
Eliminating Inefficient Cross-Layer Interactions
in Wireless Networking

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften
der Rheinisch-Westfälischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften
genehmigte Dissertation

Vorgelegt von
Diplom-Informatiker
Reiner Eric Ludwig

aus Bishop, California (USA)

Berichter:
Prof. Dr. rer. nat. Otto Spaniol
Prof. Randy H. Katz Ph.D. (University of California at Berkeley)

Tag der mündlichen Prüfung: 04.04.2000

D 82 (Diss. RWTH Aachen)

·

·

·

Acknowledgements

Foremost, I want to thank my wife, Monika Ludwig, for her patience, faith, and support over
the past five years.

I would like to thank Prof. O. Spaniol and Prof. R. H. Katz for their advice.

Many thanks to Almudena Konrad, Kimberly Oden, Bela Rathonyi, and Keith Sklower who
contributed to the development of the measurement tools and the collection of many hours of
traces.

This work greatly benefited from disscussions with Badri Badrinath, Hari Balakrishnan,
Stephan Bauke, Jean Bolot, Mikael Degermark, David Eckhardt, Andreas Fasbender, Sally
Floyd, Tom Henderson, Anthony Joseph, Roger Kalden, Phil Karn, Markku Kojo, Michael
Meyer, Venkata Padmanabhan, and Vern Paxson.

Last but not least I want to thank Norbert Niebert, Frank Reichert, Olle Viktorsson, and Fiona
Williams for supporting my work within Ericsson Research.

·

___ vii

Table of Contents

Chapter 1 Introduction and Outline 1

Chapter 2 Background 5

2.1 Terminology.. 5

2.2 End-to-End Error Recovery with TCP.. 9
2.2.1 Basic Operation..9

2.2.2 TCP-Lite’s Retransmission Timer ...12

2.2.3 TCP/IP Header Compression ...14

2.3 End-to-End Congestion Control in the Internet 16
2.3.1 Objectives and Principles...16

2.3.2 Congestion Control in TCP..18

2.3.3 New Developments ..20

2.4 Link Layer Error Control in Wireless Networks 23
2.4.1 Circuit-Switched Data Transmission in GSM ...24

2.4.2 Handover Control...26

2.4.3 Link Layer Error Recovery ..27

2.4.4 Forward Error Correction and Interleaving ...28

2.5 The Problem: Inefficient Cross-Layer Interactions 29
2.5.1 Underestimation of the Available Bandwidth..30

2.5.2 Inefficiency of End-to-End Error Control..31

2.5.3 Overly Strong Link Layer Error Control ...32

2.5.4 Competing Error Recovery ..34

2.5.5 Failure of Link Layer Differential Encodings..35

2.6 Related Work .. 36
2.6.1 Classification of Existing Approaches ...37

2.6.2 Evaluation ..40

2.7 Brief Motivation and Outline of our Approach 42

viii __

Chapter 3 Analysis Methodology 45

3.1 Evaluating Error Recovery Strategies ...46
3.1.1 Collecting Link Layer Traces in GSM-CSD ... 46
3.1.2 Analysis Goals, Assumptions, and Approach.. 47
3.1.3 Measurement Platform... 49
3.1.4 The ReTracer Tool ...50

3.2 Detecting Inefficient Cross-Layer Interactions51
3.2.1 How to Read TCP Trace Plots ...52
3.2.2 Analysis Goals, Assumptions, and Approach.. 54
3.2.3 Measurement Platform... 55
3.2.4 The MultiTracer Tool ..57
3.2.5 Detected “Implementation Bugs” in GSM ..58

3.3 Reproducing Inefficient Cross-Layer Interactions59
3.3.1 Analysis Goals, Assumptions, and Approach.. 59
3.3.2 Measurement Platform... 60
3.3.3 The Hiccup Tool .. 61

3.4 Analyzing TCP’s Retransmission Timer...62
3.4.1 Choosing a “typical” TCP Connection .. 62
3.4.2 Model-based Analysis..64
3.4.3 Measurement-based Analysis ..64

3.5 Summary..65

Chapter 4 Flow-Adaptive Wireless Links 67

4.1 Extending the Differentiated Service Framework68
4.1.1 Providing Differentiated Service through Link Layer Error Control 68
4.1.2 Defining Service Classes and Matching Link Layer Adaptations 69
4.1.3 Deployment Concerns and Implementation Alternatives73
4.1.4 Link Layer Error Recovery Persistency for Fully-Reliable Flows74

4.2 Real-World Interactions between TCP and RLP...............................77
4.2.1 Interactions are Rare ..77
4.2.2 Excessive Queueing... 78
4.2.3 The Impact of RLP Link Resets .. 80
4.2.4 Competing Error Recovery Only in Pathological Cases 82

4.3 Optimizing Wireless Links for Bulk Data Flows84
4.3.1 Block Erasure Rates and Burstiness ..84
4.3.2 Error Burstiness Allows for Larger Frames... 86
4.3.3 The Failure of Pure End-to-End Error Recovery...87

4.4 Summary..90

Chapter 5 TCP-Eifel 91

5.1 Problems of TCP-Lite’s Error Recovery ...92
5.1.1 Spurious Timeouts ...92
5.1.2 Spurious Fast Retransmits ...95

 __ ix

5.2 The Eifel Algorithm.. 96
5.2.1 Resolving the Retransmission Ambiguity..96
5.2.2 The Sender’s Response ..97
5.2.3 Performance Evaluation ...99

5.3 Problems of TCP-Lite’s Retransmission Timer.............................. 101
5.3.1 Prediction Flaw when the RTT Drops ...102
5.3.2 Failure of the “Magic Numbers”..103
5.3.3 The “REXMT-Restart Bug”...104
5.3.4 Timer Granularity ..105
5.3.5 Validating the Model ...106

5.4 The Eifel Retransmission Timer ... 107
5.4.1 Predicting a Decreasing RTT...107
5.4.2 Scaling the Estimator Gains and the Variation Weight108
5.4.3 Shock Absorbers ..110
5.4.4 The RTO Minimum ...111
5.4.5 Implementing REXMT Precisely...111
5.4.6 Adapting to Spurious Timeouts ...113
5.4.7 Validating the Implementation of RTO-Eifel ..115

5.5 Summary ... 116

Chapter 6 Conclusion 119

Appendix A Glossar 123

Appendix B References 127

B.1 Research Papers and Books .. 127

B.2 Standards, Recommendations, and Drafts 131

B.3 Software .. 133

x __

___ 1

CHAPTER 1

Introduction and Outline

The Internet has evolved into the communication medium of the future. It will not be long
before virtually all people-to-people, people-to-machine, and machine-to-machine communi-
cation are carried end-to-end in Internet Protocol (IP) [RFC791], [RFC2460] packets. The
recent tremendous growth of the Internet in terms of connected hosts is only matched by the
similar growth rate of cellular telephone subscribers. While most hosts on today’s Internet are
still wired, the next big wave of hosts has yet to hit the Internet. We believe that the predomi-
nant Internet access of the future will be wireless. Not only every cellular phone, but the major-
ity of general communication devices will have: (1) an IP protocol stack and (2) a wireless net-
work interface.

Wireless networking and more specifically, the problems related to protocol performance of
“IP over Wireless”, are high priority research topics in both academia and industry. Yet, a num-
ber of difficult problems remain unsolved. The root of these lies in inefficient cross-layer inter-
actions, caused by events occurring at the link layer that affect the performance of end-to-end
error and congestion control schemes (see Figure 1-1). Those events are packet losses due to
transmission error and increased packet transmission delays caused by link layer error control.

The goal of this dissertation is to study inefficient cross-layer interactions in wireless net-
working and to develop and evaluate a solution that eliminates these inefficiencies.

End- to-End
Error Contro l

End- to-End
Congest ion Contro l

L ink Layer Error Contro l
in Wire less Networks

Cross-Layer
Interactions

Figure 1-1: Cross-Layer Interactions in Wireless Networking.

2 ___ CHAPTER 1

Internet traffic today is still largely generated by applications that use the Transmission Control
Protocol (TCP) [RFC793] as the underlying communications protocol. The most popular
Internet applications, namely World Wide Web (WWW), e-mail, and file transfer, all rely on
TCP. In the Internet backbone studied in [TMW97], the authors find that TCP averages about
80 percent of the flows. Related traffic analysis studies find similar numbers. This motivates
why TCP has been the focus when it comes to studying inefficient cross-layer interactions in
wireless networking.

The solution we develop in this dissertation is, however, not “TCP-specific”, but is indepen-
dent from any specific protocol. Nevertheless, to demonstrate the feasibility of our approach,
most of our measurements, analysis, and implementation work is based on TCP. Our solution
comprises new end-to-end and link layer mechanisms that make the protocol implementations
on those layers more “intelligent” and robust. For flows that are loss responsive and fully-reli-
able, in particular those based on TCP, our solution eliminates all known inefficient cross-layer
interactions. It provides optimal end-to-end performance over a wide range of conditions of the
wireless link while efficiently utilizing radio resources. Beyond solving the problems for such
flows, our solution provides a framework that accommodates loss responsive real-time flows,
e.g., semi-reliable, or error-resilient flows.

Related work suggests solutions that are either pure end-to-end (e.g., [SF98]), leaving unex-
ploited the potential of link layer error control schemes to optimize end-to-end performance, or
only suggest link layer mechanisms (e.g., [BBKT97], [ES98], [Kar93]), none of which is capa-
ble of solving all inefficient interactions with end-to-end control schemes. Most prior work
(e.g., [BB95], [BK98], [BS97], [DMT96], [HK99], [KRLKA97]), however, suggests Perfor-
mance Enhancing Proxies (PEPs) that couple link layer and end-to-end control schemes to
solve inefficient cross-layer interactions. These solutions violate the fundamental design prin-
ciple in data communications, protocol layering, by requiring access to transport layer headers
by the PEPs. Our approach is fundamentally different in that we do not require - in fact, we
argue against - such cross-layer couplings. The key advantages of our solution over PEP-based
approaches are (A) its independence from transport (or higher) layer protocol semantics mak-
ing it a “non-TCP-specific” solution, (B) the possibility of co-existence with network layer
encryption, e.g., IPsec [RFC2401], and (C) that no per-flow state needs to be maintained in the
network making it more scalable. The main contributions of this dissertation are the following:

1. The new concept of flow-adaptive wireless links and its application for fully-reliable
flows. This work has been published in [LR99], [LRKOJ99], and [LKJK00].

2. Two new mechanisms for reliable end-to-end protocols, the Eifel algorithm and the Eifel
retransmission timer. The former has been published in [LK00] while the latter is
described in [LS99]. We have implemented both mechanisms for TCP, and refer to that
implementation as TCP-Eifel that we have made publicly available [Lud99c].

3. New measurement methods and tools we developed throughout our work.

Introduction and Outline ___ 3

The remainder of this chapter describes and motivates the outline of this dissertation.

Chapter 2 provides required background. After we introduce related terminology in
Section 2.1, the following three sections review those functions of the control schemes shown
in Figure 1-1 that are relevant for our studies. Since all our “real-world” measurements in wire-
less networks were carried out using GSM-CSD, the Circuit-Switched Data (CSD) service
implemented in the Global System for Mobile communications (GSM), we explain that net-
work in more detail. In Section 2.5 we describe all inefficient cross-layer interactions in wire-
less networking that are known in literature. Related work is reviewed and evaluated in
Section 2.6. We present a brief motivation and outline of the approach taken in this dissertation
in Section 2.7.

Chapter 3 explains the analysis methodology we applied and the tools we developed to obtain
the results presented in Chapter 4 and Chapter 5. We first motivate why we have mostly chosen
a measurement-based analysis approach. In Section 3.1, we then explain the methodology we
use in Section 4.3 to evaluate the benefit of link layer error recovery for reliable flows. We
explain how we capture and analyze the error characteristics of the GSM-CSD wireless link.
Our ReTracer tool is described, which we developed to reverse-engineer target metrics such as
throughput given certain parameters like the link layer frame size. In Section 3.2, we explain
the methodology we use in Section 4.2 to detect inefficient cross-layer interactions between
TCP and the link layer error control implemented in GSM-CSD. We describe the tools we
developed for that purpose: rlpdump , an event logging tool for the reliable link layer proto-
col implemented in GSM-CSD, and MultiTracer, used to correlated events on different proto-
col layers. There we also explain how to interpret TCP trace plots, which we often use to illus-
trate certain effects, problems, or solutions. In Section 3.3, we explain the methodology we use
in Section 5.1 to study the problem of competing error recovery for the case of TCP, and to
develop the Eifel algorithm in Section 5.2 that eliminates this problem. We explain how we
used the hiccup tool that we developed to reproduce inefficient cross-layer interactions in a
“non-wireless” but controllable network environment. In Section 3.4, we explain the method-
ology we use in Section 5.3 to study and reveal the problems of TCP-Lite’s retransmission
timer. We use the same model in Section 5.4 to develop the Eifel retransmission timer that
eliminates those problems. We explain the model that we developed to analyze those end-to-
end retransmission timers, and the measurement setup we used to validate the correctness of
the model. In Section 3.5, we provide a summary of the chapter.

Chapter 4 introduces the concept of flow-adaptive wireless links, and validates it for fully-reli-
able flows. In Section 4.1, we explain that concept and discuss its deployment concerns, and
possible implementation alternatives. The key idea is that network end-points use the IP layer
as a level of indirection through which their QoS requirements are signalled to each link layer
along the path, on a per packet basis. This allows for a (wireless) link layer to adapt its error

4 ___ CHAPTER 1

control schemes to meet those requirements while minimizing radio resource consumption. We
argue against and illustrate the problems of running low link layer error recovery persistency
for fully-reliable flows. In Section 4.2, we verify through measurements, that our solution of
flow-adaptive wireless links eliminates all known inefficient cross-layer interactions except for
the problem of competing error recovery. This study also delivered early indications that the
retransmission timer implemented in TCP-Lite is too conservative. In Section 4.3, we show
how the GSM-CSD wireless link can be adapted to optimize the end-to-end performance of
bulk data flows. We use this case study to demonstrate that link layer error recovery over wire-
less links is essential for reliable flows to optimize their end-to-end performance. In
Section 4.4, we provide a summary of the chapter.

Chapter 5 provides solutions to the remaining problems we identified in Chapter 4. In
Section 5.1, we identify the retransmission ambiguity in TCP as the root of the problems
caused by competing error recovery. In Section 5.2, we develop the Eifel algorithm that uses
extra information in the TCP acknowledgements to resolve the retransmission ambiguity, and
show how this is used to eliminate those problems. The Eifel algorithm only requires changes
to the TCP sender implementation, not to the protocol itself. Thus, given this backwards com-
patibility and the fact that it does not change TCP’s congestion control semantics, the new
algorithm can be incrementally deployed. In Section 5.3, we analyze TCP-Lite’s retransmis-
sion timer, and reveal a number of problems related to its definition and implementation. This
explains why we had suspected that this timer is too conservative. In Section 5.4, we then pro-
pose an alternative retransmission timer, which we call the Eifel retransmission timer, that
eliminates those problems. We demonstrate that the Eifel retransmission timer is a more pre-
cise predictor of an upper bound for the path’s RTT. Combining both, the Eifel algorithm and
the Eifel retransmission timer, we propose a new approach to designing retransmission timers.
The idea is to let the timer become increasingly aggressive while adapting it to the measured
fraction of spurious timeouts. We validated the correctness of our analysis by showing that the
model- and the measurement-based approach leads to the same results. In Section 5.5, we pro-
vide a summary of the chapter.

Chapter 6 concludes this dissertation by summarizing our main results and outlining related
but unsolved research problems that merit further exploration.

___ 5

CHAPTER 2

Background

In this chapter, we explain the relevant technologies and related work for the background
required in subsequent chapters. The first three sections describe the “three corners” of the tri-
angle shown in Figure 1-1. In Section 2.5, we define the central problem (the center of
Figure 1-1) this dissertation addresses. In Section 2.6, we briefly explain how related work has
approached the problem, and provide an evaluation of the proposed solutions. In Section 2.6,
we briefly motivate and outline the approach developed in the remainder of this dissertation.

2.1 Terminology

The Internet is an inter-connection of networks. A network connects hosts and networks are
interconnected via routers. Communication in the Internet is based on the Internet Protocol
(IP), a network layer protocol defined by [RFC791], referred to as IP-Version 4 (IPv4), and
alternatively by [RFC2460], referred to as IP-Version 6 (IPv6). A protocol data unit in IP is
called a packet, consisting of an IP header followed by transport layer data1. The transport
layer data may (in theory) be up to 64 KBytes large. The default size of the IP header is
20 bytes, and with option fields may be up to 60 bytes. The IP protocol is connection-less and
as such does not guarantee in-order delivery of packets. That is, the sequence of packets as
generated by the source does not need to be preserved when the packets are delivered to the
destination. That responsibility is left to higher layer protocols such as the Transmission Con-
trol Protocol (TCP). In particular, packets belonging to the same connection may take different
routes to the destination and in practice sometimes do [Pax97d].

1. Unlike in [RFC1122] we do not distinguish between an IP datagram and an IP packet and always use the latter term.

6 ___ CHAPTER 2

In most cases, a host is a general purpose computer but it may also be a specialized appliance.
Examples of a network are an Ethernet (multi-access), a dial-up line provided by a fixed or
wireless telephone system (point-to-point), or a direct cable that connects two hosts via their
serial line interfaces (point-to-point). The network that connects two hosts, two routers, or a
host and a router is also called a link or hop. Communication across a link is provided by a link
layer protocol. A protocol data unit in a link layer protocol is called a frame. A host connects to
a link via a network interface (or just interface). Each interface on a host has an interface
address that is unique in the corresponding network and an IP address that is unique in the
Internet. The source and destination IP addresses are part of the IP header. The receiving IP
layer uses the protocol identifier that is also part of the IP header to decide to which transport
protocol, e.g., TCP, it is supposed to deliver the packet’s payload. Transport layer service is
provided through a port identified by a port number which is unique only in combination with
an IP address and a protocol identifier. The source and destination port numbers are part of a
transport protocol header.

A series of links connecting two hosts is called a path. Communication between two processes
at each end of a path is referred to as end-to-end communication. Such a process is generally
called a network end-point (or just end-point). End-to-end communication is provided by net-
work (IP), transport and (optionally) application layer protocols, so-called end-to-end proto-
cols. Thus, a network end-point can be a sending/receiving network (IP), transport or applica-
tion layer, or a sending/receiving application.

An end-to-end stream of packets identified by the source and destination IP address, the source
and destination port number, and the protocol identifier, is referred to as a flow. For example,
the packets sent by a TCP sender to a TCP receiver corresponds to a flow; a TCP-based flow.
A network end-point is tied to one specific flow and each flow has two network end-points, a
sending and a receiving network end-point. Hence, a property of a flow may also be associated
with a network end-point and vice versa. When speaking of such properties, we use the terms
network end-point and flow interchangeable.

A flow’s bottleneck link is the link on which the bandwidth available to the flow is the lowest of
all links in the path. That bandwidth is also referred to as the flow’s available bandwidth as it
limits the end-to-end throughput that the flow may provide. The flow’s available bandwidth
can be very dynamic depending how many flows share the bottleneck link and how much of
the bottleneck link’s bandwidth those flows consume. We define as the packet transmission
delay the time it takes to successfully transmit a packet over a given link excluding any queue-
ing delay that may occur before the initial transmission of the packet. A flow’s round trip time
(RTT) (sometimes also called the path’s RTT) is the time it takes to send a packet from one net-
work end-point to the other, get it processed at the receiving end-point, and send another
packet back to the end-point that sent the initial packet. A flow’s RTT varies dynamically,

Background __ 7

depending on such factors as packet size (transmission delays), queueing delays the packets
experience in the network, and processing required at the receiving end-point1. The packets a
network end-point sends within the flow’s RTT is called a flight of packets (or just flight).
Those packets are also referred to as the packets a network end-point or flow has in flight. The
number of packets a network end-point has in flight is called the flow’s load2.

Link layer and end-to-end protocols3 have the following functions in common, not all of which
have to be implemented (see [Tan89] or [Ste94] for more detail). We use the term user process
to refer to the process that uses the protocol being described.

• Framing ensures that data units passed by a sending user process to a protocol are deliv-
ered as the same data units to the receiving user process. For example, if implemented at
the link layer, it allows the receiving link layer to recognize the beginning and the end of
an IP packet. This enables the receiving link layer to deliver each IP packet as a single unit
to the receiving IP layer, i.e., the receiving user process.

• Flow control to prevent a fast sender to overflow a slow receiver.

• Error detection ensures that a protocol data unit received in error is discarded and is not
delivered to the receiving user process. This function is provided by adding a checksum to
each protocol data unit that the receiving protocol layer verifies.

• Error recovery - also known as Automatic Repeat reQuest (ARQ) - requires error detection
and ensures that lost protocol data units and protocol data units received in error are
retransmitted. We define as error recovery persistency the maximum number of
retransmissions an error recovery scheme performs for a single protocol data unit before it
is discarded. Alternatively, error recovery persistency may be defined as the maximum
permissible delay that the error recovery scheme may introduce for a single protocol data
unit before is discarded.

• In-order delivery ensures that the sequence of the data units passed by a sending user pro-
cess to a protocol is preserved when those data units are delivered to the receiving user
process.

• Removal of data that might have been duplicated during transmission by the protocol.

A protocol provides reliable service if it implements the latter five functions. It provides unre-
liable service if it implements error detection but not necessarily error recovery. It provides
transparent service if it does not implement error detection. Either service may or may not sup-

1. For example, also including the delayed-ACK timer of 500 ms that may be used in TCP [RFC1122].

2. Some of those packets might have left the network already but because of the feedback delay (the RTT), the sending net-
work end-point might not yet be aware of it. Also note, that the feedback might be provided explicitly, e.g., through ACKs
as in TCP (see Section 2.2.1), or implicitly through (RTT and packet loss rate) measurement reports provided by the receiv-
ing network end-point as done for “TCP-friendly” flows (see Section 2.3.3).

3. We avoid this distinction in this context when it is clear that we speak of a link layer or end-to-end protocol.

8 ___ CHAPTER 2

port framing. A service that does not support framing is referred to as a byte stream service.
Further, reliable protocols need to establish a connection at the beginning of each instance of
communication. A connection is required to establish and maintain common protocol state
(e.g., initial sequence numbers, flow control windows) between the sending and the receiving
protocol layer.

The fact that IP does not need to preserve the packet order also allows for link layer protocols
that provide reliable service to perform out-of-order delivery of correctly received IP packets,
i.e., to not implement the above mentioned in-order delivery function. This provides for more
memory-efficient link layer implementations. We still regard such a link layer protocol as pro-
viding reliable service, but make it explicit in the text when referring to that case.

We further distinguish between fully-reliable and semi-reliable service. When the error recov-
ery persistency is reached, a protocol providing fully-reliable service terminates the connection
(discards the common connection state) and indicates that event to the sending and the receiv-
ing user process. Those processes then “know” that data was lost and may or may not decide to
re-initiate their communication. A protocol that provides semi-reliable service, on the other
hand, does not terminate the connection when its error recovery persistency is reached, and
does not indicate that event to the sending and the receiving user process. Instead, it just dis-
cards the corresponding protocol data unit and resumes transmission with the next one in
sequence. We also use the terms (fully- or semi-) reliable, unreliable, or transparent in associa-
tion with the term protocol depending on which service it provides, and with the term flow
depending on which service the flow provides to the application. For example, the flow gener-
ated by a reliable multicast protocol, like [FJLMZ97], is considered reliable even if UDP is the
underlying unreliable transport protocol. A flow generated by TCP is an example of a fully-
reliable flow.

