ce : α))
(T-Var) if ∀α :: K Γ ` X : α) is derived from X : α ∈ Γ, then trans(∀α :: K Γ ` X : α) = X
(T-Const) trans(Γ ` k : τ) = k
(T-Dur) if Γ ` n τ1 : τn

1 is derived from Γ ` n : N, then trans(Γ ` n τ1 : τn
1) = n τ1

(T-Duration) if Γ ` duration ce1 : τn
1 is derived from Γ ` ce1 : τ∗1 , then

trans(Γ ` duration ce1 : τn
1) = duration trans(Γ ` ce1 : τ∗1) = X, X fresh

(T-EndP) if Γ ` b/e ce1 : τ1 is derived from Γ ` ce1 : τ∗1 , then
trans(Γ ` b/e ce1 : τ1) = b/e trans(Γ ` ce1 : τ∗1) = X, X fresh

(T-Index) if Γ ` index ce1 : Z is derived from Γ ` ce1 : τ1, then
trans(Γ ` index ce1 : Z) = index trans(Γ ` ce1 : τ1) = X, X fresh

(T-EndpI) if Γ ` [ce1..ce2] : τ∗1 is derived from Γ ` ce1 : τ1 and Γ ` ce2 : τ1, then
trans(Γ ` [ce1..ce2] : τ∗1) = [trans(Γ ` ce1 : τ1)..trans(Γ ` ce2 : τ1)]

(T-DurI) if Γ ` ce1 to ce2 : τ∗1 is derived from Γ ` ce1 : τn
1 and Γ ` ce2 : τ1, then

trans(Γ ` ce1 to ce2 : τ∗1) = trans(Γ ` ce1 : τn
1) to trans(Γ ` ce2 : τ1)

(T-Shift) if Γ ` shift ce1 f/b ce2 τ∗1 is derived from Γ ` ce1 : τ∗1 and Γ ` ce2 : τn
1 , then

trans(Γ ` shift ce1 f/b ce2 : τ∗1) =
shift trans(Γ ` ce1 : τ∗1) f/b trans(Γ ` ce2 : τn

1) = X, X fresh
(T-ExSh) if Γ ` e/s ce1 by ce2 : τ∗1 is derived from Γ ` ce1 : τ∗1 and Γ ` ce2 : τn

1 , then
trans(Γ ` e/s ce1 by ce2 : τ∗1) =
e/s trans(Γ ` ce1 : τ∗1) by trans(Γ ` ce2 : τn

1) = X, X fresh
(T-Rel) if Γ ` relative ce1 in/to τ2 � i : B (Γ ` min/max(relative ce1 in/to τ2) : B)

is derived from Γ ` ce1 : Z, Γ ` i : Z, and τ2, then
trans(Γ ` relative ce1 in/to τ2 � i : B) = relative trans(Γ ` ce1 : Z) in/to τ2 � i
(trans(Γ ` m(relative ce1 in/to τ2) : B) = m(relative trans(Γ ` ce1 : Z) in/to τ2))

(T-True) trans(Γ ` true : B) = true
(T-False) trans(Γ ` false : B) = false
(T-Event) if Γ ` X is 1 τ && ce : B is is derived from Γ, X : τ ` ce : B, then

trans(Γ ` X is 1 τ && ce : B) = trans(Γ, X : τ ` ce : B)
(T-Task) if Γ ` X is 〈n〉 τ && ce : B is is derived from Γ, X : τ∗ ` ce : B, then

trans(Γ ` X is 〈n〉 τ && ce : B) = trans(Γ, X : τ∗ ` ce : B)
(T-Interval) if Γ ` ce1 R ce2 : B is derived from Γ ` ce1 : τ∗1 and Γ ` ce2 : τ∗1 , then

trans(Γ ` ce1 R ce2 : B) = trans(Γ ` ce1 : τ∗1) R trans(Γ ` ce2 : τ∗1)
(T-Metric) if Γ ` ce1 � ce2 : B is derived from Γ ` ce1 : τn

1 and Γ ` ce2 : τn
1 , then

trans(Γ ` ce1 � ce2 : B) = trans(Γ ` ce1 : τn
1) � trans(Γ ` ce2 : τn

1)
(T-Conj) if Γ ` ce1 && ce2 : B is derived from Γ ` ce1 : B and Γ ` ce2 : B, then

trans(Γ ` ce1 && ce2 : B) = trans(Γ ` ce1 : B), trans(Γ ` ce2 : B)

6.8.2 Example: Transforming a CaTTS-CL Program into a CLcatts

Program

Let us turn attention back to the CaTTS-CL program

X i s 2 working week && Y i s 1 month && X during Y

We assume that the used calendric types are specified in a CaTTS-DL calendar specification
as follows:

. . .
type day ;

6.8 Coercion Semantics for Subtyping in CaTTS-CL 213

type week = aggregate 7 day @ day (1) ;
type month = aggregate

31 day ,
alternate month(i)
| (i div 1 2) mod 4 == 0 &&

((i div 1 2) mod 4 0 0 != 1 0 0 | |
(i div 1 2) mod 400 == 0) −> 29 day

| otherwise −> 28 day
end ,
. . .
31 day @ day (1) ;

type working day = select day (i) where
relative i in week >= 1 && relative i in week <= 5;

type working week = week #< working day ;
. . .

The following transformation from this CaTTS-CL program into a CLcatts program is
then performed on the typing derivation for this program according to Definition 6.4:

trans({} ` X is 2 w week && Y is 1 month && X during Y:B)
7→(T−Task) trans({X : w week∗} `Y is 1 month && X during Y:B)
7→(T−Event) trans({X : w week∗, Y : month} `X during Y:B)
7→(T−Interval) trans({X : w week∗, Y : month} ` X : day∗) during

trans({X : w week∗, Y : month} ` Y : day∗)
7→(T−Sub) cday∗

w week∗(trans({X : w week∗, Y : month} ` X : w week∗))
7→(T−Sub) cday

month(trans({X : w week∗, Y : month} ` Y : month))
7→(T−V ar) X
7→(T−V ar) Y

Where cday∗

w week∗ and cday∗

month are then defined as follows on the subtyping derivations according
to Definition 6.3:

Let Γ := {X : w week∗, Y : month} in

cday∗

w week∗(Γ ` X : w week∗) =
7→(S−Trans) cday∗

w day∗(c
w day∗

w week∗(Γ ` X : w week∗))
7→(S−Int) cday∗

w day∗((c
w day
w week)∗(Γ ` X : w week∗))

7→(T−Res) X ' X ′ , cday∗

w day∗(Γ, X ′ : w day∗ ` X ′w day∗)
7→(S−Int) (cday

w day)∗(Γ, X ′ : w day∗ ` X ′ : w day∗)
7→(S−Sel) X ′′ : day∗, X ′ ' X ′′

cday∗

month(Γ ` Y : month) =
7→(S−Trans) cday∗

day (cday
month(Γ ` Y : month))

7→(S−Aggr) Y ' Y ′, cday∗

day (Γ, Y ′ : day ` Y ′ : day)
7→(S−ICoer) Y ′′ : day∗, Y ′ ' Y ′′

Then the CLcatts program that corresponds to the CaTTS-CL program given above has
the following form:

214 6. An Approach to Predicate Subtyping with Calendric Types

X ' X ′, X ′ ' X ′′, Y ' Y ′, Y ′ ' Y ′′, X ′′ during Y ′′

where Γ = {X : w week∗, Y : month,X ′′ : day∗, Y ′′ : day∗, X ′ : w day∗, Y ′ : day}.

Note: In CaTTS’ implementation, the translation replaces a sequence of conversion
constraints computed from the typing and subtyping derivations by one constraint. For
example, X ' X ′, X ′ ' X ′′ is replaced by the conversion constraint X ' X ′′. The sub-
typing derivation is maintained in the coercion by concatenation of each of the conversion
functions used in each of the corresponding conversion constraints.

6.8.3 Coherence

Having defined a coercion semantics for subtyping in CaTTS-CL, a problem arises that
we need to be carful to avoid when implementing this coercion semantics. Suppose, the
following CaTTS-DL calendar specification.

. . .
type day ;
. . .
type sunday = select day (i) where relative i in week == 7;
type birthday = select day (i) where relative i in a p r i l == 8;
type sunday and birthday = sunday & birthday ;
type sundayAbroad = select sunday (i) where

sunday (i) within ["1992" . . "1999"] ;
type bi r s thdayDur ingStud ie s = select birthday (i) where

birthday (i) within ["1996" . . "2001"] ;
type sundayAbroad and birsdayDuringStudies =

sundayAbroad & bir s thdayDur ingStud ie s
. . .

This calendar specification generates the following (directed) graph of subtypes.

day
�

�
�

�	

@
@

@
@Rsunday

?

@
@

@@R

birthday

?

�
�

�	
sunday and birthday

sundayAbroad
@

@
@@R

birthdayDuringStudies
�

�
�	

sundayAbroad and birsdayDuringStudies

6.8 Coercion Semantics for Subtyping in CaTTS-CL 215

Further assume that this calendar specification is referred to in the following CaTTS-CL
program.

. . .
X i s 1 sunday\ and\ b i r thday &&
Y i s 1 sundayAbroad\ and\ b i r sdayDur ingStud i e s &&
X equals Y
. . .

Now suppose to evaluate this CaTTS-CL program using the coercion semantics for
CaTTS-CL introduced above. In fact, this program is typeable in distinct ways:

Translating this CaTTS-CL program using the afore defined translation (cf. Definition
6.4) and coercion (cf. Definition 6.3), one might produce several different translations:
recall the typing rule for the interval constraints:

Γ ` ce1 : τ ∗1 Γ ` ce2 : τ ∗1 (T-Interval)

Γ ` ce1 R ce2 : B

This rule merely tells the type checker that a time constraint like X equals Y is well-
typed and has type boolean, if a common type τ ∗1 for the expressions X and Y can be
inferred. Using subsumption one might either promote sunday and birthday to sunday

and then to sunday∗ and sundayAbroad and birsdayDuringStudies to sundayAbroad to
sunday and then to sunday∗ or sunday and birthday to birthday and then to birthday∗

and sundayAbroad and birsdayDuringStudies to birsdayDuringStudies to birthday

and then to birthday∗. Translating the first typing derivation to CLcatts would yield

Xsunday and birthday ' Xsunday∗ , Y sundayAbroad and birsdayDuringStudies ' Y sunday∗ ,
Xsunday∗ equals Y sunday∗ .

Translating the second derivation would yield the following CLcatts constraint.

Xsunday and birthday ' Xbirthday∗ , Y sundayAbroad and birsdayDuringStudies ' Y birthday∗ ,
Xbirthday∗ equals Y birthday∗

But Xsunday∗ equals Y sunday∗ and Xbirthday∗ equals Y birthday∗ are very different CLcatts

constraints; they do not even have the same type. In other words, the choice of how to
prove Γ ` X equals Y : B affects the way the translated program behaves.

The appropriate response to such problems is to impose an additional requirement
on the translation which is called coherence [BTCGS91]. Coherence means that for any
pair of typing derivation D1 and D2 with the same conclusion ∀α. α :: K Γ ` ce : α, the
translations for D1 and D2 behave equivalent in terms of the language CLcatts. That means
in particular that the CaTTS-CL expression ∀α. α :: K Γ ` ce : α must evaluate to the
same values in CLcatts independed of any specific typing derivation for this expression.

To recover coherence for an implementation of the transformation of CaTTS-CL into
CLcatts a deterministic choice is made that does not restrict generality of the transformation:
for any pair of expressions ce1 of type α and ce2 of type β that appear in a derivation of

216 6. An Approach to Predicate Subtyping with Calendric Types

the rule (T-Interval) ce1 and ce2 are transformed into the join of α and β according to
Proposition 3.1. Such a join always exists: the calendric types over which kinds α and β are
defined must be specified within the same (finite set of aligned) calendar specification(s) C.
C has by definition a largest element (w.r.t. the subtype relation). With Proposition 3.1,
this join is unique. This choice is made within any typing rule that implies a subtyping
derivation. Thus, the translation fro CaTTS-CL to CLcatts is shown to be coherent.

6.9 Note: Typing CaTTS-DL Calendar Specifications

So far, this chapter has introduced the well-formedness relation for CaTTS-DL calendar
specifications as well as typing and subtyping relations for CaTTS-CL programs typed
after calendric types defined in CaTTS-DL. Furthermore, to evaluate typed CaTTS-CL
programs by means of constraint solving (using CaTTS’ multi-calendar temporal reasoner
as introduced in Chapter 5), a coercion semantics for subtyping in CaTTS-CL has been
defined .

As already mentioned in Chapter 4, CaTTS provides with means to define calendars
as types, “typed” after CaTTS-DL calendar signatures. CaTTS-DL calendar specifications
(and calendar functions which are nothing but parameterized calendar specifications) are
typed after calendar signatures by means of calendar instantiation and calendar matching
analogously as it is done in programming languages with module systems such as Standard
ML [MTH90]. For calendar matching and instantiation one would define an environment,
storing the pairs of identifiers and associated syntactic forms for the different kinds of
declarations and bindings (cf. Appendix A). Declarations and bindings are check during
parsing CaTTS-DL calendar specifications (resp. CaTTS-CL programs). In particular, the
environment handles the non context-free identifiers in the CaTTS-syntax.

Calendar instantiation and calendar matching can be performed (in principle) straight-
forward in CaTTS analogous to module matching and instantiation in Standard ML, it is
not further considered in this thesis.

Chapter 7

Conclusion

“Menschen, die wie wir an die Physik glauben, wissen, daß die Unterscheidung zwischen
Vergangenheit, Gegenwart und Zukunft nur eine besonders hartnäckige Illusion ist.”

(Albert Einstein, 1879 – 1955)

This thesis has introduced the calendar type language CaTTS, a programming language
approach to data modeling and reasoning with calendars. CaTTS is a type language for
calendar definitions that provides with a constraint-based reasoning approach to manipu-
late temporal and calendric data of calendric types defined in this language.

CaTTS consists of

• CaTTS-DL, a definition language, itself consisting of

– CaTTS-TDL, a type definition language and

– CaTTS-FDL, a date format definition language

• CaTTS-CL, a constraint language typed after CaTTS-DL definitions.

CaTTS provides with syntactic forms, called type constructors, to define arbitrary
calendric types in some calendar specification. These type constructors rely on the con-
cept of predicate subtypes. Using predicate subtype constructors one can define arbitrary
time granularities as types in CaTTS-DL. The two subtype relations aggregation of and
inclusion of, and, in particular, their (natural) composition, subtype of, provide means
for conversions between values of such types during multi-calendar temporal reasoning.
In CaTTS, multi-calendar temporal reasoning is based on constraint programming tech-
niques. This multi-calendar constraint solver refers to and relies on calendric types defined
in CaTTS-DL. It solves reasoning problems, in particular, appointment scheduling prob-
lems expressed in the language CaTTS-CL. CaTTS’ constraint solver provides with an

218 7. Conclusion

efficient solution to multi-calendar temporal reasoning. Multi-calendar temporal reasoning
in CaTTS is linear in the number of constraints and in the number of variables according to
the size of the variables’ domains. Furthermore, CaTTS’ multi-calendar constraint solver
is complete.

It has been shown that defining calendars as types and their parameterization ensures
maintenance and reuse of calendars. The “type” of a calendar provides a summary of that
calendar itself.

Furthermore, it has been shown that using a “theory reasoning” approach to time
and calendars that refers to such types allows for both, efficient multi-calendar temporal
reasoning and user-friendly modeling of temporal and calendric data.

CaTTS facilitates the modeling and efficient processing of calendar and time data
for several applications, in particular for solving multi-calendar appointment scheduling
problems.

The usability of CaTTS’ approach to calendar data modeling and reasoning has been
exemplified.

Research on time and calendar models and reasoning approaches to time and calendars
that has influenced the work on CaTTS, both from theory and from practice has been
thoroughly surveyed, always in comparison to CaTTS’ approach to this problem.

7.1 Results 219

7.1 Results

In the following, the twofold thesis underlying the research reported about in this work
that has been formulated in the introduction is recalled:

• “Calendars as Types”: calendars are more conveniently expressed with dedicated
language constructs. Types and type checking are as useful and desirable with cal-
endric data types as with whatever other data types. Types complement data with
machine readable and processable semantics. Type checking is a very popular and
well established “lightweight formal method” to ensure program and system behavior
and to enforce high-level modularity properties yielding in abstraction. Types and
type checking enhance efficiency and consistency of any language.

• “Theory Reasoning”: calendars are more efficiently processed with dedicated reason-
ing methods than with “axiomatic reasoning” of ontology languages like RDF and
OWL. This makes search space restrictions possible that would not be possible if
calendars and temporal notions would be specified in a generic formalism such as
first-order logic and processed with generic reasoning methods such as first-order
logic theorem provers.

This thesis is supported by documentary evidence: the calendar type language CaTTS
has been designed and prototypically implemented. CaTTS allows for user-friendly model-
ing of arbitrary calendars and calendric data as well as for reasoning on such data. Defining
time granularities as types in a CaTTS calendar specification using predicate subtyping
allows for declarative and user-friendly modeling of such types, for annotation of calendric
data in any document or program using CaTTS, for modularity of calendar specifications,
and thus, for reuse and maintenance of calendars. Furthermore, predicate subtyping pro-
vides a means to automatically generate conversion functions between the values of such
types. The novel conversion constraint, introduced with CaTTS’ constraint solver refers
to the predicate subtypes, in particular to the conversion functions generated from the
type predicates. CaTTS’ constraint solver used to solve multi-calendar temporal reason-
ing problems, and, in particular, appointment scheduling problems refers to and relies on
the calendric types defined by predicate subtypes. This makes constraint reasoning more
efficient (in fact linear in both the number of constraints and the number of variables with
respect to the size of the domains associated with the variables). Furthermore, multi-
calendar constraint reasoning is performed without loss of the semantics of the different
calendric types.

7.1.1 Underlying Problem

As motivated in the introduction to this thesis, temporal and calendric data are diverse and
heterogeneous. Such data often depend on cultural, professional, locational, and/or legal
contexts, frequently involving rather subtle differences, even if the same cultural calendar is
used. Undoubtly, time and calendars play an important role in many information systems

220 7. Conclusion

in Artificial Intelligence as well as in Database research. Several applications involving often
rather complex temporal and calendric data have been addressed in this thesis. Today’s
internationalization efforts in the World Wide Web as well as the vision of the Semantic
Web give rise to further research on time and calendars. In particular, since the Web is,
in general, not exclusively used by computer scientists but rather by people who do not
want to tackle with computers, a tool to concisely modeling temporal and calendric data
and constraints in a declarative, and, thus, user-friendly manner that can be efficiently
manipulated and processed by computers turns out to be extremely useful.

Having surveyed a large amount of research done on time and calendar modeling and
reasoning in Artificial Intelligence, in Database Systems, and in the Web and Semantic
Web, it turns out that a practically applicable approach to time and calendars including
declarative modeling and efficiently processing approaches that can also be used by the
(heterogenous) “Web and Semantic Web clientele” is missing.

7.1.2 CaTTS: A Programming Language Approach to Time and
Calendars

CaTTS’ underlying time model is based on different concepts that have been defined within
(theoretical) research on time and calendar formalisms. CaTTS’ underlying time model
is purely interval-based. It includes the concept of time granularities and two subtype
relations, aggregation of and inclusion of (as well as a composition of these two relations),
which are very useful in modeling calendars. Indeed, they reflect widespread forms of
common-sense modeling and reasoning with calendric data.

CaTTS consists of two language parts, a type definition language, CaTTS-DL and a
constraint language, CaTTS-CL.

CaTTS-DL is a language to specify arbitrary cultural and professional calendars. As
examples given in this work show, CaTTS-DL is expressive enough to specify complex
cultural calendars such as the Hebrew calendar. CaTTS-DL calendars are specified by
finite collections of time granularities defined as types. Such calendric types are defined
using predicate subtyping.

CaTTS-CL is a language to specify multi-calendar temporal reasoning problems, and,
in particular, appointment scheduling problems over calendric data and constraints that
refer to and rely on calendric types defined in CaTTS-DL.

7.1.3 CaTTS’ Language Processors

CaTTS-DL’s language processor is a type checker that is based on predicate subtyping.
Predicate subtyping turns out to be extremely useful for calendric data, providing a means
to define time granularities as types as well as conversions between values of such types.
Conversions are required for (efficient) constraint solving on such data. Predicate sub-
typing introduces a semantics for the constraint language CaTTS-CL, and it allows for
consistency checks of CaTTS-CL programs. Furthermore, some basic static type checks of

7.2 Perspectives for Future Research 221

CaTTS-CL programs can be made. Beyond, predicate subtyping introduces a means to
generate conversion functions from CaTTS-DL calendric type definitions. Those functions
are accessed by CaTTS-CL’s constraint solver.

Predicate subtyping is a novel approach to data modeling and processing of time and
calendars which turns out to be extremely natural, allowing for user-friendly data modeling
and efficient reasoning, keeping and, even, exploiting the semantics of different calendric
types.

CaTTS-CL’s language processor is a constraint solver used in order to solve multi-
calendar temporal reasoning problems, and, in particular, appointment scheduling prob-
lems. It provides with a novel constraint, called conversion constraint, that allows for
constraint reasoning over arbitrary calendar domains (that refer to the calendric types
defined in CaTTS-DL). The constraint solver is defined in the constraint system typed
finite domains, an extension of the existing constraint system finite domains with calendric
types attached to the domains as well as the CaTTS conversion constraint. Multi-calendar
constraint reasoning is performed without loss of semantics of the different calendric types.
It thus increases efficiency of constraint solving involving calendric data. In fact, since the
conversion functions accessed by those conversion constraints are automatically generated
from CaTTS-DL type definitions before any constraint solving is taking place, CaTTS-
CL’s constraint solver is linear in the number of constraints as well as in the number of
variables according to the size of the variables’ associated domains. Furthermore, CaTTS’
constraint solver is proved to be complete.

CaTTS’ constraint solver goes beyond proposals in the literature for constraint reason-
ing with different time granularities.

Due to calendric types, the constraint solver can process arbitrary calendric data as
long as it is typed after types defined in CaTTS-DL.

7.2 Perspectives for Future Research

This section mentions and discusses (possible) future research directions concerning CaTTS
and its underlying ideas, i.e. to define calendars as types and to use theory reasoning
approaches to manipulate and process the data of such types. The perspectives for future
research which are discussed in the following point out the high potential of CaTTS’
approach to data modeling and reasoning for specific application domains such as time
and calendars.

7.2.1 Possible Extensions of the Type Language CaTTS

In what follows, some possible complements, enhancing CaTTS’ data modeling, reasoning,
and type checking facilities for calendars are addressed.

The subsequently discussed possible extensions of CaTTS and its two language proces-
sors, i.e. its constraint solver and its type checker, give evidence that CaTTS is a generic

222 7. Conclusion

modeling language for time and calendars, provided with thoroughly chosen language con-
structs: CaTTS’ language constructs can be easily combined as to support additional
modeling facilities. Interdependent with CaTTS’ modeling facilities, its language proces-
sors can be (rather) easily extended. In particular, CaTTS gives rise to be used in arbitrary
applications that refer to time and calendars, easily adapting CaTTS’ language constructs
and processing tools to the application’s needs.

7.2.1.1 Further Directions to Calendric Data Modeling

This section addresses possible complements to what has been introduced in Chapter 4.
Recall that Chapter 4 has introduced the type language CaTTS consisting of the type
definition language CaTTS-DL and the constraint language CaTTS-CL. So far, calendric
data modeling in CaTTS is restricted to precise temporal and calendric data that can be
expressed in terms of finite convex intervals in a calendric type defined in a CaTTS-DL
calendar specification. Some possible complements to CaTTS’ calendric data modeling
features are addressed in the following.

Activities with Variable Duration. In CaTTS, activities (that represent finite convex
intervals in a calendric type) can be either specified by a precise duration, e.g.

X i s 2 working day

specifying an activity X that represents intervals of working days of length 2, i.e. intervals
that last for 2 working days or by specifying no duration at all, e.g.

X i s working day

specifying an activity X that represents intervals of working days of any length, i.e. intervals
that last for an unknown number of working days.

Specification of activities might be easily extended to allow for specifying activities
whose durations vary between a minimal and a maximal amount of time, e.g.

X i s 2 to 4 working day

specifying an activity X that represents intervals of working days of minimal length 2
(working days) and maximal length 4 (working days), i.e. X represents intervals that last
at least for 2 working days and at most for 4 working days. Such an extension of activity
specifications might be useful for several applications: for example, someone is looking for
a flight from Munich to Tokyo and back where his/her stay in Tokyo might vary for some
days depending on the dates of the most suitable flight.

Activities Representing Generalized Intervals. As already mentioned, in CaTTS,
activities represent finite convex intervals with a calendric type. For several application
such as travel planning involving correlated flight and hotel bookings, activities that rep-
resent (finite) non-convex intervals or even (infinite) periodic intervals with calendric type
might be useful. Activities that refer to finite non-convex intervals could be represented
by conjunctions of activity specifications such as

7.2 Perspectives for Future Research 223

X i s 2 working day && X i s 4 working day

specifying an activity X that represents intervals of working days that consists of two com-
ponents where the first refers to convex intervals of length 2 (working days) and the second
component of this generalized interval refers to convex intervals of length 4 (working days).
Thus X refers to non-convex intervals of working days, containing two components where
the first has a duration of 2 (working days) followed by a gap in time followed by a second
component of duration 4 (working days). One might further assume additional language
constructs to relate the different (convex) components of such non-convex intervals to each
other, using CaTTS-CL’s time constraints such as before, meets, and overlaps.

Activities that refer to (infinite) periodic intervals might be useful in appointment
scheduling, e.g. when someone wants to keep 1 hour on each Monday for private concerns
within his/hers schedule. An activity X that represents intervals of 1 hour duration on each
Monday might be represented as follows in CaTTS:

X i s 1 hour during monday

Where monday is a calendric type defined in the considered CaTTS-DL calendar specifica-
tion.

Preferences on Time Constraints. Assuming that some persons want to schedule a
meeting. It might be natural that some of them prefer specific time slots. That is, it might
be useful to provide the user of CaTTS-CL with the ability to specify priorities on his/her
time constraints by adding a number (e.g. between 1 and 5 to a time constraint from weak
to strong preference). For example,

X i s 1 hour && X within "W20.2005" && X during monday (4)

could specify an activity X of 1 hour that must be within the 20th week of 2005 and (if
possible at all) during a Monday with preference 4 of 5.

Further extensions to express time constraints in CaTTS-CL might be, in addition to
conjunctions of (primitive) time constraints, disjunctions of time constraints, negations of
time constraints, and conditionals for time constraints.

Note: If the set of activities that can be represented in CaTTS-CL is extended, then
some extensions become necessary that support additional time constraints to express
conditions between those activities.

All those complements to calendric data and constraint modeling in CaTTS that are
addressed above require (often rather complex) extensions of CaTTS’ constraint solver.

7.2.1.2 Further Directions to Multi-Calendar Constraint Solving

This section addresses possible complements to what has been introduced in Chapter 5.
Recall that Chapter 5 has introduced a constraint-based reasoner to solve multi-calendar
temporal reasoning problems, in particular, appointment scheduling problems modeled in

224 7. Conclusion

CaTTS-CL. Such problems refer to calendric types defined in CaTTS-DL calendar spec-
ifications. First, some (possible) complements to CaTTS’ current constraint solver are
addressed. Subsequently, further research directions on constraint solving involving dif-
ferent domains in some discourse universe such as calendars are addressed. This points
out that CaTTS’ approach to typed CSPs using a conversion constraint to manipulate
calendric data of different types is rather generic, and might be applied to other, similar,
constraint problems.

Optimizations of CaTTS’ Constraint Solver. As discussed in Chapter 5, CaTTS’
constraint propagation algorithm is defined and implemented on interval domains. Using
interval domains based on the consistency technique bounds consistency has the advan-
tage that the implementation is rather efficient, i.e. linear, however, possibly with a large
constant. Using interval domains has the disadvantage that only domains without gaps
can be represented. This drawback particularly concerns CaTTS’ conversion constraint:
for example, converting the activity X :: 1..2 + 1..1 of type week to days using such an
interval representation would result in the activity Y :: 1..8 + 7..7 of type day. Assume
that weeks are defined from days such that each week has a duration of 7 days always
starting on Mondays, and such that the day with index 1 is a Monday. The conversion
from the domain associated with Y to that of X contains several time intervals which are
not solutions, e.g. the interval from day 3 (Wednesday) to day 9 (Tuesday). This mismatch
results from the fact that only interval boundaries of the domains of X and Y are consid-
ered by the bounds consistency algorithm. Instead using enumeration domains, and, thus,
arc consistency [FA97, MS98, Apt03], X would be represented by a list of its values, i.e.
X :: [1 + 1, 2 + 1] and a conversion to days would yield Y :: [1 + 7, 8 + 7], i.e. only those
intervals of 7 days (the time intervals from day 1 to day 7 and from day 8 to day 14) that
actually represent weeks. But using enumeration domains that enforce arc consistency is
less efficient. An algorithm implementing arc consistency is at least cubic in the number
of variables as well as in the number of constraints [FA97]. Since CaTTS deals with activ-
ities representing time intervals as well as conversion constraints, the size of the domains
as well as the number of constraints inherently increase. Arc consistency is essentially
only tractable for sufficiently small domains. Thus, an improvement of CaTTS’ constraint
solver might be a specification and implementation on interval domains combined with
enumeration domains such that the required domain representation can be chosen at hand
according to the problem considered. Such an implementation would require additional
predicates to switch between the different representations.

Extending the Reasoning Facilities. As already addressed in the previous Section
7.2.1.1, CaTTS only supports activities which can be represented by finite convex intervals
with calendric types. On the one hand, this restriction to finite intervals over a calen-
dric type allows for an efficient implementation of a constraint solver for multi-calendar
temporal reasoning problems. On the other hand, this restriction considerably limits the
set of temporal reasoning problems that can be modeled and solved using CaTTS: several

7.2 Perspectives for Future Research 225

problems such as travel planning involve calendric data that refers to generalized, i.e. not
necessarily convex and finite intervals. The time constraints provided with CaTTS-CL
need to be extended such that they can propagate activities that refer to generalized in-
tervals. In addition, further time constraints (e.g. particular relations that often appear
between non-convex time intervals, or time constraints used in order to relate periodic
intervals such as “periodically after”) need to be specified and implemented.

Another extension that has been addressed in Section 7.2.1.1 concerns the specification
of preferences on CaTTS-CL time constraints. A possible way to deal with preferences is
the definition and propagation of so-called soft-constraints which have to be specified for
CaTTS’ particular needs.

The addressed extensions (cf. Section 7.2.1.1) to disjunctions and negations of con-
straints as well as conditionals, require general extensions of the constraint solver under-
lying CaTTS. Some of those extensions are discussed in [FA97].

Conversion Constraints for other Domains. Reasoning problems involving specific
theories other than time and calendars that similarly refer to differently “grained” data
such as location and topologies, measurements, physical sizes as well as trust data are
appropriate candidates to adapt the idea of CaTTS’ constraint solver for typed domains
manipulated using a specific conversion constraint that refers to and relies on (user-defined)
predicate types.

7.2.1.3 Further Directions to Type Checking with Calendric Types

This section addresses possible complements to what has been introduced in Chapter 6. Re-
call that Chapter 6 has introduced predicate subtyping in CaTTS to check well-formedness
of CaTTS-DL calendar specifications and it introduces a coercion semantics of subtyping
for CaTTS-CL programs. In the following, possible advanced type checking approaches
with predicate subtypes in CaTTS are addressed.

Subtyping with Durations. The current implementation of CaTTS’ type checker would
reject a CaTTS-CL program such as

X i s 1 day && Y i s 1 day && (sh i f t X forward 1 month) equals Y

The reason that this program would be rejected is that subtyping with durations of ac-
tivities is not supported. Currently, the typing rule (T-Shift) for the constraint shift

X forward 1 month requires the same calendric types for the kind of X (a point) and the
kind of 1 month (a duration). In this example, however X has type day whereas 1 month

has type duration of month, i.e. monthn. This restriction is built into CaTTS due to avoid
any kind of imprecision: the result of shifting a day forward by 1 month is not clear at all.
Rather the result might refer to the same day number one month later (this becomes crit-
ical when shifting the 31st January forward 1 month), to some day one month later, or to
that day that is exactly shifted by the duration of 1 month in terms of days, unfortunately,
this duration is variable (e.g. a Gregorian month might have 28 up to 31 days).

226 7. Conclusion

A possible solution to such kinds of problems, allowing for subtyping with durations
that provides with sufficient flexibility for the user is the following implementation: convert
the duration of 1 month to an equivalent duration in terms of days that defines a range
from the minimal to the maximal duration of 1 month in terms of days, i.e. 28 to 31 days
and add the minimal duration to the minimal starting time of X, yielding the minimal
starting time of Y, and the maximal duration to the maximal starting time of X, yielding
the maximal starting time of Y. Thus, the day X is shifted forward by a duration that
ranges from 28 to 31 days.

Type Checking with Predicate Subtypes. In programming languages, type checkers
are usually intended to ensure the absence of certain undesirable behavior during program
execution. CaTTS-DL is a specification language for calendars. Although program ex-
ecution is not a primary concern for specification languages, type checking CaTTS-DL
still serves to reject calendar specifications that are erroneous or undesirable in some way.
Beyond the static type checks supported currently for CaTTS-DL calendar specifications
there is further potential to investigate to what extent erroneous or undesirable calendar
specifications might be rejected statically. For example, a calendar specification that con-
tains the specification of a type whose set of values is empty should be rejected, because any
program, and in particular, any CaTTS-CL program that refers to such an empty type is
inconsistent. Similarly, one could check calendar specifications for different type specifica-
tions, however referring to some equivalent set of values (cf. Section 6.7). To perform such
kinds of “reliable checks” of CaTTS-DL calendar specifications, predicate subtypes can be
used by virtue of constraint solving (in principle) available for CaTTS’ type checker. Type
checking according to predicate subtypes is then performed by proof obligation generation
from the type predicates using constraint reasoning.

Similarly, out-off bound checks of finite calendric types defined in some CaTTS-DL
calendar specification and referred to in some CaTTS-CL program might be performed
statically by providing CaTTS’ type checker a means to call CaTTS’ constraint solver
during type checking the considered CaTTS-CL program. Currently, out-off bound checks
are performed dynamically, during constraint solving.

Note: CaTTS’ constraint solver needs to be extended with some further specific con-
straints to perform such “reliable checks” of CaTTS-DL calendar specifications. Addition-
ally, a possibility for the type checker to call the constraint solver during (statically) type
checking CaTTS-DL calendar specifications as well as CaTTS-CL programs is required.

7.2.2 Topologies as Types

The idea to model time granularities as types defined by specifying predicate sets in some
calendar specification that can be referred to for reasoning purposes might also be applied
to other theories such as topologies [BLS05].

7.2 Perspectives for Future Research 227

7.2.2.1 Granularities

For this purpose, initially, the concept of time granularity as introduced in Chapter 3 need
to be extended to some multi-dimensional case. Such a general definition of the concept
of granularity is given in the following.

Definition 7.1 An n-dimensional space is a pair (An,<An) where An is an infinite set
(isomorphic to Rn) and <An is a total order on An such that An is not bounded for <An.
An element a = (a1, ..., an) of An is called n-point.

Note that since A is totally ordered (recall that it is isomorphic to R), the total order
is preserved over the Cartesian product of A× . . .×A.

Definition 7.2 Let (An,<An) be an n-dimensional space.
Let G = {gi | i ∈ Z} be a set isomorphic to Z. Let call the elements of G granules.
A granularity is a (non-necessarily total) function G from G into the power set of An,
P(An) such that for all i, j ∈ Z with i < j

1. if G(gi) 6= ∅ and G(gj) 6= ∅, then for all ai = (ai1 , ..., ain) ∈ G(gi) and for all aj =
(aj1 , ..., ajn) ∈ G(gj), then ai <An aj, and

2. If G(gi) = ∅, then G(gj) = ∅.

According to Definition 7.2, granules of the same granularity are totally ordered and
non-overlapping. The first condition of Definition 7.2 induces from the ordering of the
n-point (of the n-dimensional space) the common-sense ordering on granules. The second
condition of Definition 7.2 is purely technical: it makes it possible to refer to the infinite
set Z also for finite sets of granules.

Examples of granularities are time granularities over (A,<A) and location granularities
over (A2,<A2).

Granularities can be defined by specifying subtype relations (in terms of predicates).
Two subtype relations, aggregation of and inclusion of, have been defined for (one-dimensional)
time granularities (cf. Chapter 3). For example a type “working day” is an inclusion (in
the common set-theoretic sense) of the type “day” since the set of working days is a subset
of the set of days; the type “week” is an aggregation of the type “day” since each week
can be defined as a time interval of days.

Similar to the subtype relations, aggregation and inclusion, between time granularities,
aggregations and inclusions are defined between location granularities as follows.

Definition 7.3 Let G and H be location granularities.
G is an inclusion subtype of H, denoted G ⊆ H, i.e. every granule of G is a granule of
H.

For example, the location granularity “subway station” is an inclusion subtype of the
location granularity “station”, selecting only those stations with subway connection.

228 7. Conclusion

Figure 7.1: A part of Munich’s subway and suburban train network.

Definition 7.4 Let G and H be location granularities.
G is an aggregation-enclosure subtype of H, denoted G � H, if every granule of G is
a 2-dimensional space over H and every granule of H is included in (exactly) one granule
of G.
G is an aggregation-connection subtype of H, denoted G ≺ H, if every granule of G is
a 2-dimensional space over H and every granule of H is included in (at least) one granule
of G.

For example, the location granularity “train network” is an aggregation-enclosure sub-
type of the location granularity “train connection”, aggregating a set of train connections
into a network. And a “train connection” itself is an aggregation-connection subtype of
“station”, connecting several stations to a train line. Note that connections are not neces-
sarily disjoint: the same station might participate in different train lines, for example.

7.2.2.2 Topological Data Modeling

Having defined such a formal framework of granularities, one might start to develop a
topology modeling language similar to the calendar modeling language CaTTS, also based
on predicate subtyping.

In many cases, location reasoning pertains to routing and navigation tasks which rely on
network infrastructures. In what follows, networks are used as a straightforward example
for a topology, knowing that more complicated topologies might require further modeling
features not addressed in this example. However, this example shows that a holistic model
of the real world is hardly necessary for several applications involving locational data. For
example, a journey involving the public underground system can be planned without any
information about the geographic composition of the subway network. Knowledge about
schedules and the topological structure suffices to find an optimal connection between two
stations. Expressing such information in a location type language would provide both an
abstraction from geographic coordinates and a means to enable reasoning on location data.

7.3 Concluding Remarks 229

Let us consider a part of Munich’s subway and suburban train network (cf. Figure 7.1)
defined in a topology type system:

type subway stat ion = col lect
Sendl inger Tor , Hauptbahnhof , Marienplatz , S t i g lma i e rp l a t z , . . .

type t r a i n s t a t i o n = col lect Hauptbahnhof , Kar l sp la tz , Marienplatz , . . .
type s t a t i o n = subway stat ion | t r a i n s t a t i o n ;
type U1 = connect Send l inger Tor − Hauptbahnhof − S t i g lma i e r p l a t z − . . .
type U3 = connect Send l inger Tor − Marienplatz − Odeonsplatz − . . .
type S2 = connect Hauptbahnhof − Kar l sp l a t z − Marienplatz − . . .
type network = col lect U1 , U3 , S2 ;

A network such as that given in Figure 7.1 could be modeled as illustrated. The type
subway station is defined as a collection of named subway stations. A collection is a
finite sequence of entities which satisfy certain constraints, in this case denoting a subway
station. The definition of train station is analogous. The type station is defines by
conjunction of types subway station and train station. A subway line (U1, U3, etc.) is
defined as an ordered connection of subway stations. If there is a subway train servicing
station A, B, and C (in this order), then these stations are connected with each other to
form a line. Therefore, a line is directed, i.e. a service is usually comprised by two lines
operating in different directions. This is especially useful for modeling different time tables
and changing services for off-peak operation, etc. A network is in turn a collection of lines.

The above sketched approach provides a means for modeling topological data required in
many applications like routing problems and map representations by linking the topological
information to spatial data, for example sets of coordinates (polygons) which denote areas.
This linking also facilitates the use of established calculi like RCC8 [RCC92]. Furthermore,
this approach allows for symbolic queries, such as finding out which stations lie in a certain
quarter of the city or which district office is in charge of a road segment. Linked data is
also necessary whenever for example polygons cannot be directly represented as location
granularities, which is only possible in special cases (e.g. when areas can be regularly
divided into same-size cells.)