A link layer protocol that provides service directly to IP needs to implement framing and is
called a framing protocol. Throughout this text we only refer to one framing protocol which is
the Point-to-Point Protocol (PPP) [RFC1661] commonly used on dial-up and direct cable
links. By default, PPP provides an unreliable service1. A framing protocol defines the link’s

Maximum Transmission Unit (MTU), i.e., the size in bytes of the largest IP packet that can be
transmitted on that link. The smallest MTU of all links of a path is called the path MTU. The IP
layer includes a fragmentation function, referred to as IP fragmentation [RFC1122], that is
used in case a packet is larger than the outbound link’s MTU. IP fragmentation may be per-
formed by the sending host’s IP layer or any router’s IP layer. If an IP packet needs to be frag-
mented, it is divided into smaller fragments and a copy of the IP header is prepended to each
fragment. A fragment number is inserted into each of those headers so that the destination IP

1. [RFC1663] defines an extension for PPP to optionally provide reliable service. It is, however, rarely used.

Background __ 9

layer can perform the reassembly of the original IP packet. IP fragments are transmitted and
routed as regular IP packets.

We further classify flows according to the type of traffic they carry. Bulk data flows are gener-
ated by applications that need to transfer “large” amounts of data (e.g., file transfer or e-mail).
The main Quality of Service (QoS) requirement of such flows, more precisely the QoS require-
ment of the corresponding application, is to maximize throughput, i.e., to transfer the entire
data as fast as possible, while the end-to-end delay of an individual packet is less important1.
We also speak of a bulk data transfer in this respect. Interactive flows are used for transac-
tional (request/response-style) communication (e.g., remote terminal or banking applications).
The main QoS requirement of such flows is to minimize the end-to-end delay of the packets
belonging to a transaction, i.e., a low user level response time, while the end-to-end throughput
that the flow may provide is less important. Bulk data and interactive flows are usually based
on an end-to-end protocol that provides a fully-reliable service (e.g., TCP). Real-time flows, on
the other hand, are usually based on an unreliable end-to-end protocol, e.g., the User Data-
gram Protocol (UDP) [RFC768]. They are generated by applications that are delay-sensitive
(e.g., audio and video applications). An important class of real-time flows in the Internet are
rate-adaptive real-time flows, e.g., those based on the Real-Time Transport Protocol (RTP)
[RFC1889]. Applications that operate on such flows can adapt (to certain degrees) the output
rate of their source codecs to the flow’s available bandwidth. A comprehensive discussion of
flow types and their QoS requirements can be found in [She95].

A packet loss is the event that a packet is sent into the Internet but does not reach the destina-
tion. A packet can get lost because it is dropped due to congestion (see Section 2.3) at an inter-
face’s in- or outbound buffer, or it is discarded due to transmission error by a link layer error
detection function (see Section 2.4). We call the former event a congestion loss and the latter
event an error loss.

2.2 End-to-End Error Recovery with TCP

2.2.1 Basic Operation

The basic functionality of TCP is defined by [RFC793], [RFC1122], and [RFC2581]. TCP
extensions have been defined by [RFC1323], [RFC2018], and [RFC2481]2. Those six recom-

1. In theory, it would not matter in a file transfer if the first packet reached the destination last. What usually matters is that the
file transfer is completed in the shortest amount of time. In practice, the transport layer receive socket buffer required for
packet re-sequencing places a limit on the maximum per packet delay that is tolerable without affecting performance. This
limit is nevertheless low.

2. Currently in experimental status.

10 __ CHAPTER 2

mendations have been proposed over a time frame of almost twenty years. During this time
numerous TCP implementations for various operating systems have been developed. Some of
these predate the more recent recommendations, and not every desirable TCP feature has been
specified. Moreover, some TCP implementations are incorrect due to logic errors, misinterpre-
tations of the specification, or conscious violations to gain better performance [Pax97b]. Con-
sequently, many different “TCPs” exist today. Throughout this dissertation we refer to the so-
called TCP-Lite implementation for the Berkeley Software Distribution (BSD) operating sys-
tem documented in [WS95]. In the Internet research community, it is the current de facto stan-
dard for TCP implementations. It has been ported to various operating systems running daily
on hundreds of thousands of servers and clients on the Internet. We omit the qualifier “-Lite”
when discussing TCP in general as specified by the above listed recommendations.

TCP is a transport layer protocol that provides a fully-reliable byte stream service. It
exchanges data with the user process through shared memory, so-called (send and receive)
socket buffers. The size of TCP’s socket buffers are usually determined by default settings of
the operating system; commonly 8 or 16 KBytes. A protocol data unit in TCP is called a seg-
ment, consisting of a TCP header followed by application layer data. The default size of the
TCP header is 20 bytes, and with option fields may be up to 60 bytes. Each segment is trans-
mitted as a separate packet, and the receiving IP layer delivers it as a single unit to the receiv-
ing TCP layer. Thus, a segment does not require (begin/end) delimiters. Each byte in the appli-
cation layer byte stream corresponds to a unique sequence number in a TCP connection. The
header of each segment carries the sequence number of the first byte in the segment. The size
of the application layer payload is variable but may not be larger than the Maximum Segment
Size (MSS)1. The default MSS is 536 bytes derived from the default MTU size (576 bytes)
which leaves space for default size TCP and IP headers. The MSS to be used by the TCP
sender is usually announced by the TCP receiver during connection establishment through the
MSS option in the TCP header. Nevertheless, it is limited by the outbound link’s MTU (minus
the size of the TCP/IP header). Alternatively, the sender may use the path MTU discovery pro-
cedure [RFC1191] to derive an appropriate MSS. The specification [RFC793] arbitrarily
assumes a value of 2 minutes for the Maximum Segment Lifetime (MSL). The MSL controls the
maximum rate at which segments may be sent before the sequence numbers wrap around.

A TCP receiver sends positive acknowledgements (ACKs) for segments that are received cor-
rectly and in-order and duplicate acknowledgements (DUPACKs) for segments that are
received correctly but out-of-order. No feedback is provided for segments received in error.
ACKs may be generated for every segment, or for every other segment if the delayed-ACK
mechanism [RFC1122] is used. DUPACKs may not be delayed. Both types of acknowledge-
ments contain the so-called ACK number that is next sequence number that the TCP receiver

1. Note the slight illogicality: Although both the TCP header and the application layer payload together constitute a segment,
the segment size, in particular the MSS, only applies to the payload.

Background ___ 11

expects to receive. A DUPACK contains the same ACK number as the last sent ACK. Thus, a
DUPACK does not convey which segment was received correctly (unless Selective Acknowl-
edgement Options [RFC2018] are used). The segments or bytes the TCP sender has sent and
which are waiting to be acknowledged are called outstanding.

Two different error recovery strategies have been specified for TCP: (1) timeout-based retrans-
mission, and (2) DUPACK-based retransmission. In the latter case a retransmission - a so-
called fast retransmit - is triggered when three1 successive DUPACKs with the same ACK
number have been received independent of the retransmission timer [Jac90a]. Section 2.2.2
provides a detailed description of TCP’s retransmission timer. TCP’s error recovery is fairly
persistent. It retransmits a single segment twelve times which corresponds to roughly
9 minutes before the connection is aborted.

Flow control is provided through the well-known sliding window mechanism. ACKs sent by
the TCP receiver carry the advertised window, which limits the number of bytes the TCP
sender may have outstanding at any time. The advertised window (usually) corresponds to the
size of TCP receiver’s receive socket buffer. End-to-end protocols that implement sliding win-
dow flow control, like TCP, share an important self-clocking property [Jac88]. We explain this
with Figure 2-1 (a modified version of a figure taken from [Jac88]) showing a schematic repre-
sentation of a sender and a receiver on high bandwidth networks connected by a slow link, the
bottleneck link, that is error-free. The vertical dimension is bandwidth, the horizontal dimen-
sion is time. Each of the shaded boxes is a packet. Because “bandwidth x time = bits”, the area
of each box is the packet size. Thus, a packet on the slow link (occupying less in the vertical

1. Note, that most implementations define a DUPACK-Threshold. However, that threshold is commonly set to three.

TB

TB

TB

TB

TB

Sender Receiver

queued
packets

pipe
capacity

Figure 2-1: The “ACK Clock”.

12 __ CHAPTER 2

dimension) has to spread more in time (occupying more in the horizontal dimension).
Figure 2-1 shows the ideal case in which a single sender fully utilizes the non-shared bottle-
neck link with a fixed bandwidth and always sends fixed size segments. In that case the ACK
inter-arrival time at the sender is constant and equal to the packet transmission delay over the
bottleneck link, TB. This constant stream of returning ACKs is referred to as the ACK clock.
The arrival of an ACK “moves the sliding window to the right” by one segment and “clocks
out” a new segment. Consequently, for every packet that leaves the bottleneck link, a new
packet arrives.

2.2.2 TCP-Lite’s Retransmission Timer

While data is outstanding the TCP sender samples the path’s RTT by timing the difference
between sending a particular segment and receiving the corresponding ACK. Older TCP
implementations only time one segment per RTT, whereas newer implementations use the
timestamp option [RFC1323] to time every segment. Timing every segment allows much
closer tracking of changes in the RTT. When using the timestamp option, the TCP sender
writes the current value of a “timestamp clock” into a 12 bytes option field in the header of
each outgoing segment. The receiver then echos those timestamps in the corresponding ACKs
according to the rules defined in [RFC1323]. When receiving an ACK the TCP sender deter-
mines the RTT by calculating the difference between the current value of its “timestamp clock”
and the timestamp echoed in the ACK. In the context of TCP, we speak of “the RTT” when
referring to the RTT of the last segment for which the sender received the ACK, independent
of whether the sender had timed that segment to derive the RTT.

We refer to the RTT sampling rate as the number of RTT samples the TCP sender captures per
RTT divided by the TCP sender’s load. In case the TCP sender times every segment and the
TCP receiver acknowledges every segment, the RTT sampling rate is 1. If the TCP sender
times every segment and the TCP receiver acknowledges every other segment (delayed-ACK),
the RTT sampling rate is 1/2. If the TCP sender only times one segment per RTT, the RTT sam-
pling rate is the reciprocal of the TCP sender’s load. The closer the RTT sampling rate is to 1
the more accurately the TCP sender measures the RTT.

The retransmission timeout value (RTO) is the time that elapses after a packet has been sent
until the sender considers it lost and therefore retransmits it. This event is called a timeout. The
RTO is a prediction of the upper limit of the RTT which - especially on an end-to-end path
through the Internet - may vary considerably for various reasons. The time that remains until
the timeout for a packet occurs is maintained by the retransmission timer state (REXMT).
Thus, the RTO is the REXMT’s initial value. We use the term retransmission timer to refer to
the combination of REXMT and RTO.

Background ___ 13

The retransmission timer is a key feature of a reliable transport protocol like TCP. It can
greatly influence end-to-end performance. A too optimistic retransmission timer often expires
prematurely. Such an event is called a spurious timeout. It causes unnecessary traffic, so-called
spurious retransmissions, reducing a connection’s effective throughput. In TCP, timeouts also
trigger congestion control (explained in Section 2.3.2), that may additionally reduce the end-
to-end throughput. A retransmission timer that is too conservative may cause long idle times
before the lost packet is retransmitted. This can also degrade performance. This is obvious for
interactive flows. But it also affects bulk data transfers whenever the TCP sender has
exhausted the window limiting the number of outstanding segments before the retransmission
timer expires.

In the following, we refer to TCP-Lite’s retransmission timer as the Lite-Xmit-Timer. We use
the index L (Lite) as a qualifier for a metric when referring to its definition or implementation.
We omit that qualifier when discussing a particular metric in general. The following set of
equations define RTOL [JK92]. In its implementation, RTOL is updated every time the TCP
sender completes a new RTT measurement, denoted as RTTSample.

SRTT is the so-called smoothed RTT estimator. SRTTL is a low-pass filter that keeps a memory
of a connection’s RTT history with a fixed weighing factor of 7/8. DELTAL is the difference
between the latest RTTSample and the current SRTTL. RTTVAR is the so-called smoothed RTT
deviation estimator. Through RTTVAR, the RTO accounts for variations in RTT. RTTVARL is a
low-pass filter that keeps a memory of a connection’s RTT deviation history with a fixed
weighing factor of 3/4. We refer to the constants 1/4 and 1/8 as the estimator gains and to the
constant 4 as the variation weight. Little motivation other than implementation efficiency is
provided in [JK92] for this particular set of constants.

REXMT and RTO are maintained in multiples of ticks, i.e., some fraction of a second that is
operating system dependent. This is also referred to as the timer granularity. REXMTL is based
on a so-called heartbeat timer provided by the BSD operating system implementing a timer
granularity of 500 ms. The heartbeat timer expires every 500 ms, triggering a specific interrupt
routine that updates the REXMTL (decrements it by one tick) of each active TCP connection.
This is done independent of whether one of those REXMTL would actually go to zero or not. If

DELTAL RTTSample SRTTL–=

SRTTL SRTTL
1
8
--- DELTAL×+=

RTTVARL RTTVARL
1
4
--- DELTAL RTTVARL–()×+=

RTOL MAX SRTTL 4 RTTVARL×+ 2 ticks×,()=

14 __ CHAPTER 2

REXMTL was initialized with a value of one it could expire anywhere between 0 - 1 tick,
because the initialization event is out of phase with the heartbeat timer. Therefore, a minimum
of 2 ticks is required for RTOL to prevent spurious timeouts in case
evaluates to one.

We call the time that has elapsed since a segment was sent the age of a segment. Likewise we
refer to the oldest outstanding segment as that segment in the TCP sender’s send socket buffer
with the highest age. That segment also carries the lowest sequence number of all outstanding
segments. It is the segment that gets retransmitted when REXMT expires. TCP-Lite maintains
a single REXMT per TCP connection. The following equation defines REXMTL. When a seg-
ment is sent and REXMTL is not active, it is started (initialized with RTOL). When an ACK
arrives that acknowledges the oldest outstanding segment and more segments are still out-
standing, REXMTL is re-initialized with RTOL.

We briefly summarize related work concerning the Lite-Xmit-Timer. Karn’s algorithm [KP87]
must be implemented in TCP [RFC1122]. It prevents a clamped retransmission timer by ignor-
ing the RTTSample derived from a retransmitted segment and doubling the RTO (exponential
timer backoff) up to a maximum of two times MSL, i.e., 240 seconds, each time REXMT
expires for the same segment. This makes it possible to eventually collect a valid RTTSample

again. Otherwise the sender might get stuck retransmitting the oldest outstanding segment
while REXMT is clamped at too low a value. The authors of [BP95b] remove an inaccuracy in
the implementation of RTOL that made it more conservative then intended in its definition.
This has been updated accordingly in later TCP implementations (e.g., in the FreeBSD operat-
ing system). Through trace-driven simulation, the Lite-Xmit-Timer and some of its variations
are evaluated in [AP99] against a large set of real measurements. The authors conclude that the
RTO minimum (2 x ticks, i.e., 1 second) dominates the performance of the Lite-Xmit-Timer
and that its performance can be further increased when a timer granularity of 100 ms or less is
implemented. However, the study also concludes that the estimator gains and the RTT sam-
pling rate have little influence on the Lite-Xmit-Timer’s performance. We disagree with the
latter conclusion and show in Section 5.3.2 that in fact the opposite is the case.

2.2.3 TCP/IP Header Compression

Although, TCP/IP header compression [RFC1144], [RFC2507] is a link layer mechanism, it
has a lot to do with TCP’s end-to-end error recovery. It is commonly implemented as part of a
link’s framing protocol, and is used to reduce the per packet overhead transmitted over the link.
In the common case, a default size TCP/IP header of 40 bytes is compressed to 4 bytes. This

SRTTL 4 RTTVARL×+

REXMTL RTOL=

Background ___ 15

compression ratio is possible because - apart from the sequence number, the ACK number, and
the checksums (one for the IP header and one for the TCP segment) - not much changes in the
headers from packet to packet of the same flow. The advantages of header compression are
cost savings on links with volume based charging and increased link throughput. For example,
if the link’s MTU is 296 bytes - a size commonly used on dial-up links - TCP/IP header com-
pression increases the link’s achievable throughput by more than ten percent. Figure 2-2 (taken
from [RFC1144]) sketches the location of the compressor and the decompressor in the packet
stream.

TCP/IP header compression is a differential encoding (also called delta encoding). After the
first TCP/IP header of a flow has been transmitted uncompressed, only the encoded difference
to the preceding header, the delta, is transmitted as the header of a packet. The decompressor
derives the uncompressed header by applying the delta to the stored header of the packet that
was last received for that flow. As with other differential encoding schemes, TCP/IP header
compression relies on the fact that the deltas (more precisely the packets carrying the deltas)
are not lost or reordered on the link between compressor and decompressor. A lost delta
(packet) will lead to a series of false headers being generated by the decompressor, yielding

TCP/ IP
packe t

saved packet headers
for n f lows

Compressor
f raming

and error
detect ion

PPP Output

f raming
and error
detect ion

PPP Input

Decompresso r

saved packet headers
for n f lows

TCP/ IP
packe t

Simplex ser ia l l ink
(1/2 of real, ful l

duplex l ink)

Figure 2-2: Location of the TCP/IP header de-/compressor in the packet stream.

100100

100150

100200

100250

De- CompressCompress
D-50

D-50

D-50

D-50

Transfer
D-50

D-50

D-50

D-50

100100

100150

100200

100050 D-50 D-50 100050

100000 100000 100000 100000

Figure 2-3: Compressor and decompressor losing synchronization.

16 __ CHAPTER 2

TCP segments that have to be discarded at the TCP receiver because of checksum errors. This
is sketched in Figure 2-3 showing an initial sequence number of 100,000 which increases by
50, the delta, from packet to packet. To resynchronize the compressor and the decompressor,
[RFC1144] and [RFC2507] require that the TCP/IP headers of packets containing a retransmit-
ted segment may not be compressed. Thus, once a delta is lost, an entire flight of segments is
lost and has to be retransmitted. Even worse, since the TCP receiver does not provide feedback
for erroneous TCP segments, the TCP sender is forced into a timeout. We have measured this
effect and further discuss this issue in Section 4.2.3. [RFC1144] and [RFC2507] differ in their
robustness against lost deltas. Whereas [RFC1144] cannot tolerate a single lost delta (the case
shown Figure 2-3), [RFC2507] can tolerate the loss of a single lost delta - using the twice algo-
rithm - but also loses synchronization once two deltas are lost back-to-back.

It is worth pointing out that header compression is an example of layer violation: a particular
layer (in this case the link layer) inspects and interprets a higher layer’s headers. Typical cases
of layer violation are nodes in the network that require access to the headers of an end-to-end
protocol.

2.3 End-to-End Congestion Control in the Internet

2.3.1 Objectives and Principles

A best-effort network like the Internet does not have the notion of admission control or
resource reservation to control the imposed network load, i.e., the total number of packets that
reside within the network. A best-effort network under high network load is called congested.
If the network is in this state, host and/or router network interface buffers may overflow caus-
ing packets to be lost (dropped), i.e., congestion losses. Network end-points sharing a best-
effort network need to respond to congestion by implementing congestion control to ensure
network stability. Otherwise, the network may be driven into congestion collapse: the network
load stays extremely high but throughput is reduced to close to zero [RFC896]. Thus, the
objective of end-to-end congestion control is for network end-points to estimate (by probing
the network) their available bandwidth while ensuring network stability.

In the following, we give a general description of congestion control in the Internet, and intro-
duce related terminology. A more detailed description of these terms and concepts is provided
in Section 2.3.2, where we explain how congestion control is implemented in TCP.

A congestion control scheme has three basic elements: (1) the network must have a congestion
signal to inform the network end-points that congestion is occurring or about to occur, (2) the

Background ___ 17

network end-points must have a policy to decrease their load on the network in response to the
congestion signal, and (3) the network end-points must have a load increase policy in times
when the congestion signal is not received as this may indicate that more bandwidth has
become available at the bottleneck link. The latter is also referred to as probing (for band-
width). The key issue is the congestion signal. One distinguishes between explicit congestion
signals issued by the network and implicit congestion signals inferred from certain network
behavior by the network end-points. Routers in today’s Internet do not issue explicit conges-
tion signals1, although this might be implemented in the future [RFC2481] (see Section 2.3.3).

Two approaches have been discussed for network end-points relying on an implicit congestion
signal: delay-based [Jai89], [BP95a] and loss-based [Jac88], [Jac90a]. However, it is often not
possible to draw sound conclusions from network delay measurements (e.g., see [BV99]). In
particular, it is difficult to find characteristic measures such as the path’s minimum RTT as
required by [BP95a]. This may be due to route changes [Pax97d] or persistent congestion at
the bottleneck link. Consequently, “packet loss” is the only signal that network end-points can
confidently use as an indication of congestion. It is implemented either as a direct trigger (see
Section 2.3.2) based on the detection of a lost packet, or an indirect trigger, based on a per-
ceived packet loss rate (see Section 2.3.3) to reduce a flow’s load. Such network end-points
and their corresponding flows are loss responsive. In this dissertation, we only deal with loss
responsive flows. We often omit the qualification “loss responsive” when talking of flows.

In the absence of an explicit congestion signal, an additive increase and a multiplicative
decrease policy is required in an heterogeneous environment like the Internet to converge to
network stability [Jac88], [CJ89].

We define as the flow’s pipe capacity the minimum number of packets a flow needs to have in
flight, i.e., the minimum load, to fully utilize its available bandwidth. Packets of a flow’s load
exceeding the flow’s pipe capacity are queued in the network (see Figure 2-1). They contribute
to network congestion and an increased end-to-end delay, which also affects the flow’s own
RTT. Ideally, a network end-point would not increase its load beyond its flow’s pipe capacity.
However, this is impossible with a congestion control scheme that only relies on an implicit
congestion signal. With such a scheme the network end-points treat the network as a “black
box”, but the flow’s pipe capacity can only be known by “looking into the black box”.

A network end-point or flow is network-limited if its load is limited by congestion control.
This property is commonly associated with bulk data and rate-adaptive real-time flows, rarely
with interactive flows. Whether a network-limited flow fully utilizes its available bandwidth
depends on the number of packets the flow may have in flight beyond its pipe capacity, i.e., the
number of packets that may be queued in the network before a packet is dropped due to con-

1. At least after the source quench [Ste94] has been banned.

18 __ CHAPTER 2

gestion. A network end-point or flow that is not network-limited is called application-limited.
The load of such flows is limited by the rate at which the sending application can generate data
and/or the rate at which the receiving application can consume the data. Examples include
interactive TCP-based flows and rate-adaptive real-time flows of which the corresponding
application can run its maximum rate (highest quality) source codec. Whether an application-
limited flow fully utilizes its available bandwidth depends on the rate at which the sending/
receiving application generates/consumes data.

2.3.2 Congestion Control in TCP

The two error recovery strategies used in TCP (see Section 2.2.1) are coupled with TCP’s con-
gestion control scheme [Jac88], [Jac90a], [RFC2581] in the following way. After a timeout-
based retransmission, the TCP sender decreases its load to one segment (see the 27th RTT in
Figure 2-4). It then enters the slow start phase during which it increases the load exponentially
until the load reaches one half of its value before the timeout (see the 30th RTT in Figure 2-4).
The TCP sender then enters the congestion avoidance phase, where it increases the load lin-
early. The congestion avoidance phase is sometimes also called the probing phase because the
TCP sender is probing the network for more bandwidth. After a DUPACK-based retransmis-
sion, the TCP sender halves its load (see the 6th, 11th, and 18th RTT in Figure 2-4), and imme-
diately enters the congestion avoidance phase. This behavior is justified because a packet loss
usually indicates congestion somewhere along the path and a timeout indicates more severe
congestion. Load above the “Pipe Capacity” line in Figure 2-4 is queued in the network.