7.3 Concluding Remarks

This thesis has motivated the benefits and advantages of a programming language approach
to time and calendars. The benefits have been discussed on practical applications as well
as in comparison to rather theoretical approaches to time and calendars suggested in the
literature. The motivated programming language approach has been realized in terms
of the language CaTTS. CaTTS’ modeling languages CaTTS-DL and CaTTS-CL have
been defined. The former is a type definition language to specify time granularities and
calendars as types as well as date formats for the values of such types. The latter is a
constraint language to express a wide range of temporal and calendric constraints on time
intervals which have a calendric type attached. Furthermore, two language processors have

230 7. Conclusion

been defined for CaTTS: a multi-calendar constraint solver and a type system. The multi-
calendar constraint solver is used to solve reasoning problems expressed in CaTTS-CL. The
multi-calendar constraint solver is defined in the constraint system typed finite domains.
The solver comes with a novel constraint, the conversion constraint. This constraint enables
constraint solving over arbitrary calendar domains of calendric types defined in CaTTS-
DL. A set of proof rules formalizes the constraint propagation algorithm of this solver. A
prototype implementation of the solver is provided and shown to be efficient, i.e. linear
in the number of constraints and in the number of variables regarding the size of the
domains associated with the variables. Completeness of this implementation has also been
proved. The type system is used to (statically) type check well-formedness of CaTTS-
DL calendar specifications and correctness of CaTTS-CL programs. Calendric types are
specified in terms of predicate subtypes and subtyping is defined by implicit coercion.
The type system and the coercion have been prototypically implemented. Soundness and
correctness of the implementation of the type system are sketched but not formally proved.
The implementation of the coercion semantics for subtyping in CaTTS-CL is shown to be
coherent.

Appendix A

CaTTS’ Syntax

A.1 Reserved Words

The following table lists the reserved words used in CaTTS, in CaTTS-DL as well as in
CaTTS-CL. Reserved words cannot be used as identifiers.

after aggregate alternate backward before begin of
by cal calendar cal fun cat catalog
contains div downto duration during else
end end of equals extend finishes finished by
for format forward group if import
in index macro max meets met by
min mod named none on or after on or before
otherwise overlaps overlapped by prog program reference
refinement relative select shift shorten sig
starts started by then to type unqualified
upto use calendar use format where with within

! = #< & && () ∗ + , − − > . .. : ; < <: <:: <=
= == > >= @ [] \ | || ˜@ n ∗

A.2 Constants

A time constant is either a part or a date of any calendric type (time granularity) defined
in CaTTS-DL. A part is a type constructor followed by any non-empty sequence of digits,
possibly preceded by the minus symbol “−” within parentheses “()”. A date is any non-
empty sequence of printable characters, digits, and/or spaces between quotes “ ”” following
the definitions of some date format specified in a CaTTS-FDL catalog. An underlying
alphabet of 256 characters (number 0 to 255) is assumed where the characters number 0

232 A. CaTTS’ Syntax

to 127 coincide with the ASCII character set1.
A duration constant is an (unsigned) integer followed by a type constructor.
The formatting characters are a subset of the non-printable characters including at

least space, tab, and newline.
In the following, Con denotes the class of all constants; k is used to range over Con.

A.3 Comments

A comment is any character sequence within comment brackets, i.e. (* *). Comment
brackets may not be nested in CaTTS programs2. An unmatched comment bracket is
detected by the compiler.

A.4 Identifiers

The following table itemizes the classes of identifiers appearing in CaTTS; for each class
the name for the elements used to range over the corresponding class is given.

k ∈ Con constants
i ∈ IndVar index variables
X ∈ ConVar (constraint) variables
m ∈ MacId macro identifiers long
t ∈ TyCon type constructors long
g ∈ GrCon group constructors long
c ∈ CalId calendar identifiers long
s ∈ CalSigId calendar signature identifiers
f ∈ CalFunId calendar function identifiers
p ∈ ProgId program identifiers
fo ∈ FormId format identifiers ext
ct ∈ CatId catalog identifiers ext

For each class of identifiers Y marked “long” there is a class longY of long identifiers ;
if y ranges over Y then longy ranges over longY. The syntax of the long identifiers is given
by the following:

longy ::= long identifiers:
y identifiers
c1.cn.y qualified identifiers, n ≥ 1

1Note that an extension to the UTF-8 or the Unicode alphabet would be easy to perform in CaTTS.
A restriction to ASCII is merely used for CaTTS’ prototype implementation.

2Note that CaTTS could be easily supplemented with nested comments, if necessary.

A.4 Identifiers 233

The long identifiers constitute a link between (type) definitions and (calendar) specifi-
cations.

For each class of identifiers Z marked “ext” there is a class extZ of extended catalog
identifiers ; if z ranges over Z then extz ranges over extZ. The syntax of the extended
catalog identifiers is given by the following:

extz ::= extended catalog identifiers:
z identifiers
a1.an.z qualified identifiers, n ≥ 1

Any (qualified) identifier must be alphanumeric, i.e. any sequence of letters, digits, and
underscores (). Reserved words are excluded in any case.

The term identifier is used throughout this text to refer to non-qualified identifiers
only. The term qualified identifier is exclusively used for extended or long identifiers. In
any other case, the term (qualified) identifier is used.

Note: The “.” used to connect a calendar identifier (resp. a catalog identifier) with
some other identifier from one of the groups of identifiers marked “long” (resp. “ext”) is
a CaTTS- operator applied on the calendar identifier (resp. on the catalog identifier) and
the other identfifier referred to.

Note: Except for identfier specifications, CaTTS is a context-free language. CaTTS’
parser determines the class an identfier belongs to by case on the syntactic supplements as
follows:

• Constants appear in quotes ”and ”, indices are integer numbers, and variables are
strings, all of them may be bound in a value binding.

• A type identifier and its associated binding is recognized by the keyword type.

• A group identifier and its associated binding is recognized by the keyword group.

• A macro identifier and its associated binding is recognized by the keyword macro.

• A calendar identifier and its associated binding is recognized by the keyword calendar.

• A calendar signature identifier and its associated binding is recognized by the keyword
calendar type.

• A calendar function identifier and its associated binding is recognized by the keyword
cal fun.

• A format idenfifier and its associated binding is recognized by the keyword format.

• A catalog idenfier and its associated binding is recognized by the keyword catalog.

234 A. CaTTS’ Syntax

• A (CaTTS-CL) program identifier and its associated binding is recognized by the
keyword program.

For each class of identifiers, a context is provided, selecting the identifiers and corresponding
bindings during parsing. The use of the different classes of identifiers in CaTTS-DL as well
as in CaTTS-CL is imposed by the syntax of the languages.

A.5 Grammar

CaTTS’ grammar, including the syntactic forms for both language formalisms CaTTS-
DL and CaTTS-CL is given, in an EBNF-like notation. The grammar has an EBNF-like
notation because both CaTTS-DL and CATTS-CL declarations are not context-free, i.e.
they are context-sensitive. Declarations are therefore marked seperately during parsing
(following the different classes of idenfiers) CaTTS-DL calendar specifications and CaTTS-
CL programs (cf. Section A.4). In the used EBNF-like notations, optenals 〈e〉 denote 0 or
1 occurences of the expression e and repetitions {e} denote n ≥ 0 occurences of expression
e.

Table A.1 contains the syntax of the (core) language CaTTS-DL. The syntax of CaTTS-
TDL declarations (including calendars, calendar functions, and calendar signature spec-
ifications) is given in Table A.2. Table A.3 provides with the syntax of CaTTS-FDL
declarations including catalog specifications. CaTTS-CL’s (core) syntax is given in Table
A.4. Table A.5 gives the syntax of CaTTS-CL declarations (including program specifica-
tions).

Note: Both languages, CaTTS-DL and CaTTS-CL include types for booleans, integers,
characters, strings, and lists with common values and operations. Those types are sup-
ported with the language implementing CaTTS, in particular, those types are supported
with Haskell types for booleans, integers, characters, strings, and lists CaTTS’ reference
implementation is provided within.

A.6 Syntactic and Closure Restrictions

• No identifier may be bound more than once.

• No declarations may describe the same identifier more than once.

• Calendar functions and calendar signatures may only contain local references; except
for the calendar function (resp. calendar signature) identifier itself.

• Calendar functions and signatures are local; they are no first order structures of
CaTTS (to preserve name consistency while compiling calendar modules).

• During parsing of a (finite set of aligned) CaTTS-DL calendar specification(s), the
(pre-defined or user-defined) reference type ref is parsed to the type rC.

A.6 Syntactic and Closure Restrictions 235

τ ::= type expressions:
ref (user-def. or predef.) reference type
refinement n @ te refinement, n ∈ N
aggregate te {,te} @ te (abs. anchored) aggregation
aggregate te {,te} ˜@ z (rel. anchored) aggregation, z ∈ Z
select te where te selection
τ&τ conjunction
τ | τ disjunction
τ \ τ exception
τ# < τ restriction

K ::= kinding expression:
τ point
τ∗ interval
τn duration

te ::= CaTTS-DL expressions:
i index
X variable
k constant
τ(i) part, i ∈ Z, index
n τ duration, n ∈ N
te R te interval relation
te � te comparison
duration te duration of
index te index of
begin of te begin of
end of te end of
shift te forward te forward shift
shift te backward te backward shift
extend te by te interval extension
shorten te by te interval shortening
relative te in τ 〈�i〉 relative in
relative te to τ 〈�i〉 relative to
min(te) minimum
max(te) maximum
te && te conjunction
te || te disjunction
alternate te | te → te {| te → te} alternate
if te then te else te conditional
te arithm te arithmetics

R ∈ {equals, before, after, starts, started by, finishes, finished by, during,
contains, meets, met by, overlaps, overlapped by, within, on or before,
on or after}

� ∈ {==, <=, <, >, >=, ! =}
arithm ∈ {+, −, ∗, mod, div}

Table A.1: The syntax of CaTTS-DL including CaTTS-TDL and CaTTS-FDL.

236 A. CaTTS’ Syntax

dcl ::= declarations:
type tybind types
group groupbind groups
macro macbind macros
valbind values
dcl;dcl sequentials

tybind ::= type bindings:
t = τ

groupbind ::= group bindings:
g = with τ {type t where

te {te} for t1=t2} end
macbind ::= macro bindings:

m = te
valbind ::= value bindings:

X 〈: τ〉 〈= te〉
i = z z ∈ Z

caldcl ::= calendar declarations:
dcl declarations
calendar calbind calendars

empty
caldcl;caldcl sequentials

calbind ::= calendar binding:
c〈 (:sige)〉 = cale

cale ::= calendar expressions:
cal caldcl end generative
longc identifiers
f(cale) function applications

sigdcl ::= signature declarations:
calendar type sigbind generative

empty
sigdcl;sigdcl sequentials

sigbind ::= signature bindings:
s = sige

sige ::= signature expressions:
sig spec end generative
s identifiers

spec ::= specifications:
type t <: τ aggregations
type t c : τ inclusions
group g c : τ groups
calendar c:sige calendars
spec;spec sequentials

fundcl ::= function declarations:
cal fun funbind generative

empty
fundcl;fundcl sequential

funbind ::= function bindings:
f(c:s):s’ = cale

Table A.2: The syntax of CaTTS-TDL declarations.

A.7 Note: CaTTS’ Reference Implementation 237

catdcl ::= catalog declarations:
catalog catbind generative
format fo:τ = fodesc where te formats

empty
catdcl;catdcl sequentials

catbind ::= catalog bindings:
ct〈:s〉= cate

cate ::= catalog expressions:
cat catdcl end generative
extct extended identifiers

fodesc ::= format descriptions:
{str|id} str ∈ String, identifier

Table A.3: The syntax of CaTTS-FDL declarations.

• A (finite set of aligned) calendar specification(s) may have at most one type specified
by refinement of the reference type ref; this type is translated (during parsing) to
the type rC, and ref to an aggregation subtype of rC.

• Each calendar (or finite set of aligned calendars) C must have exactly 1 reference
type rC.

• At most one CaTTS-DL calendar specification can be used unqualified in a CaTTS-
CL program.

• At most one CaTTS-DL format specification can be used unqualified in a CaTTS-CL
program.

• A group declaration is replaced by a finite set of type declarations during parsing.

• An expression like select day(i) where relative i in week == 1 is parsed to
select X:day where relative (index X) in week== 1.

• Type declarations may not be cyclic; for example if a type year is defined from a
type month, then the definition of month may not refer to years.

• Arithmetic operations are only allowed on indices in the alternate constructed in
aggregation subtype declarations and on indices in macro declarations.

A.7 Note: CaTTS’ Reference Implementation

CaTTS’ prototype is implemented in Haskell, in particular, the parser of CaTTS-CL and
CaTTS-DL, conversion function generation from (user-defined) type predicates, type check-
ing, and the transformation into the lower-level language CLcatts of CaTTS’ constraint

238 A. CaTTS’ Syntax

ce ::= CaTTS-CL expressions:
k constant
X variable
i index
n τ duration, n ∈ N
[ce..ce] endpoint interval
ce upto ce duration interval
ce downto ce duration interval
X is 1 τ event
X is τ task
X is n τ task with duration n ∈ N
ce R ce interval constraint
ce � ce metric constraint
duration ce duration of
index ce index of
begin of ce begin of
end of ce end of
shift ce forward ce forward shift
shift ce backward ce backward shift
extend ce by ce interval extension
shorten ce by ce interval shortening
relative ce in τ 〈 � i 〉 relative in
relative ce to τ 〈 � i 〉 relative to
min(ce) minimum
max(ce) maximum
ce && ce conjunction

R ∈ {equals, before, after, starts, started by, finishes, finished by, during,
contains, meets, met by, overlaps, overlapped by, within, on or before,
on or after}

� ∈ {==, <=, <, >, >=, ! =}

Table A.4: The syntax of CaTTS-CL.

A.7 Note: CaTTS’ Reference Implementation 239

progdcl ::= program declarations:
ce constraint
use calendar〈unqualified〉longc1 . . . longcn; use calendars, n ≥ 1
use format〈unqualified〉cate1 . . . caten; use formats, n ≥ 1
import lib1 . . . libn; imports, n ≥ 1
program progbind generative

empty
progdcl;progdcl sequentials

progbind ::= program bindings:
p proge

proge ::= program expressions:
prog progdcl end declarations
p identifiers

Table A.5: The syntax of CaTTS-CL declarations.

solver. The constraint solver is implemented in CHR (Constraint Handling Rules) embed-
ded into Sicstus Prolog.

For proof of concept, a small subset of the language CaTTS has been implemented.
The implementation excludes the following (advanced) features of CaTTS

• macros,

• calendar signature matching,

• imports of externally specified functions in CaTTS-DL calendar specifications, and

• data format specifications in CaTTS-FDL.

Only a rudimentary translation from CLcatts back into CaTTS-CL after constraint
propagation is supported.

Conversion function generation is implemented only for specific predicates (cf. Chapter
5). Furthermore, subtyping with duration types is not supported in the current prototype
implementation.

CaTTS’ prototype implementation is sufficient for proof of concept. In particular,
CaTTS’ novel features, conversion function generation, type checking and subtyping with
calendric types, and constraint reasoning with different (calendar) domains in terms of
CaTTS’ novel conversion constraint are realized.

The prototype will be published as soon as the remaining features are realized, as well.
Note that the main focus of the thesis is a formal specification of a type language for
calendars with multi-calendar reasoning approaches rather than its implementation.

240 A. CaTTS’ Syntax

Appendix B

A CHR Implementation of CaTTS’
Constraint Propagation Algorithm

CaTTS’ prototype constraint propagation algorithm is implemented in CHR (Constraint
Handling Rules) embedded into SICSTUS Prolog [FA97]. The implementation is a straight-
forward transcription of the declarative proof rules given in Tables 5.6, p.149, 5.4, p.147,
5.5, p.148, 5.8, p.149, 5.7, p.149, and 5.9, p.152 in Chapter 5.

The implementation departs from the declarative proof rules as it is in the following
explained on the proof rule for the time constraint before:

〈X before Y ;X :: nX ..mX + d−X ..d+
X , Y :: nY ..mY + d−Y ..d+

Y 〉
〈X before Y ;

X :: nX ..min(mX , (min(mEX
,mY − 1)− d−X +1))+ d−X ..min(d+

X , (min(mEX
,mY − 1)−nX +1))

Y :: max(nY , nEX
+ 1)..mY + d−Y ..d+

Y 〉

This proof rule incorporates

• the reduction rule for the calendar domain associated with the variable X,

• the reduction rule for the calendar domain associated with the variable Y , and

• the application of the bounds consistency rule to the domain of X and to the domain
of Y by taking the minimal and maximal values (for starting times and durations),
respectively of the interval domain bounds from the old and new domains and replace
this reduced domain with the old and new ones.

Those steps are performed successively, using separated propagation rules by the algo-
rithm.

1. Application of before on X, which introduces a new calendar domain for X (using
the rule before x).

242 B. A CHR Implementation of CaTTS’ Constraint Propagation Algorithm

2. Application of the bounds consistency rule on the old and new bounds of the interval
domains for starting times and durations of X, yielding a reduced calendar domain
for X (using the rules intersection and empty).

3. Application of before on Y , which introduces a new, reduced calendar domain for Y
(using the rule before y).

4. Application of the bounds consistency rule on the old and new bounds of the interval
domains for starting times and durations of Y , yielding a reduced calendar domain
for Y (using the rules intersection and empty).

The rules are implemented such that they can only be applied, if some bound can be
reduced by using so-called guards in CHR [FA97].

B.1 Constraints and Functions Available for the Con-

straint Solver

• Prolog built-in arithmetic constraints:

is , <,=<,>,>=, \=

• Prolog built-in arithmetic functions:

min ,max,+,−

• Prolog built-in predicates to manipulate lists

• conversion functions generated from type predicates in CaTTS-DL calendar specifi-
cations where X s:TypeS, X t:TypeT, and TypeS ≤ TypeT:

%for predecessor , conver t s to super type :
c onve r t t o j o i n m inu s (X s , TypeS ,TypeT , X t) .

%for successor , conver t s to super type :
c o n v e r t t o j o i n p l u s (X s , TypeS ,TypeT , X t) .

%conver to sub type :
%t h i s p r ed i c a t e might re turn a l i s t o f va l u e s from which the minimum
%or the maximum i s chosen in the convers ion con s t r a i n t
c onve r t f r om jo i n (X t , TypeS ,TypeT , X s) .

%for predecessor , conver t s to sub type :
conve r t f r om jo in minus (X t , TypeS ,TypeT , X s) .

%for successor , conver t s to sub type :
c onv e r t f r om j o i n p l u s (X t , TypeS ,TypeT , X s) .

B.2 Activity Constraints 243

• functions to related indices relative in/to indices in other types; generated from type
definitions in CaTTS-DL calendar specifications

%for r e l a t i v e index X in TypeT = Index where ILis tX rep r e s en t s index X
%t h i s f unc t i on a p p l i e s the convers ion func t i on s
s i n t (Index ,TypeT , IListX ,TypeX , NewIListX) .

%for r e l a t i v e index X to TypeT = Index where ILis tX rep r e s en t s index X
%t h i s f unc t i on a p p l i e s the convers ion func t i on s
s t o t (Index ,TypeT , IListX ,TypeX , NewIListX) .

B.2 Activity Constraints

• activity is a 4-ary constraint

c on s t r a i n t s a c t i v i t y /4 .
a c t i v i t y (X, Kind , Type , Representat ion)

where X the variable, Kind either event or task, Type the CaTTS-DL type of the
activity, and Representation the representation of the event or task as follows:

– for events: start(LS..HS)

– for tasks: i(start(N..M),dur(LD..HD))

• auxiliary predicates for activity constraints to get and set min/max interval domain
bounds for starting times, durations, and ending times as well as the corresponding
index list of an event

%for s t a r t i n g t imes
getLStart (X, Kind , Representat ion ,NewRep) .
s e tLSta r t (X, Kind ,TypeX , Representat ion ,NewRep) .
getHStart (X, Kind , Representat ion ,NewRep) .
setHStart (X, Kind ,TypeX , Representat ion ,NewRep) .

%for ending t imes ; imply r e s e t o f s t a r t i n g t imes and dura t ions
getLEnd (X, Kind , Representat ion ,NewRep) .
setLEnd (X, Kind ,TypeX , Representat ion ,NewRep) .
getHEnd (X, Kind , Representat ion ,NewRep) .
setHEnd (X, Kind ,TypeX , Representat ion ,NewRep) .

%for dura t ions
getLDur (X, Kind , Representat ion ,NewRep) .
setLDur (X, Kind ,TypeX , Representat ion ,NewRep) .
getHDur (X, Kind , Representat ion ,NewRep) .
setHDur (X, Kind ,TypeX , Representat ion ,NewRep) .

244 B. A CHR Implementation of CaTTS’ Constraint Propagation Algorithm

B.3 Bounds Consistency

empty @ a c t i v i t y (X, event ,TypeX , s t a r t (LSX . .HSX)) <=> HSX < LSX | f a i l .
empty @ a c t i v i t y (X, task ,TypeX , i (s t a r t (LSX . .HSX) , dur (LDX. .HDX))) <=>

HSX < LSX | f a i l .
empty @ a c t i v i t y (X, task ,TypeX , i (s t a r t (LSX . .HSX) , dur (LDX. .HDX))) <=>

LDX > HDX | f a i l .

i n t e r s e c t i o n @ a c t i v i t y (X, event ,TypeX , s t a r t (LS1 . . HS1)) ,
a c t i v i t y (X, event ,TypeX , s t a r t (LS2 . . HS2)) <=>
LSX i s max(LS1 , LS2) , HSX i s min(HS1 ,HS2) ,
a c t i v i t y (X, event ,TypeX , s t a r t (LSX . .HSX)) .

i n t e r s e c t i o n @ a c t i v i t y (X, task ,TypeX , i (s t a r t (LS1 . . HS1) , dur (LD1 . .HD1))) ,
a c t i v i t y (X, task ,TypeX , i (s t a r t (LS2 . . HS2) , dur (LD2 . .HD2))) <=>
LSX i s max(LS1 , LS2) , HSX i s min(HS1 ,HS2) ,
LDX i s max(LD1,LD2) , HDX i s min(HD1,HD2) ,
a c t i v i t y (X, task ,TypeX , i (s t a r t (LSX . .HSX) , dur (LDX. .HDX))) .

Note: Those rules affect activity constraints only; all further CaTTS-constraints remain
unaffected.

B.4 Time Constraints

• the transformation rules for time constraints (cf. Table 5.6, p.149 and Table 5.8,
p.149) are straightforward implemented by translating the proof rules into CHR
simplification rules, e.g.

X be fo r e X <=> f a i l .

• the domain reduction rules for time constraints are straightforward implemented by
translating the proof rules into CHR propagation rules

– interval time constraint R (cf. Table 5.4, p.147), e.g. before and its inverse
after

be f o r e x @ X be fo r e Y, a c t i v i t y (X, KindX ,TypeX , ReprX) ,
a c t i v i t y (Y, KindY ,TypeY , ReprY) ==>
getHEnd (X, KindX , ReprX ,HEX) ,
getHStart (Y, KindY , ReprY ,HSY) ,
NewHEX i s HSY−1 , NewHEX < HEX |
setHEnd (X, KindX ,TypeX , ReprX ,NewHEX) .

b e f o r e y @ X be fo r e Y, a c t i v i t y (X, KindX ,TypeX , ReprX) ,
a c t i v i t y (Y, KindY ,TypeY , ReprY) ==>
getLEnd (X, KindX , ReprX ,LEX) ,
getLStart (Y, KindY , ReprY ,LSY) ,
NewLSY i s LEX+1 , NewLSY > LSY |
s e tLSta r t (Y, KindY ,TypeY , ReprY ,NewLSY) .

X a f t e r Y :− Y be fo r e X.

B.4 Time Constraints 245

– metric time constraints (cf. Table 5.5, p.148), e.g. shift forward and relative in

s h i f t f y @ sh i f t f o rwa r d (X,LD . .HD,Y) ,
a c t i v i t y (X, KindX ,TypeX , ReprX) ==>
getLStart (X, KindX , ReprX ,LSX) ,
getHStart (X, KindX , ReprX ,HSX) ,
getLDur (X, KindX , ReprX ,LDX) ,
getHDur (X, KindX , ReprX ,HDX) ,
LSY i s LSX+LD−1 , HSY i s HSX+HD−1,
a c t i v i t y (Y, task ,TypeX , i (s t a r t (LSY . .HSY) , dur (LDX. .HDX))) .

s h i f t f x @ sh i f t f o rwa r d (X,LD . .HD,Y) ,
a c t i v i t y (Y, KindY ,TypeY , ReprY) ==>
getLStart (Y, KindY , ReprY ,LSY) ,
getHStart (Y, KindY , ReprY ,HSY) ,
getLDur (Y, KindY , ReprY ,LDY) ,
getHDur (Y, KindY , ReprY ,HDY) ,
LSX i s LSY−LD+1 , HSX i s HSY−HD+1,
a c t i v i t y (X, task ,TypeY , i (s t a r t (LSX . .HSX) , dur (LDY. .HDY))) .

r e l a t i v e i n @ r e l a t i v e i n (X,TypeT , Index) ,
a c t i v i t y (X, event ,TypeX , ReprX) ==>
getLStart (X, event , ReprX ,LSX) ,
getIndex (X, event , ReprX , IListX) ,
s i n t (Index ,TypeT , IListX ,TypeX , [F i r s t | NewIListX]) ,
LSX < F i r s t | s e tLSta r t (X, event ,TypeX , ReprX , F i r s t) .

r e l a t i v e i n @ r e l a t i v e i n (X,TypeT , Index) ,
a c t i v i t y (X, event ,TypeX , ReprX) ==>
getHStart (X, event , ReprX ,HSX) ,
getIndex (X, event , ReprX , IListX) ,
s i n t (Index ,TypeT , IListX ,TypeX , NewIListX) ,
l a s t (NewIListX , Last) ,
HSX > Last | setHStart (X, event ,TypeX , ReprX , Last) .

– metric time constraints on activity durations � (cf. Table 5.7, p.149), e.g. ≤
l e x @ X l e Y, a c t i v i t y (X, KindX ,TypeX , ReprX) ,

a c t i v i t y (Y, KindY ,TypeY , ReprY) ==>
getHDur (X, KindX , ReprX ,HDX) ,
getHDur (Y, KinsY , ReprY ,HDY) ,
HDX > HDY | setHDur (X, KindX ,TypeX , ReprX ,HDY) .

l e y @ X l e Y, a c t i v i t y (X, KindX ,TypeX , ReprX) ,
a c t i v i t y (Y, KindY ,TypeY , ReprY) ==>
getLDur (X, KindX , ReprX ,LDX) ,
getHDur (Y, KindY , ReprY ,LDY) ,
LDX > LDY | setLDur (Y, KindY ,TypeY , ReprY ,LDY) .

Note: The types TypeX and TypeY must be equal for an application of any time constraint.
This requirement is not tested here, because it is already ensured through type checking and
subsequent transformation of a CaTTS-CL program into an equivalent CLcatts program.

246 B. A CHR Implementation of CaTTS’ Constraint Propagation Algorithm

B.5 Conversion Constraint

This rule implements the proof rule given in Table 5.9, p.152.

conver t x @ X ˜ Y, a c t i v i t y (X, KindX ,TypeX , ReprX) ,
a c t i v i t y (Y, KindY ,TypeY , ReprY) ==>
getLStart (Y, KindY , ReprY ,LSY) ,
getLStart (X, KindX , ReprX ,LSX) ,
c onv e r t f r om j o i n p l u s (LSY,TypeY ,TypeX , LSY in X) ,
LSX < LSY in X |
s e tLSta r t (X, KindX ,TypeX , ReprX , LSY in X) .

conver t x @ X ˜ Y, a c t i v i t y (X, KindX ,TypeX , ReprX) ,
a c t i v i t y (Y, KindY ,TypeY , ReprY) ==>
getHStart (Y, KindY , ReprY ,HSY) ,
getHStart (X, KindX , ReprX ,HSX) ,
c onve r t f r om jo i n (HSY,TypeY ,TypeX , HSY in X) ,
min (HSY in X , MinHSY in X) ,
HSX > MinHSY in X |
setHStart (X, KindX ,TypeX , ReprX , HSY in X) .

conver t x @ X ˜ Y, a c t i v i t y (X, KindX ,TypeX , ReprX) ,
a c t i v i t y (Y, KindY ,TypeY , ReprY) ==>
getHStart (Y, KindY , ReprY ,HSY) ,
getLEnd (Y, KindY , ReprY ,LEY) ,
getLDur (X, KindX , ReprX ,LDX) ,
c onve r t f r om jo i n (HSY,TypeY ,TypeX , HSY in X) ,
min (HSY in X , MinHSY in X) ,
c onve r t f r om jo i n (LEY,TypeY ,TypeX , LEY in X) ,
max(LEY in X , MaxLEY in X) ,
LDY in X i s MaxLEY in X − MinHSY in X + 1 ,
LDX < LDY in X |
setLDur (X, KindX ,TypeX , ReprX , LDY in X) .

conver t x @ X ˜ Y, a c t i v i t y (X, KindX ,TypeX , ReprX) ,
a c t i v i t y (Y, KindY ,TypeY , ReprY) ==>
getLStart (Y, KindY , ReprY ,LSY) ,
getHEnd (Y, KindY , ReprY ,HEY) ,
getHDur (X,KIndX , ReprX ,HDX) ,
c onv e r t f r om j o i n p l u s (LSY,TypeY ,TypeX , LSY in X) ,
conve r t f r om jo in minus (HEY,TypeY ,TypeX , HEY in X) ,
HDY in X i s HEY in X − LSY in X + 1 ,
HDX > HDY in X |
setHDur (X, KindX ,TypeX , ReprX , HDY in X) .

conver t y @ X ˜ Y, a c t i v i t y (X, KindX ,TypeX , ReprX) ,
a c t i v i t y (Y, KindY ,TypeY , ReprY) ==>
getLStart (X, KindX , ReprX ,LSX) ,
getLStart (Y, KindY , ReprY ,LSY) ,
c onve r t t o j o i n m inu s (LSX,TypeX ,TypeY , LSX in Y) ,
LSY < LSX in Y |
s e tLSta r t (Y, KindY ,TypeY , ReprY , LSX in Y) .

B.6 Termination 247

conver t y @ X ˜ Y, a c t i v i t y (X, KindX ,TypeX , ReprX) ,
a c t i v i t y (Y, KindY ,TypeY , ReprY) ==>
getHStart (X, KindX , ReprX ,HSX) ,
getHStart (Y, KindY , ReprY ,HSY) ,
c onve r t t o j o i n m inu s (HSX,TypeX ,TypeY , HSX in Y) ,
HSY > HSX in Y |
setHStart (Y, KindY ,TypeY , ReprY , HSX in Y) .

conver t y @ X ˜ Y, a c t i v i t y (X, KindX ,TypeX , ReprX) ,
a c t i v i t y (Y, KindY ,TypeY , ReprY) ==>
getHStart (X, KindX , ReprX ,HSX) ,
getLEnd (X, KindX , ReprX ,LEX) ,
getLDur (Y, KindY , ReprY ,LDY) ,
c onve r t t o j o i n m inu s (HSX,TypeX ,TypeY , HSX in Y) ,
c o n v e r t t o j o i n p l u s (LEX,TypeX ,TypeY , LEX in Y) ,
LDX in Y i s LEX in Y − HSX in Y + 1 ,
LDY < LDX in Y |
setLDur (Y, KindY ,TypeY , ReprY , LDX in Y) .

conver t y @ X ˜ Y, a c t i v i t y (X, KindX ,TypeX , ReprX) ,
a c t i v i t y (Y, KindY ,TypeY , ReprY) ==>
getLStart (X, KindX , ReprX ,LSX) ,
getHEnd (X, KindX , ReprX ,HEX) ,
getHDur (Y,KIndY , ReprY ,HDY) ,
c onve r t t o j o i n m inu s (LSX,TypeX ,TypeY , LSX in Y) ,
c o n v e r t t o j o i n p l u s (HEX,TypeX ,TypeY , HEX in Y) ,
HDX in Y i s HEX in Y − LSX in Y +1 ,
HDY > HDX in Y |
setHDur (Y, KindY ,TypeY , ReprY , HDX in Y) .

To compute one or all solutions, this constraint propagation algorithm is combined with a
standard search algorithm. In particular, Prolog’s built-in backtracking is used. Labeling
is used to bind each variable to its possible values one after the other.

B.6 Termination

In what follows, we show that the constraint propagation algorithm as previously intro-
duced terminates. That means, in particular, that the algorithm fails if the considered
CSP is inconsistent and if the algorithm returns an equivalent, but simplified CSP, then
the simplified CSP is bounds consistent according to Definition 5.5.

We first state that from the set of time constraints and bounds consistent calendar
domains, it is straightforward to generate all solutions to the bounds consistent problem.
That means in particular that the previously defined solver is complete.

Lemma B.1 If P = 〈C;DE〉 where DE := X1 ∈ D1 ∧ . . . ∧Xn ∈ Dn is bounds consistent,
then a solution (d1, . . . , dn) ∈ D1 × . . .×Dn to 〈C;DE〉 for every constraint C ∈ C on the
variables Xi1 , . . . , Xim, (di1 , . . . , dim) ∈ C exists.

248 B. A CHR Implementation of CaTTS’ Constraint Propagation Algorithm

Proof B.1 First, it is sufficient to note that the finite domain constraint a∗X ≤ b∗Y +c,
a, b, c ≥ 0 is complete [FA97], i.e. if the constraint is bounds consistent, then it has a
solution. Since every CLcatts time constraint is defined by a finite set of such finite domain
constraints (according to the proof rules given in Table 5.6, Table 5.4, Table 5.5, Table 5.8,
and Table 5.7), a bounds consistent time constraint has a solution inP.

Remains to proof that the conversion constraint Xα ' Y β, α ≤ β (cf. Table 5.9) has
a solution if it is bounds consistent. Let Xα :: nX ..mX + d−X ..d

+
X and Y β :: nY ..mY +

d−Y ..d
+
Y after application of the proof rule for the conversion constraint and let min(Xα) :=

[nX ..nX + d−X − 1] the minimal value of Xα and min(Y β) := [nY ..nY + d−Y − 1] the minimal
value of Y β. By application of the proof rule for the conversion constraint, we show that
this is a solution for Xα ' Y β.

Let nX := max(old nX , c
+
β→α(old nY)). By definition of the conversion function c+β→α,

c+β→α(old nY) is a starting time of an interval in type α. Thus, by applying the bounds con-
sistency rule, nX is a starting time of an interval in type α that is also started by an interval
in type β. Let nY +d−Y −1 := max(old nX , c

+
β→α(old nY))+max(old d−X , (cβ→α(old nEY

)−
cβ→α(old mY) + 1)). As previously shown, max(old nX , c

+
β→α(old nY)) starts an interval

in type α that is also started by an interval in type β. With definition of the conversion
function cβ→α, the duration of [nX ..nX +d−X−1] corresponds to a duration of an equivalent
time interval in type β. Since nY is a starting time of X that is also started in the domain
of Y and since the duration of X is also represented in the duration of the domain of Y , the
ending point of [nX ..nX +d−X−1] in the domain of X is also represented by a corresponding
ending time in the domain of Y . Thus, [nX ..nX + d−X − 1] has a corresponding solution in
the domain of Y in type β.

Let nY := max(old nY , c
−
α→β(old nX)). By definition of the conversion function c−α→β,

c−α→β(old nX) is a starting time of an interval in type β. Thus, by applying the bounds con-
sistency rule, nY is a starting time of an interval in type β that is also started by a starting
time from the domain of X in type α. Let nY + d−Y − 1 := max(old nY , c

−
α→β(old nX)) +

max(old d−Y , (c
+
α→β(old nEX

)− c−α→β(old mX) + 1)). As previously shown, max(old nY ,

c−α→β(old nX)) is a starting time of Y in type β that has also a corresponding starting time

in the domain of X in type α. With definition of the conversion functions c+α→β and c−α→β,

the duration of [nY ..nY + d−Y − 1] corresponds to a duration represented by the domain
of X in type α. Since nY is a starting time of an interval represented by the domain of
Y that has a corresponding starting time in the domain of X and since the duration of
[nY ..nY + d−Y − 1] has a corresponding duration in the domain of X, the ending point of
[nY ..nY + d−Y − 1] in the domain of Y is also represented by an ending point in the domain
of X. Thus, the value [nY ..nY + d−Y − 1] has a corresponding value in the domain of X in
type α.

With this result, min(Xα) := [nX ..nX + d−X − 1] and min(Y β) := [nY ..nY + d−Y − 1] is
a solution to Xα ' Y β.

Since every CLcatts constraint has a solution, in particular the minimal value from its
domain if P is bounds consistent, P has a solution.

To find a solution to a problem formulated in CLcatts, it is thus sufficient to transform

B.6 Termination 249

it into an equivalent set which is bounds consistent. The previously given algorithm does
it, if it is possible, and otherwise it halts with failure.

Proposition B.1 (Termination.) Let P a CSP formulated in CLcatts. Let solve(P) be
the algorithm implementing the proof rules given in in Table 5.6, Table 5.4, Table 5.5,
Table 5.8, Table 5.7 and Table 5.9 as specified above. If P has a solution, then solve(P)
successfully terminates and produces an equivalent bounds consistent set of solutions P ′,
and otherwise it terminates with failure.

Proof B.2

Claim 1: The algorithm always terminates.
This means in particular that the algorithms must always return something, i.e. that
it cannot diverge. This we can do by observing that the number of constraints in the
constraint store never increases. Since the number of rules is finite, as well, only
a finite number of rules can be tried for a finite number of constraints. Thus, an
infinite sequence of rule tries is not possible.

Claim 2: Each application of a CLcatts constraint C replaces the set of constraints participating
in C by an equivalent one.
This follows directly from the definition of the proof rules of the algorithm which are
by definition equivalence preserving.

Claim 3: If the algorithm successfully terminates, then the final problem P ′ is bounds consis-
tent.

• the “bounds consistency rules” (i.e. empty and intersection removes one in-
terval domain constraint

• assume that the remaining rules deal with non-empty interval domains only

• in each rule, at least one interval domain is strictly smaller in the conclusion
than the corresponding interval domain in the premise, while the other interval
domains remain unaffected

• a rule can only be applied, if at least one interval domain can be reduced; thus,
if solve(P) returns P ′, no further rule can be applied to P ′. Since no further
rule can be applied to P ′, each constraint in P ′ is bounds consistent and so is
P ′.

Claim 4: If the algorithm terminates with failure, then the problem at the moment of failure
does not have a solution.
The algorithm terminates with failure, if either the rule empty of the bounds consis-
tency rule is applied or one of the rules given in Table 5.6 is applied. Each of those
rules imply that the domain of at least one variable in P is empty. By definition, a
problem formulated in CLcatts has no solution, if one of its participating domains is
empty.

250 B. A CHR Implementation of CaTTS’ Constraint Propagation Algorithm

Lemma B.1 and the claims proved in Proposition B.1 imply directly that the constraint
propagation algorithm of CLcatts is complete.

Appendix C

A Haskell Implementation of
Predicate Subtyping in CaTTS

C.1 Auxiliary Data Structures and Functions

The following auxiliary data structures are implemented with CaTTS’ type checking algo-
rithms:

• Haskell built-in types like
Int, Bool

• Haskell built-in functions over such types

• a data structure for the context that collects variable bindings accessed by the type
checking algorithms in a list (where variables have an additional integer argument to
determine their position in the context list)
Context

The following auxiliary functions are implemented with CaTTS’ type checking algo-
rithms:

• functions to manipulate the context

−− adding a Var iab l e b ind ing to the con t ex t
addToContext : : Context −> String −> Kind −> Context

−− t a k ing a f r e s h v a r i a b l e name
pickFreshName : : Context −> String −> String

−− g e t t i n g the kind o f an expre s s i on from the con t ex t
getKindFromContext : : Context −> Int −> Kind

• functions to refer to types and kinds of types

252 C. A Haskell Implementation of Predicate Subtyping in CaTTS

−− t e s t the kind o f a type
hasKindPoint : : Kind −> Bool
hasKindDuration : : Kind −> Bool
hasKindInterva l : : Kind −> Bool

−− ge t the type from a Kind
getTypeFromKind : : Kind −> Ty

C.2 Well-Formedness of CaTTS-DL Calendar Speci-

fications

The algorithm that tests well-formedness of CaTTS-DL calendar specifications is imple-
mented in Haskell. The implementation is a straightforward transcription of the typing
relation for CaTTS-DL as given in Table 6.4, p.192 into a recursive algorithm.