The implementation of this congestion control scheme is intertwined with TCP’s window-
based flow control scheme through the use of two sender-side state variables: the slow start
threshold (ssthresh) and the congestion window (cwnd), which are both measured in bytes
[Jac88]. A TCP sender is never allowed to have more bytes outstanding than the minimum of
the advertised window and the congestion window. That is, a TCP sender’s load is limited by

0

2

4

6

8

10

12

14

16

18

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Tim e (k x RTT)

Lo
ad

 (
n

x
M

S
S

) P ipe Capacity

3rd DUPACK

3rd DUPACK 3rd DUPACK
Timeout

Slow Start
Threshold
Reached

Figure 2-4: A sample evolution of the congestion window.

Background ___ 19

the flow control imposed by the receiver and by the congestion control (implicitly) imposed by
the network. In the latter case a TCP flow is called network-limited as defined above, in the
former case it is called receiver-limited. In addition, a TCP sender’s load is limited by the size
of the TCP sender’s send socket buffer that is used to hold outstanding segments in case they
need to be retransmitted. Such TCP flows are called sender-limited. Because the socket buffer
sizes are controlled by the application, we consider receiver- and sender-limited TCP-based
flows as special cases of application-limited flows.

Figure 2-5 shows the finite state machine1 implemented for the TCP sender that results in the
congestion control behavior depicted in Figure 2-4. When a connection is established, ssthresh
and cwnd are initialized to 64 KBytes and MSS, respectively, and the connection enters the
slow start phase. In that phase every ACK increases cwnd by one MSS causing an exponential
increase in cwnd over RTT, i.e., cwnd is doubled per RTT2.

As soon as cwnd exceeds ssthresh, the connection enters the congestion avoidance phase. In
that phase every ACK increases cwnd by MSS2/cwnd. This causes a linear increase in cwnd
over RTT, i.e., cwnd is increased by one MSS per RTT3. When the third DUPACK is received
that triggers the fast retransmit (either during slow start or during congestion avoidance), one
half of the current value of cwnd is stored in ssthresh4, and the connection enters the fast
recovery phase [Jac90a].

The purpose of the fast recovery phase is to reduce the load on the network by one half. This is
accomplished by suppressing the transmission of new segments for the first half of the return-

1. To not confuse the diagram, we do not show the end state. For a complete finite state machine a transition (“disconnect”)
from each of the states shown in the diagram to the end state must be added.

2. Such an ACK clocks out two segments: one because the sliding window “moved right” by one segment and another one
because cwnd increased by one segment. In case delayed-ACKs are used, even three segments are clocked out because in
that case, the sliding window “moved right” by two segments.

3. MSS2/cwnd equals 1/cwnd if cwnd is expressed in multiples of MSS, not bytes. The ACK at the end of each flight will con-
sequently clock out two segments. No segment is sent for the other ACKs of a flight due to the Nagle algorithm [RFC896]
which prevents TCP from sending less than a full-sized segment when the sender is expecting an ACK.

4. Note, that the value of ssthresh is always adjusted to a multiple of MSS and is bounded by a minimum of 2 x MSS.

IF(cwnd > ssthresh)
3rd DUPACK

ssthresh ← cwnd / 2
cwnd ← ssthresh + 3 x MSS

connect
ssthresh ← 65535

cwnd ← M S S

s low
start

T imeout
ssthresh ← cwnd / 2

cwnd ← M S S

ACK
cwnd ← cwnd + M S S

ACK
cwnd ← ssthresh + M S S

fast
recovery

DUPACK
cwnd ← cwnd + M S S

congest ion
avoidance

ACK
cwnd ← cwnd + M S S2 / cwnd

Figure 2-5: Congestion control in TCP.

20 __ CHAPTER 2

ing DUPACKs (cwnd was set to (ssthresh + 3 x MSS), i.e., cwnd was halved and inflated for
the first three DUPACKs) and by sending a new segment for each DUPACK of the second half
(cwnd is inflated by MSS for every DUPACK returning after the third DUPACK). When the
fast retransmit is acknowledged, cwnd is set to one half of what its value was before the fast
retransmit was triggered plus MSS, and the connection enters the congestion avoidance phase.

When a timeout occurs (either during slow start or during congestion avoidance), one half of
the current value of cwnd is stored in ssthresh, cwnd is set to MSS, and the connection enters
the slow start phase. Note, that the congestion window is updated during the entire lifetime of
the connection but only has an effect as long it is smaller than the advertised window, i.e.,
when the connection is network-limited.

2.3.3 New Developments

In this subsection we briefly explain the following three important developments related to
congestion control in the Internet.

• Active Queue Management1

• Explicit Congestion Notification2

• “TCP-friendly” Congestion Control.

Our purpose is to show that even with the latest developments (1) “packet loss” will remain an
important congestion signal in the Internet, (2) no mechanisms exists today that could be used
by the network end-points to distinguish between a congestion loss and an error loss, and (3)
also non-TCP flows, e.g., real-time flows respond to a packet loss by reducing their load.

It has become clear that TCP’s congestion control mechanisms, while necessary and powerful,
are not sufficient to provide good service in all circumstances. Basically, there is a limit to how
much control can be accomplished from the end-points of the network. Some mechanisms are
needed in the routers to complement the network end-point’s congestion control mechanisms.
Active queue management [RFC2309] is such a mechanism.

To a rough approximation, queue management algorithms manage the length of packet queues
by dropping packets when necessary or appropriate. The traditional technique for managing
router queue lengths is to set a maximum length (in terms of packets) for each queue, accept
packets for the queue until the maximum length is reached, then reject (drop) subsequent
incoming packets until the queue decreases because a packet from the queue has been transmit-

1. The description of active queue management is to a large extent drawn from the text of [RFC2309].

2. The description of explicit congestion notification is to a large extent drawn from the text of [RFC2481].

Background ___ 21

ted. This technique is known as tail drop, since the packet that arrived most recently (i.e., the
one on the tail of the queue) is dropped when the queue is full. This method has an important

drawback. It allows queues to maintain a full (or, almost full) status for long periods of time,

since tail drop signals congestion (via a packet drop) only when the queue has become full.
This prevents the queue from absorbing packets that arrive in bursts which is a great concern

(see [RFC2309] for detail). The solution is for routers to drop packets before a queue becomes

full, so that network end-points can respond to congestion before interface buffers overflow.
Such a proactive approach is called active queue management. By dropping packets before

interface buffers overflow, active queue management allows routers to control when and how

many packets to drop. The main advantages are that packet bursts can be absorbed by the
queue, i.e., do not have to be dropped. Furthermore, the smaller queues reduce the end-to-end

delay, thus benefiting real-time flows.

Active queue management mechanisms may use one of several methods for indicating conges-

tion to the network end-points. One is to use packet drops, as is currently done. However,
active queue management allows the router to separate policies of queueing or dropping pack-

ets from the policies for indicating congestion. Thus, active queue management allows routers

to explicitly mark packets to signal congestion, instead of relying solely on packet drops. The

Explicit Congestion Notification (ECN) scheme proposed in [RFC2481] provides a congestion

indication for incipient congestion where the notification can sometimes be through marking
packets rather than dropping them. While ECN is inextricably tied up with active queue man-

agement at the router, the reverse does not hold; active queue management mechanisms have

been developed and deployed independently from ECN, using packet drops as indications of
congestion in the absence of ECN in the IP architecture.

The ECN scheme requires an ECN field in the IP header with two bits. The ECN-Capable

Transport (ECT) bit would be set by the sending network end-point to indicate that both net-

work end-points are ECN-capable. The Congestion Experienced (CE) bit would be set by the
router to indicate congestion to the network end-points. Upon the receipt by an ECN-Capable

network end-point of a single CE packet, the congestion control algorithms followed at the net-

work end-points must be essentially the same as the congestion control response to a dropped
packet. For example, in ECN-capable TCP, the TCP sender is required to halve its congestion

window for any flight of segments containing either a packet drop or an ECN indication. It is

important that the network end-points react to congestion at most once per RTT, to avoid react-
ing multiple times to repeated indications of congestion within a RTT.

It is important to note that ECN is not a replacement for “packet loss” as a congestion signal,

nor is it a mechanism that could be used by the network end-points to distinguish between a
congestion loss and an error loss. Non-ECN-capable routers may exist for a long time in the

22 __ CHAPTER 2

Internet that only drop packets to indicate congestion, and ECN-capable routers under heavy
network load may have no other choice but to drop packets.

The Internet is continuously changing. Non-TCP-based flows such as real-time flows are
becoming increasingly important. To ensure network stability, such flows must also become
loss responsive. Furthermore, because of the dominant role of TCP, the congestion control cho-
sen for non-TCP-based flows must be equivalent to TCP’s congestion control. Otherwise, if it
was more aggressive, it would create an unfairness towards TCP flows, and vice versa if it was
less aggressive. For that purpose, a rate-based equivalent to TCP’s window-based congestion
control scheme, the so-called “TCP-friendly” congestion control scheme, has been developed
(e.g., see [MSMO97]). It should be used with rate-adaptive real-time flows.

The following formula yields the “TCP-friendly” packet send rate (also known as TCP
throughput equation) for network-limited flows. It is determined by one constant, the MSS,
and two variables, the RTT and the probing loss rate p described below.

The exact derivation of the formula is not important for our work (see [MSMO97] for detail)
but the idea behind it is relevant. The formula is derived from the ideal case where a single net-
work-limited TCP bulk data transfer runs over a non-shared bottleneck link with a fixed band-
width, the TCP sender always sends full-sized segments, and no packets are lost due to trans-
mission error. In this case the TCP sender goes through periodic congestion avoidance cycles.
With the additive increase policy of one packet per round trip time, as described above, this
leads to a single dropped packet at the end of each cycle (see Figure 2-6). We call the recipro-
cal of the number of packets that are sent per cycle, including the dropped packet, the flow’s

Packet-Send-Rate
Packets per Cycle
Time per Cycle

--- MSS
RTT
----------- 3

2p
------×= =

0

5

10

15

20

25

0 5 10 15 20 25 30

Time (k x RTT)

Lo
ad

 (
n

x
M

S
S

)

Dro pp ed Packet

Muli p l icative Decreas e
(fast recover y)

N Packets send
p er C y cle

=> Probin g Loss
 Rate p = 1/N

Linear Increase
(con gestion avoidance)

Figure 2-6: Deriving the “TCP-friendly” congestion control scheme.

Background ___ 23

probing loss rate p. Note that in practice a flow’s probing loss rate might vary considerably

over time as the flow’s available bandwidth and/or the flow’s RTT changes.

The important observation for our work is that the evolution of the flow’s load as depicted in

Figure 2-6 would be the same if those periodic packet losses were caused by transmission

error, not congestion. We define as the flow’s error loss rate the rate at which packets of a

given flow are lost due to transmission error. Note, that while the probing loss rate is a property

that can only be associated with network-limited flows, the error loss rate can be associated
with both network- and application-limited flows. With these terms the following first-order

rule of thumb can be formulated: the throughput provided by a network-limited flow is insensi-

tive to transmission errors as long as the flow’s error loss rate stays below the flow’s probing

loss rate. This rule is valid as long as packet losses occur periodic. Otherwise, the error proba-
bility process might need to be considered, too.

2.4 Link Layer Error Control in Wireless Networks

A multitude of wireless networks exist today spanning a wide range features, e.g.:

• frequency band

• physical layer access (e.g., time division vs. code division)

• access vs. transit network

• cellular vs. trunk systems

• short vs. long range (for cellular systems this determines the cell size)

• multi-hop vs. single-hop radio

• degree of terminal mobility and the support for it from the network

• supported traffic type (data only, voice only, both)

Similarly, the link layer error control schemes implemented in those wireless networks can be
very different, ranging from sophisticated to almost non-existent. Some design choices exclude

certain link layer error control mechanisms, e.g., satellite links are often uni-directional

excluding the possibility of link layer error recovery. Other design choices make some link

layer error control techniques unnecessary, e.g., handover control is not an issue in geo-station-

ary satellite systems where a single satellite often covers the entire geographical area for which
service needs to be provided.

24 __ CHAPTER 2

A link that spans across the wireless segment(s), i.e., the air-interface(s), of a wireless network
is called a wireless link as opposed to a wireline link. Likewise, we refer to wireless networking
as any form of IP-based communication over paths that include wireless links. Independent of
the features of a wireless network, wireless links are often problematic: whereas Bit Error
Rates (BER) on today’s wireline links can be neglected, this is not true for wireless links. In
addition, when hosts are mobile, cell handovers (explained in Section 2.4.2) may cause data
loss and some wireless networks may in certain situations only provide intermittent connectiv-
ity. We regard intermittent connectivity as a “long” transmission error that do not have to be
treated different from “normal” transmission errors. All three cases

• may either cause packet loss due to transmission error, i.e., an error loss, or else,

• if such a loss can be prevented by link layer error control schemes, those may cause an
increased packet transmission delay over the wireless link.

Our intention in this section is to give a brief overview of the basic link layer error control
schemes that can be used to prevent an error loss. In the following subsections, we first
describe each scheme in general. Then we exemplify how they are implemented in GSM-CSD,
the Circuit-Switched Data service implemented in GSM, as that system supports all of the link
layer error control schemes that are relevant for our work. Furthermore, the GSM-CSD system
has been the basis for all of our measurement-based analysis of wireless links described in
Chapter 3 and Chapter 4. We therefore provide a brief description of the GSM-CSD system
first.

2.4.1 Circuit-Switched Data Transmission in GSM

Unlike earlier analog cellular telephone systems, data services are an integral part of a GSM
digital cellular telephone network and are equally supported together with ordinary voice ser-
vices. Figure 2-7 shows the basic components used for circuit-switched data transmission in
GSM. A mobile host, a laptop or palmtop, is connected to the GSM network using a GSM
mobile phone (Mobile Station (MS)) and a device running the Terminal Adaptation Function
(TAF). Unlike in first generation analog cellular systems, the TAF is not a modem. The modem
(running the standard modem protocols V.42/V.32) resides in the network, in the Interworking
Function (IWF) of the Mobile Switching Centre (MSC). An MSC is a backbone telephone
switch that routes circuits within the GSM network and also serves as a gateway to the fixed
Public Switched Telephone Network (PSTN). The radio interface is provided by a Base Trans-
ceiver Station (BTS) (or simply base station) which together with other BTSs is controlled by
one Base Station Controller (BSC) which in turn is bundled with other BSCs by one MSC.

Background ___ 25

The GSM air-interface itself is based on frequency division of the uplink, i.e., from the mobile
host to the network, and the downlink, i.e., from the network to the mobile host. Each carrier,
comprising a pair of one up- and one downlink frequency, is time-shared among 8 users. At
call-setup time a mobile phone is assigned a channel, defined as the tuple [carrier frequency
number, time-slot number] that remains allocated for the entire duration of the call. The up-
and downlink frequencies are offset by 3 time-slots so that a mobile phone never has to trans-
mit and receive at the same time which reduces its complexity considerably. This is sketched in
Figure 2-7. The maximum data rate over the air-interface is 9.6 Kbit/s synchronous (i.e.,
1200 bytes/s). Optionally, a reliable link layer protocol called the Radio Link Protocol (RLP)
(explained in Section 2.4.3) can be run between the TAF and the IWF, which is called the non-
transparent data service. An additional protocol called the Layer 2 Relay (L2R) protocol is
used by the non-transparent data service for flow control, and communicating status control
signals between the TAF and the IWF.

Given this architecture a mobile host then uses a standard serial link protocol like PPP to con-
nect to the Internet via GSM and a dial-in access fabric of an Internet Service Provider (ISP).
Thus, from the perspective of an ISP the GSM link appears just like any other dial-up connec-
tion. Additional details about how GSM-CSD is being enhanced to support higher bandwidth
and direct Internet access is provided in [LR99].

GSM

MSC/IWFBTS

PSTN Internet

Remote
Host

Mobile
Host

ISPTAF BSC

64
kb/s

64
kb/s

16
kb/s

L2R

RLP

IP

TCP

IP

PPP

TCP

L2R

RLP V.42

V.32

IP

PPP

V.42

V.32FEC
Inter-
leave

FEC

9.6 kb/s

Inter-
leave

Air Interface

Modem
Pools

0 1 2 3 4 5 6 7 0 1 271 RX

5 6 7 0 1 2 3 4 5 6 741 TX

Relay

MS

Figure 2-7: TCP/IP over GSM Circuit-Switched Data (CSD).

26 __ CHAPTER 2

2.4.2 Handover Control

Cellular networks provide service to a geographical area be dividing it into cells. Each cell is
operated by one base station. Many cellular networks, e.g., GSM, support terminal mobility
which among other functions (e.g., location updates or paging [MP92]) requires handover con-
trol. It allows a user to roam between cells while continuing an ongoing communication. In
that case the mobile phone and the network perform an handover, which means that the com-
munication with the base station of the cell the user left is switched to the base station of the
cell the user entered. Depending on the wireless network, one distinguishes between different
handover types: intra-BTS (when only the carrier within the cell is changed), inter-BTS, inter-
BSC, and inter-MSC.

We call the anchor point that location in the network after which data sent downlink takes a
different route after a handover has been performed. Error losses may occur during a handover
to packets that are being transmitted over the air-interface (uplink and/or downlink), but also to
packets queued downlink after the anchor point (see Figure 2-8). Those packets are either dis-
carded or a (link layer) handover control mechanism ensures that they are transferred to the

B T S

Mob i l e
Host

B T S
Mob i l e

Host

B T S

Mob i l e
Host

B T S
Mob i l e

Host

Packet Queueing after
the Anchor Point

Packet Queueing before
the Anchor Point

Anchor Point

Figure 2-8: Two Approaches to implement Handover Control.

Background ___ 27

new downlink queue. If the packets are discarded, we also speak of an error loss. In GSM-
CSD, only packets that are being transmitted over the air-interface can be lost, because queu-
ing always occurs before the anchor point, independent of the handover type. More precisely,
the last downlink queue resides in the IWF which remains the same for the entire duration of a
circuit-switched data call.

In summary, handovers may cause error losses. Alternatively, handover control mechanisms
may increase the packet transmission delay in the event of an handover.

2.4.3 Link Layer Error Recovery

The Radio Link Protocol (RLP) [GSM04.22a], [GSM04.22b] is a link layer protocol that, like
TCP, provides a reliable byte stream service. It uses selective reject and checkpointing for error
recovery (see [GSM04.22a] or [Tan89] for detail on those mechanisms). RLP’s error recovery
persistency can be configured via a parameter that defines the maximum number of
retransmissions of a single frame. The default of that parameter is 6 which increases the packet
transmission delay by 2.5 s in the worst case. RLP may be implemented as a fully-reliable or a
semi-reliable protocol. When implemented as a semi-reliable protocol, RLP resets the link, i.e.,
re-initializes the sequence numbers, when its error recovery persistency is reached.

The RLP frame size is fixed at 240 bits aligned to the FEC coder (explained in Section 2.4.4).
Thus, an RLP frame does not require begin/end delimiters. RLP introduces an overhead of
48 bits per RLP frame1, yielding a user data rate of 9.6 Kbit/s in the ideal case2. Note, that
when accessing the Internet via GSM-CSD two link layer protocols are used, RLP and a fram-
ing protocol like PPP. Both link layer protocols have different termination points. The link is
provided by PPP, while RLP only spans a section of that link. Because RLP is terminated in the
IWF, it ensures reliability in the event of cell handovers. In fact, when RLP is running, the last
downlink queue is the send buffer of the RLP sender.

In summary, link layer error recovery is a mechanism that, depending on its error recovery per-
sistency, can reduce a flow’s error loss rate. The drawbacks are a reduced user data rate due to
the link layer protocol overhead, and that the packet transmission delay becomes variable
(bounded by the error recovery persistency).

1. Of those 48 bits, 8 bits are actually introduced by L2R.

2. Note that the transparent (not running RLP) GSM-CSD service introduces a wasteful overhead of modem control informa-
tion that also reduces the user data rate to 9.6 Kbit/s.

28 __ CHAPTER 2

2.4.4 Forward Error Correction and Interleaving

The slot cycle time on a GSM-CSD channel is 5 ms on average. This allows 114 bits to be
transmitted in each slot, yielding a gross data rate of 22.8 Kbit/s. The fundamental transmis-
sion unit in GSM is a data block (or simply block). The size of a data block encoded with the
Forward Error Correction (FEC) scheme defined for GSM-CSD [GSM04.21] is 456 bits (the
payload of 4 slots). The size of an unencoded data block is 240 bits, resulting in a data rate of
12 Kbit/s (240 bits every 20 ms).

An FEC scheme is used to protect data against bit transmission errors by adding redundant
information (coding) before it is transmitted. The redundant information is used by the FEC
decoder to reconstruct the unencoded data block. Whether the data is correctly reconstructed
depends on the number and distribution of bit errors in the corresponding encoded data block
after its transmission. Note that an FEC decoder cannot perform error detection, i.e., it cannot
verify whether it has correctly decoded a received data block. In case the non-transparent
GSM-CSD service is used, this responsibility is left to RLP. The performance (strength) of an
FEC scheme, e.g., defined by the probability that data blocks are correctly decoded, depends
on the characteristics of the physical medium and the amount of redundant information added
per data block.

Interleaving is a technique that is used in combination with FEC to combat burst errors.
Instead of transmitting a data block as one entity, it is divided into smaller fragments. Frag-
ments from different data blocks are then interleaved before transmission. A few of these
smaller fragments can be completely corrupted while the corresponding data block can still be
reconstructed by the FEC decoder. The interleaving scheme chosen for GSM-CSD interleaves
a single data block over 22 TDMA slots [GSM05.03]. Transmitting it as one entity would only
require four consecutive slots. The disadvantage of this deep interleaving is that it introduces a
significant one-way latency, i.e., a fixed delay component of the packet transmission delay that
is independent of the packet size, of approximately 90 ms1. This high latency can have a sig-
nificant adverse effect on interactive protocols [LR99]. Further details on FEC and interleaving
can be found in [MP92].

In summary, FEC and interleaving are a mechanisms that can reduce a flow’s error loss rate
while keeping the packet transmission delay constant. The drawbacks are a reduced user data
rate due to the FEC overhead, and (in some cases) additional latency introduced into the packet
transmission delay by the interleaving scheme.

1. Note that voice is treated differently in GSM. Unencoded voice data blocks have a size of 260 bits and the interleaving
depth is 8 slots.

Background ___ 29

Figure 2-9 exemplifies how two consecutive PPP frames are transmitted in GSM-CSD. As in
Figure 2-1, the vertical dimension is bandwidth and the horizontal dimension is time. Each of
the shaded boxes corresponds to a (PPP or RLP) frame, data block, or the transmission unit of
the interleaver. The area of each box is the data unit size. In this example the PPP frames each
occupies 80 ms in the time dimension. An RLP frame and an FEC block always occupies
20 ms. Both RLP and the FEC layer add overhead as explained above and thus more band-
width is required for the same amount of PPP data. Figure 2-9 also indicates how interleaving
adds latency thereby increasing the overall packet transmission delay over the air-interface to
170 ms.

2.5 The Problem: Inefficient Cross-Layer Interactions

In general terms, we speak of an inefficient cross-layer interaction when functions at different
protocol layers interact in an unforeseen or inadvertent manner, which then results in reduced
performance provided by the network and/or the network end-points. How much the perfor-
mance is affected by inefficient cross-layer interactions depends on the frequency of their
occurrence over a given period of time and the impact of each individual one.

A number of inefficient cross-layer interactions have been described in literature. For example,
the authors of [FJ94] study the inefficient effects that synchronization of periodic routing mes-

Figure 2-9: Error control in GSM Circuit-Switched Data.

9.6 kbit/s

22.8 kbit/s

170 ms

22.8 kbit/s

PPP

RLP

FEC

Interleavin g

12.0 kbit/s

PPP Frame
(80 ms)

RLP Frame
(20 ms)

FEC Encoded
Block (20 ms)

30 __ CHAPTER 2

sages cause, and show that this can be avoided by the addition of randomization to the traffic
sources. The authors of [KM87] propose solutions to mitigate the inefficient effects that IP
fragmentation causes for the processing performance of routers and the throughput perfor-
mance provided by reliable end-to-end protocols.