C.2.1 Syntax

The data type definitions for CaTTS-DL types and CaTTS-DL object language expressions
follow the (abstract) Syntax of CaTTS-DL (cf. Table 6.3, p.189).

data Ty −− type expre s s i on −−
= RCal
| Aggregate Ty TEx
| Se l e c t Ty TEx
| And Ty Ty
| Or Ty Ty
| Except Ty Ty
| Re s t r i c t Ty Ty

data Kind −− k ind ing expre s s i on −−
= KPoint Ty
| KInterva l Ty
| KDuration Ty
| KInt
| KBool

data TEx −− CaTTS−DL expre s s i on −−
= Abs [TEx] TEx
| Rel [TEx] TEx
| Where TEx Ty TEx
| Part Int Ty
| Var String Int
| Duration Int Ty
| Index TEx
| Re la t i v e TEx Ty MRel Int
| Conj TEx TEx
| Dis j TEx TEx
| Alter TEx Ty [(TEx,TEx)]

data MRel = Eqs | Neq | Le | Leq | Ge | Geq

C.2 Well-Formedness of CaTTS-DL Calendar Specifications 253

C.2.2 Well-Formedness

The algorithm that tests well-formedness of a CaTTS-DL calendar specification departs
from the declarative rules given in Table 6.4, p.192 for the following reason. Reconsider
the rule (F-And)

Γ ` τ1 ⊆ τ Γ ` τ2 ⊆ τ (F-And)
Γ ` (τ1&τ2)type

The reason why (F-And) is problematic is that the premise of the rule mentions a type
τ which must include both types τ1 and τ2 and which is not mentioned in the conclusion
of the rule. Thus, reading the rule from bottom to top as it is done by the algorithm, the
algorithm should guess a type τ and then attempts to show that τ1 ⊆ τ and τ2 ⊆ τ . Since
inclusion defines a kind of subtype relation, the type τ might be any type that includes τ1
and τ2. Making the decision algorithmic, and thus, syntax-directed, the least type that is a
supertype of τ1 and τ2 is computed and the inclusion conditions are tested. This type that
is the least common supertype of two types σ and τ is called the cattsJoin1 of the types,
written σ ∨ τ . The computation of such joins is subsequently introduced with CaTTS’
subtype algorithm. The rule (F-And) can be now rewritten by

Γ ` τ1 ⊆ τ Γ ` τ2 ⊆ τ τ = τ1 ∨ τ2 (F-And)
Γ ` (τ1&τ2)type

The same has to be done with the rules (F-Or), (F-Ex), and (F-Res) from Table
6.4, p.192. Now we are able to implement CaTTS’ algorithm to test well-formedness of
calendar specifications by case on the different syntactic forms of the CaTTS-DL type ex-
pressions:

wellFormed : : Context −> Ty −> Bool
wellFormed ctx (Aggregate t (Abs [] t e)) = −− (F−Aggr)

i f kindOf ctx te == KPoint t then True
else error "invalid CaTTS-DL type specification"

wellFormed ctx (Aggregate t (Abs (te1 : t e s) te)) = −− (F−Aggr)
i f kindOf ctx te1 == KDuration t

then wellFormed ctx (Aggregate t (Abs t e s te))
else error "invalid CaTTS-DL type specification"

wellFormed ctx (Aggregate t (Rel [] z)) = −− (F−Aggr ˜)
i f kindOf ctx z == KInt then True
else error "invalid CaTTS-DL type specification"

wellFormed ctx (Aggregate t (Rel (te1 : t e s) z)) = −− (F−Aggr ˜)
i f kindOf ctx te1 == KDuration t

then wellFormed ctx (Aggregate t (Rel t e s z))
else error "invalid CaTTS-DL type specification"

wellFormed ctx (S e l e c t t (Where x tx te) = −− (F−Se l)
l et ctx ’ = addToContext ctx x tx in

1Recall that joins in CaTTS might be slightly weaker than ordinary lattice joins (cf. Proposition 3.1).

254 C. A Haskell Implementation of Predicate Subtyping in CaTTS

i f kindOf ctx ’ x == KPoint t && kindOf ctx ’ te == KBool then True
else error "invalid CaTTS-DL type specification"

wellFormed ctx (And t1 t2) = −− (F−And)
l et t = ca t t s Jo i n t1 t2 in i n c l u s i o n t1 t && in c l u s i o n t2 t

wellFormed ctx (Or t1 t2) = −− (F−Or)
l et t = ca t t s Jo i n t1 t2 in i n c l u s i o n t1 t && in c l u s i o n t2 t

wellFormed ctx (Except t1 t2) = −− (F−Ex)
l et t = ca t t s Jo i n t1 t2 in i n c l u s i o n t1 t && in c l u s i o n t2 t

wellFormed ctx (Re s t r i c t t1 t2) = −− (F−Res)
l et t = ca t t s Jo i n t1 t2 in aggregat ion t1 t && in c l u s i o n t2 t

wellFormed = False

The function that infers the types (or to be more precise, the kinds) of the CaTTS-DL
expressions used to define CaTTS-DL types in a calendar specification is defined by case
on the syntactic forms of the expressions, simply reading the rules specified in Table 6.5,
p.192 “from bottom to top”:

kindOf : : Context −> TEx −> Kind
kindOf ctx (Part i t) = KPoint t −− (T−Part)
kindOf ctx (Var i) = getKindFromContext ctx i −− (T−Var)
kindOf ctx (Duration i t) = KDuration t −− (T−Dur)
kindOf ctx (Index te) = −− (T−Index)

i f hasKindPoint (kindOf ctx te) then KInt
else error "invalid CaTTS-DL expression"

kindOf ctx (Re la t i v e te t i) = −− (T−Rel)
i f kindOf ctx te == KInt && wellFormed ctx t then KBool
else error "invalid CaTTS-DL expression"

kindOf ctx (Al te r x t ((te1 , te2) : t e s)) −− (T−Al t e r)
| hasKindDuration t1 && kindOf ctx ’ te1 == KBool = kindOf ’ ctx ’ t e s
| otherwise error "invalid CaTTS-DL expression"

where
ctx ’ = addToContext x t
t1 = KindOf ctx ’ te2
kindOf ’ ctx ’ [] = t1
kindOf ’ ctx ’ t e s =

i f kindOf ctx ’ (f s t (head t e s)) == KBool &&
kindOf ctx ’ (snd (head t e s)) == t1

then kindOf ’ ctx t a i l t e s
else error "invalid CaTTS-DL expression"

kindOf ctx (Conj te1 te2) = −− (T−Conj)
i f kindOf ctx te1 == KBool && kindOf ctx te2 == KBool then KBool
else error "invalid CaTTS-DL expression"

kindOf ctx (Di s j te1 te2) = −− (T−Dis j)
i f kindOf ctx te1 == KBool && kindOf ctx te2 == KBool then KBool
else error "invalid CaTTS-DL expression"

kindOf = error "invalid CaTTS-DL expression"

The algorithm that tests aggregation (resp. inclusion) between two calendric type def-
initions is given in the following. It implements the rules given in Table 6.6, p.193 (resp.

C.3 Typing and Subtyping in CaTTS-CL 255

those given in Table 6.7, p.194). Since the rules (AS-Refl) and (AS-Trans) (resp. (IS-
Refl) and (IS-Trans)) are not syntax-directed, a naive “bottom to top” implementation
of these rules would never know whether to try one of these rules or not. Therefore, reflex-
ivity and transitivity are incorporated into each of the syntactic rules which can be then
read from bottom to top by the algorithm.

aggregat ion : : Ty −> Ty −> Bool
aggregat ion RCal RCal = True
aggregat ion (Aggregate s1) t −− (AS−Aggr)

| s1 == t = True
| otherwise = aggregat ion s1 t

aggregat ion (Re s t r i c t s1 s2) t −− (AS−Res)
| s2 == t = True
| otherwise = aggregat ion s2 t

aggregat ion = False

i n c l u s i o n : : Ty −> Ty −> Bool
i n c l u s i o n RCal RCal = True
i n c l u s i o n (S e l e c t s1) t −− (IS−Se l)

| s1 == t = True
| otherwise = in c l u s i o n s1 t

i n c l u s i o n s (Or t1 t2) −− (IS−DJ1)
| i n c l u s i o n s t1 = True
| otherwise = subtype s t2

i n c l u s i o n (Or s1 s2) t −− (IS−DJ2)
| i n c l u s i o n s1 t = i n c l u s i o n s2 t
| otherwise = False

i n c l u s i o n (And s1 s2) t −− (IS−CJ1)
| i n c l u s i o n s1 t = True
| otherwise = in c l u s i o n s2 t

i n c l u s i o n s (And t1 t2) −− (IS−CJ2)
| i n c l u s i o n s t1 = subtype s t2
| otherwise = False

i n c l u s i o n (Except s1 s2) t −− (IS−Ex)
| i n c l u s i o n s1 t = True
| otherwise = False

i n c l u s i o n = False

C.3 Typing and Subtyping in CaTTS-CL

C.3.1 Syntax

The syntax extends the Haskell syntax for CaTTS-DL type expressions and object language
expressions (cf. Appendix C.2) with data type definitions for CaTTS-CL object language
expressions follow the syntax of CaTTS-CL as given in Table 6.8, p.198.

data CEx −− CaTTS−CL expre s s i on −−
= Part Int Ty

256 C. A Haskell Implementation of Predicate Subtyping in CaTTS

| Var String Int Dom
| CETrue
| CEFalse
| Duration Int Ty
| EnpI CEx CEx
| DurI TO CEx CEx
| IsEvent String Ty CEx
| IsTask String Ty CEx
| Interva lC Rel CEx CEx
| MetricC MRel CEx CEx
| Dur CEx
| End BE CEx
| Index CEx
| Sh i f t FB CEx CEx
| ExSh ES CEx CEx
| Re la t i v e CEx Ty MRel Int
| Conj CEx CEx

data TO = Upto | Downto
data Rel = Equals | Before | After | Sta r t s | StartedBy | Fin i sh e s

| FinishedBy | Meets | MetBy | Overlaps | OverlappedBy
| Contains | During | OnOrBefore | OnOrAfter | Within

data MRel = Eqs | Neq | Le | Leq | Ge | Geq
data BE = Begin | End
data FB = Forward | Backward
data ES = Extend | Shorten

data LEx −− CLcatts expre s s i on −−
= CL CEx
| ConvC CEx CEx

C.3.2 Subtyping

CaTTS-CL’s subtype checker is given in the following. It implements the rules given in
Table 6.9. Since the rules (S-Refl) and (S-Trans) are not syntax-directed, a naive
“bottom to top” implementation of these rules would never know whether to try one of
these rules or not. Therefore, reflexivity and transitivity are incorporated into each of the
rules given in Table 6.9 whenever transitivity is used to past together different subtyping
rules. The syntax-directed rules have the following forms:

C.3 Typing and Subtyping in CaTTS-CL 257

σ∗ ≤ τ∗ (S-ICoer) σ ≤ rC (S-Ref)
σ ≤ τ∗

σ ≤ τ (S-Sel) τ1 ≤ τ (S-Ex)
(select σ X : σ where te) ≤ τ τ1 \ σ1 ≤ τ

∃i ∈ {1, 2},σ ≤ τi (S-Dj1) i ∈ {1, 2}, σi ≤ τ (S-Dj2)

σ ≤ τ1 | τ2 σ1 | σ2 ≤ τ

∀i ∈ {1, 2}, τi ≤ τ (S-Cj1) σ ≤ τi (S-Cj2)

τ1&τ2 ≤ τ σ ≤ τ1&τ2

σ ≤ τ (S-Aggr) σ ≤ τ (S-Aggr˜)
(aggregate σ tei∈1..n

i ˜@te) ≤ τ (aggregate σ tei∈1..n
i ˜@z) ≤ τ

τ2 ≤ τ (S-Res) σ ≤ τ (S-Int)
τ1# < τ2 ≤ τ σ∗ ≤ τ∗

Lemma C.1

1. If ∀α :: K. α ≤ α is derivable using (S-Refl) and the declarative rules from Table
6.9, p.200, then it is derivable without (S-Refl) using the rules given above.

2. If ∀α, β :: K. α ≤ β is derivable using (S-Trans) and the declarative rules from
Table 6.9, p.200, then it is derivable without (S-Trans) using the rules given above.

Proof C.1 (sketched)
Part (1): Follows directly from the structure of α.

Part (2): With (1), if there is any derivation of α ≤ β, then there is a reflexivity-free one.
By induction on the structure of the final rule in the derivation of α ≤ β.
Induction hypothesis: all the sub-derivations of the final rule can be replaced by derivations
not involving transitivity.
Case (1): The final rule in the derivation is anything other than (S-Trans), then the
result follows directly by induction hypothesis; since the final rule is transitivity-free either,
the whole derivation is now transitivity free.
Case(2): Suppose that the final rule is (S-Trans), i.e. there are sub-derivations α ≤ γ
and γ ≤ β for some γ. By case on the final rules in both of these sub-derivations:

258 C. A Haskell Implementation of Predicate Subtyping in CaTTS

(S-Sel)/(S-Ref) β = rC

(S-Ex)/(S-Ref) β = rC

(S-Dj1)/(S-Ref) β = rC

(S-Dj2)/(S-Ref) β = rC

(S-Cj1)/(S-Ref) β = rC

(S-Cj2)/(S-Ref) β = rC

(S-Aggr)/(S-Ref) β = rC

(S-Aggr˜)/(S-Ref) β = rC

(S-Res)/(S-Ref) β = rC

The result is immediate since σ ≤ rC can be derived as long as σ is any basic (point)
type. The other combinations with (S-Ref) are not possible, since they place incompatible
constraints on the form of γ.

(S-Ref)/Any γ = rC

The derivation α ≤ γ ends with rC; γ ≤ β is transitivity-free by induction hypothesis.
By structure the final rule must be (S-Ref), since (S-Refl) has been already eliminated.

(S-ICoer)/(S-Int) α = σ, γ = σ∗, β = τ ∗

σ ≤ σ∗, σ∗ ≤ τ ∗

Using (S-Trans), the derivation σ ≤ τ ∗ can be constructed from the given sub-
derivations which can be by induction hypothesis replaced by transitivity-free derivations.
Examining the structure of this derivation, σ has a (basic) point type and τ ∗ an interval
type, i.e. the final rule must be (S-Coer); thus obtaining a transitivity-free derivation of
σ ≤ τ ∗.

All other cases (for possible combinations of subtyping rules, i.e. rules that place possible
constraints on γ) are proceeded similar.

From this lemma, it directly follows that the syntax-directed subtyping rules are sound
and complete: every subtyping statement that can be derived from the syntax-directed
subtyping rules can be derived from the declarative rules given in Table 6.9, p.200. And
every subtyping statement that can be derived from the declarative rules can also be derived
from the syntax-directed subtyping rules.

The syntax-directed subtyping rules can be now read from “bottom to top”, yielding
the following subtyping algorithm.

subtype : : Kind −> Kind −> Bool
subtype (KPoint) (KPoint RCal) = True −− (S−Ref)
subtype (KPoint s) (KInterva l t) −− (S−ICoer)

| s == t = True
| otherwise = subtype (KInterva l s) (KInterva l t)

subtype (KPoint (S e l e c t s1)) (KPoint t) −− (S−Se l)
| s1 == t = True
| otherwise = subtype (KPoint s1) (KPoint t)

subtype (KPoint s) (Or (KPoint t1) (KPoint t2)) −− (S−DJ1)
| subtype (KPoint s) (KPoint t1) = True
| otherwise = subtype (KPoint s) (KPoint t2)

subtype (Or (KPoint s1) (KPoint s2)) (KPoint t) −− (S−DJ2)

C.3 Typing and Subtyping in CaTTS-CL 259

| subtype (KPoint s1) (KPoint t) = subtype (KPoint s2) (KPoint t)
| otherwise = False

subtype (And (KPoint s1) (KPoint s2)) (KPoint t) −− (S−CJ1)
| inc lSubtype (KPoint s1) (KPoint t) = True
| otherwise = subtype (KPoint s2) (KPoint t)

subtype (KPoint s) (And (KPoint t1) (KPoint t2)) −− (S−CJ2)
| subtype (KPoint s) (KPoint t1) = subtype (KPoint s) (KPoint t2)
| otherwise = False

subtype (Except (KPoint s1) (KPoint s2)) (KPoint t) −− (S−Ex)
| subtype (KPoint s1) (KPoint t) = True
| otherwise = False

subtype (Aggregate (KPoint s1)) (KPoint t) −− (S−Aggr)
| s1 == t = True
| otherwise = subtype (KPoint s1) (KPoint t)

subtype (Re s t r i c t (KPoint s1) (KPoint s2)) (KPoint t) −− (S−Res)
| s2 == t = True
| otherwise = subtype (KPoint s2) (KPoint t)

subtype (KInterva l s) (KInterva l t) = −− (S−In t)
subtype (KPoint s) (KPoint t)

subtype = False

C.3.3 Typing

The definitions of the declarative typing relation for CaTTS-CL in Table 6.10, p.203 is not
immediately suitable for implementation. The relation is not syntax-directed, i.e. it cannot
just be read reversely (from bottom to top) to yield a type checking algorithm. The reason
for this is the typing rule of subsumption (T-Sub). The reason why this rule is unsuitable
for an implementation of a type checker is that the expression in the conclusion ce is a
bare metavariable:

∀α, β :: K Γ ` ce : α α ≤ β (T-Sub)
Γ ` ce : β

That is, this rule might be applied in each step of a derivation and the type checker would
never know when to use it. Every other typing rule (in Table 6.10) specifies an expression
of a specific syntactic form.

To yield a syntax-directed typing relation that can be implemented straightforwardly
from bottom to top, we must consider each of the typing rules in Table 6.10 and figure out
where (T-Sub) could be used. These rules then need some further conditions to be tested
in the premises resulting from (T-Sub). The rules (T-EnpI) and (T-Interval) need to
be modified:

Γ ` ce1 : τ1 Γ ` ce2 : τ1 (T-EndpI) Γ ` ce1 : τ∗1 Γ ` ce2 : τ∗1 (T-Interval)

Γ ` [ce1..ce2] : τ∗1 Γ ` ce1 R ce2 : B

Examining derivations for typing proofs of some typing statement ∀α :: K. Γ ` ce :
α, the use of subsumption can always be moved to the end of the resulting derivation

260 C. A Haskell Implementation of Predicate Subtyping in CaTTS

tree. Therefore, the subsumption rule can be dropped and the rules (T-EndpI) and (T-
Interval) are replaced with slightly more powerful rules of the form

Γ ` ce1 : τ1 Γ ` ce2 : τ2 τ1 ≤ τ, τ2 ≤ τ (T’-EndpI)
Γ ` [ce1..ce2] : τ∗

∀α :: τ1 | α :: τ∗1 and ∀β :: τ2 | β :: τ∗2 Γ ` ce1 : α Γ ` ce2 : β α, β ≤ ι (T’-Interval)

Γ ` ce1 R ce2 : B

incorporating a single instance of the subsumption rule in the premises.
Unfortunately, those two rules are still not syntax-directed, since the types τ and ι do

not appear in the conclusion of the rules. Thus, the type checker has to guess some type
τ (resp. ι) and then attempts to show that for those types the subtyping statement holds.
For example, if in rule (T-Interval) ce1 : working week and ce2 : month, then ι might
be day∗, or hour∗, or even r∗C; in fact, any type that is a supertype of both working week
and month. To make a clear decision in any case, CaTTS’ type checker is always looking
for some “minimal” type that is the supertype of the types of the both expressions. This
minimal type is in fact the join (according to Proposition 3.1) of the two types τ1 and τ2.
That such a join always exists and that it is unique for any pair of calendric types defined
in some (finite set of aligned) CaTTS-DL calendar specification(s) is shown in Proposition
3.1. For types α1 and α2, the join τ is denoted by α1 ∨ α2. We can now replace the rules
for (T-Interval) and (T-EndpI) by the following rules:

Γ ` ce1 : τ1 Γ ` ce2 : τ2 τ1 ∨ τ2 = τ (AT-EndpI)
Γ ` [ce1..ce2] : τ∗

∀α :: τ1 | α :: τ∗1 and ∀β :: τ2 | β :: τ∗2 Γ ` ce1 : α Γ ` ce2 : β α ∨ β = γ (AT-Interval)

Γ ` ce1 R ce2 : B

The syntax-directed subtyping rules are then the subtyping rules given in Table 6.10,
p.203 without the rule (T-Sub) where the rules (T-Interval) and (T-EndpI) are re-
placed by the rules (AT-Interval) and (AT-EndpI).

The discussion above provides with an informal proof that the syntax-directed typing
relation corresponds to the original declarative rules given in Table 6.10, p.203. In par-
ticular, it states that the syntax-directed typing relation is both sound and complete with
respect to the original declarative rules from Table 6.10. The formal proof for soundness of
the type checker goes by straightforward induction on the structure of the final rule of the
syntax-directed typing derivation. The formal proof for completeness (also called minimal
typing) goes by induction on the declarative typing relation. It is also proceed by cases on
the final rule in the derivation, applying Lemma C.1.

Note: The subtyping rule for durations is not implemented with the syntax-directed
typing relation as already discussed in Section 7.2.1.3.