In this section, we explain all known inefficient cross-layer interactions that may occur in
wireless networking. Their root lies in the occurrence of one of the following two link layer
events already described in Section 2.4:

• packet loss due to transmission error, i.e., error loss, and

• increased packet transmission delay caused by a link layer error control scheme.

Directly or indirectly via another link layer function, these may trigger end-to-end error and
congestion control schemes. If triggered, this may reduce the performance provided by the
respective network end-points. This concerns throughput, response times, or human perceived
quality (e.g., for audio). In some cases, the triggering of an end-to-end control schemes is the
result of a misinterpretation of the event by a network end-point. The key reason is that the
Internet does not provide mechanisms for a network end-point to distinguish between

• congestion loss,

• error loss, and

• packets that are considered lost by a network end-point when in fact those packets are not
lost but merely delayed in the network.

Moreover, it seems unlikely that such mechanisms will get developed (and deployed) soon
(see also Section 2.3.3). That would require explicit signalling from a link layer to a network
end-point. That is not always possible, e.g., when the signal needs to cross the link that is
“down” which might have been the trigger for the signal in the first place. Such cross-layer sig-
nalling would also require that the link layer can identify the respective network end-point
from information in the packet headers. That is also not always possible, e.g., when network
layer encryption spans the link1.

2.5.1 Underestimation of the Available Bandwidth

The fundamental problem of wireless networking is that a loss responsive network end-point
might underestimate its available bandwidth. If this happens, it results in unnecessarily
reduced application layer performance, particularly throughput, i.e., the corresponding appli-
cations get less than their fair share of the bottleneck link’s bandwidth. The reason is that error
losses falsely trigger end-to-end congestion control, i.e., a loss responsive network end-point

1. Unless, the link layer was a trusted party and could decrypt and later again encrypt a flow’s packets.

Background ___ 31

mistakes the packet loss as a congestion signal. This inefficient cross-layer interaction is
depicted in Figure 2-10.

However, transmission errors on a wireless link do not necessarily have to result in an underes-
timation of the available bandwidth. It depends on the flow’s properties over its lifetime,
mostly its error loss rate, load, and pipe capacity. In Section 2.3.3 we formulated the rule that
the throughput provided by a network-limited flow is insensitive to transmission errors as long
as the flow’s error loss rate stays below the flow’s probing loss rate1. Beyond that, it depends
on the ratio of the flow’s load to the flow’s pipe capacity and how congestion control is imple-
mented. For example in TCP, if packet losses were always detected by DUPACKs and the load
at times when no packet losses occurred may exceed two times (or more) the pipe capacity,
then the flow’s error loss rate may even be larger then the flow’s probing loss rate without
causing underestimation of the available bandwidth. In that case, the TCP flow would always
have more packets queued in the network than could drain from the bottleneck link during the
fast recovery phase, i.e., the flow’s available bandwidth would always be fully utilized. In
Section 5.2.3 we provide a more illustrative analysis of this issue. For application-limited
flows to which we cannot assign a probing loss rate, the problem is similar. For those, it solely
depends on the ratio of the flow’s load to the flow’s pipe capacity as described above.

2.5.2 Inefficiency of End-to-End Error Control

Handling error losses by an end-to-end, instead of a link layer, function is often inefficient
resulting in reduced application layer performance. Two such cases are depicted in

1. The probing loss rate the flow would have over the same wireless link in the (ideal) error-free case.

transmission
errors

link layer
error

detection

increase in
flow's error

loss rate

triggers

causes

falsely triggers

end-to-end
congestion

control

may
cause

under-
estimation of

available
bandwidth

results in

reduced
application layer

performance

Figure 2-10: Cross-layer interaction leading to underestimating the available bandwidth.

32 __ CHAPTER 2

Figure 2-11. The figure does not show interactions with end-to-end congestion control which
in addition gets falsely triggered causing the problems described in Section 2.5.1.

Lost packets of a reliable flow need to be retransmitted end-to-end. Thus, each packet that is
lost has wasted resources on each link on the path’s segment “before” the link where the loss
occurred. If the bottleneck link is located on that segment than those lost packets have also
wasted available bandwidth. When caused by error losses, this inefficiency could possibly
have been prevented by link layer error recovery. However, this might in turn trigger the ineffi-
cient cross-layer interactions explained in Section 2.5.3 and Section 2.5.4.

Lost packets of a real-time flow lead to a reduced user level quality (e.g., the user perceived
audio quality) if application layer FEC and interleaving (if those functions exist) fail to recon-
struct the packet. When caused by error losses, this inefficiency could possibly have been pre-
vented or mitigated by an appropriate link layer FEC and interleaving scheme.

2.5.3 Overly Strong Link Layer Error Control

The opposite of the case described in Section 2.5.2 is the case when link layer error control too
strongly protects the wireless link. Figure 2-12 shows the different inefficient cross-layer inter-
actions this may cause. First, FEC and interleaving increase the packet transmission delay by

transmission
errors

link layer
error

detection

error
losses

triggers

causes

triggers

end-to-end
error

recovery

may
cause

results in

reduced
application layer

performance

end-to-end
real-time

error control

triggers

application
layer FEC &
interleaving

failure

end-to-end
retransmissions

causes

results in

Figure 2-11: Cross-layer interaction caused by the inefficiency of end-to-end error control.

Background ___ 33

introducing latency. For example, in GSM-CSD a one-way latency of more than 90 ms is intro-
duced (see Section 2.4.4). This might exceed the tolerable delay of some real-time applica-
tions. Although not shown in Figure 2-12, it also increases the response times that interactive
reliable flows may provide [Bau97], [LR99].

Another variant of the same problem is when link layer error recovery is performed for real-
time flows. In the case of a transmission error, this increases the packet transmission delay of
the respective packet. That in turn may cause subsequent packets to also get delayed due to the
link layer in-order delivery function, even if those packets were not affected by a transmission
error. When the link layer in-order delivery function serves multiple different flows, this prob-
lem is known as head of line blocking. For example, error recovery may delay the delivery (to
the receiving user process) of a large TCP segment belonging to one flow, while the link layer
in-order delivery function blocks the delivery of subsequent packets belonging to other flows
(e.g., small packets from a real-time flow or small ACKs from a second TCP flow) that have
already correctly arrived at the receiving link layer. Those delays might exceed the tolerable
delay of some real-time applications and/or disrupt the ACK clock of the second TCP flow.
The latter (not shown in Figure 2-12) might lead to so-called ACK compression [ZSC91],
[Mog92] which may cause further problems [Pax97c], e.g., that a TCP sender responds by
sending a packet burst that might lead to multiple dropped packets.

transmission
errors

link layer
error

recovery

single
packet

delayed

trigger

causes

may
trigger

link layer
in-order
delivery

results in

subsequent
packets
delayed

end-to-end
real-time

error control

causes

may trigger

may trigger

reduced
application layer

performance

"too late"
packet(s)
discarded

causes

link layer
FEC &

interleaving

causes

fixed
transmission

latency

may trigger

Figure 2-12: Cross-layer interaction caused by overly strong link layer error control.

34 __ CHAPTER 2

2.5.4 Competing Error Recovery

Undesirable competition is introduced when error recovery is run both at the link layer and
end-to-end. It might lead to the following wasteful situation. The link layer is retransmitting
one or more packets, i.e., delaying the packet(s) in the network. Simultaneously, one of the net-
work end-points considers the packet(s) lost, and falsely triggers that the same packets are
retransmitted end-to-end. Those spurious end-to-end retransmissions reduce the end-to-end
throughput and increase application layer response times. It may even occur that two or more
copies of the same packet reside in the send buffer of the sending link layer at the same time.

In general, one could say the competing error recovery is caused by an inner control loop (link
layer error recovery) reacting to the same signal as an outer control loop (end-to-end error
recovery), without coordination between both loops (see Figure 2-13).

For TCP, two forms of inefficient cross-layer interactions can be caused by competing error
recovery, depending on whether the link layer implements the in-order or out-of-order delivery
function. Similar interactions are likely to exist for other reliable end-to-end protocols. Both
cases are shown in Figure 2-14, and are explained in turn below. The figure does not show
interactions with end-to-end congestion control which is falsely triggered if end-to-end error
control is falsely triggered. This causes additional problems that are described in Section 2.5.1.

If a link layer implements the in-order delivery function the receiving link layer delays all
packets of a flow until they have been received correctly and in-order (assuming that the error
recovery persistency is not reached and that no alternative route exists between the TCP sender
and receiver). During this time the TCP sender does not receive any of the corresponding
ACKs1. It is forced into a spurious timeout (and subsequent slow start) that will trigger the

1. Either the segments containing the data have not yet reached the TCP receiver because they are queued at the link layer, or
the corresponding ACKs itself are queued at the link layer.

Internet
Wire less
Access

Network
Host Host

End-to-End Error
Recovery

Link Layer
 Error Recovery

Figure 2-13: Uncoordinated control loops reacting to the same signal.

Background ___ 35

spurious retransmission of the oldest outstanding segment. In Section 5.1, we show that TCP
has another fundamental problem that eventually leads to the (go-back-N-style) spurious
retransmission of an entire flight of packets after a spurious timeout.

A packet re-ordering event occurs when a packet arrives at the receiving network end-point
after one or more packet(s), that had left the sending end-point later, have already arrived. We
call the number of packets that had already arrived out-of-order, the re-ordering length. For
example, if packets 1 - 10 are sent but packet 1 arrives last, then the re-ordering length is 9.

If a link layer implements the out-of-order delivery function, it may re-order packets. If seg-
ments of a TCP connection are re-ordered beyond the DUPACK-Threshold, i.e., if the re-
ordering length is equal or greater than three (the commonly implemented DUPACK-Thresh-
old), this triggers a spurious fast retransmit, i.e., a spurious retransmission that was not trig-
gered by a spurious timeout, and subsequently the fast recovery phase. Also in Section 5.1, we
study this inefficient cross-layer interaction in detail.

2.5.5 Failure of Link Layer Differential Encodings

The problem that uncorrected transmission errors cause for link layer differential encodings,
such as TCP/IP header compression, has already been described in Section 2.2.3. The ineffi-

transmission
errors

link layer
error

recovery
triggers

causes

single
packet

delayed
may

trigger

link layer
in-order

(out-of-order)
delivery

subsequent
packets
delayed

(re-ordered)

causes

may
falsely trigger

may
falsely trigger

spurious
end-to-end

retransmissions

results in

end-to-end
error

recovery
causes

reduced
application layer

performance

Figure 2-14: Cross-layer interaction leading to competing error recovery.

36 __ CHAPTER 2

cient cross-layer interaction that this causes is depicted in Figure 2-15. The figure does not
show interactions with end-to-end congestion control which in addition gets falsely triggered
causing the problems described in Section 2.5.1. The arrow “may trigger” is labeled that way
because [RFC1144] cannot tolerate a single packet loss, whereas [RFC2507] cannot tolerate it
if two or more packets are lost back-to-back. We have measured that effect and illustrate it in
Section 4.2.3 and Section 4.3.3.

Failure of the TCP/IP header decompressor reduces the end-to-end throughput and increases
application layer response times in two ways. First the end-to-end retransmissions reduce the
performance as described in Section 2.5.2. Secondly, the TCP sender is forced into a timeout
(see Section 2.2.3), which may result in an idle time where no packet is in transit end-to-end
until the retransmission timer expires. This idle time can be “long” because of the overly con-
servative retransmission timer that is implemented in TCP. The latter is further studied in
Section 5.3.

2.6 Related Work

While we are not aware of related work that studies the problem of loss responsive flows over
wireless links in general, the particular problem of TCP over wireless links has been widely
investigated. In Section 2.6.1 we briefly summarize and classify the solutions that have been
proposed in literature, and point out advantages and problems that are specific to each
approach. We ignore proposals that suggest protocols that result in flows which are not loss

transmission
errors

link layer
error

detection

single or
back-to-back
packet loss

triggerscauses

may
trigger

TCP/IP header
decompressor

failure

idle time
until xmit-timer

expires

results in

loss of an
entire flight of

packets

end-to-end
error

recovery

may
cause causes end-to-end

retransmissions

results in

causes

triggers

reduced
application layer

performance

Figure 2-15: Cross-layer interaction leading to the failure of TCP/IP header compression.

Background ___ 37

responsive, e.g., [CLZ87]. In Section 2.6.2, we evaluate those approaches with respect to
which of the inefficient cross-layer interactions explained in Section 2.5 they solve, and which
deployment concerns they raise.

2.6.1 Classification of Existing Approaches

We have categorized the proposed solutions in Figure 2-16. Note that the shaded areas indicate
whether a transport protocol or its implementation must be changed, or whether transport pro-
tocol dependent state has to be maintained in the network.

Pure end-to-end approaches do not maintain transport layer state in the network and make no
assumptions about the existence of dedicated link layer (e.g., error recovery) or network layer
(e.g., cell handover indications) support. This category includes (1) existing end-to-end proto-
cols (e.g., TCP); (2) extensions of existing end-to-end protocols and/or their implementation
(e.g., [RFC2018], [RFC2481], [SF98], and our own proposal explained in Section 5.2); and (3)
new or not widely deployed end-to-end protocols (e.g., [CLZ87]). Adding selective acknowl-
edgements (SACK) to TCP [RFC2018] is a way to deal with transmission errors over unreli-
able wireless links [BPSK96]. In case a particular segment must be retransmitted more than
once, [SF98] proposes a further enhancement to the TCP sender assuming a SACK-capable
TCP receiver.

Hard-state transport layer approaches encompass all forms of “splitting” by running a separate
transport layer connection over the wireless link. Those approaches require a Performance
Enhancing Proxy (PEP) in the network that has access to transport layer headers. The concept
was initially proposed in [BB95], and has been used in other work including satellite access
links [HK99]. Any protocol can be chosen for the wireless link, e.g., [Bau97], [BS97] and
[KRLKA97] suggest combining splitting with a link layer approach. Some split solutions
[Bau97], [BB95], [HK99], [KRLKA97] violate the end-to-end semantics of TCP’s error con-

IP
Host Internet

Pure End-to-End:

IP
Host

Hard-state Transport Layer Spli t t ing:

IP
Host

PEP
IP

Host Internet

IP
HostPEP

IP
Host Internet

Soft-state Transport Layer Caching:

IP
Host

IP
Host Internet

Pure Link Layer:

Fixed
ARQ

Fixed
ARQ

IP
HostPEP

IP
Host Internet

Cross Layer Signal l ing:

Figure 2-16: Existing approaches to solve “TCP over Wireless”.

38 __ CHAPTER 2

trol scheme. They allow the PEP to send ACKs back to the TCP sender before the correspond-
ing segments have reached the TCP receiver. The solution proposed in [BS97] implements
splitting while maintaining these end-to-end semantics. It targets the problem of frequent and/
or long disconnections. In case of disconnections, the PEP issues ACKs, which shrink the
advertised window to zero. This forces the TCP sender into persist mode [Ste94]. In this mode
the TCP sender does not suffer from timeouts nor the exponential backoff of the RTO. The
major benefit of hard-state transport layer solutions is that the end-to-end flow is shielded from
error losses on the wireless link, and that the flow can fully utilize its available bandwidth over
the entire path.

The Snoop protocol developed in [BSK95] and extended in [BK98] implements “TCP-aware”
local error recovery (as discussed further below, we avoid calling this link layer error recovery
as we associate a different meaning with that term). It also requires a PEP in the network that
has access to transport layer headers. Its advantage over split solutions is that the transport
layer state maintained in the network is soft, i.e., it is not crucial for the end-to-end connection.
This eases the implementation of handover control schemes. However, the Snoop protocol has
limitations. When sending to the mobile host, packets dropped due to congestion at a bottle-
neck link between the wireless link and the mobile host (i.e., when the wireless link is not the
last-hop link) are mistaken for error losses by the TCP-aware cache (the snoop agent). The
congestion signal, the three DUPACKs, is not propagated back to the sender. For packets sent
from the mobile host, the proposed Explicit Loss Notification (ELN) scheme [BK98] causes a
problem. If the wireless link itself, or any other link between the mobile host and the wireless
link, becomes the bottleneck, congestion losses cannot be distinguished from error losses1. An
ELN is sent in either case by the snoop agent, and the sender relies on external means to get the
congestion signal (e.g., the source quench). Consequently, in both cases the end-to-end seman-
tics of TCP’s congestion control scheme are violated. A “fix” has been proposed in [BK98] by
implementing the snoop agent symmetrically on both sides of the wireless link. The ELN
scheme can then be used to unambiguously discriminate between error losses and congestion
losses. However, the approach is equivalent to link layer error recovery (segmentation and
reassembly could be added to the snoop protocol) leaving questionable the benefit of “TCP-
awareness”.

Cross layer approaches make the flow’s sender aware of the properties of the wireless link.
This is achieved by having the link or network layer signal the transport layer about specific
events, like link outages, error losses, or cell handovers, so that it can adapt accordingly. Also
those approaches require a PEP in the network that has access to transport layer headers. The
solution proposed in [DMT96] uses the Internet Control Message Protocol (ICMP) [RFC792]
to out-of-band signal active receivers that the link is in a bad state (e.g., a link outage). The

1. In Section 4.2.2 these effects were measured where packets got dropped locally at the mobile host because of congestion at
the first-hop wireless link.

Background ___ 39

receiver reflects the signal to the sender using a dedicated TCP option field. In the network
studied in [DMT96], the reverse path did not traverse the “problem link”. The ELN scheme
proposed in [BK98] is similar, but uses in-band signals (ELNs are piggy-backed onto certain
DUPACKs as a TCP option1) to inform the TCP sender about error losses. This assumes per-
fect knowledge of such events, which in practice is difficult to implement. [CI95] focuses on
the problem of data loss caused by cell handovers. The solution does not require access to
transport layer headers in the network, but instead requires support from the mobility manage-
ment function provided by the wireless network. It suggests informing the TCP sender about a
cell handover to trigger TCP’s fast retransmit algorithm and thereby avoids idle waits for
TCP’s retransmission timer to expire to recover the loss.

Pure link layer approaches do not maintain transport layer state in the network and make no
assumptions about the existence of dedicated support from an end-to-end protocol. In particu-
lar - and as opposed to our solution of flow-adaptive wireless links explained in Chapter 4 -
pure link layer approaches do not derive any decision from information in a flow’s headers.
Link layer solutions in general (not only the “pure” ones) aim at hiding the artifacts of the
wireless link to higher layer flows. The techniques include adaptive FEC, interleaving, adap-
tive power control, and link layer error recovery protocols [GSM04.22a], [GSM04.22b],
[GSM04.60], [Kar93], [BDSZ94], [IEEE802.11]. Some wireless networks use some of these,
e.g., early commercially available Wireless Local Area Networks (WLANs), while others
implement combinations, e.g., GSM-CSD. None of the variations of the Snoop protocol are
considered as link layer error recovery (rather local error recovery) solutions. The basic differ-
ence is that true link layer solutions are not tied to the semantics of any higher layer protocol.
We also consider approaches to make TCP/IP header compression more robust against lost
packets (deltas) as link layer solutions, e.g., the twice algorithm (see Section 2.2.3) and the
header request mechanism proposed in [RFC2507]. However, in Section 4.3.3 we point out the
limitations of the twice algorithm. Moreover, we believe that the header request mechanism
will have problems over wireless links with high transmission error rates where many of the
header requests itself will be lost. Link layer error recovery implemented below TCP/IP header
compression is more effective. This is further discussed in Section 4.3.3.

For the case of TCP, the problem of competing error recovery is investigated in [DCY93]. The
study concludes that at small link transmission error rates almost all packets retransmitted at
the link layer are also retransmitted by the TCP sender (!). However, the presented analysis and
simulation are flawed. The mathematical analysis assumes that the RTO is fixed. This is an
unrealistic precondition that increases the likelihood of spurious timeouts. The simulation
ignores increases in the RTT and RTO due to congestion; packets are retransmitted entirely at
the link layer, i.e., link layer segmentation is ignored; the error recovery is a stop-and-wait pro-
tocol; and only 2 instead of 4 times the variation is used for calculating the RTO (see

1. This requires that the IP and the TCP checksum be re-computed.

40 __ CHAPTER 2

Section 2.2.2). These are again unrealistic preconditions. To the contrary, link layer error
recovery can yield excellent throughput for bulk data transfers without interfering with TCP’s
error recovery as we show in Chapter 4. Although not explicitly focusing on the problem of
competing error recovery, the studies in [BBKT97], [ES98], and [Mey99] confirm our result.

2.6.2 Evaluation

In this section, we evaluate the solutions of the five categories defined in Section 2.6.1 with
respect to which of the inefficient cross-layer interactions explained in Section 2.5 they solve,
and which deployment concerns they raise. Thus, we pose the questions: Is there at least one
proposal in the given category that ...

• solves the problem of underestimating the available bandwidth?

• minimizes end-to-end error control inefficiencies?

• equally supports real-time and reliable, e.g., TCP-based, flows?1

• eliminates competing error recovery should the solution be applied to a wireless link run-
ning link layer error recovery?

• prevents TCP/IP header decompressor failures?

In addition, we define two more metrics to evaluate which architectural impact a given solu-
tion has, i.e., which deployment concerns it raises. Solutions that require changes to an end-to-
end protocol, or implementations thereof, rely on a large scale effort to be incorporated into the
operating system software of Internet hosts and network components (see the shaded boxes in
Figure 2-16). If those changes are required at both network end-points this becomes an
immense deployment concern considering the large number of hosts - especially the millions
of WWW servers - that are connected to the Internet. Confining those changes to the “mobile
end-point” has been the main motivation for PEP-based approaches and is one of their key
advantages. However, PEPs create another deployment concern which it that PEPs cannot
interoperate with network layer encryption, e.g., IPsec2. The importance of this aspect is dis-
cussed in Section 2.7. Hence, we ask the questions: Is there at least one proposal in the given
category that

• confines the required changes of an end-to-end protocol or its implementation to the
“mobile end-point”?

• can interoperate with network layer encryption assuming that nodes that a solution might
require in the network are untrusted, i.e., cannot decrypt/encrypt a flow’s packets?

1. Since all solutions mentioned in the literature are TCP-specific and the interaction described in Section 2.5.3 only applies to
real-time flows, we have adapted this question accordingly.

2. Unless, the PEP was a trusted party and could decrypt and later again encrypt a flow’s packets.

Background ___ 41

Table 2-17 summarizes our evaluation including that of our own approach that is briefly moti-
vated and outlined in Section 2.7. We comment the table below.

TCP-SACK as one of the pure end-to-end solutions improves TCP’s error recovery as it can
more quickly recover from multiple lost segments in a single RTT. It also makes TCP’s con-
gestion control more robust as it treats such an event as one congestion signal instead of one
signal for each lost segment as done in “standard” TCP. Nevertheless, TCP-SACK cannot pre-
vent underestimation of the available bandwidth by the TCP sender, it can be inefficient over
wireless links if not supported by link layer error recovery, and it cannot eliminate competing
error recovery when run over a reliable wireless link. Also, an end-to-end protocol cannot
make TCP/IP header compression more robust.

Hard-state transport layer PEPs have a number of advantages over soft-state transport layer or
cross-layer PEPs. They can minimize end-to-end error control inefficiencies when a protocol is
run over the wireless link that is optimized accordingly, e.g., [Bau97], [HK99], [KRLKA97].
Those solutions also separate the end-to-end and the link layer error recovery control loops
(compare Figure 2-14), and thereby eliminate competition between both error recovery
schemes. Furthermore, failures of the TCP/IP header decompressor can be eliminated by run-
ning a reliable link layer protocol link with sufficient error recovery persistency on the wire-
less.

S
ol

ve
s

un
de

re
stim

at
io

n
of

 a
va

ila
bl

e
ba

n
dw

id
th

?

M
in

im
iz

e
s

en
d-

to
-e

n
d

in
e

ffi
ci

en
ci

es
?

E
qu

al
ly

 s
u

pp
or

ts
 r

ea
l-

tim
e

 a
nd

 r
el

ia
b

le
 fl

ow
s?

E
lim

in
at

es
 c

om
pe

tin
g

e
rr

or
 r

ec
ov

er
y?

P
re

ve
n

ts
 T

C
P

/IP
 h

ea
d

er
d

ec
om

p
re

ss
or

 fa
ilu

re
s?

R
e

qu
ire

s
ch

an
ge

s o
nl

y
to

 m
ob

ile
 e

nd
-p

oi
nt

?

In
te

ro
p

er
at

es
 w

ith
 n

et
-

w
or

k
la

ye
r

en
cr

yp
tio

n?

Pure End-to-End no no no no no no yes

Hard-State Transport Layer PEP yes yes no yes yes yes no

Soft-State Transport Layer PEP yes no no no no yes no

Cross-Layer PEP yes no no no no yes no

Pure Link Layer yes yes no no yes yes yes

Our Approach (see Section 2.7):
Flow-Adaptive Link + TCP-Eifel

yes yes yes yes yes no yes

Tabelle 2-17: Evaluation of related work.

42 __ CHAPTER 2

The key advantage of link layer solutions in general (not only the “pure” ones) is that the local
knowledge about the continuously changing error characteristics of the wireless link can be
exploited to optimize error control efficiency overall, including that of end-to-end error con-
trol. We show this in Chapter 4. The major drawback of pure link layer error control schemes
is, however, that they do not adapt to a flow’s QoS requirements but instead are “hard-wired”,
i.e., cannot be changed (e.g., [Kar93]), or can only be reconfigured from one (physical) con-
nection to the next (e.g., RLP; see Section 2.4.3). Consequently, a flow that is best served with
persistent link layer error recovery cannot share the link with a real-time flow intolerable of
delays introduced by link layer retransmissions. On the other hand, an application might toler-
ate higher loss rates in return for higher available bit rates than provided by the link’s FEC
scheme. The solution proposed in [Kar93] strikes a good compromise between supporting
TCP-based flows while minimizing interactions for delay-sensitive flows. It proposes semi-
reliable link layer error recovery with a low error recovery persistency. However, that solution
cannot in all situations prevent that the available bandwidth is underestimated, and it may
cause failure of the TCP/IP header decompressor. As that solution explicitly emphasizes end-
to-end error recovery it may also cause end-to-end error recovery inefficiencies. On the other
hand, [GSM04.22b] and [GSM04.60] can be “tuned” from the mobile host to work well for
TCP-based flows by configuring a high error recovery persistency. Although that eliminates
the above mentioned problems of [Kar93], it may now cause inefficient cross-layer interac-
tions for real-time flows as described in Section 2.5.3, and also cannot avoid competing error
recovery.

2.7 Brief Motivation and Outline of our Approach

PEP-based solutions not only have the problems discussed in the preceding section, but are
often regarded as being “inelegant” because they violate the fundamental design principle in
data communications: protocol layering. The principle says that a service provided by a certain
protocol layer may not depend on the semantics of a protocol on a different layer. For example,
a service that is specific to a particular link is by definition a link layer service. According to
the protocol layering principle it may not depend on network, transport, or application layer
protocol semantics. Those semantics are often conveyed via the respective protocol headers.
However, PEPs provide a link layer service but are dependent on transport layer protocol
semantics and do rely on access to the information in the transport protocol’s headers. In
Section 2.2.3, we have already encountered such an example of layer violation: TCP/IP header
compression.

Our goal is to find a solution that eliminates all the inefficient cross-layer interactions
explained in Section 2.5 while satisfying the paradigm of protocol layering. Beyond academic

Background ___ 43

ambition there is a more pragmatic reason for why it is desirable to find a solution that con-
forms with protocol layering: network layer encryption for IP, IPsec [RFC2401]. PEP-based
solutions are rendered useless if IPsec spans across an untrusted PEP, because IPsec encrypts
the transport layer protocol headers. This means that a link layer cannot even identify a flow’s
end-points. We believe that IPsec will become an important cornerstone of the future Internet,
especially for mobile users who are free to roam between multiple wireless access providers
and ISPs to get access to their corporate and/or residential Intranets1 (see Figure 2-18). Those
users (usually) do not trust their wireless access providers, their ISPs, nor anybody on the
“open” Internet when accessing their Intranets. IPsec provides them with the capability to
secure their data against such untrusted parties by encrypting all traffic at the network layer
either end-to-end, or between a host and a firewall.

In finding our solution, we were not discouraged by concerns about deploying changes to an
end-to-end protocol or its implementation (see the “no” in the last row of Table 2-17) as dis-
cussed in the preceding section. Nevertheless, with our proposed solutions we obey the Inter-
net Engineering Task Force’s (IETF) key design principle: incremental deployment. The prin-
ciple says that any change to the Internet, in particular to its end-to-end protocols, must be
backwards compatible and may not interfere with existing mechanism, e.g., TCP’s congestion
control behavior. Hence, we asked ourselves the following questions.

• What function, in general, is missing in the Internet’s design that would allow to optimize
the end-to-end performance that loss responsive flows could provide when running across
wireless links?

• Given that such a function is, in fact, missing and was added to the Internet, what, in par-
ticular, is wrong with TCP or its implementations that decreases its end-to-end perfor-
mance when it runs over wireless links, and how can that be solved?

Chapter 4 is dedicated to finding answers to the first question, while we study the second ques-
tion in Chapter 5.

1. An Intranet is a “closed” inter-network that is connected to the rest of the “open” Internet via firewalls that perform access
control of in- and outbound flows.

Access
Network

Backbone
Internet

ISPWire less
Access

Provider

Corporate or
Resident ial

IntranetFire-
wal l

TCPTCP

Network La y er Encr y ption (IPsec)

RLP RLP

Figure 2-18: Getting secure access to an Intranet with an IPsec tunnel.

44 __ CHAPTER 2

___ 45

CHAPTER 3

Analysis Methodology

In this chapter, we explain the methods and tools we used to obtain the results presented in
Chapter 4 and Chapter 5. Our analysis approach is strongly based on measurements. This is
mainly motivated by the fact that simulators for wireless networking were not sufficiently
developed when we started our work. Also, with the globally deployed GSM-CSD systems we
had a real (wide-area) wireless network available for our study, about which little was known
with respect to inefficient interactions with end-to-end protocols. Hence, we used the GSM-
CSD system as a case study of a wireless link. Our measurement-based approach gave us the
unique opportunity to capture the aggregate of real-world effects such as noise, interference,
fading, and shadowing. This is a key advantage over simulations as unrealistic assumptions
about the error characteristics of a wireless channel can completely change the results of a per-
formance analysis. This often leads to inadequate design decisions as we demonstrate in
Chapter 4.

Furthermore, we believe that results obtained by measurement are often more convincing than
those obtained by simulations. The reason is that it is much easier to make mistakes in simula-
tions that lead to wrong conclusions than it is when performing measurements. Experimental
measurements often expose effects that may not be visible using simulations alone. This may
be due to implementation errors, or the fact that a simulator has abstracted to many details, i.e.,
does not implement all the relevant features of a real system. In Section 3.2.5 and Section 4.2.3
we present examples of problems that would have been difficult to detect by simulations.

Certainly, a measurement-based analysis approach has a number of drawbacks. First, it
requires the availability of a real system. Measuring the performance of new features of a net-
work that is still in the design phase is not possible. Also, the process of performing measure-
ments is often a time intensive task while a large base of measurements is required to draw
general conclusions when the error characteristics of a wireless link are crucial. Another prob-
lem for measurements is that real systems often only allow a limited parameterization.

46 __ CHAPTER 3

3.1 Evaluating Error Recovery Strategies

In this section, we explain the methodology we use in Section 4.3 to evaluate the benefit of
link layer error recovery for reliable flows. With this analysis we address the problems of
“underestimation of available bandwidth” (see Section 2.5.1), “inefficiency of end-to-end error
control” (see Section 2.5.2), and also the problem of “failure of link layer differential encod-
ings” (see Section 2.5.5). This work has been published in [LKJ99] and [LKJK00]. In
Section 3.1.1 we provide general information about how we collected measurements in GSM-
CSD that applies to both this section and Section 3.2.

3.1.1 Collecting Link Layer Traces in GSM-CSD

Performance measurements involving wireless links add a complex dimension to the charac-
teristics with which links are usually described. In addition to the simpler parameters of link bit
rate and link latency, the error characteristics play a crucial role as motivated in the next sub-
section. The error characteristics of a wireless channel over a certain period of time can be cap-
tured by a bit error trace. A bit error trace contains information about whether a particular bit
was transmitted correctly. The average Bit Error Rate (BER) is the first-order metric com-
monly used to describe such a trace. The same approach can be applied at the block level (see
Section 2.4.4). Hence, a block erasure trace contains information about whether a particular
data block was correctly transmitted and the BLock Erasure Rate (BLER) denotes the average
rate at which block erasures, i.e., FEC decoding failures, occur in such a trace.

All our measurements involving a wireless link were carried out in commercially deployed
GSM-CSD systems. Most of the measurements were carried out in the San Francisco Bay
Area. In addition, we have collected traces at other places in the U.S. and also in Sweden and
Germany. Nevertheless, apart from the effects mentioned in Section 3.2.5, we did not find any
differences between the various countries, or more precisely, between the manufacturers of the
GSM network components and the frequencies used for operation. It is important to point out
that the error characteristics we have captured in the form of block erasure traces are only valid
for the particular FEC and interleaving scheme implemented in GSM-CSD (see Section 2.4.4).
Nevertheless, we believe that the results presented in Chapter 4 provide new insights into how
to optimize this widely deployed system. These suggest techniques that can be used to design
future wireless links, e.g., the GSM packet-switched data service which implements a similar
FEC scheme [GSM05.03] and similar link layer error recovery [GSM04.60].

We are not interested in identifying physical link factors that cause measured block erasures.
Rather, we are interested in the aggregate result captured by block erasure traces. This is simi-
lar to the approach of trace-based mobile network emulation as proposed in [NSNK97]. To
collect block erasure traces, we ported the RLP (see Section 2.4.3) implementation of a com-

Analysis Methodology ___ 47

mercially available GSM data PC-Card to the BSD/386 Version 3.0 operating system. We also
developed a protocol monitor for RLP that we call rlpdump 1. It logs whether a received
block could be correctly reconstructed by the FEC decoder. This is possible because every
RLP frame corresponds to an FEC encoded data block. Thus, a received block suffered an era-
sure whenever the corresponding RLP frame has a frame checksum error. In addition,
rlpdump logs time/sequence information, i.e., which frame number was sent at which time,
and also exceptional events, like selective rejects, retransmissions, flow control signals (XON/
XOFF), and RLP link resets in both the send and the receive direction. For a given RLP con-
nection such information makes up what we refer to as an RLP trace. Unfortunately, we were
not able to log internal receiver signal strength measurements from the mobile phone to corre-
late them with the block erasure traces. Instead, we read the mobile phone's visual receiver sig-
nal strength indicator ranging from 1 - 5. The receiver signal strength is used in Section 3.1.3
and Section 3.2.3 to categorize measurements.

3.1.2 Analysis Goals, Assumptions, and Approach

Our goal is to evaluate the performance of the following two error recovery strategies. Without
a PEP in the network, these are the only alternatives that exist for reliable data transfer over a
path that includes a wireless link.

• End-to-end error recovery complemented with link layer error recovery running over the
wireless link.

• Pure end-to-end error recovery.

In Section 2.6.1, “pure end-to-end” implied that no assumptions are made about the existence
of dedicated support from the link layer, e.g., error recovery. Nevertheless, throughout the rest
of this dissertation, when we use the term “pure end-to-end error recovery” we imply that the
wireless link is not protected by link layer error recovery.

In Section 4.3, we perform the evaluation of the two error recovery strategies through a case
study of the GSM-CSD wireless link. We first investigate the impact of changing the (fixed)
RLP frame size on application layer throughput and the consumption of radio resources (e.g.,
spectrum and transmission power). We then quantify the benefits of link layer error recovery
by comparing it against the performance of pure end-to-end error recovery. There we show that
at least on some wireless links, e.g., a GSM-CSD link, the end-to-end performance that a reli-
able flow can provide can only by optimized by complementing end-to-end with link layer
error recovery.

1. rlpdump was implemented by Bela Rathonyi at Ericsson Mobile Communications AB, Sweden. Keith Sklower at U.C.
Berkeley assisted in porting the RLP code to the BSD system.

48 __ CHAPTER 3

The performance difference between the two protocol design alternatives depends on the wire-
less channel’s time varying error characteristics versus the channel’s packet transmission

delay. This is sketched in Figure 3-1, where “burst error” denotes time intervals during which

data in transit is corrupted to the extent that it cannot be recovered at the receiving link layer

(FEC decoder). With respect to GSM-CSD, a burst error corresponds to a series of back-to-

back block erasures where the channel is error-free before and after that series. A wireless

channel’s error characteristic can be described by the length of burst errors and their correla-
tion expressing the degree of clustering. Link layer error recovery is less effective on wireless

links where the length of burst errors is large compared to the packet transmission delay (see

“Channel 1” in Figure 3-1). In this case, pure end-to-end error recovery often yields higher

throughput results by saving link layer protocol overhead. Another case is sketched with

“Channel 2” in Figure 3-1 where the length of burst errors is small compared to the packet

transmission delay and the burst errors often occur isolated. In this case, the link layer over-
head is likely to be amortized when the “right” frame size is chosen. Studying this trade-off

requires a realistic error characterization of the wireless channel which motivates our measure-

ment-based analysis approach.

The key premise for our analysis is a model of a bulk data flow based on a fully-reliable proto-

col such as TCP. As pointed out in Section 2.1, the main QoS requirement of bulk data flows is

to maximize throughput. Fully-reliable flows have the additional QoS requirement that the
transfer must be reliable, i.e., the transfer fails if the data is corrupted or incomplete when

received by the destination. To compare throughput among the two error recovery strategies,

we assume that the GSM-CSD wireless link is the path’s bottleneck link, and that the bulk data

flow is the only flow that utilizes the bottleneck link. Using the ReTracer tool explained in

Section 3.1.4, we perform a best-case analysis on the basis of block erasure traces we had col-

lected a priori as described in Section 3.1.3. The best-case analysis assumes that the bulk data
transfer always fully utilizes the wireless bottleneck link, i.e., utilizes the link 100 percent.

Channel 1

Channel 2

Le g end:

IP Layer

Link La yer

Burst Error; Len gth represents the duration of this condition.

Error-free Channel; Len g th represents the duration of this condition.

Packet; Len g th represents the packet transmission dela y .

Frame; Len g th represents the frame transmission dela y .

Figure 3-1: Two different channel error characteristics.

Analysis Methodology ___ 49

We redefine the term utilization for our purposes as follows.

• Given a time period of length T, the utilization of a link is the fraction of T during which
useful data, i.e., excluding packets/frames which had already been successfully transmit-
ted1, is transmitted over the link, divided by T.

For link layer error recovery, the best-case analysis implies (1) the use of a selective reject
based protocol, like RLP; and (2) an “infinite” error recovery persistency2. It also requires the
use of large enough windows to allow the link layer sender to always fully utilize the link. This
avoids the stalled window condition, where the sender must interrupt transmission due to flow
control, i.e., when the receive buffer of the link layer receiver is exhausted to buffer additional
frames. For a bulk data flow that implements congestion control similar to TCP, the best-case
analysis implies that the flow’s maximum load must exceeds two times (or more) the flow’s
pipe capacity as explained in Section 2.5.1.

The best-case assumption ignores inefficient interactions with end-to-end congestion control
schemes that may lead to an underestimation of the available bandwidth. For TCP over RLP in
GSM-CSD, this is valid as we show in Section 4.2. For pure end-to-end error recovery, how-
ever, this is often not the case as discussed in Section 2.5.1. Nevertheless, a best-case study
indicates the theoretical maximum application layer throughput that pure end-to-end error
recovery could provide. Moreover, the application layer throughput that we determine in
Section 4.3 under the given assumptions, directly translates into radio resource consumption.
For example, if transport layer sender A only achieves half the throughput that sender B
achieves, it is using twice as much radio resources, i.e., it needs to transmit twice as many data
blocks. This may happen if sender A has to rely on pure end-to-end error recovery, and has to
retransmit packets of which only a small fraction of the corresponding original transmission
was corrupted on the unreliable wireless link3.

3.1.3 Measurement Platform

Our measurement platform is depicted in Figure 3-2 (simplified from Figure 2-7). A single-
hop path connects the mobile to a fixed host which terminates the GSM-CSD connection. As
explained in the preceding subsection, we were only interested in capturing block erasure
traces, not in studying protocol interactions. We therefore used ping described in [Ste94] as a
traffic generation tool because the underlying end-to-end protocol (ICMP) is unresponsive to

1. This can, e.g., happen in TCP which exhibits go-back-N behavior after spurious timeouts as explained in Section 5.1.

2. Throughout our measurements the highest number of retransmissions for a single RLP frame was 12. Thus, in GSM-CSD
an “infinite” error recovery persistency (the RLP parameter N2) can be approximated with a maximum number of
retransmissions of 12 + n for some small value of n.

3. E.g., if only a single byte of a 1500 bytes packet gets corrupted during transmission over an unreliable link, then still the
entire packet has to be retransmitted.

50 __ CHAPTER 3

packet losses. The ping sender sends an ICMP packet every second that is echoed by the
ping receiver. Thus, when the ICMP packet size is configured so that the corresponding
packet transmission delay exceeds one second, ping can be used as an infinite and uninter-
rupted traffic source1.

We then generated continuous traffic with ping and used rlpdump to capture the corre-
sponding block erasure traces. That way we have collected block erasure traces for over
500 minutes of “air-time” and distinguish between measurements where the host was station-
ary versus mobile when driving in a car. All stationary measurements were taken in the exact
same location. We categorized the measurements as follows.

A.Stationary in an area with good receiver signal strength (3 - 4): 258 minutes.

B.Stationary in an area with poor receiver signal strength (1 - 2): 215 minutes.

C.Mobile in an area with mediocre receiver signal strength (2 - 4): 44 minutes.

3.1.4 The ReTracer Tool

Clearly, the size of an RLP frame does not need to match the size of an unencoded data block.
Any multiple of the size of an unencoded data block would have been a valid design choice. In

1. This causes the sending host’s outbound interface buffer to constantly overflow leading to many dropped ping packets,
but that did not matter in this case.

PSTN GSM

Logging
Database

RLP

RLPDUMP

Mobile Host
UNIX (BSDi 3.0)

FEC/
Interleaving

Fixed Host

PPP

Figure 3-2: The measurement platform.

Analysis Methodology ___ 51

fact, a multiple of 2 has been chosen for the new version of RLP [GSM04.22b] in the next gen-
eration of GSM-CSD, which also uses a weaker FEC scheme [GSM04.21]. Larger frames
introduce less relative overhead per frame, but an entire frame has to be retransmitted even if
only a single data block incurs an erasure. Applying our technique of retrace analysis, we
study this trade-off based on the block erasure traces we had collected a priori in environments
A - C (see above). For that purpose we developed a tool we call ReTracer1 that automatically
performs the retrace analysis. Based on a given block erasure trace and a given bulk data trans-
fer size, ReTracer reverse-engineers the value of target metrics (e.g., channel throughput or
number of retransmissions). It emulates RLP while assuming a particular fixed frame size and
fixed per frame overhead. We then iterate the retrace analysis over a range of RLP frame sizes,
defined as multiples of the data block size. We can thereby find the frame size that maximizes
the bulk data throughput for a particular block erasure trace.

We use different block erasure traces for our analysis. trace_A is a concatenation of all block
erasure traces we collected in environment A. Likewise, trace_B and trace_C are concatena-
tions of all block erasure traces we collected in environment B and C, respectively. We then
choose an appropriate bulk data size to cover the entire trace (e.g., for trace_B a size corre-
sponding to a transmission time of 215 min was chosen). Once the retrace analysis reaches the
end of a trace, it wraps around to its beginning. In addition, we investigate the impact of error
burstiness, i.e., the extent to which the distribution of block erasures within a trace influences
our results. For that purpose, we artificially generated three more “non-bursty” block erasure
traces, trace_A_even, trace_B_even and trace_C_even. These have the same BLER as the cor-
responding real traces, but with an even block erasure distribution, i.e., those traces have single
and isolated block erasures with a constant distance from each other.

3.2 Detecting Inefficient Cross-Layer Interactions

In this section, we explain the methodology we use in Section 4.2 to study in general the inef-
ficient cross-layer interactions that may occur when running TCP-based bulk data transfers
over RLP in GSM-CSD. This work has been published in [LRKOJ99]. Also, in Section 3.2.1
we explain how to interpret TCP trace plots. In Chapter 4 and Chapter 5 we often use TCP
trace plots to illustrate certain effects, problems, or solutions.

1. ReTracer was implemented by Almudena Konrad at U.C. Berkeley.

52 __ CHAPTER 3

3.2.1 How to Read TCP Trace Plots

A trace is a series of events that was measured over time for a particular connection of a given
protocol layer at the sender (called a sender trace), the receiver (called a receiver trace), or a
node in the connection’s path. A trace plot is a graphical representation of a trace. Trace plots
provide an excellent means to visualize a protocol’s operation over time correlated with effects
occurring in the network, such as (excessive) packet delay or packet re-ordering. We mostly
deal with TCP traces, but in some cases correlate them with RLP traces that we captured using
rlpdump as described in Section 3.2.4. A TCP trace captures the times (timestamps) when a
segment or an ACK is transmitted or received. In a trace this is represented by the tuple
<timestamp, sequence number> or <timestamp, ACK number>, respectively (see
Section 2.2.1 for the definition of sequence number and ACK number). In the plots we label
the graphs comprising points corresponding to

• segments sent by the TCP sender as Snd_Data (or TcpSnd_Data),

• ACKs received by the TCP sender as Snd_Ack (or TcpSnd_Ack),

• segments received by the TCP receiver as Rcv_Data (or TcpRcv_Data), and

• ACKs sent by the TCP receiver as Rcv_Ack (or TcpRcv_Ack).

To avoid that the sender and receiver plots overlap when shown in the same plot we offset the
sequence number space of the TCP receiver trace by 10,000 bytes. In our measurements, the
clocks of the sending and the receiving host were not synchronized. The exact timing of events
was not necessary for our study. Instead, we loosely synchronized the sender and the receiver
traces by defining as “time zero” the time when the sender sends the connect request (SYN)
and when it arrives at the receiver. Thus, apart from clock drifts on both hosts, the receiver
trace is offset by the one-way delay of the initial SYN.

Capturing TCP traces requires an extension of the operating system kernel that does the log-
ging of relevant information, and a user level process to control the kernel extension and to
transfer the logged data into user space. For the BSD system these two functions had already
been developed1: the BSD Packet Filter (BPF) [MJ93], and tcpdump [JLM], respectively.
The output generated by tcpdump can then be reformatted (we used our own scripts for that
purpose) according to the input format required by standard plotting tools such as Xgraph
[Xg].

A number of characteristics can be read off TCP trace plots. As an example, Figure 3-3 shows
a section of a TCP sender trace. As each point in the Snd_Data graph corresponds to a

1. Those tools are publicly available and have been extensively used, tested, and enhanced by the Internet research commu-
nity.

Analysis Methodology ___ 53

sequence number, the difference between two succeeding segments is the segment size of the
first segment. During bulk data transfer it is usually the connection’s Maximum Segment Size
(MSS). Also the flow’s load (usually the number of bytes outstanding divided by the MSS) and
the flow’s RTT can be read off the plot as indicated in Figure 3-3. The rate at which ACKs
return to the sender can be determined by linear regression of the Snd_Ack trace. It corre-
sponds to the flow’s available bandwidth at that time due to the self-clocking property of TCP
(see Section 2.2.1). The ACK clock itself can be seen from the fact that no segment is sent
between arrivals of ACKs, i.e., each ACK clocks out one or more segments.