C.3 Typing and Subtyping in CaTTS-CL 261

Now, we can implement the type checker straightforwardly in Haskell by reading the
syntax-directed typing rules from “bottom to top”, giving a pattern matching rule for each
inference rule.

typeOf : : Context −> CEx −> Kind
typeOf ctx (Part i t) = t −− (T−Const)
typeOf ctx (Var i) ctx = getKindFromContext ctx i −− (T−Var)
typeOf ctx (Duration i t) = KDuration t −− (T−Dur)
typeOf ctx (Index ce) −− (T−Index)

| hasKindPoint (typeOf ctx ce) = KInt
| otherwise = error "invalid CaTTS-CL expression"

typeOf ctx (Dur ce) −− (T−Duration)
| hasKindPoint t | | hasKindInterva l t = KDuration (getTypeFromKind t)
| otherwise = error "invalid CaTTS-CL expression"

where
t = typeOf ctx ce

typeOf ctx (End ce) −− (T−EndP)
| hasKindPoint t | | hasKindInterva l t = KPoint (getTypeFromKind t)
| otherwise = error "invalid CaTTS-CL expression"

where
t = typeOf ctx ce

typeOf ctx (EndpI ce1 ce2) −− (AT−EndpI)
| hasKindPoint t1 && hasKindPoint t2

= KInterva l (c a t t s J o i n (getTypeFromKind t1) (getTypeFromKind t2))
| otherwise = error "invalid CaTTS-CL expression"

where
t1 = typeOf ctx c1
t2 = typeOf ctx c2

typeOf ctx (DurI ce1 ce2) −− (T−DurI)
| hasKindDuration t1 && hasKindPoint t2 &&

getTypeFromKind t1 == getTypeFromKind t2 = KInterva l t2
| otherwise = error "invalid CaTTS-CL expression"

where
t1 = typeOf ctx ce1
t2 = typeOf ctx ce2

typeOf ctx (Sh i f t ce1 ce2) −− (T−S h i f t)
| (hasKindPoint t1 | | hasKindInterva l t1) && hasKindDuration t2 &&

getTypeFromKind t1 == getTypeFromKind t2 = t1
| otherwise = error "invalid CaTTS-CL expression"
where
t1 = typeOf ctx ce1
t2 = typeOf ctx ce2

typeOf ctx (ExSh ce1 ce2) −− (T−ExSh)
| (hasKindPoint t1 | | hasKindInterva l t1) && hasKindDuration t2 &&

getTypeFromKind t1 == getTypeFromKind t2 = t1
| otherwise = error "invalid CaTTS-CL expression"
where
t1 = typeOf ctx ce1
t2 = typeOf ctx ce2

typeOf ctx CETrue = KBool −− (T−True)

262 C. A Haskell Implementation of Predicate Subtyping in CaTTS

typeOf ctx CEFalse = KBool −− (T−False)
typeOf ctx (Conj (IsEvent x t ce) ce2) −− (T−Event)

l et ctx ’ = addToContext ctx x (KPoint t)
in typeOf ctx ’ ce2

typeOf ctx (Conj (IsTask x t ce) ce2) −− (T−Task)
l et ctx ’ = addToContext ctx x (KInterva l t)
in typeOf ctx ’ ce2

typeOf ctx (Interva lC ce1 ce2) −− (AT−I n t e r v a l)
| (haskindPoint t1 | | hasKindInterva l t1) &&

(haskindPoint t2 | | hasKindInterva l t2) &&
subtype t1 (KInterva l (c a t t s Jo i n (getTypeFromKind t1)

(getTypeFromKind t2))) &&
subtype t2 (KInterva l (c a t t s Jo i n (getTypeFromKind t1)

(getTypeFromKind t2))) = KBool
| otherwise = error "invalid CaTTS-CL expression"

where
t1 = typeOf ctx ce1
t2 = typeOf ctx ce2

typeOf ctx (MetricC ce1 ce2) −− (T−Metric)
| hasKindDuration t1 && hasKindDuration t2 &&

getTypeFromKind t1 == getTypeFromKind t2 = KBool
| otherwise = error "invalid CaTTS-CL expression"

where
t1 = typeOf ctx ce1
t2 = typeOf ctx ce2

typeOf ctx (Re la t i v e ce t i) −− (T−Rel)
| typeOf ctx ce == KInt && wellFormed ctx t = KBool
| otherwise = error "invalid CaTTS-CL expression"

typeOf ctx (Conj ce1 ce2) −− (T−Conj)
| typeOf ctx ce1 == KBool && typeOf ctx ce2 == KBool = KBool
| otherwise = error "invalid CaTTS-CL expression"

And the function cattsJoin is defined as follows on the syntactic forms of CaTTS-DL
type constructors:

c a t t s Jo i n : : Ty −> Ty −> Ty
ca t t s Jo i n s t

| subtype s t = t
| subtype t s = s
| otherwise = syntaxCheck s t

syntaxCheck : : Ty −> Ty −> Ty
syntaxCheck (Aggregate s1) (Aggregate t2) = ca t t s Jo i n s1 t2
syntaxCheck (Aggregate s1) (Re s t r i c t t1 t2) = ca t t s Jo i n s1 t2
syntaxCheck (Aggregate s1) (S e l e c t t1) = ca t t s Jo i n s1 t1
syntaxCheck (Aggregate s1) (And t1 t2)

| subtype j1 j2 = j1
| otherwise = j2

where
j 1 = ca t t s Jo i n s1 t1
j2 = ca t t s Jo i n s1 t2

syntaxCheck (Aggregate s1) (Or t1 t2) = ca t t s Jo i n s1 t1

C.3 Typing and Subtyping in CaTTS-CL 263

syntaxCheck (Aggregate s1) (Except t1 t2) = ca t t s Jo i n s1 t1
syntaxCheck (Re s t r i c t s1 s2) (Re s t r i c t t1 t2) = ca t t s Jo i n s2 t2
syntaxCheck (Re s t r i c t s1 s2) (Aggregate t1) = ca t t s Jo i n s2 t1
syntaxCheck (Re s t r i c t s1 s2) (S e l e c t t1) = ca t t s Jo i n s1 t1
syntaxCheck (Re s t r i c t s1 s2) (And t1 t2)

| subtype j1 j2 = j1
| otherwise = j2

where
j 1 = (ca t t s Jo i n s1 t1)
j 2 = (ca t t s Jo i n s1 t2)

syntaxCheck (Re s t r i c t s1 s2) (Or t1 t2) = ca t t s Jo i n s1 t1
syntaxCheck (Re s t r i c t s1 s2) (Except t1 t2) = ca t t s Jo i n s1 t1
syntaxCheck (S e l e c t s1) (S e l e c t t2) = ca t t s Jo i n s1 t2
syntaxCheck (S e l e c t s1) (Aggregate t1) = ca t t s Jo i n s1 t1
syntaxCheck (S e l e c t s1) (Re s t r i c t t1 t2) = ca t t s Jo i n s1 t1
syntaxCheck (S e l e c t s1) (And t1 t2)

| subtype j1 j2 = j1
| otherwise = j2

where
j 1 = (ca t t s Jo i n s1 t1)
j 2 = (ca t t s Jo i n s1 t2)

syntaxCheck (S e l e c t s1) (Or t1 t2) = ca t t s Jo i n s1 t1
syntaxCheck (S e l e c t s1) (Except t1 t2) = ca t t s Jo i n s1 t1
syntaxCheck (And s1 s2) (Aggregate t1)

| subtype j1 j2 = j1
| otherwise = j2

where
j 1 = (ca t t s Jo i n s1 t1)
j 2 = (ca t t s Jo i n s2 t1)

syntaxCheck (And s1 s2) (Re s t r i c t t1 t2)
| subtype j1 j2 = j1
| otherwise = j2

where
j 1 = (ca t t s Jo i n s1 t1)
j 2 = (ca t t s Jo i n s2 t1)

syntaxCheck (And s1 s2) (S e l e c t t1)
| subtype j1 j2 = j1
| otherwise = j2

where
j 1 = (ca t t s Jo i n s1 t1)
j 2 = (ca t t s Jo i n s2 t1)

syntaxCheck (And s1 s2) (Or t1 t2)
| subtype j1 j2 = j1
| otherwise = j2

where
j 1 = (ca t t s Jo i n s1 t1)
j 2 = (ca t t s Jo i n s2 t1)

syntaxCheck (And s1 s2) (Except t1 t2)
| subtype j1 j2 = j1
| otherwise = j2

where

264 C. A Haskell Implementation of Predicate Subtyping in CaTTS

j 1 = (ca t t s Jo i n s1 t1)
j 2 = (ca t t s Jo i n s2 t1)

syntaxCheck (And s1 s2) (And t1 t2)
= ca t t s Jo i n j1 j2

where
j 1 = ca t t s Jo i n s1 t1
j2 = ca t t s Jo i n s2 t2

syntaxCheck (Or s1 s2) (Aggregate t1) = ca t t s Jo i n s1 t1
syntaxCheck (Or s1 s2) (Re s t r i c t t1 t2) = ca t t s Jo i n s1 t1
syntaxCheck (Or s1 s2) (S e l e c t t1) = ca t t s Jo i n s1 t1
syntaxCheck (Or s1 s2) (And t1 t2)

| subtype j1 j2 = j1
| otherwise = j2

where
j 1 = (ca t t s Jo i n s1 t1)
j 2 = (ca t t s Jo i n s1 t2)

syntaxCheck (Or s1 s2) (Except t1 t2) = ca t t s Jo i n s1 t1
syntaxCheck (Or s1 s2) (Or t1 t2) = ca t t s Jo i n s1 t1
syntaxCheck (Except s1 s2) (Aggregate t1) = ca t t s Jo i n s1 t1
syntaxCheck (Except s1 s2) (Re s t r i c t t1 t2) = ca t t s Jo i n s1 t1
syntaxCheck (Except s1 s2) (S e l e c t t1) = ca t t s Jo i n s1 t1
syntaxCheck (Except s1 s2) (And t1 t2)

| subtype j1 j2 = j1
| otherwise = j2

where
j 1 = (ca t t s Jo i n s1 t1)
j 2 = (ca t t s Jo i n s1 t2)

syntaxCheck (Except s1 s2) (Or t1 t2) = ca t t s Jo i n s1 t1
syntaxCheck (Except s1 s2) (Except t1 t2) = ca t t s Jo i n s1 t1

C.3.4 Coercion

The coercion is a straightforward implementation of the subtype function given above: for
each subtyping rule a coercion according to Definition 6.3 is performed. As an example,
the coercion for the rule (S-Sel) is given.

co e r c i on : : Context −> Kind −> Kind −> CEx −> LEx
coe r c i on ctx (KPoint (S e l e c t s1)) (KPoint t) ce
| s1 == t = ConvC x ’ ce
| subtype (KPoint s1) (KPoint t)

= CL (Conj (COnvC x ’ ce) (co e r c i on ctx ’ s1 t x ’))
| otherwise = error "invalid CaTTS-CL expression"

where
x ’ = pickFreshName ctx ce
ctx ’ = addToContext ctx x ’ (Kpoint s1)

C.3 Typing and Subtyping in CaTTS-CL 265

C.3.5 Transformation

The transformation is a straightforward implementation of the CaTTS-CL typing function
given above: for each typing rule a transformation according to Definition 6.4 is preformed.
As an example, the transformation for the rule (T-Interval) is given.

trans form : : Context −> CEx −> LEx
trans form ctx (I n t e r v a l ce1 ce2) =
CL (Conj (I n t e r v a l x y) (Conj (co e r c i on ctx ’ ’ t1 j ce1)

(c o e r c i on ctx ’ ’ t2 j ce2)))
where
t1 = typeOf ctx ce1
t2 = typeOf ctx ce2
j = ca t t s Jo i n t1 t2
x = pickFreshName ctx ce1
ctx ’ = addToContext ctx x j
y = pickFreshName ctx ’ ce2
ctx ’ ’ = addtToContext ctx ’ y j

266 C. A Haskell Implementation of Predicate Subtyping in CaTTS

Bibliography

[AAM05] J.J. Alferes, R. Amador, and W. May. A General Language for Evolution and
Reactivity on the Semantic Web. In Proceedings of Workshop on Principles and
Practices in Semantic Web Reasoning, LNCS 3703, pages 101–115. Springer-
Verlag, 2005.

[ABB04] J. J. Alferes, F. Banti, and A. Brogi. Well Founded Semantics for Logic Program
Updates. In Proceedings of the 9th Ibero-American Conference on Artificial
Intelligence, Puebla, Mexico, LNCS 3315, pages 397–407. Springer-Verlag, 2004.

[ABH+02] A. Ankolekar, M.H. Burstein, J.R. Hobbs, O. Lassila, D.L. Martin, S.A. McIl-
raith, S. Narayanan, M. Paolucci, T.R. Payne, K.P. Sycara, and H. Zeng.
DAML-S: Web Service Description for the Semantic Web. In Proceedings of
the 1st International Semantic Web Conference, LNCS 2342, pages 411–430.
Springer-Verlag, 2002.

[ABS00] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web – From Relations
to Semistructured Data and XML. Morgan Kaufmann Publishers, 2000.

[AC96] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[AC01] D. Aspinall and A. Compagnoni. Subtyping Dependent Types. Information
and Computation, 266(1–2):273–309, 2001.

[AK94] L. Al-Khatib. Reasoning with Non-convex Intervals. PhD Thesis, Florida In-
stitute of Technology, 1994.

[All83] J.F. Allen. Maintaining Knowledge about Temporal Intervals. Communications
of the ACM, 26(11):832–843, 1983.

[All91] J. Allen. Planning as Temporal Reasoning. In Proceedings of the 2nd Interna-
tional Conference on Principles of Knowledge Representation and Reasoning,
pages 3–14. Morgan Kaufmann Publishers, 1991.

[And83] T. Anderson. Modeling Events and Processes at the Conceptual Level. In
Proceedings of the 2nd International Conference on Databases, pages 151–168.
Wiley Heyden Ltd., 1983.

268 BIBLIOGRAPHY

[Apt03] K.R. Apt. Principles of Constraint Programming. Cambridge University Press,
2003.

[Asp94] D. Aspinall. Subtyping with Singleton Types. In Proceedings of Computer
Science Logic, LNCS 933, pages 1–15. Springer-Verlag, 1994.

[AYU01] T. Amagasa, M. Yoshikawa, and S. Uemura. Realizing Temporal XML Repos-
itories Using Temporal Relational Databases (Poster). In Proceedings of the
3rd International Symposium on Cooperative Database Systems for Advanced
Applications. IEEE Computer Society, 2001.

[BAF98] L. Bertossi, M. Arenas, and C. Ferretti. SCDBR: An Automated Reasoner for
Specifications of Database Updates. Journal of Intelligent Information Systems,
10(3):235–280, 1998.

[Bak91] A. Baker. Non-monotonic Reasoning in the Framework of the Situation Calcu-
lus. Artificial Intelligence, 49(1-3):5–23, 1991.

[BBL+04] S. Berger, F. Bry, B. Lorenz, H.J. Ohlbach, P. Patranjan, S. Schaffert,
U. Schwertel, and S. Spranger. Reasoning on the Web: Language Prototypes
and Perspectives. In Proceedings of the European Workshop on the Integration
of Knowledge, Semantics and Digital Media Technology, 2004.

[BCDE00] G. Becher, F. Cléin-Debart, and P. Enjalbert. A Qualitative Model for Time
Granularity. Computational Intelligence, 16(2):138–169, 2000.

[BCF+98] W. Burgard, A.B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz,
W. Steiner, and S. Thrun. The Interactive Museum Tour-guide Robot. In Pro-
ceedings of the 15th National Conference on Artificial Intelligence/10th Confer-
ence on Artificial intelligence/Innovative Applications of Artificial Intelligence,
pages 11–18. American Association for Artificial Intelligence, 1998.

[BCM03] F. Baader, D. Calvanese, and D. McGuinness. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge University Press, 2003.

[BCP01] A. Bonifati, S. Ceri, and S. Paraboschi. Active Rules for XML: A new Paradigm
for e-Services. VLDB Journal, 10(1):39–47, 2001.

[BDD95] K.van Belleghem, M. Denecker, and D. DeSchreye. Combining Situation Cal-
culus and Event Calculus. In Proceedings of the International Conference on
Logic Programming, MIT Press, pages 83–97, 1995.

[be96] Shibuyakuritsu Shoto bijutsukan (ed.). Mojie to emoji no keifu, Tōkiō. 1996.

[Beu04] J. De Beule. Creating Temporal Categories for an Ontology of Time. VUB,
ARTI-lab, 2004.

BIBLIOGRAPHY 269

[BHRS05] F. Bry, J. Haußer, F.-A. Rieß, and S. Spranger. Cultural Calendars for Pro-
gramming and Querying. In Proceedings of the 1st Forum on the Promotion
of European and Japanese Culture and Traditions in Cyber Society and Virtual
Reality, 2005.

[BJW00] C. Bettini, S. Jajodia, and S.X. Wang. Time Granularities in Databases, Data
Mining, and Temporal Reasoning. Springer-Verlag, 2000.

[BLOS03] F. Bry, B. Lorenz, H.J. Ohlbach, and S. Spranger. On Reasoning on Time
and Location on the Web. In Proceedings of the 1st International Workshop on
Principles and Practice of Semantic Web Reasoning, LNCS 2901, pages 102–
117. Springer-Verlag, 2003.

[BLS05] F. Bry, B. Lorenz, and S. Spranger. Calendars and Topologies as Types – A
Programming Language Approach to Modeling Mobile Applications. In Pro-
ceedings of 9th International Conference on Knowledge-Based Intelligent Infor-
mation and Engineering Systems, LNCS 3684, pages 352–358. Springer-Verlag,
2005.

[BM05] F. Bry and M. Marchiori. Ten Theses on Logic Languages for the Semantic Web.
In Proceedings of the W3C Workshop on Rule Languages for Interoperability,
USA, 2005.

[Boc90] A. Bochman. Concerted Instance-interval Temporal Semantics: Temporal On-
tologies. Notre Dame Journal of Formal Logic, 31(3):403–414, 1990.

[BRS05] F. Bry, F.-A. Rieß, and S. Spranger. CaTTS: Calendar Types and Constraints
for Web Applications. In Proceedings of the 14th International World Wide Web
Conference, pages 702–711. ACM Press, 2005.

[BRST00] C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. Decision-theoretic,
High-level Agent Programming in the Situation Calculus. In Proceedings of the
17th National Conference on Artificial Intelligence and 12th Conference on on
Innovative Applications of Artificial Intelligence,, pages 355–362. AAAI Press
/ The MIT Press, 2000.

[Bru72] B. Bruce. A Model for Temporal References and its Applications in a Question
Answering Program. Artificial Intelligence, 4:1–25, 1972.

[BS03] F. Bry and S. Spranger. Temporal Constructs for a Web Language. In Pro-
ceedings of the 4th Workshop on Interval Temporal Logics and Duration Calculi
(ESSLLI), 2003.

[BS04] F. Bry and S. Spranger. Towards a Multi-calendar Temporal Type System for
(Semantic) Web Query Languages. In Proceedings 2nd International Workshop
Principles and Practice in Semantic Web Reasoning, LNCS 3208, pages 69–83.
Springer-Verlag, 2004.

270 BIBLIOGRAPHY

[BTCGS91] V. Breazu-Tannen, T. Coquand, C. Gunter, and A. Scedrov. Inheritance as
Implicit Coercion. Interval Computations, 93(1):172–221, 1991.

[CAB+84] R.L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cremer, R.W.
Harper, D.J. Howe, T.B. Knoblock, N.P. Mendler, P. Panangaden, J.T. Sasaki,
and S.F. Smith. Implementing Mathematics with the NuPRL Proof Development
System. Prentice-Hall, Englewoof Cliffs, 1984.

[CAM02] G. Cobena, S. Abiteboul, and A. Marian. Detecting Changes in XML Docu-
ments. In Proceedings of the 18th International Conference on Data Engineering,
pages 41–52. IEEE Computer Society, 2002.

[Car88] L. Cardelli. Typechecking Dependent Types and Subtypes. In Foundations of
Logic and Functional Programming, Workshop Proceedings, LNCS 306, pages
45–57. Springer-Verlag, 1988.

[Car96] L. Cardelli. Type Systems. In A.B. Tucker (ed.). Handbook of Computer Science
and Engineering. CRC Press, 1996.

[CCM95] I. Cervesato, L. Chittaro, and A. Montanari. A Modal Calculus of Partially
Ordered Events in a Logic Programming Framework. In Proceedings of the 12th

International Conference on Logic Programming, pages 299–313. MIT Press,
1995.

[CEMP93] E. Ciapessoni, E.Corsetti, A. Montanari, and P. San Pietro. Embedding Time
Granularity in a Logical Specification Language for Synchronous Real-time Sys-
tems. Science of Computer Programming, 20(1–2):141–171, 1993.

[CFP04] C. Combi, M. Franceschet, and A. Peron. Representing and Reasoning about
Temporal Granularities. Journal of Logic and Computation, 14(1):51–77, 2004.

[Chu36] A. Church. An Unsolvable Problem of Elementary Number Theory. American
Journal of Mathematics, 58:354–363, 1936.