Figure 3-3 shows a special case. The TCP connection has just been established and the sender
is in the slow start phase where every ACK clocks out two segments1. One because the ACK
advanced the window and another one because the congestion window was increased by one.
10.5 s into the connection the sending host’s interface buffer overflows and one packet is
dropped. In response the tcp_quench() function [WS95] resets the TCP sender’s congestion
window to . The following eight ACKs grow the congestion window back to

 allowing that another segment is sent at about 15 s into the connection. Shortly after
the 18th second the DUPACKs for the dropped segment return to the sender. The third
DUPACK triggers a fast retransmit in the 20th second.

Figure 3-4 shows an example where both the sender and the receiver traces are correlated in
the same plot. This measurement was collected in the simple network shown in Figure 3-8 that
we explain in Section 3.3.2. The plot shows the typical sender and receiver traces of a network-

1. In this case, the TCP receiver acknowledges the receipt of every segment because the ACK interarrival time is larger then
the delayed-ACK timer of 200 ms used in TCP-Lite.

10000

12000

14000

16000

18000

20000

22000

24000

26000

28000

30000

6 8 10 12 14 16 18 20 22 24

Sequence Number

Time of Day (s)

Snd_Ack

Snd_Data

Linear regression of returning ACKs
determines the connect ion's throughput.

MSS = Dif ference
between 2 "dots"

Bytes outstanding (in terms of MSS = Load)

RTT

Fast Retransmit
on 3rd DUPACK

Figure 3-3: A TCP sender trace plot.

1 MSS×
17 MSS×

54 __ CHAPTER 3

limited TCP connection. The sender periodically: grows its load linearly during the congestion
avoidance phase, drops a single packet, goes into fast recovery (triggered after a fast retrans-
mit), and then goes into congestion avoidance again. This plot should be compared with
Figure 2-6 which is an alternative representation of a network-limited TCP connection. In the
35th second a relatively rare event happens that we captured by chance. A segment with a
checksum error arrives at the TCP receiver1. This can be seen from the fact that the TCP
receiver does not provide any feedback, i.e., neither sends an ACK nor a DUPACK, upon its
arrival (see arrow in the plot). The lost segment triggers the fast retransmit 37.5 s into the con-
nection. The segment following the one that was received in error was dropped due to conges-
tion. However, because at that time not enough packets are in flight to generate three
DUPACKs, that segment has to be recovered by a timeout that occurs in the 43th second.

3.2.2 Analysis Goals, Assumptions, and Approach

The main focus of our analysis is to study inefficient cross-layer interactions that may occur
when running TCP-based bulk data transfers over RLP in GSM-CSD. The results of this study
are described in Section 4.2. We were only interested in “stable” connections that lasted long
enough to allow for all TCP sender state variables (e.g., retransmission timer, slow-start
threshold, etc.) to converge from their initialization values to a stable range of operation. We
therefore performed a series of large bulk data transfers ranging in size from 230 KBytes to

1. Apparently this error had not been detected by PPP’s error detection function.

0

10000

20000

30000

40000

50000

0 10 20 30 40 50
Time of Day (s)

S
eq

ue
nc

e
N

um
be

r

Snd_Data

Snd_Ack

Rcv_Data

Rcv_Ack

Figure 3-4: A TCP sender and receiver trace plot.

Analysis Methodology ___ 55

1.5 MBytes. In Section 4.2.1 we report on the throughput that TCP achieved in those measure-
ments. However, throughput itself is not sufficient information to determine whether TCP and
RLP interacted in an inefficient way. For example, a throughput of one half of the theoretical
maximum could either mean that the radio conditions were so poor that RLP had to retransmit
every other frame or it could indicate competing error recovery between TCP and RLP.

Utilization as defined in Section 3.1.2 is the key performance metric that can be used to deter-
mine whether a data transfer suffered from inefficient TCP/RLP interactions or not. If the TCP
sender fully utilizes the bandwidth provided by RLP (which may vary over time due to RLP
retransmissions) then this indicates optimal performance and rules out inefficient interactions
between the two protocols. There are only two ways that utilization may not be optimal: (1) the
TCP sender leaves the link (RLP) idle, or (2) the TCP sender sends spurious retransmissions.
We used the MultiTracer tool explained in Section 3.2.4 to check for these two cases in all the
measurements we had collected a priori as described in Section 3.2.3. That way we isolated the
traces where utilization was 95 percent or less, and further investigated those to identify the
causes of the degraded performance.

Note that utilization can never be exactly 100 percent because of TCP’s initial slow-start phase
and the 3-way handshake required for both the TCP connection establishment and the discon-
nection phase [Ste94]. In our measurement platform, however, the effect of slow-start is negli-
gible because the pipe capacity of a TCP flow over a GSM-CSD link is already reached with
2 - 3 segments, even when using a small MSS. Also, these effects are amortized when per-
forming large bulk data transfers (as done here). Measuring utilization has the added advantage
that it is independent of protocol overhead. Thus, parameters like the Maximum Transmission
Unit (MTU) configured for PPP, the PPP framing overhead, and whether TCP/IP header com-
pression was used or not, do not affect utilization as defined here.

3.2.3 Measurement Platform

The platform that we developed for measurement collection is depicted in Figure 3-5. The gray
shaded area indicates a possible extension to the setup that we have not implemented. It would
generate input for trace replay in a simulation environment allowing to reproduce various
effects that were measured in reality. The measurement platform extends the setup shown in
Figure 3-2 by the capability to capture TCP traces with tcpdump in addition to capturing
RLP traces with rlpdump , and to correlate all traces onto the same time axis. Since we
wanted to isolate the TCP/RLP interactions we continued using a single-hop path. Although it
might in some cases be reverse-engineered, tcpdump does not provide information about the
TCP sender state variables, such as the congestion window, the slow start threshold, and the
retransmission timeout value. We therefore used tcpstats [Pad98], a UNIX kernel instru-
mentation tool that traces these TCP sender state variables. As for the measurements described

56 __ CHAPTER 3

in Section 3.1.3, we needed a traffic generation tool for bulk data transfers. Only this time we
needed one that was based on TCP. For that purpose we used the sock tool described in
[Ste94].

Overall, we captured six hours of traces that we used for our analysis. Four hours were mea-
sured in environments with good and two hours in environments with poor receiver signal
strength. Although in most of our measurements the mobile host was stationary, we also mea-
sured while walking (indoor and outdoor) or driving in a car. We categorized the measurements
as follows.

D.Environments with good receiver signal strength (3 - 4): 4 hours.

E.Environments with poor receiver signal strength (1 - 2): 2 hours.

It is important to point out that, as reported in [KRLKA97], we also had situations where the
GSM call, i.e., the physical connection, was dropped during a measurement. In almost all
cases, this happened when the receiver signal was very low. Apparently, radio coverage was
insufficient in those environments. As this data would have introduced an unrealistic bias into
our analysis, we excluded those traces from the analysis in Section 4.2.

Fixed Host
UNIX (BSDi 3.0)

TCP

MultiTracer

Trace Replay
in Simulator

(e.g. ns, BONeS)

RLP

RLPDUMP

TCPDUMP

Mobile Host
UNIX (BSDi 3.0)

TCPDUMP

TCPSTATSTCPSTATS

Plotting
Tool

(e.g. xgraph)

Traffic
Source/Sink
(e.g. sock)

Traffic
Source/Sink
(e.g. sock)

PSTN GSM

Figure 3-5: Measurement platform and tools.

Analysis Methodology ___ 57

3.2.4 The MultiTracer Tool

Altogether tcpdump , tcpstats and rlpdump generate a total of up to 300 bytes/s of trace
data for a GSM-CSD connection that is running at about 10 Kbit/s. It was therefore essential to
develop a post-processing tool that enabled the rapid correlation and representation of col-
lected trace data in a comprehensive graphical manner for trace analysis. We call this tool
MultiTracer1. MultiTracer is a set of script files that converts the trace data into the input for-
mat required by a plotting tool such as Xgraph. MultiTracer also automatically determines the
utilization of each measurement indicating whether a data transfer suffered from inefficient
TCP/RLP interactions as explained in Section 3.2.2. For that purpose MultiTracer inspects the
RLP trace to determine idle phases at the RLP sender, and it inspects the TCP traces for spuri-
ous retransmissions.

In addition to the labeling scheme described in Section 3.2.1 we label the graphs comprising
points corresponding to

• the congestion window at the TCP sender as TcpSnd_cwnd,

• frames sent by the RLP sender for the first time as RlpSnd_Data,

• retransmitted frames sent by the RLP sender as RlpSnd_Xmit,

• flow control signals (XON/XOFF) sent by the RLP receiver as RlpRcv_XON and
RlpRcv_XOFF,

• RLP link resets as RlpSnd_Rst.

MultiTracer generates more information (e.g., RTT, SRTT, RTO), but for this analysis we only
use the items listed above. To correlate RLP and TCP traces, MultiTracer uses the TCP
sequence number space. Note, however, that in all plots the RlpSnd_*, TcpSnd_*, and
TcpRcv_* graphs are offset by 10,000 bytes from each other in the plots so that the graphs do
not overlap. All traces are loosely synchronized with respect to the TCP connect request as
described in Section 3.2.1.

To demonstrate the capability to correlate and visualize multi-layer traces we show a typical
measurement in Figure 3-6. The three rectangles in Figure 3-6 indicate sections of this plot that
are “zoomed in” for detailed analysis in the following subsection and in Section 4.2. This par-
ticular measurement yielded optimal throughput performance. This can be seen from the fact
that the TCP receiver continuously receives data. Linear regression of the RlpSnd_Data graph
shows that throughput provided by RLP is almost 960 bytes/s which is equivalent to a bit rate
of 9.6 Kbit/s asynchronous. Likewise, the trendline through TcpRcv_Data yields a throughput
of 848 bytes/s. This is what we expected as TCP/IP header compression was not used for this

1. MultiTracer was implemented by Almudena Konrad at U.C. Berkeley.

58 __ CHAPTER 3

measurement and the overhead per MSS of 460 bytes was 59 bytes (40 bytes for the IP and
TCP headers, 12 bytes timestamp option and 7 bytes PPP overhead). Thus, the TCP sender
optimally utilized the bandwidth provided by RLP. Note that the graph for RlpSnd_data always
has a larger slope than the TCP graphs because it includes the TCP, IP, and PPP overhead.

3.2.5 Detected “Implementation Bugs” in GSM

The maximum data rate provided by RLP is 1200 bytes/s. We were therefore surprised when
we saw the gaps in the RlpSnd_Data graphs in some of our traces. However, after we traced
the flow control messages at the L2R protocol (see Section 2.4.1) it became clear what was
occurring. Due to limitations in some commercial GSM networks, the data rate appears to be
limited to only 960 bytes/s (9.6 Kbit/s asynchronous).

In these networks, the RLP sender is flow controlled from the remote side so that the average
data rate becomes 960 bytes/s. Figure 3-7 shows that the RLP sender sends at the maximum
rate of almost 1200 bytes/s at times when it is not flow controlled, but the linear regression line
shows that the real throughput is throttled by 20 percent down to about 960 bytes/s. However,
as can be seen from Figure 3-6, the periodic gaps of 950 - 1300 ms did not trigger spurious
timeouts in TCP.

As mentioned in Section 2.4.3, RLP can be implemented to provide fully-reliable service. In
that case the data call is completely dropped when the error recovery persistency is reached.
We have measured this effect several times in some commercial GSM networks. Simply drop-

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50

Sequence Number

Time of Day (s)

TcpRcv_Data (848 bytes/s)

RlpSnd_Data (958 bytes/s)

TcpRcv_Ack

TcpSnd_Ack
TcpSnd_Data

Figure 3-6: A typical multi-layer trace plot.

Figure 4-6

Figure 4-10

Figure 3-7

Analysis Methodology ___ 59

ping the call is, however, an unacceptable alternative. Not only will the user in many cases
have to re-initiate the data transfer (e.g., a file transfer), but will also be charged for air time
that yielded an unsuccessful transmission. Implementing RLP to provide semi-reliable service
is therefore more “user friendly”.

3.3 Reproducing Inefficient Cross-Layer Interactions

In this section, we explain the methodology we use in Section 5.1 and Section 5.2 to study and
solve the problem of competing error recovery for the case of TCP. With this analysis we par-
ticularly address the problem of “competing error recovery” (see Section 2.5.4). This work has
been published in [LK00].

3.3.1 Analysis Goals, Assumptions, and Approach

The goal of our analysis is to study the impact of competing error recovery on TCP’s opera-
tion. In TCP, competing error recovery can cause spurious retransmissions as explained in
Section 2.5.4. Those can be triggered by spurious timeouts or packet re-ordering events. In the
latter case, we speak of spurious fast retransmits to distinguish those from spurious
retransmissions that have been triggered by spurious timeouts.

Spurious timeouts have not generally been a concern in the past. They are rare over all wireline
paths [Pax97d], as well as on path’s that include reliable wireless links that do not lose connec-

7000

12000

17000

22000

27000

10 15 20 25 30

RlpRcv_XON

RlpRcv_XOFF

Time of Day (s)

Sequence Number

Linear regression of
RlpSnd_Data
(958 bytes/s) RlpSnd_Data

(1198 bytes/s
on each sect ion
of the graph)

Figure 3-7: L2R flow control (zoom of Figure 3-6).

60 __ CHAPTER 3

tivity as we show in Section 4.2. This is due to the fact that the retransmission timer imple-
mented in TCP-Lite is overly conservative as we show in Section 5.3. However, we believe
that the problem will occur more frequently with the increasing number of hosts accessing the
Internet via wide-area packet-radio networks1. Frequent disconnections - on the order of sec-
onds - without losing data are not only common in these networks, but are explicitly accounted
for in their design. Over such links spurious timeouts in TCP are likely to be more frequent.

Spurious fast retransmits can occur if a link layer implements the out-of-order delivery func-
tion, or if packets of the same flow are routed differently in the Internet. It is difficult to evalu-
ate how serious this problem is in the Internet today. For wireless links that implement the out-
of-order delivery function, we are not aware of any study that investigates this problem. For
the other case, some studies [Pax97d] conclude that spurious fast retransmits occur rarely,
while other studies [BPS99] find this problem to be more serious. Clearly, this depends on the
paths underlying such studies, e.g., whenever routers are inter-connected via multiple links/
paths (e.g., for fault tolerance) and load balancing is performed across those links/paths on the
aggregate traffic, packet re-orderings will occur more frequently.

To study competing error recovery in TCP, we setup a “clean” environment in which measure-
ments are not blurred by uncontrolled effects like delay variations, or packet losses commonly
found in the Internet. We then used the hiccup tool explained in Section 3.3.3 to artificially
introduce excessive packet delays and/or packet re-orderings to trigger spurious
retransmissions.

3.3.2 Measurement Platform

We used a single-hop, all wireline path for our experiments consisting of two hosts (BSD/386
Version 3.0) inter-connected via a direct cable connection running PPP at 9.6 Kbit/s with an
MTU of 512 bytes. In all measurements the TCP timestamp option was enabled. The TCP
receiver advertised a window of 8496 bytes (). We always measured a single con-
nection at a time, and the pipe capacity was two segments. The size of the sending host’s inter-
face buffer (IFQ_MAXLEN [WS95]) which in BSD-derived systems is maintained in terms of
IP packets was used to limit the number of queued packets. For example, an interface buffer
size of 12 allows 12 packets to be queued before a packet (tail-)drop occurs. We used the inter-

1. Note that GSM-CSD is not a packet-radio network.

18 MSS×

Analysis Methodology ___ 61

face buffer size to trigger certain effects explained in Section 5.1. We used sock for bulk data

traffic generation.

3.3.3 The Hiccup Tool

We developed a tool called hiccup 1 to trigger spurious timeouts and/or spurious fast retrans-

mits. Depending on the parameters specified by a user-level process, hiccup operates on a

given interface in the inbound, outbound, or both directions, and generates transient delays by

queueing packets, or re-orders packets according to a user-specified re-ordering length. When

generating transient delays, hiccup can additionally be provided with an “expiration time”

after which each packet is dropped from the queue after its arrival2. The default “expiration

time” is indefinite. In that case packets are never dropped by hiccup . We have used this fea-

ture to demonstrate in Section 4.1.4 the problems that less persistent link layer error recovery

may cause for fully-reliable end-to-end protocols such as TCP. Effectively, hiccup emulates

a semi-reliable link layer protocol with a configurable error recovery persistency, and with the

in-order or the out-of-order delivery function.

1. hiccup was implemented by Keith Sklower at U.C. Berkeley.

2. Note, that this feature results in a drop-from-front as opposed to a tail-drop queue management scheme.

Receiver (BSDi 3.0)

Direct Cable (Serial Line)
(9.6 Kb/s)

Sender (BSDi 3.0)

IPIP

PPPPPP

IFQ_MAXLEN

hiccup

TCPTCP

socksock

BSD Packet
Filter

BSD Packet
Filter

Figure 3-8: Measurement Setup.

62 __ CHAPTER 3

The location of hiccup in the protocol stack is important to understand the trace plots (e.g.,
see Figure 5-2) in Section 5.1 and Section 5.2. Outbound packets queued by hiccup are
logged as a single burst by the BSD Packet Filter (BPF) although they have not been sent as a
burst by the TCP sender. Those packets are clocked out separately by the TCP sender each
time an ACK arrives (marked as + in the trace plots), but then get queued by hiccup . At that
point those packets are not logged by BPF. That is done after the transient delay is over, and
hiccup flushes the queue of packets into the outbound interface buffer. The packets are then
spread out in time due to the transmission delay on the outgoing link before they are received
by the TCP receiver.

3.4 Analyzing TCP’s Retransmission Timer

In this section, we explain the methodology we use in Section 5.3 to study TCP-Lite’s retrans-
mission timer, the Lite-Xmit-Timer (see Section 2.2.2). We also use that methodology to
develop a new retransmission timer for TCP in Section 5.4. With this analysis we address the
problem of “competing error recovery” (see Section 2.5.4). This work has been described in
[LS99].

Our experience with measuring TCP, especially the large amount of delay variation that is
required to trigger a spurious timeout in TCP (see Section 4.2 and Section 5.1), led us to
believe that something was wrong with the Lite-Xmit-Timer. We suspected that it was overly
conservative. We therefore analyzed the Lite-Xmit-Timer and confirmed our conjecture. For
that purpose, we developed a model of the class of network-limited TCP bulk data transfers in
steady state which we describe in Section 3.4.1 and Section 3.4.2. In Section 3.4.3, we
describe the measurement setup that was used for validation purposes.

3.4.1 Choosing a “typical” TCP Connection

TCP’s operation and performance is largely determined by the path’s metrics such as available
bandwidth, end-to-end delay, and packet drop pattern. Ideally, a well-designed retransmission
timer should perform well over any possible end-to-end path. In the Internet, however, those
path metrics can vary considerably over short and long time scales [Pax97a]. Consequently, the
typical TCP connection does not exist. This makes it particularly difficult to validate the
design of an end-to-end retransmission timer. Our approach is therefore to study one common
class of TCP connections which is frequently found in the Internet, yet, is simple enough to
allow for a model-based analysis.

Analysis Methodology ___ 63

We study the class of network-limited TCP bulk data transfers in steady state. In this case the
TCP sender goes through periodic congestion avoidance cycles during which it linearly
increases the load on the network until it receives a congestion signal. It then halves the load
which effectively means that it does not send any more segments for one half the RTT. This
gives the queue at the bottleneck link time to drain. We further assume a non-shared bottleneck
link with a fixed bandwidth and the sender always sends fixed size segments. In addition, we
assume that the sender fully utilizes (as defined in Section 3.1.2) the bottleneck link at any
point in time. The latter has the effect that whenever the sender increases its load by one seg-
ment, that this will increase the queue length at the bottleneck by one. Consequently, the RTT
increases by the segment’s service time at the bottleneck link. It also yields a maximum RTT
that is twice the minimum RTT as illustrated in Figure 3-9. Given these assumptions, the RTT
of a given flight within one congestion avoidance cycle is the sum of the RTT of the preceding
flight and a segment’s service time at the bottleneck link (see Figure 3-9 where each dot in the
graph denotes one RTT sample).

TCP connections that fulfill these assumptions can, e.g., be found in situations where the
access link (e.g., low bandwidth dial-up or wide-area wireless) becomes the bottleneck link,
and only a single application creates traffic. The analysis of a receiver-limited connection in
such a situation is trivial as the RTT is constant in that case.

TimeOfDay

RTT

MAX-RTT

MIN-RTT
MAX-RTT = 2 x MIN-RTT

Bottleneck Link
Service Time

One Con gestion
Avoidance C ycle

RTT Samples of
the same Fli ght

Figure 3-9: The RTT in steady state.

64 __ CHAPTER 3

3.4.2 Model-based Analysis

Given an RTT that evolves in a deterministic and recurrent manner as outlined in Section 3.4.1,
the RTO does also, as it is a function of RTT. Thus, we have chosen to model the RTT, the
RTO, and all other relevant sender-side connection state variables on a spreadsheet [Lud99a].

We make the following additional assumptions:

• In our model, we assume that every segment is timed to measure the RTT and that the
receiver acknowledges every segment, i.e., we assume an RTT sampling rate of one.

• We assume that congestion is signalled explicitly at the end of each congestion avoidance
cycle instead of through a dropped packet (see Section 2.3). This simplifies the model-
based analysis without limiting it.

• To make our model independent of the impact of the timer granularity (see Section 2.2.2)
we model time in terms of ticks which can be arbitrarily defined.

On our spreadsheet, columns correspond to a specific connection state variable (e.g., the RTT
or the RTO) and rows correspond to the arrival of a new ACK, i.e., a new RTT sample. Thus,
the “Time of Day” progresses from one row to the next by the bottleneck link’s service time.
The spreadsheet has a number of parameters including the segment size, the bottleneck link’s
bandwidth and buffer size, and the end-to-end latency. Those are used to instantiate the spread-
sheet to reflect a specific connection, i.e., a specific evolution of RTT. In the following we
refer to such an instantiation of the spreadsheet as “the model”. The mentioned parameters
itself are less important for our analysis. What matters is the flow’s load at the end of each con-
gestion avoidance cycle. This is further discussed in Chapter 5.

Using spreadsheet software as a modeling tool for our purpose has a number of advantages.
First, spreadsheet software usually includes graphing components which greatly ease the anal-
ysis. Second, debugging is implicitly supported as the spreadsheet itself reflects the history of
the sender-side connection state, i.e., the value of the modeled state variables over time. The
greatest advantage over techniques like simulations, however, is the little processing time
required to determine target metrics over time for a given parameter set. Once the parameters
have been specified, a graph of interest can be viewed instantly.

3.4.3 Measurement-based Analysis

We perform a measurement-based analysis to validate our model-based analysis. Thus, our
goal is to reproduce a connection with characteristics as close as possible to a connection we
can model using the technique and the assumptions described in the preceding two subsec-
tions. For that purpose, we used the measurement setup described in Abschnitt 3.3.2 without

Analysis Methodology ___ 65

hiccup , an MTU of 1500 bytes, and a link speed of 2.4 Kbit/s. In addition, we set the size of
the interface buffer to 40 packets. We chose those settings to produce RTTs that are several
multiples of the timer granularity used in TCP-Lite (500 ms) to study the RTO at a sufficient
resolution. With these settings, the RTT at the end of a congestion avoidance cycle is about
250 s (40 packets of 1500 bytes draining from the interface buffer at 240 bytes/s).

The transmission delay for a segment in this setup is too high to trigger delayed ACKs. Conse-
quently, we always measured with an RTT sampling rate of one. The only difference to the
model of this connection is that the TCP sender in the measurements had to rely on a dropped
packet and the corresponding three DUPACKs as the congestion signal. The minor impact of
this difference is discussed in Abschnitt 5.4.2.

3.5 Summary

In this chapter, we explained the methods and tools we used to obtain the results presented in
Chapter 4 and Chapter 5. Most of our studies are based on measurements. To support this
work, we have developed four new tools:

• rlpdump ,

• hiccup ,

• ReTracer, and

• MultiTracer.

Many thanks to Almudena Konrad, Bela Rathonyi, and Keith Sklower who contributed to the
tools’ development.

The first two tools are kernel extensions of the BSD system with a corresponding user level
process. rlpdump logs RLP and block erasure traces. hiccup emulates a semi-reliable link
layer protocol with a configurable error recovery persistency, and with the in-order or
out-of-order delivery function. It is used in a controlled, “non-wireless” environment. hiccup

can also be used to artificially generate excessive packet delays and/or packet re-orderings dur-
ing a measurement to trigger spurious retransmissions in TCP.

The latter two tools are script files required for post-processing of TCP and RLP traces provid-
ing the ability to visualize them correlated in time and at multiple levels of detail. Using these
tools, we have post-processed and analyzed a large base of traces representing a variety of
mobile data uses (e.g., stationary indoors, walking, driving, etc.).

66 __ CHAPTER 3

We use rlpdump and MultiTracer in Section 4.2 to study in general inefficient cross-layer
interactions that may occur when running TCP-based bulk data transfers over RLP in GSM-
CSD. We use rlpdump and ReTracer in Section 4.3 to evaluate the benefit of link layer error
recovery for reliable flows. This analysis addresses the problems of “underestimation of avail-
able bandwidth” (see Section 2.5.1), “inefficiency of end-to-end error control” (see
Section 2.5.2), and also the problem of “failure of link layer differential encodings” (see
Section 2.5.5). We use hiccup in Section 5.1 and Section 5.2 to further study and solve the
problem of “competing error recovery” (see Section 2.5.4) for the case of TCP.

In addition to measurements, we use a model-based analysis approach to study TCP-Lite’s
retransmission timer in Section 5.3, and to develop a new retransmission timer for TCP in
Section 5.4. For that purpose we modeled on a spreadsheet the RTT, the RTO, and all other rel-
evant sender-side connection state variables for the class of network-limited TCP bulk data
transfers in steady state. In Section 5.3.5, we validate our model-based analysis through mea-
surements in a real network that yield the same results. This analysis addresses the problem of
“competing error recovery” (see Section 2.5.4).

___ 67

CHAPTER 4

Flow-Adaptive Wireless Links

In this chapter, we propose the concept of flow-adaptive wireless links to eliminate the ineffi-
cient cross-layer interactions explained in Section 2.5. The key idea is that network end-points
use the IP layer as a level of indirection through which their QoS requirements are signalled to
each link layer along the path, on a per packet basis. This allows for a (wireless) link layer to
adapt its error control schemes to meet those requirements while efficiently utilizing radio
resources. Subsequently, we focus on fully-reliable flows, in particular on bulk data flows,
leaving the question of appropriate adaptation of link layer error control for real-time flows for
future research. The work presented in this chapter has been published in [LR99], [LRKOJ99],
[Lud99b], and [LKJK00].

A novelty of our solution is that for fully-reliable flows, we recommend a maximum link layer
error recovery persistency that corresponds to TCP’s Maximum Segment Lifetime (MSL) of
2 minutes. In Section 4.1.4, we argue and demonstrate that this approach provides higher end-
to-end performance than solutions that use a lower link layer error recovery persistency.
Through a case study of TCP over RLP in GSM-CSD, we verify in Section 4.2 that flow-adap-
tive wireless links combined with the recommended link layer adaptations eliminate all known
inefficient cross-layer interactions except for the problem of competing error recovery.

In Section 4.3, we show how the GSM-CSD wireless link can be adapted to optimize the end-
to-end performance of bulk data flows. This again validates the benefits of providing service
differentiation by adapting link layer error control. It also demonstrates that link layer error
recovery over wireless links is essential for reliable flows to optimize their end-to-end perfor-
mance while efficiently utilizing radio resources. Implementing an optimal solution only from
the end points of a path seems impossible; even if knowledge about the time varying error
characteristics of each wireless link in a path was available. We believe that a similar line of
argument applies to real-time flows.

68 __ CHAPTER 4

4.1 Extending the Differentiated Service Framework

4.1.1 Providing Differentiated Service through Link Layer Error Control

The motivation behind flow-adaptive wireless links is that the more information about its QoS
requirements a flow1 makes available to a (wireless) link layer, the better the link layer can
adapt its error control schemes to meet those requirements while efficiently utilizing radio
resources. The latter is crucial because spectrum required for a wireless link is often expensive
and mobile radio transceivers consume precious battery power. In the next subsection we dis-
cuss the QoS requirements that are relevant in this context and recommend matching adapta-
tion of link layer error control.

The key idea is that network end-points use the IP layer as a level of indirection through which
their QoS requirements are signalled to each link layer along the path, on a per packet basis.
For that purpose, the QoS requirements are communicated only through the IP headers, in par-
ticular those parts of the IP header that are not encrypted by IPsec, e.g., the Differentiated Ser-
vice Field (DS Field) [RFC2474]. This approach is the key to making our solution independent
from transport (or higher) layer protocol semantics, and allowing co-existence with IPsec.

Flow-adaptive wireless links emphasize link layer error control - in particular error recovery -
as a necessary complement to end-to-end error control. This is orthogonal to the “end-to-end
argument” [SRC84] that calls link layer error control “an incomplete version of the function

1. Remember from Section 2.1 that we use the terms network end-point and flow interchangeable

Cel lu lar Access
Network Internet

IP-Host

Mobi le
IP-Host

Short Ran g e Radio

Cel lu lar L ink

IP-Phone

IP-Host

QoS Requirements QoS Requirements

Internet Protocol (IP)

L1/L2GL1/L2BL1/L2B L1/L2G

Read packet 's
QoS requirements

Adapt L1/L2B

Bulk Data
Appl icat ion

Real- t ime
Appl icat ion

Real- t ime
Appl icat ion

Bulk Data
Appl icat ion

Read packet 's
QoS requirements

Adapt L1/L2G

Figure 4-1: The concept of flow-adaptive wireless links.

Flow-Adaptive Wireless Links ___ 69

[error control] provided by the communication system [that] may be useful as a performance
enhancement”. We believe that carrying a network end-point’s QoS requirements as part of the
flow’s packet headers and accordingly adapting lower layer functions, such as error control
schemes, advances the discussion presented in [SRC84].

The concept of flow-adaptive wireless links is exemplified in Figure 4-1. It shows a mobile
host that connects to the Internet through a cellular network. The mobile host communicates
with two different hosts on the Internet simultaneously resulting in a bulk data and a real-time
flow. The connection between the mobile host and the cellular network access device (labeled
as IP-phone in Figure 4-1) is yet a second (different) wireless link. Both wireless links are
flow-adaptive but independent of each other. Each link deploys its own set of physical and link
layer error control schemes called L1/L2B and L1/L2G which are optimized for the particular
wireless bearer.

Similar models have been proposed: the type-of-service marking model [RFC1349] and the
differentiated service architecture [RFC2475] that is based on the mentioned DS Field.
Whereas the type-of-service marking has never been widely deployed, the differentiated ser-
vice architecture is likely to become the standard mechanism for offering more services in the
Internet other than just the best-effort service. However, both models are limited to providing
service differentiation only by adapting network layer forwarding behavior implemented
through functions such as routing, scheduling, and queue management. Our solution should be
understood as an extension of these models to additionally provide service differentiation by
adapting link layer error control.

Numerous solutions have been proposed in literature to dynamically adapt link (and physical1)
layer error control schemes. However, as opposed to our solution those mechanisms have been
designed to provide fixed QoS requirements (e.g., a fixed maximum residual bit error rates or
fixed link latency) and only adapt to quality changes of the wireless bearer. All flows that share
such a wireless link receive the same service. This “one size fits all” philosophy is the root of
the inefficient cross-layer interactions “inefficiency of end-to-end error control” (see
Section 2.5.2), and “overly strong link layer error control” (see Section 2.5.3). Flow-adaptive
wireless links eliminate those inefficient cross-layer interactions as explained in the following
subsection.

4.1.2 Defining Service Classes and Matching Link Layer Adaptations

Table 4-2 shows the QoS requirements of the flow types we defined in Section 2.1. These QoS
requirements are similar to the type-of-service markings defined in [RFC1349]. Applications
that are based on bulk data flows usually require a fully-reliable end-to-end connection. They

1. For example, power control, or spreading factor control in code division multiple access networks.

70 __ CHAPTER 4

usually do not have a minimum end-to-end throughput requirement but instead “take what they
can get” (best-effort), i.e., their main QoS requirement is to maximize throughput while the
end-to-end delay of individual packets is less important. Consequently, bulk data flows mostly
utilize their available bandwidth. Also, applications that are based on interactive flows usually
require a fully-reliable end-to-end connection. Unlike bulk data flows, however, those flows
mostly do not utilize their available bandwidth, i.e., end-to-end throughput is less important.
Instead, those applications’ main QoS requirement is to minimize response time although they
usually do not have a minimum end-to-end delay requirement (best-effort).

The QoS requirements of applications that rely on real-time flows are more difficult to define
because those applications can have various degrees of delay, throughput, and reliability
requirements. For example, traditional telephony requires a fixed end-to-end throughput. It
fails if the flow’s available bandwidth falls below and it cannot utilize available bandwidth that
exceeds that fixed value. Rate-adaptive audio applications, on the other hand, can operate over
a range of available bandwidths. Also, traditional telephony is fairly delay-sensitive (the per
packet end-to-end delay may not exceed about 100 ms) whereas streaming applications like
IP-based radio can tolerate per packet end-to-end delays on the order of a few seconds due to
the implementation of playback buffers. Other real-time applications can even tolerate higher
end-to-end delays, e.g., applications that periodically broadcast refresh messages to update
obsolete information like stock quotes. The only thing that real-time applications have in com-
mon is that they do not require a fully-reliable end-to-end connection. Nothing more can be
said about their reliability requirement in general. For example, some applications implement
error-resilient codecs for which corrupted application data is often still useful. For those
codecs to become effective a transparent end-to-end (and link layer) service is required. Real-
time applications that are based on non-error-resilient codecs rely on the fact that received
application data is error-free and therefore require a semi-reliable or an unreliable end-to-end
service.

Minimize
Per Packet

Delay

Maximize
Flow’s

Throughput
Reliability a

a. fully-reliable, or not fully-reliable

Bulk Data
(e.g., file transfer, e-mail)

not important
yes

(best-effort)
fully-reliable

Interactive
(e.g., remote terminal, e-banking)

yes
(best-effort)

not important fully-reliable

Real-time
(e.g., telephony, radio, stock quote broadcasting)

yes
(maximum is
application
dependent)

depends on
flow type

not
fully-reliable

Tabelle 4-2: Differentiating between flow types.

Flow-Adaptive Wireless Links ___ 71

Below, we propose four new DS Field values that allow a differentiation between four different
service classes, and recommend matching adaptations of link layer error control. Note that this
does not define how a link’s resources are supposed to be allocated among those four service
classes in case of congestion. Various alternatives exist for that purpose (e.g., see [FJ95]).

• Fully-reliable & throughput dominated (bulk data)
Packets belonging to this service class should be transmitted with a maximum link layer
error recovery persistency of up to the MSL of 2 minutes. The link layer should perform
out-of-order delivery as long as this does not interfere with differential encoding
schemes1. All other link and physical error control schemes should be adapted to provide
highest throughput.

• Fully-reliable & delay dominated (interactive)
Packets belonging to this service class should be transmitted with a maximum link layer
error recovery persistency of up to the MSL of 2 minutes. The link layer should perform
out-of-order delivery as long as this does not interfere with differential encoding schemes.
All other link and physical error control schemes should be adapted to provide lowest per
packet delay.

• Real-time & error-resilient
Packets belonging to this service class should be transmitted with a “low” link layer error
recovery persistency and FEC and interleaving should be adapted to provide “low”
delay2. For error-resilient codecs to become effective a transparent link layer service is
required.

• Real-time & non-error-resilient
Packets belonging to this service class should be transmitted with a “low” link layer error
recovery persistency and FEC and interleaving should be adapted to provide “low” delay.
A semi-reliable or unreliable link layer service is required as the receiving application
cannot tolerate errors in the application data.

We do not further consider real-time flows in this dissertation. This is left for future research.
This is also why the above recommendations for real-time flows are rather vague. Throughout
the rest of this dissertation we focus on fully-reliable flows, in particular on bulk data flows.
Although a validation is outside the scope of this dissertation, we expect that the difference
between the two fully-reliable service classes (bulk data and interactive) is that the interactive
service class requires a stronger protection of the wireless link (e.g., through stronger FEC) to
minimize the per packet delay.

1. In case non-resequencing TCP/IP header compression is run, out-of-order delivery should only be performed for packets
belonging to different flows. Note, that [RFC2507] provides a resequencing feature while [RFC1144] does not.

2. Ideally, each packet’s IP header carried a “time-to-live” field in milliseconds with respect to a global clock that could be
used to limit the maximum delay these error control schemes may introduce. Since such a field does not exist in the IP
header today, a conservative maximum delay (e.g., 50 ms) should be assumed.

72 __ CHAPTER 4

The important aspect for our work and the novelty of our solution is that we can distinguish
between bulk data, interactive, and “other” flows at the link layer for the purpose of adapting
link layer error control. This is the key to eliminating the inefficient cross-layer interactions we
explained in Section 2.5. In particular it ensures that link layer error recovery, a link layer in-
order delivery function, and/or a too large interleaving depth does not interfere with the delay
bounds required by real-time flows. This eliminates the problem of “overly strong link layer
error control” (see Section 2.5.3). Distinguishing between bulk data and interactive flows fur-
ther allows to better meet those flows’ QoS requirements (maximize throughput versus mini-
mizing per packet delay) as shown in Section 4.3.

The second novelty of our solution is that for fully-reliable flows, we recommend a maximum
link layer error recovery persistency corresponding to TCP’s Maximum Segment Lifetime
(MSL). This value has been arbitrarily defined as 2 minutes in [RFC793]. The MSL has also
been chosen as an upper bound for the reassembly timeout after IP fragmentation [RFC1122].
We are not aware of any proposal or implementation of a link layer protocol that treats fully-
reliable flows this way. We explain the motivation for choosing such a high link layer error
recovery persistency in Section 4.1.4.

For fully-reliable flows our solution eliminates the following inefficient cross-layer interac-
tions:

• “underestimation of the available bandwidth” (see Section 2.5.1)
This problem is eliminated because the highly persistent link layer error recovery reduces
a flow’s error loss rate to the lowest possible value. Thus, only in extreme situations can
the network end-points receive a false congestion signal. A long link outage (longer than
2 minutes) is an examples of such an extreme situation. However, in that case it is best to
signal congestion, anyway, so that the network end-points can adapt to a conservative
packet send rate.

• “inefficiency of end-to-end error control” (see Section 2.5.2)
This problem is eliminated because the highly persistent link layer error recovery reduces
the number of end-to-end retransmissions triggered by error losses to the lowest possible
value. Thus, in the common case, end-to-end retransmissions are either spurious or trig-
gered by congestion losses. In Section 5.2, we propose an enhancement to TCP that also
eliminates avoidable spurious retransmissions.

• “failure of link layer differential encodings” (see Section 2.5.5)
This problem is eliminated because the highly persistent link layer error recovery ensures
that “deltas” (e.g., compressed TCP/IP headers) are never lost or only lost in extreme situ-
ations like the above mentioned long link outage. Consequently, our approach obsoletes
efforts to make TCP/IP header compression robust against packet losses, e.g., the Twice
algorithm and the header request mechanism proposed in [RFC2507].

Flow-Adaptive Wireless Links ___ 73

Hence, for fully-reliable flows our solution of flow-adaptive wireless links combined with the
recommended link layer adaptations eliminates all known inefficient cross-layer interactions
except for the problem of “competing error recovery” (see Section 2.5.4). Yet, we believe that
that problem has to be solved by making the respective fully-reliable end-to-end protocol more
robust. In Section 5.2, we therefore propose a solution that eliminates that problem for TCP.

4.1.3 Deployment Concerns and Implementation Alternatives

There are certainly deployment concerns associated with our concept of flow-adaptive wireless
links. First of all, it requires the implementation and deployment of two things: (1) new wire-
less link layers that are capable of providing the required service differentiation, and (2) an
extended network/link layer interface via which the network layer can request an appropriate
service class for the transmission of an IP packet. Both do not exist today but would need to be
deployed in future wireless systems. Nevertheless, this is not such a severe problem because it
only causes “local” changes, i.e., it only requires changes to hosts and routers that are con-
nected to such a wireless link.

A more problematic and fundamental deployment concern is that network end-points today do
not explicitly include their QoS requirements in their flows’ packet headers. This prevents the
necessary differentiation between IP packets at the network/link layer interface. Solving this
problem requires changes at every network end-point that may be located at the end of a path
that includes a wireless link, i.e., essentially every host on the Internet. Hence, it requires stan-
dardization, adoption, and deployment not only of the differentiated services framework but
also of the extensions we have proposed in the preceding two subsections.

It is, however, possible to sidestep this deployment concern with a “layer-violating trick”. A
link layer implementation can inspect the protocol identifier in the IP header of each packet to
distinguish between TCP, UDP, and ICMP packets. TCP packets clearly belong to a fully-reli-
able flow. The implementation could further “guess” that UDP packets belong to a real-time
flow that is “very” delay-sensitive, e.g., using a the above mentioned maximum delay bound of
50 ms, and that ICMP packets belong to a less delay-sensitive real-time flow. To further distin-
guish between TCP packets that belong to a bulk data versus those belonging to an interactive
flow, the implementation could check the TCP port numbers, e.g., telnet (interactive) and ftp
(bulk data) servers have uniquely defined port numbers. This idea has already been imple-
mented for certain link layer framing protocols (see note on pp. 35 of [Ste94]) to control sched-
uling algorithms that prioritize packets belonging to interactive over those belonging to bulk
data flows. In [LR99] we have developed a solution that applies this idea for the purpose of
adapting link layer error control, i.e., a solution to implement a flow-adaptive wireless link.

74 __ CHAPTER 4

However, this trick has a number of major problems. First, it violates the paradigm of protocol
layering as discussed in Section 2.7 preventing interoperability with IPsec. The reason is that
IPsec encrypts both the protocol identifier in the IP header1, and also the port numbers in the
TCP header. Again, this prevents the necessary differentiation between IP packets at the net-
work/link layer interface. Secondly, not every UDP-based flow is a real-time flow as some
application layer protocols build end-to-end reliability on top of UDP (e.g., [FJLMZ97],
[RFC1831], [RFC1094]). Thus, such flows would be falsely treated as real-time flows when
they should have been treated as bulk data or interactive flows.

4.1.4 Link Layer Error Recovery Persistency for Fully-Reliable Flows

There have been debates [ES98], [Kar93], [LRKOJ99], [PILC] about how persistent link layer
error recovery should be implemented for fully-reliable flows. The “end-to-end argument”
[SRC84] tells us that it is not worth the effort to implement perfect reliability at the link layer.
Yet, our design should eliminate non-congestion related packet losses to avoid interference
with end-to-end congestion control schemes as explained in Section 2.5.1. Implementing a low
error recovery persistency as proposed in [Kar93] is a compromise that avoids this conflict by
emphasizing end-to-end error recovery. However, this approach has fundamental problems.

First, the link layer sender has no way to decide when to “give up” and discard the packet to,
e.g., stay within the bounds of TCP’s retransmission timer and/or to reduce the flow’s error
loss rate below the flow’s probing loss rate. This is not feasible as it requires knowledge of the
flow’s RTT, which cannot be known at the link layer (unless it was explicitly signalled from a
network end-point). Also, the higher the rate of error losses, the more inefficient cross-layer
interactions this causes with link layer differential encodings (see Section 2.5.5 and
Section 4.2.3). A low error recovery persistency therefore requires strong FEC, i.e., more
channel overhead, to keep the rate of error losses low. Together with the non-data-preserving
property2 of semi-reliable link layer error recovery, this cannot yield optimal end-to-end
throughput.

A more fundamental problem occurs in case of temporary link outages, e.g., when a user tem-
porarily roams into an area without wireless connectivity. In this case, all of a flow’s packets
that are in flight are eventually queued at the wireless link where the outage occurred. A link
layer that implements a low error recovery persistency discards those packets over a short
period of time. This may cause a phase where the link is left idle due the sending network end-
point waiting for a possibly backed-off retransmission timer to expire before the next packet is
sent. During that time the link may have already become available again. In case of TCP this

1. Actually the value of the protocol identifier field in the IP header is changed to reflect one of the two protocol identifiers
defined for IPsec.

2. Those fragments of an IP packet that had already been transmitted before the packet is finally discarded after the error
recovery persistency was reached have wasted resources of the wireless link.

Flow-Adaptive Wireless Links ___ 75

idle phase can be up to 64 seconds (the maximum RTO) long. If, on the other hand, packets are

still queued at the wireless link, the end-to-end flow of packets is re-started immediately after

the link has become available. We demonstrate both cases based on TCP using the hiccup

tool and the experimental network explained in Section 3.3. We run two bulk data transfers and

transmit 40 KBytes each time. In both cases we use hiccup to emulate a link outage of 23 s

on the TCP receiver’s outbound interface, i.e., in the direction that ACKs are sent. The other

direction is not affected1. In both cases this leads to two spurious timeouts. Note that although

we demonstrate these effects with bulk data transfers the same problem exists for interactive

flows.

In the first case (see Figure 4-3), hiccup emulates a semi-reliable link layer with an error

recovery persistency of 2 min. During the link outage all ACKs sent by the TCP receiver are

queued by hiccup . None of those packets is discarded due to the high error recovery persis-

tency that is emulated. Hence, as soon as the link outage is over, the queued ACKs are trans-

mitted and arrive at the TCP sender as a single burst (this phenomena is called ACK compres-

sion [ZSC91], [Mog92]). This immediately restarts the flow of packets, and the bulk data

transfer terminates about 70 s after it was initiated. Figure 4-3 also illustrates the go-back-N

1. We excluded that direction from the link outage to make retransmissions visible in the trace plots. The same problem occurs
if the link outage affects both directions, but it cannot be illustrated so easily.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

0 10 20 30 40 50 60 70 80
Time of Day (s)

S
eq

ue
nc

e
N

um
be

r

Snd_Data
Snd_Ack
Rcv_Data
Rcv_Ack
hiccup

ACKs that had been
queued by hiccup during
the link outage are placed
into the transmit queue
which restarts the flow of
packets

Figure 4-3: Link outage with high link layer error recovery persistency.

76 __ CHAPTER 4

behavior in TCP that occurs after spurious timeouts. The Eifel algorithm presented in
Section 5.2 eliminates this inefficiency.

In the second case (see Figure 4-4), hiccup emulates a semi-reliable link layer with an error
recovery persistency of 500 ms. During the link outage all ACKs sent by the TCP receiver are
eventually discarded by hiccup . Hence, when the link outage is over, there is no ACK
queued that could restart the flow of packets. Instead, the TCP sender is forced into a third tim-
eout. The resulting third retransmission finally restarts the flow of packets, however, only after
the link was left idle for almost 30 s. Consequently, the bulk data transfer takes about 25 s
longer as compared to the first case.

Highly persistent link layer error recovery for fully-reliable flows has none of the problems
explained above. It ensures as far as possible that any loss at the link is caused by congestion1

which is the right signal to give to the senders of loss-responsive flows. For the same reasons
that favor highly persistent link layer error recovery for fully-reliable flows, should wireless
networks implement mechanisms to support lossless intra- (and if possible also inter-) system
cell handovers for data belonging to fully-reliable flows.