[Chu40] A. Church. A Formulation of the Simple Theory of Types. Journal of Symbolic
Logic, 5:56–68, 1940.

[CL96] G. Chen and G. Longo. Subtyping Parametric and Dependent Types. In Ka-
mareddine, et al. (eds.), Type Theory and Term Rewriting, 1996. invited lecture.

[CMP93] I. Cervesato, A. Montanari, and A. Provetti. On the Non-monotonic Behavior
of Event Calculus for Deriving Maximal Time Intervals. Interval Computations,
3(2):83–119, 1993.

[Cod70] E.F. Codd. A Relational Model of Data for Large Shared Data Banks. Com-
munications of the ACM, 13(6):377–387, 1970.

BIBLIOGRAPHY 271

[CR87] J. Clifford and A. Rao. A Simple General Structure for Temporal Domains. In
C. Rolland, and M. Leonard (eds.), Temporal Aspects of Information Systems,
pages 17–28. Elsevier Science Publishers, 1987.

[CTB03] S. Casteleyn, O.D: Troyer, and S. Brockmans. Design Time Support for Adap-
tive Behavior in Web Sites. In Proceedings of the 2003 ACM Symposium on
Applied Computing, pages 1222–1228. ACM Press, 2003.

[CTZ00] S.Y. Chien, V. Tsotras, and C. Zaniolo. A Comparative Study of Version
Management Schemes for XML Documents. Time Center, Technical Report,
TR-51, 2000.

[CTZ01] S. Chien, V.J. Tsotras, and C. Zaniolo. Efficient Management of Multiversion
Documents by Object Referencing. In Proceedings of the 27th International
Conference on Very Large Data Bases, pages 291–300. Morgan Kaufmann Pub-
lishers, 2001.

[CW85] L. Cardelli and P. Wegner. On Understanding Types, Data Abstraction, and
Polymorphism. Computing Surveys, 17(4):471–522, 1985.

[Cyc97] Cycorp Inc. Cycorp Ontology, 1997. http : //www.cyc.com/products2.html.

[DAR02] DARPA Agent Markup Language. A DAML Ontology of Time, 2002.

[dB80] N.G. de Bruijn. A Survey of the Project AUTOMATH. In J.P. Seldin and
J.R. Hindley (eds.), To H.B. Curry: Essays in Combinatory Logic, Lambda
Calculus, and Formalisms. Academic Press, 1980.

[DBB+88] U. Dayal, B.T. Blaustein, A.P. Buchmann, U.S. Chakravarthy, M. Hsu,
R. Ledin, D.R. McCarthy, A. Rosenthal, S.K. Sarin, M.J. Carey, M. Livny,
and R. Jauhari. The HIPAC Project: Combining Active Databases and Tim-
ing. SIGMOD Record, 17(1):51–70, 1988.

[DBCK96] F. Douglis, T. Ball, Y.-F. Chen, and E. Koutsofios. WebGUIDE: Querying and
Navigating Changes in Web Repositories. Computer Networks, 28(7–11):1335–
1344, 1996.

[DBCK98] F. Douglis, T. Ball, Y.-F. Chen, and E. Koutsofios. The AT&T Internet Dif-
ference Engine: Tracking and Viewing Changes on the Web. World Wide Web,
1(1):27–44, 1998.

[dBHW99] P. de Bra, G.J. Houben, and H. Wu. AHAM: A Dexter-based Reference Model
for Adaptive Hypermedia. In Proceedings of the 10th ACM Conference on Hy-
pertext and Hypermedia, pages 147–156. ACM Press, 1999.

272 BIBLIOGRAPHY

[DC91] W. Davis and J. Carnes. Clustering Temporal Intervals to Generate Reference
Hierarchies. In Proceedings of the 2nd International Conference on Principles
of Knowledge Representation and Reasoning, pages 111–117. Morgan Kaufman,
1991.

[Dem04] S. Demri. LTL over Integer Periodicity Constraints (Extended Abstract). In
Proceedings of 7th International Conference on Foundations of Software Science
and Computation Structures, LNCS 2987, pages 121–135. Springer-Verlag, 2004.

[DJ97] T. Drakengren and P. Jonsson. Eight Maximal Tractable Subclasses of Allen’s
Algebra with Metric Time. Journal of Artificial Intelligence Research, 7:25–45,
1997.

[DLW04] C.E. Dyreson, H. Lin, and Y. Wang. Managing Versions of Web Documents in
a Transaction-time Web Server. In Proceedings of the 13th International World
Wide Web Conference, pages 422–432. ACM Press, 2004.

[DMB92] M. Denecker, L. Missiaen, and M. Bruynooghe. Temporal Reasoning with Ab-
ductive Event Calculus. In Proceedings of the 10th European Conference on
Artificial Intelligence, pages 384–388. John Wiley and Sons, Chichester, 1992.

[DMP91] R. Dechter, I. Meiri, and J. Pearl. Temporal Constraint Networks. Artificial
Intelligence, 49(1–3):61–95, 1991.

[Dow79] D. Dowty. Word Meaning and Montague Grammar. Kluwer Academic Publish-
ers, 1979.

[DR01] N. Dershowitz and E.M. Reingold. Calendrical Calculations: The Millennium
Edition. Cambridge University Press, 2001.

[DR04] N. Dershowitz and E.M. Reingold. Hebrew Dating. In Proceedings of the 24th

International Jewish Genealogy Conference . Israel Genealogy Society, 2004.

[Dyr01] C. Dyreson. Towards a Temporal World Wide Web: A Transaction-Time Server.
In Proceedings of the 12th Australian Database Conference, pages 169–175. ACM
Press, 2001.

[Esh88] K. Eshghi. Abductive Planning with Event Calculus. In Proceedings of the 5th

International Conference on Logic Programming, MIT Press, pages 562–579,
1988.

[Euz93] J. Euzenat. Représentation Granulaire du Temps. Revue d’Intelligence Artifi-
cielle, 7(3):329–361, 1993.

[Euz95] J. Euzenat. A Categorical Approach to Time Representation: First Studies
on Qualitative Aspects. In Proceedings of the IJCAI Workshop on Spatial and
Temporal Reasoning, pages 142–152, 1995.

BIBLIOGRAPHY 273

[Euz01] J. Euzenat. Granularity in Relational Formalisms with Applications to Time
and Space Representation. Computational Intelligence, 17(3):703–737, 2001.

[FA97] T. Frühwirth and S. Abdennadher. Constraint-Programmierung. Springer-
Verlag, 1997.

[FGV05] M. Fisher, D. Gabbay, and L. Vila. Handbook of Temporal Reasoning in Ar-
tificial Intelligence. J. Hendler, H. Kitano, B. Nebel (eds.), Foundations of
Artificial Intelligence: Volume I. Elsevier, 2005.

[FHN72] R. Fikes, P. Hart, and N.J. Nilsson. Learning and Executing Generalized Robot
Plans. Artificial Intelligence, 3(4):251–288, 1972.

[FM94] J.L. Fiadeiro and T. Maibaum. Sometimes ”Tomorrow”is ”Sometime”: Action
Refinement in a Temporal Logic of Objects. In Proceedings of the 1st Interna-
tional Conference on Temporal Logic, LNCS 827, pages 48–66. Springer-Verlag,
1994.

[FM01] M. Franceschet and A. Montanari. A Combined Approach to Temporal Logics
for Time Granularity. In Workshop on Methods for Modalities, 2001.

[FN71] R. Fikes and N. Nilsson. STRIPS: A new Approach to Application of Theorem
Proving to Problem Solving. Artificial Intelligence, 2(3-4):189–208, 1971.

[Fre92] C. Freska. Temporal Reasoning Based on Semi-Intervals. Artificial Intelligence,
54(1):199–227, 1992.

[FWP97] A. Fernandes, M. Williams, and N. Paton. A Logic-based Integration of Active
and Deductive Databases. New Generation Computing, 15(2):205–244, 1997.

[Gal90] A. Galton. A Critical Examination of Allen’s Theory of Action and Time.
Artificial Intelligence, 42(2-3):159–188, 1990.

[Gan99] S. Gançarski. Database Versions to Represent Bitemporal Databases. In Pro-
ceedings of the 10th Conference on Database and Expert Systems Applications,
LNCS 1677, pages 832–841. Springer-Verlag, 1999.

[GD92] S. Gatziu and K.R. Dittrich. SAMOS: An Active Object-Oriented Database
System. IEEE Data Engineering Bulletin, 15(1-4):23–26, 1992.

[GF92] M. Genesereth and R. Fikes. Knowledge Interchange Format, Version 3.0 Ref-
erence Manual. KSL, Technical Report, KSL-92-86, 1992.

[GJ79] M. Garey and D. Johnson. Computers and Intractability. W. Freeman and
Company, 1979.

274 BIBLIOGRAPHY

[GJS93] N. Gehani, H.V. Jagadish, and Oded Shmueli. COMPOSE: A System for Com-
posite Specification And Detection. In Advanced Database Concepts, LNCS 759,
pages 3–15. Springer-Verlag, 1993.

[GLL97] G. De Giacomo, Y. Lespérance, and H.J. Lévesque. Reasoning about Concur-
rent Execution, Prioritized Interrupts, and Exogenous Actions in the Situation
Calculus. In Proceedings of the 15th International Joint Conference on Artificial
Intelligence, pages 1221–1226. Morgan Kaufmann Publishers, 1997.

[GLR91] M. Gelfond, V. Lifschitz, and A. Rabinov. What are the Limitations of the Sit-
uation Calculus? In Automated Reasoning, Essays in Honor of Woody Bledsoe,
(ed.)S. Boyer, pages 167–181. Kluwer Academic Publishers, 1991.

[GLS96] L. Garrido-Luna and K.P. Sycar. Towards a Totally Distributed Meeting
Scheduling System. In Proceedings of the 20th Annual German Conference on
Artificial Intelligence, LNCS 1137, pages 85–97. Springer-Verlag, 1996.

[GM89] J. Greer and G. McCalla. A Computational Framework for Granularity and its
Application to Educational Diagnosis. In Proceedings of the 11th International
Joint Conference on Artificial Intelligence, pages 477–482. Morgan Kaufmann
Publishers, 1989.

[GM94] C.A. Gunter and J.C. Mitchell. Theoretical Aspects of Object-Oriented Pro-
gramming. MIT Press, 1994.

[GM00] F. Grandi and F. Mandreoli. The Valid Web: An XML/XSL Infrastructure
for Temporal Management of Web Documents. In Proceedings of the 1st Inter-
national Conference on Advances in Information Systems, LNCS 1909, pages
294–303. Springer-Verlag, 2000.

[GPP95] M. Grigni, D. Papadias, and C. Papadimitriou. Topological Inference. In Pro-
ceedings of the 14th International Joint Conference on Artificial Intelligence,
pages 901–907. Morgan Kaufmann Publishers, 1995.

[Gru93] T.R. Gruber. Towards Principles for the Design of Ontologies Used for Knowl-
edge Sharing. In N. Guarino and R. Poli (eds.), Formal Ontology in Conceptual
Analysis and Knowledge Representation. Kluwer Academic Publishers, 1993.

[HA89] P.J. Hayes and J.F. Allen. Moments and Points in an Interval-based Temporal
Logic. Computational Intelligence, 5(4):225–238, 1989.

[Ham72] C.L. Hamblin. Instants and Intervals. In J.T. Fraser, F.C. Haber, and G.H.
Müller (eds.), The Study of Time, pages 324–328. Springer-Verlag, 1972.

[Har79] D. Harel. First-order Dynamic Logic. LNCS 68. Springer-Verlag, 1979.

BIBLIOGRAPHY 275

[Har84] D. Harel. Dynamic Logic. In D. Gabby et al. (eds.), Handbook of Philosophical
Logic, vol. II, Extensions of Classical Logic, Publishing Company, Dordrecht
(NL), 1984.

[Her94] D. Hernández. Qualitative Representation of Spatial Knowledge. LNAI 804.
Springer-Verlag, 1994.

[Hin03] A. Hinze. Efficient Filtering of Composite Events. In Proceedings of the 20th

British National Database Conference, LNCS 2712, pages 207–225. Springer-
Verlag, 2003.

[Hir96] R. Hirsh. Relational Algebras of Intervals. Artificial Intelligence, 83(2):267–295,
1996.

[HM01] V. Haarslev and R. Möller. RACER System Description. In Proceedings of the
1st International Joint Conference on Automated Reasoning, LNCS 2083, pages
701–706. Springer-Verlag, 2001.

[Hob85] J. Hobbs. Granularity. In Proceedings of the 9th International Joint Conference
on Artificial Intelligence, pages 432–435. Morgan Kaufmann Publishers, 1985.

[Hof97] M. Hofmann. Syntax and Semantics of Dependent Types. In P. Dybjer and A.
Pitts (eds.) Semantics and Logic of Computation. Cambridge University Press,
1997.

[Hor98] I. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? In
Proceedings of the 6th International Conference on Principles of Knowledge
Representation and Reasoning, pages 636–649. Morgan Kaufmann Publishers,
1998.

[HR04] M.A. Harris and E.M. Reingold. Line Drawing and Leap Years. ACM Comput-
ing Surveys, 36:60–80, 2004.

[HST99] I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Expressive De-
scription Logics. In Proceedings of the 6th International Conference on Logic
Programming and Automated Reasoning, LNCS 1705. Springer-Verlag, 1999.

[IJ04] R. Ingria and J.Pustejovsky. TimeML Specification 1.0. http : //time2002.org,
2004.

[ISO00] ISO-8601: Data Elements and Interchange Formats – Information Interchange
– Representation of dates and times. International Organization for Standard-
ization, 2000.

[Je98] C. Jensen and C. Dyreson (eds.). The consensus glossary of temporal database
concepts - February 1998 version, 1998.

276 BIBLIOGRAPHY

[KG77] K. Kahn and G.A. Gorry. Mechanizing Temporal Knowledge. Artificial Intel-
ligence, 9:87–108, 1977.

[KJJ03] A. Krokhin, P. Jeavons, and P. Jonsson. The Tractable Subalgebras of Allen’s
Interval Algebra. Journal of the ACM, 50(5):591–640, 2003.

[KL91] H.A. Kautz and P. Ladkin. Integrating Metric and Temporal Qualitative Con-
straints. In Proceedings of the 9th National Conference on Artificial Intelligence,
pages 241–246. MIT Press, 1991.

[KM93] R. Kozierok and P. Maes. A Learning Interface Agent for Scheduling Meetings.
In Proceedings of the ACM-SIGCHI International Workshop on Intelligent User
Interfaces, pages 81–88. ACM Press, 1993.

[KM99] L. Khatib and R. Morris. Generating Scenarios for Periodic Events with Binary
Constraints. In Proceedings of the 6th International Workshop on Temporal
Representation and Reasoning, pages 67–72. IEEE Computer Society, 1999.

[Kno] Knowledge Systems Laboratories, Stanford. Ontolingua Server. http :
//www.ksl − svc.stanford.edu.

[Kou92] M. Koubarakis. Dense Time and Temporal Constraints with 6=. In Proceedings
of the 3rd International Conference on Principles of Knowledge Representation
and Reasoning, pages 24–35. Morgan Kaufmann Publishers, 1992.

[Kow92] R. Kowalski. Database Updates in the Event Calculus. Journal of Logic Pro-
gramming, 12(1–2):121–146, 1992.

[KS86] R. Kowalski and M. Sergot. A Logic-based Calculus of Events. New Generation
Computing, 4(1):67–95, 1986.

[KS94] R. Kowalski and F. Sadri. The Situation Calculus and the Event Calculus
Compared. In Proceedings of the 1994 International Symposium on Logic Pro-
gramming, pages 539–553. MIT Press, 1994.

[KW02] N. Koch and M. Wirsing. The Munich Reference Model for Adaptive Hyperme-
dia Applications. In Proceedings of the 2nd International Conference on Adap-
tive Hypermedia and Adaptive Web-Based Systems, LNCS 2347, pages 213–222.
Springer-Verlag, 2002.

[L9́6] H. Lévesque. What is Planning in the Presence of Sensing? In Proceedings of
the 13th National Conference on Artificial Intelligence, pages 1139–1146. AAAI
Press, 1996.

[Lad87] P.B. Ladkin. The logic of Time Representation. PhD Thesis, University of
California, 1987.

BIBLIOGRAPHY 277

[Lan64] P.J. Landin. The Mechanical Evaluation of Expressions. Computer Journal,
6:308–320, 1964.

[Lan65] P.J. Landin. A Correspondence Between ALGOL 60 and Church’s Lambda-
Notation: Parts I and II. Communications of the ACM, 8(2,3):89–101,158–165,
1965.

[Lan66] P.J. Landin. The next 700 Programming Languages. Communications of the
ACM, 9(3):157–166, 1966.

[Lif91] V. Lifschitz. Towards a Metatheory of Action. In Proceedings of the 2nd Inter-
national Conference on Principles Knowledge Representation and Reasoning,
pages 376–386. Morgan Kaufmann Publishers, 1991.

[Lig98] G. Ligozat. Generalized Intervals: A Guided Tour. In Proceedings of Workshop
on Spatial and Temporal Reasoning, 1998.

[LLR99] H. Lévesque, Y. Lespérance, and R. Reiter. A Situation Calculus Approach to
Modeling and Programming Agents. In In A. Rao and M.Wooldridge (eds.),
Foundations and Theories of Rational Agency, pages 275–299. Kluwer Academic
Publishers, 1999.

[LM01] U. Dal Lago and A. Montanari. Calendars, Time Granularities, and Automata.
In Proceedings of the 7th International Symposium on Advances in Spatial and
Temporal Databases, LNCS 2121, pages 279–298. Springer-Verlag, 2001.

[LMF86] B. Leban, D. McDonald, and D. Foster. A Representation for Collections of
Temporal Intervals. In Proceedings of the 5th National Conference on Artificial
Intelligence, pages 367–371. Morgan Kaufmann Publishers, 1986.

[LP92] Z. Luo and R. Pollack. The LEGO Proof Development System: A User’s Man-
ual, 1992. Technical Report, University of Edinburgh.

[LPR98] H. Lévesque, F. Pirri, and R. Reiter. Foundations for the Situation Calculus.
Linköping Electronic Articles in Computer and Information Science, 3(18):159–
178, 1998.

[LS95] F. Lin and Y. Shoham. Provably Correct Theories of Actions. Journal of the
ACM, 42(2):293–320, 1995.

[Luo94] Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. In
Number 11 in International Series of Monographs on Computer Science. Oxford
University Press, 1994.

[MAB04] W. May, J.J. Alferes, and F. Bry. Towards Generic Query, Update, and Event
Languages for the Semantic Web. In Proceedings of Workshop on Principles
and Practices in Semantic Web Reasoning, LNCS 3208, pages 19–33. Springer-
Verlag, 2004.

278 BIBLIOGRAPHY

[McC62] J. McCarthy. LISP 1.5 Programmer’s Manual. MIT Press, 1962.

[McC02] J. McCarthy. Actions and other Events in Situation Calculus. In Proceedings of
the 8th International Conference on Principles and Knowledge Representation
and Reasoning, pages 615–628. Morgan Kaufmann Publishers, 2002.

[McD82] D. V. McDermott. A Temporal Logic for Reasoning about Processes and Plans.
Cognitive Science, 6:101–155, 1982.

[MCF+94] T. Mitchell, R. Caruana, D. Freitag, J. McDermott, and D. Zabowski. Ex-
perience with a Learning Personal Assistant. Communications of the ACM,
37(7):81–94, 1994.

[Mei96] I. Meiri. Combining Qualitative and Quantitative Constraints in Temporal
Reasoning. Artificial Intelligence, 87(1–2):343–385, 1996.

[Mey99] J. Meyer. Dynamic Logic Reasoning about Actions and Agents. In Workshop
on Logic-Based Artifical Intelligence, 1999.

[MH87] J. McCarthy and P. Hayes. Some Philosophical Problems from the Standpoint
of Artificial Intelligence. In Readings in Non-monotonic Reasoning, pages 26–
45. Morgan Kaufmann Publishers, 1987.

[Mis91] L. Missiaen. Localized Abductive Planning with the Event Calculus. PhD Thesis,
Department of Computer Science, K.U. Leuven, 1991.

[Mit96] J.C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.

[MMCR92] A. Montanari, E. Maim, E. Ciapessoni, and E. Ratto. Dealing with Time
and Granularity in the Event Calculus. In Proceedings of the International
Conference on Fifth Generation Computer Systems, pages 702–712. IOS Press,
1992.

[Mon74] U. Montanari. Networks of Constraints: Fundamental Properties and Applica-
tions to Picture Processing. Information Sciences – Informatics and Computer
Science: An International Journal, 7(2):95–132, 1974.

[Mon96] A. Montanari. Metric and Layered Temporal Logics for Time Granularity. ILLC
Dissertation Series 1996-02, University of Amsterdam, 1996.

[Moo85] R. Moore. A Logic of Knowledge and Action. In Hobbs, J.R. and Moore, R.C.
(eds.) Formal Theories of the Common-Sense World, pages 319–358. Ablex,
1985.

[MP96] A. Montanari and A. Policriti. Decidability Results for Metric and Layered
Temporal Logics. Notre Dame Journal of Formal Logic, 37:260–282, 1996.

BIBLIOGRAPHY 279

[MPP99] A. Montanari, A. Peron, and A . Policriti. Theories of Omega-Layered Tem-
poral Structures: Expressiveness and Decidability. Logic Journal of the IGPL,
7(1):79–102, 1999.

[MPP02] P. Mateus, A. Pacheco, and J. Pinto. Observations and the Probabilistic Sit-
uation Calculus. In Proceedings 8th International Conference on Principles of
Knowledge Representation and Reasoning, pages 327–338. Morgan Kaufmann
Publishers, 2002.

[MS98] K. Marriott and P.J. Stuckey. Programming with Constraints. An Introduction.
MIT Press, 1998.

[MS99] R. Miller and M. Shanahan. The Event Calculus in Classical Logic — Alterna-
tive Axiomatizations. Linköping Electronic Articles in Computer and Informa-
tion Science, 4(16), 1999.

[MSZ01] S. McIlraith, T. Son, and H. Zeng. Semantic Web Services. IEEE Intelligent
Systems, 16(2):46–53, 2001.

[MTH90] R. Milner, M. Tofte, and R.W. Harper. The Definition of Standard ML. MIT
Press, 1990.

[New36] I. Newton. The Principia: Mathematical Principles of Natural Philosophy. Uni-
versity of California Press, 1936.

[NLM03] K. Nørv̊ag, M. Limstrand, and L. Myklebust. TeXOR: Temporal XML Database
on an Object-Relational Database System. In Proceedings of the 5th Interna-
tional Andrei Ershov Memorial Conference on Perspectives of Systems Infor-
matics, LNCS 2890, pages 520–530. Springer-Verlag, 2003.

[Nør02] K. Nørv̊ag. Temporal Query Operators in XML Databases. In Proceedings of
the 2002 ACM Symposium on Applied Computing, pages 402–406. ACM Press,
2002.

[NS80] W.H. Newton-Smith. The Structure of Time. Routledge & Heagan Paul, 1980.

[NS92] M. Niezette and J.-M. Stevenne. An Efficient Symbolic Representation of Peri-
odic Time. In Proceedings of the 1st Conference on Information and Knowledge
Management, LNCS 752, pages 161–168. Springer-Verlag, 1992.

[NWJ02] P. Ning, S.X. Wang, and S. Jajodia. An Algebraic Representation of Calendars.
In the Annuals of Mathematics and Artificial Intelligence. Kluwer Academic
Publishers, 2002.

[OB88] A. Ohori and P. Buneman. Type Inference in a Database Programming Lan-
guage. In Proceedings of the 1988 ACM Conference on LISP and Functional
Programming, pages 174–183. ACM Press, 1988.

280 BIBLIOGRAPHY

[Oez04] P. Oezden. An Ontology of Socio-cultural Time Expressions. Master Thesis,
University of Munich, 2004.

[OG98] H.J. Ohlbach and D. Gabbay. Calendar Logic. Journal of Applied Non-classical
Logics, 8(4):291–324, 1998.

[Ohl03] H.J. Ohlbach. WebCal: An Advanced Calendar Server. Technical Report,
University of Munich, 2003.

[ÖS95] G. Özsoyoglu and R. Snodgrass. Temporal and Real-time Databases: A Survey.
IEEE Transactions on Knowledge and Data Engineering, 7(4):513–532, 1995.

[Pfe94] F. Pfenning. Elf: A Meta-Language for Deductive Systems. In Proceedings of
the 12th International Conference on Automated Deduction, LNAI 814, pages
811–815. Springer-Verlag, 1994.

[Pfe96] F. Pfenning. The Practice of Logical Frameworks. In Proceedings of the Col-
loquium on Trees in Algebra and Programming, LNCS 1059, pages 119–134.
Springer-Verlag, 1996.

[PH04] F. Pan and J.R. Hobbs. Time in OWL-S. In Proceedings of AAAI Spring
Symposium on Semantic Web Services, pages 29–36, 2004.

[Pie02] B.C. Pierce. Types and Programming Languages. MIT Press, 2002.

[PPW03] G. Papamarkos, A. Poulovassilis, and P.T. Wood. Event-Condition-Action Rule
Languages for the Semantic Web. In Proceedings of the 1st International Work-
shop on Semantic Web and Databases, pages 309–327, 2003.

[PR93] J. Pinto and R. Reiter. Temporal Reasoning in Logic Programming: A Case
for the Situation Calculus. In Proceedings of the 10th International Conference
on Logic Programming, pages 203–221. MIT Press, 1993.

[Pra76] V. Pratt. Semantical Considerations on Floyd-Hoare Logic. In Proceedings of
the 17th IEEE Symposium on Foundations of Computer Science, pages 109–121,
1976.

[PSS02] T.R. Payne, R. Singh, and K. Sycara. Calendar Agents on the Semantic Web.
IEEE Intelligent Systems, pages 84–86, May/June 2002.

[Ram00] J. Ramos. The Situation and State Calculus: Specification and Verification.
PhD Thesis, IST, Universidade Técnica de Lisboa, 2000.

[RCC92] D.A. Randell, Z. Cui, and A. Cohn. A Spatial Logic Based on Regions and
Connection. In Proceedings of the 3rd International Conference on Principles
of Knowledge Representation and Reasoning, pages 165–176. Morgan Kaufmann
Publishers, 1992.

BIBLIOGRAPHY 281

[Rei92] R. Reiter. On Formalizing Database Updates. In Proceedings of the 3rd Interna-
tional Conference on Extending Database Technology, LNCS 580, pages 10–20.
Springer-Verlag, 1992.

[Rei93] R. Reiter. Proving Properties of States in the Situation Calculus. Artificial
Intelligence, 64(2):337–351, 1993.

[Rei95] R. Reiter. On Specifying Database Updates. Journal of Logic Programming,
25(1):53–91, 1995.

[Rei01] R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press, 2001.

[RG68] N. Rescher and J. Garson. Topological Logic. Journal of Symbolic Logic, 33:537–
548, 1968.

[ROS98] J. Rushby, S. Owre, and N. Shankar. Subtypes for Specifications: Predicate
Subtyping in PVS. IEEE Transactions on Software Engineering, 24(9):709–
720, 1998.

[RS90] H. Reichgelt and N. Shadbolt. A Specification Tool for Planning Systems. In
Proceedings of the 9th European Conference on Artificial Intelligence,, pages
541–546, 1990.

[RU71] N. Rescher and A. Urquhart. Temporal Logic. Library of Exact Philosophy.
Springer-Verlag, 1971.

[RW69] G. Robinson and L. Wos. Paramodulation and Theorem Proving in First Order
Theories. Machine Intelligence, 4:135–150, 1969.

[SD98] S. Sen and E.H. Durfee. A Formal Study of Distributed Meeting Scheduling.
Group Decision and Negotiation, 7:265–289, 1998.

[SG88] Y. Shoham and N. Goyal. Representing Time and Action in AI. Revised Version
of: Problems in Formal Temporal Reasoning. Artificial Intelligence, 36(1):49–
61, 1988.

[SGdMM96] C. Sierra, L. Godo, R. López de Màntaras, and M. Manzano. Descriptive Dy-
namic Logic and its Application to Reflective Architectures. Future Generation
Computer Systems, 12(2–3):157–171, 1996.

[Sha89] M. Shanahan. Prediction is Deduction but Explanation is Abduction. In Pro-
ceedings of the 11thInternational Joint Conference on Artificial Intelligence,
pages 1055–1060. Morgan Kaufmann Publishers, 1989.

[Sha90] M. Shanahan. Representing Continuous Change in the Event Calculus. In
Proceedings of the 9th European Conference on Artificial Intelligence, pages
598–603, 1990.

282 BIBLIOGRAPHY

[Sha95] M. Shanahan. A Circumscriptive Calculus of Events. Artificial Intelligence,
75(2):249–284, 1995.

[Sho87] Y. Shoham. Temporal Logics in AI: Semantical and Ontological Considerations.
Artificial Intelligence, 33(1):89–104, 1987.

[Sin03] R. Singh. RCal: An Autonomous Agent for Intelligent Distributed Meeting
Scheduling. Master Thesis, Carnegie Mellon University, Pittsburgh, PA, 2003.

[SK95] F. Sadri and R. Kowalski. Variants of the Event Calculus. In Proceedings of the
12th International Conference on Logic Programming, pages 67–81. MIT Press,
1995.

[Smi80] R.G. Smith. The Contract Net Protocol: High-Level Communications and
Control in a Distributed Problem Solver. IEEE Transactions on Computers,
C-29(12):1104–1113, 1980.

[Sno95] R. Snodgrass. The TSQL2 Temporal Query Language. Kluwer Academic Pub-
lishers, 1995.

[SNP90] J. Smith, B. Nordtström, and K. Petersson. Programming in Martin-Löf ’s Type
Theory. An Introduction. Oxford University Press, 1990.

[Spr02] S. Spranger. Representation of Temporal Knowledge for Web-based Applica-
tions. Diploma Thesis, University of Munich, 2002.

[SSP02] R. Singh, K. Sycara, and T.R. Payne. Distributed AI, Schedules, and the
Semantic Web. XML Journal, pages 84–86, November 2002.

[Ste81] M. Stefik. Planning with Constraints (MOLGEN: Part 1). Artificial Intelligence,
16:111–139, 1981.

[Sti85] M.E. Stickel. Automated Deduction by Theory Resolution. Journal of Auto-
mated Reasoning, 1(4):333–355, 1985.

[SWM95] P. Spruit, R. Wieringa, and J. Meyer. Axiomatization, Declarative Semantics
and Operational Semantics of Passive and Active Updates in Logic Databases.
Journal of Logic and Computation, 5(1):27–70, 1995.

[TC95] A. Tuzhilin and J. Clifford. On Periodicity in Temporal Databases. Information
Systems, 30(5):619–639, 1995.

[Ter00] P. Terenziani. Integrated Temporal Reasoning with Periodic Events. Compu-
tational Intelligence, 16(2):210–256, 2000.

[Tho91] S. Thompson. Type Theory and Functional Programming. Addison Wesley,
1991.

BIBLIOGRAPHY 283

[Tho99] S. Thompson. Haskell – The Craft of Functional Programming. Addison Wesley,
1999.

[Tob01] S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD Thesis, RWTH Aachen, 2001.

[vB91] J. van Benthem. The Logic of Time. D. Reidel Publishing Company, 1983;
revised and expanded edition, 1991.

[vBC90] P. van Beek and R. Cohen. Exact and Approximate Reasoning about Temporal
Relations. Computational Intelligence, 6(3):132–144, 1990.

[vHSD92] P. van Hentenryck, V. Saraswat, and Y. Deville. Constraint Processing in
cc(FD). Technical Report, unpublished Manuscript, 1992.

[Vil82] M.B. Vilain. A System for Reasoning about Time. In Proceedings of the 2nd Na-
tional (US) Conference on Artificial Intelligence, pages 197–201. AAAI Press,
1982.

[VKvB90] M.B. Vilain, H.A. Kautz, and P. van Beek. Constraint Propagation Algorithms
for Temporal Reasoning: A Revised Report. In Readings in Qualitative Rea-
soning about Physical Systems, pages 373–381. Morgan Kaufmann Publishers,
1990.

[VS96] L. Vila and E. Schwalb. A Theory of Time and Temporal Incidence based
on Instants and Periods. In Proceedings of the 3rd Workshop on Temporal
Representation and Reasoning. IEEE Computer Society, 1996.

[W3C01] W3C, World Wide Web Consortium. XML Schema Parts 1 and 2, 2001.

[W3C03] W3C, World Wide Web Consortium. SOAP – Messaging Framework and Ad-
juncts, 2003.

[W3C04a] W3C, World Wide Web Consortium. Extensible Markup Language (XML) 1.0
(Third Edition), 2004.

[W3C04b] W3C, World Wide Web Consortium. OWL: Web Ontology Language, 2004.

[W3C04c] W3C, World Wide Web Consortium. RDF: Resource Description Framework,
2004.

[W3C04d] W3C, World Wide Web Consortium. Requirements for the Internationalization
of Web Services, Working Group Note, 2004.

[W3C05] W3C, World Wide Web Consortium. Web Services Description Language
(WSDL), 2005.

284 BIBLIOGRAPHY

[Wal75] D: Waltz. Generating Semantic Descriptions from Drawing of Scenes with Shad-
ows. In P.H. Winston (ed.), The Psychology of Computer Vision. McGraw Hill,
1975.

[Wan95] S.X. Wang. Algebraic Query Languages on Temporal Databases with Multi-
ple Time Granularities. In Proceedings of the 4th International Conference on
Information and Knowledge Management, pages 304–311. ACM Press, 1995.

[Web90] J. Weber. On the Representation of Concurrent Actions in the Situation Calcu-
lus. In Proceedings of the 8th Biennial Conference of the Canadian Society for
Computational Studies of Intelligence, pages 28–32. Morgan Kaufmann Pub-
lishers, 1990.

[Web01] WebDAV Corp. WebDAV, 2001. http : //www.webdav.org.

[Wij00] J. Wijsen. A String-based Model for Infinite Granularities. In Proceedings of
the AAAI Workshop on Spatial and Temporal Granularities, pages 9–16, 2000.

[WJL91] G. Wiederhold, S. Jajodia, and W. Litwin. Dealing with Granularity of Time in
Temporal Databases. In Proceedings of the 3rd International Conference on Ad-
vanced Information Systems Engineering, LNCS 498, pages 124–140. Springer-
Verlag, 1991.

[WJS95] S.X. Wang, S. Jajodia, and V. Subrahmanian. Temporal Modules: An Ap-
proach Toward Federated Temporal Databases. Information Sciences – In-
formatics and Computer Science: An International Journal, 82(1–2):103–128,
1995.

[YS02] P. Yolum and M. Singh. Flexible Protocol Specification and Execution: Ap-
plying Event Calculus Planning Using Commitments. In Proceedings of the 1st

International Joint Conference on Autonomous Agents and Multi Agent Sys-
tems, pages 527–534. ACM Press, 2002.

[Zwa99] J. Zwanenburg. Pure Type Systems with Subtyping. In Proceedings of the 4th

International Conference on Typed Lambda Calculus and Applications, LNCS
1581, pages 381–396. Springer-Verlag, 1999.

	Introduction
	Field of Research
	Importance of Time and Calendars for the Semantic Web
	Cultural Concerns
	Internationalization Efforts
	Applications
	Web-based Appointment Scheduling
	Web-based Event Planning
	Web-based Budgeting

	Thesis' Contribution: Calendar Types and Constraints
	Thesis' Outline
	Introduction to the Thesis
	Background
	A Time Model for Calendric Data, Types, and Constraints
	The Language CaTTS
	Constraint Reasoning with Calendric Data
	An Approach to Predicate Subtyping with Calendric Types
	Conclusion of the Thesis

	Background: Temporal Knowledge Representation and Reasoning for Information Systems
	Approaches to Temporal Knowledge Representation and Reasoning
	Implicit Time Models
	Situation Calculus
	Event Calculus
	Dynamic Logic

	Explicit Time Models
	Point-based Models
	Interval-Based Models
	Combined and Generalized Models

	Temporal Constraints
	Metric Temporal Constraints
	Qualitative Temporal Constraints
	Metric and Qualitative Constraints Combined

	Time Granularity Systems
	Set-theoretic Time Granularity Systems
	Logic-based Time Granularity Systems
	Automata-based Time Granularity Systems

	Calendric Computations
	Web and Semantic Web Formalisms and Applications
	Data Type Definition Languages
	XML DTD
	XML Schema

	Ontology Languages
	RDF: Resource Description Framework
	OWL: Ontology Web Language
	Applications: Time Ontologies

	Internationalization
	Web Services for Calendric Data
	Web-based Meeting Scheduler
	Calendar Web Server

	Temporal and Active Web Systems

	In Comparison with CaTTS
	Approaches to Temporal Knowledge Representation and Reasoning
	Calendric Computations
	Web and Semantic Web Formalisms and Applications

	A Time Model for Calendric Data, Types, and Constraints
	Base Time Line
	``Discretization'' of Time
	Time Granularities
	Activities over Time Granularities
	Time Granularities in CaTTS

	Relations between Time Granularities
	Aggregations
	Inclusions

	Calendars
	Time Granularity Conversion

	The Language CaTTS
	CaTTS-DL: Definition Language
	Reference Time
	CaTTS-TDL: Type Definition Language
	Predicate Subtypes
	Calendar as Type

	CaTTS-FDL

	CaTTS-CL: Constraint Language
	Specifying Constraint Problems
	Answers and Solutions to Constraint Problems
	Programs

	Example: Modeling Calendars and Constraints in CaTTS
	Calendar Signature
	Gregorian Calendar
	Hebrew Calendar
	An Academic Calendar
	Time Zones
	Date Formats
	Multi-Calendar Appointment Scheduling Problem

	Constraint Reasoning with Calendric Data
	Constraint Programming in a Nutshell
	Constraint Satisfaction Problems
	Example
	Proof Rules and Derivations

	Multi-Calendar Appointment Scheduling Problems
	The Underlying Constraint System
	Calendric Constraints
	Activity Constraints
	Events
	Tasks

	Time Constraints
	The Conversion Constraint

	The Constraint Propagation Algorithm
	Achieving Local Consistency
	Proof Rules for Time Constraints
	The Proof Rule for the Conversion Constraint
	Example: Application of Proof Rules

	Complexity of the Multi-Calendar Constraint Solver

	An Approach to Predicate Subtyping with Calendric Types
	(Sub-)Typing in a Nutshell
	The Simply Typed Lambda Calculus with Subtyping
	Subtyping Semantics
	Inclusion Polymorphism
	Implicit Coercion

	Predicate Subtypes and Dependent Types

	Properties and Advantages of Calendric Types
	Concise Modeling, Documentation, and Annotation
	Multi-Calendar Support: Modularity, Reuse, and Maintenance
	Calendar-Conversion Functionality
	Multi-Calendar Constraint Solving
	Use in Different Web Languages

	Predicate Subtypes in CaTTS
	Conversion Function Generation from Type Predicates
	Definition of the Conversion Function
	Conversion Function Generation from Aggregation Subtypes
	Periodic Aggregations
	Periodic Aggregations with finite many Exceptions
	Restricted Aggregations

	Conversion Function Generation from Inclusion Subtypes
	Selections
	Conjunctions
	Disjunctions
	Exceptions

	Well-Formed CaTTS-DL Calendar Specifications
	Syntax
	Typing Relation
	Example: Checking Well-Formedness of a CaTTS-DL calendar specification

	Note: Equivalence of Calendric Type Definitions
	Typing and Subtyping in CaTTS-CL
	Syntax
	Subsumption
	The Subtype Relation
	The Typing Relation
	Example: Type Checking a CaTTS-CL Program
	Consistency Checks based on Calendric Types

	Coercion Semantics for Subtyping in CaTTS-CL
	Coercion Semantics
	Example: Transforming a CaTTS-CL Program into a CLcatts Program
	Coherence

	Note: Typing CaTTS-DL Calendar Specifications

	Conclusion
	Results
	Underlying Problem
	CaTTS: A Programming Language Approach to Time and Calendars
	CaTTS' Language Processors

	Perspectives for Future Research
	Possible Extensions of the Type Language CaTTS
	Further Directions to Calendric Data Modeling
	Further Directions to Multi-Calendar Constraint Solving
	Further Directions to Type Checking with Calendric Types

	Topologies as Types
	Granularities
	Topological Data Modeling

	Concluding Remarks

	CaTTS' Syntax
	Reserved Words
	Constants
	Comments
	Identifiers
	Grammar
	Syntactic and Closure Restrictions
	Note: CaTTS' Reference Implementation

	A CHR Implementation of CaTTS' Constraint Propagation Algorithm
	Constraints and Functions Available for the Constraint Solver
	Activity Constraints
	Bounds Consistency
	Time Constraints
	Conversion Constraint
	Termination

	A Haskell Implementation of Predicate Subtyping in CaTTS
	Auxiliary Data Structures and Functions
	Well-Formedness of CaTTS-DL Calendar Specifications
	Syntax
	Well-Formedness

	Typing and Subtyping in CaTTS-CL
	Syntax
	Subtyping
	Typing
	Coercion
	Transformation