1. Apart from the more unlikely events of link layer error detection failures.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

0 10 20 30 40 50 60 70 80 90 100
Time of Day (s)

S
eq

ue
nc

e
N

um
be

r

Snd_Data
Snd_Ack
Rcv_Data
Rcv_Ack
hiccup

The link is left idle for
almost 30 seconds

Figure 4-4: Link outage with low link layer error recovery persistency.

Flow-Adaptive Wireless Links ___ 77

4.2 Real-World Interactions between TCP and RLP

In Section 4.1, we concluded that for fully-reliable flows our solution eliminates all known
inefficient cross-layer interactions except for the problem of “competing error recovery” (see
Section 2.5.4). To validate that conclusion and to evaluate how serious the problem of compet-
ing error recovery is in a real-world wireless network like GSM-CSD, we study potentially
inefficient interactions between TCP and RLP during bulk data transfers. While we show that
competing error recovery is not a problem for TCP in GSM-CSD, our multi-layer tracing
approach explained in Section 3.2 allowed us to detect some unexpected results. Firstly, we
observe the negative impact that overbuffered links has on end-to-end performance. Secondly,
RLP link resets lead to large amounts of data being lost due to an interaction with TCP/IP
header compression; a problem that is aggravated by overbuffered links.

4.2.1 Interactions are Rare

In general, we have found that TCP and RLP rarely interact in an inefficient way. As depicted
in Figure 4-5, in almost 85 percent of all our measurements, the utilization (as defined in
Section 3.1.2) of the GSM-CSD channel was 98 percent or more1. Even in those measure-
ments where we detected inefficient protocol interactions, the utilization never dropped below

1. Note that we use “rounded” figures. For example, a measured utilization between 99 and 100 percent is counted as
100 percent.

0%

10%

20%

30%

40%

50%

60%

70%

80%

92% 93% 95% 99% 100%

TCP Channel Utilization (in percent)

P
er

ce
nt

 o
f a

ll
T

ra
ce

s

7.1 - 9.0 Kb/s

7.0 - 8.8 Kb/s

6.4 - 6.6 Kb/s

5.8 - 6.2 Kb/s5.7 - 6.2 Kb/s

Figure 4-5: TCP channel utilization.

78 __ CHAPTER 4

91 percent. We had not expected to observe such high figures, given that one third of all mea-

surements were taken in an environment with poor receiver signal strength (see Section 3.2.3).

In such an environment we had expected to find cases of competing error recovery between

TCP and RLP. In fact, we only found two such incidents. All measurements that yielded a uti-

lization of 95 percent or less suffered from the impact of RLP link resets when TCP/IP header

compression [RFC1144] was used. This is further explained in Section 4.2.3.

Figure 4-5 also shows the throughput range that sock achieved for measurements that yielded

the same utilization. Taking protocol overhead into account, the throughput was mostly close

to the bit rate of the channel1. These results confirm similar findings from [Bau97] and

[KRLKA97]. However, unlike in those studies, our tools provided us with the unique opportu-

nity to measure utilization in addition to throughput. Thus, we could determine that a measure-

ment (using TCP/IP header compression) which resulted in a throughput of only 7.0 Kbit/s, but

yielded an utilization of 99 percent must have suffered from a non-optimal radio connection.

Consequently, the RLP sender must have retransmitted a higher number of frames. The overall

throughput results, however, suggest that the GSM-CSD channel is over-protected with FEC.

This topic is further studied in Section 4.3.

4.2.2 Excessive Queueing

One problem that is evident in the trace plots is the large mismatch between the pipe capacity

and the load that the TCP sender puts onto the network. The pipe capacity in this network is

already reached with 2 segments, assuming an MTU of 512 bytes. However, as can be seen in

Figure 4-6, the TCP sender increases its load up to 8 KBytes or 16 segments. As explained in

Section 2.3, the TCP sender has no way to determine the pipe capacity and, thus, will periodi-

cally increase its congestion window (the load) until the TCP receiver’s advertised window is

reached. The latter usually corresponds to the default socket buffer size of commonly 8 or

16 KBytes.

In the measurement platform shown in Figure 3-5, packets are queued in the mobile host’s out-

bound interface buffer. For downlink transmission, those packets would be queued at the other

side of the bottleneck link, e.g., at the ISP shown in Figure 2-72. Thus, the core of the problem

is a largely overbuffered link. The default interface buffer size in the BSD system is

50 packets. Obviously, this is an inappropriate size for a mobile host that usually does not have

a large number of simultaneous connections.

1. Note that some measurements were done with and others without TCP/IP header compression. Also, some commercial
GSM networks provide a user rate of 1200 bytes/s, whereas others only provide 960 bytes/s (see Section 3.2.5).

2. This is why Internet Service Providers (ISPs) often configure their equipment to not allow more than 3 - 4 packets worth of
buffer space per access line into their modem pool.

Flow-Adaptive Wireless Links ___ 79

We have purposefully compiled a kernel of the BSD/386 Version 3.0 operating system with an
interface buffer that was smaller than the socket buffer size of 8 KBytes to provoke a local
packet drop as shown in Figure 4-6. In response, the tcp_quench() function [WS95] resets the
TCP sender’s congestion window to (we have explained this part of the trace already
in Section 3.2.1). After about one half of the current RTT, the sender can again send additional
segments until the DUPACKs for the dropped packet trigger the fast retransmit algorithm. This
leads to setting the congestion window to one half of its value before the local drop occurred
(see the TcpSnd_cwnd graph). At this point, the sender has reached the advertised window and
cannot send additional segments (which it could have otherwise) while further DUPACKs
return during the fast recovery phase. Thus, when the retransmission is acknowledged 26.5 s
into the connection, a burst of 8 segments is sent out by the TCP sender at once.

As can be seen from the TCP receiver trace, excessive queuing, the ups and downs of the con-
gestion window at the TCP sender, and even retransmissions do not much degrade throughput
performance. But excessive queueing has a number of other negative effects:

• It massively inflates the RTT. In fact, a second TCP connection established over the same
link is likely to suffer from a timeout on the initial connect request (SYN). That timeout
would occur because it takes longer to drain the queue packets (here up to 14 x MTU or
7 KBytes) on a 960 bytes/s link than the commonly used initial setting for TCP’s RTO of
6 seconds.

• If the timestamp option is not used, the RTT is sampled less frequent, leading to an inac-
curate RTO.

1 MSS×

0

10000

20000

30000

40000

8 13 18 23 28

TcpSnd_Data

TcpSnd_Ack

TcpRcv_Data
TcpRcv_Ack

Fast retransmit
on 3rd DUPACK

Packet drop due to an interface buffer
overf low leads to a local source quench

TcpSnd_cwnd

8 KBytes

Time of Day (s)

Sequence Number

Figure 4-6: Local buffer overflow (zoom of Figure 3-6).

80 __ CHAPTER 4

• An inflated RTT inevitably leads to an inflated RTO, which can have a significant nega-
tive impact on TCP’s performance, e.g., in case of multiple losses of the same packet. The
negative impact results from the exponential timer backoff explained in Section 2.2.2 and
is illustrated in Figure 4-9.

• For downlink transmissions (e.g., web browsing), where no appropriate limit is imposed
onto the outbound interface buffer of the bottleneck router, the data in the queued packets
may become obsolete (e.g., when a user aborts the download of a web page in favor of
another one). In that case, the “stale data” must first drain from the queue, which in case
of a low bandwidth link, may take on the order of several seconds.

• In case of a handover during downlink data transfer many packets may have to be dis-
carded or transferred to the new downlink queue (see Section 2.4.2).

A simple solution to these problems is to statically adjust the interface buffer size to the order
of the interface’s bit rate (An interface buffer of 50 packets is certainly too large for an inter-
face bit rate of 9.6 Kbit/s.). A more advanced solution is to deploy active queue management
(see Section 2.3.3) at both sides of the bottleneck link. The goal is to adapt the buffer size
available for queueing to the bit rate of the interface, a given worst-case RTT, and the number
of connections actively sharing the link. Combining active queue management with an explicit
congestion notification mechanism (see Section 2.3.3) would further improve network perfor-
mance as fewer packets would have to be dropped and retransmitted. In fact, we regard it as
imperative that these mechanisms be implemented at both ends of wide-area wireless links,
which we believe will be the bottleneck in a future Internet. Given that those solutions already
exist we do not further consider the problem of excessive queueing.

4.2.3 The Impact of RLP Link Resets

One of the key findings of our multi-layer tracing analysis is an understanding of the impact of
RLP link resets (see Section 2.4.3) when TCP/IP header compression is used to reduce the per
segment overhead. We want to point out, though, that RLP link resets are very rare events. We
have captured 14 resets, all of which occurred when the receiver signal strength was extremely
low. In all cases, the link reset was triggered because RLP’s default error recovery persistency
(see Section 2.4.3) was reached, i.e., a frame had to be retransmitted more than 6 times. Our
results suggest that this default value is too low and needs to be increased. TCP connections
before and after the link reset usually progress without problems and there is no apparent rea-
son why the link should be reset.

Figure 4-7 depicts this problem as perceived by the TCP receiver. We have only plotted the
ACKs generated by the receiver and the RLP link resets (of which we captured two within
100 seconds). As can be seen, the first link reset leads to a gap of 11 s and 18 s for the second
reset. During both gaps, no data is received correctly as neither ACKs or DUPACKs are sent

Flow-Adaptive Wireless Links ___ 81

by the TCP receiver. Consequently, the throughput during the interval depicted in Figure 4-7
drops by more than 25 percent down to 634 bytes/s.

Figure 4-8 shows a detailed examination of what happens after the RLP link reset. The reset
apparently caused the loss of 5 segments. Remember from Section 2.4.3 that RLP provides a
byte stream service. Thus, if only the first or last few bytes of a PPP frame are lost when the
RLP sender and receiver flush their buffers after the link reset, the whole PPP frame is dis-
carded by the PPP receiver because of a checksum error. In this case, it causes the TCP/IP

320000

340000

360000

380000

400000

420000

380 400 420 440 460 480 500 520

Sequence Number

Time of Da y (s)

TcpRcv_Ack

RlpSnd_RST

RlpSnd_RST

18s

11s

Figure 4-7: Header decompressor failures.

Figure 4-8

393000

398000

403000

408000

413000

480 485 490 495 500 505 510 515 520

Sequence Number

Time of Da y (s)

RlpSnd_RST

18 se g ments

TcpRcv_Ack

TcpSnd_Data

TcpSnd_Ack

TcpRcv_Data

5 se g ments
lost due to
RLP Reset

13 se g ments discarded
at TCP receiver

Figure 4-8: Zoom of Figure 4-7.

82 __ CHAPTER 4

header decompressor to be off by 5 segments, so that segment i + 5 is falsely decoded as seg-
ment i and so forth. For that reason, thirteen of the segments shown in the plot are not
acknowledged by the TCP receiver because they are discarded due to checksum error. These
segments should actually have been plotted with an offset of 5 x MSS parallel to the y-axis.

Another variant of the same problem is shown in Figure 4-9. This time ACKs get lost, includ-
ing the one for the first retransmission; again due to a RLP link reset. This loss leads to an
exponential backoff of TCP’s retransmission timer. Since the retransmission timer value is sig-
nificantly inflated due to the excessive queueing explained in the preceding subsection, it
causes a particularly long idle phase.

4.2.4 Competing Error Recovery Only in Pathological Cases

Since RLP implements the in-order delivery function, competing error recovery between TCP
and RLP can only cause spurious timeouts. (In Section 2.5.4, we mentioned spurious fast
retransmits as another potential cause of competing error recovery.) A spurious timeout can be
easily seen in a TCP trace plot: the ACK for a correctly received segment reaches the TCP
sender after the retransmission timer covering that segment has expired. We only found two
such instances in all our traces. However, both times the spurious timeout occurred at the
beginning of the connection when the TCP sender had not yet converged to an appropriate
retransmission timer value. Also, both times the receiver signal strength was very low and the
RLP sender had performed many retransmissions at that time. All other timeouts we found
were related to RLP link resets. In contrast, we found several instances that show that TCP-
Lite’s retransmission timer is conservative enough to even allow for extra delays due to link

52000

57000

62000

67000

72000

50 55 60 65 70 75 80 85

RlpSnd_RST

1st Retransmission

2nd Retransmission

1st RTO: 7s 2nd RTO: 14 s

Sequence Number

Time of Da y (s)

TcpRcv_Ack TcpRcv_Data

TcpSnd_Data

TcpSnd_Ack

ACKs that never made it
back to the TCP sender

Figure 4-9: Exponential retransmission timer back-off.

Flow-Adaptive Wireless Links ___ 83

layer error recovery beyond 1200 ms. This is depicted in Figure 4-10 which shows a burst of
retransmissions on the RLP layer causing a delay of 1325 ms. This leads to an idle phase of
2260 ms during which no data arrives at the TCP receiver. One reason for the difference in
these values is that the end of a segment could have been affected by the retransmissions,
which would require a full round-trip time on RLP layer (about 400 ms [LR99]). It cannot be
the case that the returning ACKs were delayed in addition to the segment, as the plot shows no
sign of ACK compression.

We were curious to understand why [KRLKA97] did find so many spurious timeouts in their
study which used almost the same network setup as ours. The authors of that study believe that
these spurious timeouts were caused by excessive RLP retransmissions, i.e., because of com-
peting error recovery between TCP and RLP. While it appears as if our results contradict those
results, this is not the case. The reason apparently lies in differences between the implementa-
tions of TCP that were used in both studies. Some implementations of TCP seem to maintain a
more aggressive retransmission timer than others. Moreover, in our measurements the TCP
timestamp option was enabled, yielding a more accurate estimation of the RTT and conse-
quently also a more accurate retransmission timer. Timing every segment instead of only one
segment per RTT (which is done when the timestamp option is not used) enables a TCP sender
to more quickly adapt the retransmission timer to sudden delay increases. Thus, we believe that
timing every segment is an attractive enhancement for TCP in a wireless environment.

0

5000

10000

15000

20000

25000

30000

0 2 4 6 8 10

TcpRcv_Ack

TcpRcv_Data

TcpSnd_Data

TcpSnd_Ack
RlpSnd_Xmit

1325ms

2260ms

8 KBytes

Sequence Number

Time of Day (s)

Figure 4-10: First 10 seconds of the trace in Figure 3-6.

84 __ CHAPTER 4

4.3 Optimizing Wireless Links for Bulk Data Flows

In Section 4.1, we concluded that our solution of distinguishing between flow types allows to
better meet each flow’s QoS requirements by appropriately adapting link layer error control. In
this section, we validate this approach for the case of bulk data flows using the methodology
explained in Section 3.1. We show that the throughput of the GSM-CSD channel can be
improved by up to 25 percent by increasing the (fixed) RLP frame size. Furthermore, we show
that pure end-to-end error recovery, i.e., when the wireless link is not protected by link layer
error recovery, fails as a general solution to optimize end-to-end performance provided by bulk
data flows.

4.3.1 Block Erasure Rates and Burstiness

Deriving the overall BLERs for trace_A, trace_B and trace_C (defined in Section 3.1.3) would
have delivered little useful information. Instead, we also capture how “fast” the BLER changes
over time in a given radio environment. We therefore divide each trace into one minute
sub-traces and treat each of those independently.

Figure 4-11 summarizes the BLERs that we have determined in this manner. The BLERs for
the sub-traces of trace_A are not shown because we found trace_A to be almost free of block
erasures: over 96 percent of all sub-traces do not have a single block erasure and the remaining
ones have a BLER of less then 0.0025. This result shows how strongly the GSM-CSD channel

0

5

10

15

20

25

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28

BLER

N
um

be
r o

f T
ra

ce
s

(P
er

ce
nt

)

trace_B trace_C

Figure 4-11: Measured BLERs.

Flow-Adaptive Wireless Links ___ 85

is protected by FEC and interleaving, leaving little error recovery work for RLP. This is espe-
cially striking because radio environment A was far from ideal, as it only provided a receiver
signal strength of 3 - 4. Many radio environments provide a maximum receiver signal strength
of 5. This suggests that a weaker FEC scheme and/or a larger RLP frame size would increase
channel throughput. The results for trace_B and trace_C are similar but different from the
results for trace_A. In these, over 30 percent of all sub-traces have no single block erasure or a
BLER of less then 0.01. But overall the BLERs vary considerably and can be as high as 0.28.
These large variations take place over time scales of one minute, which corresponds to 3000
RLP frames. This is “slow” enough to make adaptive error control schemes applicable even
within the same radio environment. This is important because otherwise such schemes would
only be effective if the mobile user changed location to a different radio environment. The rea-
son is that adaptive error control schemes only adapt with a certain latency, which depends on
the delay required to feedback channel state information. We leave the study the potential of
adaptive frame length control (e.g., proposed in [ES98] and [LS98]) to increase channel
throughput for future research. This decision is partly driven by our measurement-based analy-
sis approach and the fact that we are currently not able to implement schemes like adaptive
FEC in our measurement platform.

Figure 4-12 shows the cumulative distribution function for the burst error lengths, i.e., the
number of consecutive blocks that suffered an erasure, for trace_B and trace_C. There was no
point in showing this for trace_A, as it was basically error-free. Over 50 percent of burst errors
are only 1 or 2 blocks long. Longer error bursts are more common when the mobile host is sta-
tionary, e.g., in trace_B less than 5 percent of all error bursts are larger than 26 blocks, whereas

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 10 20 30 40 50 60 70

Burst Error Length (Multiple of the Block Size)

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

trace_C

trace_B

Figure 4-12: Burst error length distribution.

86 __ CHAPTER 4

in trace_C this number drops to 18. This comparison is valid as the BLERs of both traces are
of the same order. As discussed in Section 3.1.2, the distributions shown in Figure 4-12 do not
sufficiently describe the wireless channel’s error characteristic. They do not show whether the
burst errors occur in clusters or isolated, i.e., the correlation between error bursts is not cap-
tured. In the following section, we show how the (fixed) frame size that maximizes channel
throughput can be used to quantify this correlation.

4.3.2 Error Burstiness Allows for Larger Frames

In this section, we determine the fixed RLP frame size that maximizes channel throughput in
the radio environments A, B, and C. For that purpose, we perform the retrace analysis
described in Section 3.1.4 leading to the results shown in Figure 4-13. An optimal frame size
of 1410 bytes yields a throughput of 1423 bytes/s for trace_A and a frame size of 210 bytes
maximizes throughput to 1295 bytes/s for trace_C. The results for trace_C are close to those
of trace_B. The gradual performance improvements in the case of trace_A rapidly decrease
above a frame size of 210 bytes. A frame size of 210 bytes still yields a throughput of
1392 bytes/s. This indicates that for an adaptive frame length control algorithm, it would be
sufficient to adapt the frame size in a range of about 30 - 210 bytes.

A key result of our analysis is that the (fixed) frame size chosen for RLP was overly conserva-
tive. Increasing it to 210 bytes improves the channel throughput by at least 18 and up to
23 percent depending on the radio environment1. We were not able to verify which studies led
to the decision to standardize an RLP frame size of 30 bytes. However, our results show that

0

200

400

600

800

1000

1200

1400

1600

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

RLP Frame Size (Bytes)

T
hr

ou
gh

pu
t (

B
yt

es
/s

)

Optimal Frame Size = 210 bytes
(Throughput ~ 1295 bytes/s
=> 18 % improvement)

trace_A
trace_C

trace_C_even

Optimal Frame Size = 60 bytes
(Throughput ~ 1170 bytes/s)

Optimal Frame Size = 1410 bytes
(Throughput ~ 1423 bytes/s
=> 25 % improvement)

Maximum Throughput = 1500 bytes/s

Figure 4-13: Throughput versus frame size.

Flow-Adaptive Wireless Links ___ 87

they must have been based on an unrealistic error model of the GSM-CSD radio channel. This
highlights the importance of measurement-based analysis of protocol performance over wire-
less links.

Another result is that the error burstiness on the GSM-CSD channel allows for larger frame
sizes than if block erasures are not bursty. This effect can seen by comparing the graphs
trace_C and trace_C_even in Figure 4-13. The retrace analysis for trace_C_even yields an
optimal frame size of only 60 bytes (trace_B and trace_B_even are similar). One could view
the quotient of the optimal frame size for an error trace (bit error trace or block erasure trace)
and the corresponding “_even” trace as the burst error factor. The closer a trace’s burst error
factor is to 1, the less the corresponding channel exhibited error burstiness. Note, that the burst
error factor also depends on the per frame overhead chosen for the retrace analysis. To elimi-
nate this dependency, one could base the definition of the burst error factor on a retrace analy-
sis that assumes a per frame overhead of zero.

4.3.3 The Failure of Pure End-to-End Error Recovery

Based on trace_C, we perform the best-case analysis described in Section 3.1.2 using TCP as
an example of a pure end-to-end error recovery protocol. For that purpose we repeat the retrace
analysis assuming a per MTU overhead of 47 bytes (20 bytes TCP header, 20 bytes IP header,
and 7 bytes of PPP overhead). The retrace analysis shows that the end-to-end throughput is
maximized with an MTU size of 690 bytes. The reason for the difference with the correspond-
ing analysis for RLP is the larger overhead per transmission unit. The first row of Table 4-14
shows the result for commonly used MTU sizes. The second row shows the end-to-end
throughput that is achieved when running RLP with a frame size of 210 bytes, providing a
channel throughput of 1295 bytes/s (see Figure 4-13).

1. For example, for trace_A, the retrace analysis yields a throughput of 1392 bytes/s for a frame size of 210 bytes and a
throughput of 1138 bytes/s for a frame size of 30 bytes/s. For trace_B and trace_C, these frame sizes yield a throughput of
1295 bytes/s and 1096 bytes/s, respectively.

MTU
296 bytes

MTU
576 bytes

MTU
1500 bytes

Pure End-to-End
(No TCP/IP header compression)

1151 1219 1196

End-to-End with RLP
(No TCP/IP header compression)

1094 1191 1255

End-to-End with RLP
(With TCP/IP header compression)

1239 1265 1284

Tabelle 4-14: Application layer throughput in bytes/s.

5.2% 2.4%

7.4%3.8%7.6%

4.9%

88 __ CHAPTER 4

Pure end-to-end error recovery achieves a 2.4 and 5.2 percent increase in best-case application
layer throughput for MTU sizes of 576 and 296 bytes, respectively. This shows that pure end-
to-end error recovery consumes less radio resource for these MTU sizes as discussed in
Section 3.1.2. However, even when TCP-SACK is used, it is unlikely that the advantage in
end-to-end throughput would be achieved in practice, due to interference with TCP’s end-to-
end congestion control scheme. The benefit of link layer error control becomes evident with
larger MTU sizes (e.g., the commonly used 1500 bytes - see Table 4-14) and when IP header
compression is used over the wireless link1.

For pure end-to-end error recovery, TCP/IP header compression, as defined in [RFC1144] and
[RFC2507], are not an option because of the frequent error losses (see Section 2.5.5). While
the Twice algorithm proposed in [RFC2507] is more robust, it has problems when two or more
packets with compressed headers are lost back-to-back. However, this is a likely event for the
GSM-CSD wireless link (if not protected by RLP) as shown in Figure 4-15. The cumulative
distribution of the number of back-to-back packet losses shows that 66, 59, and 48 percent of
all such losses have a length of 2 or larger for an MTU of size 296, 576, and 1500 bytes,
respectively. Alternatively, [RFC2507] also defines a header request mechanism but as our
results show, link layer error recovery would be more appropriate on this wireless link.

1. In this case, we assume that the TCP/IP header is compressed to 6 bytes. Although compressed TCP/IP headers are typi-
cally 4 bytes long, a network-limited TCP connection drops one packet - in the ideal case - per congestion avoidance cycle.
This causes one packet to be sent with a full header (40 bytes), and 2 packets - after the packet loss and after the retransmis-
sion - to be sent with a compressed header of 7 bytes. Given the pipe capacity of a GSM-CSD link this leads to an average
of about 6 bytes.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Back-to-Back Packet Losses

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

MTU = 296 bytes
MTU = 576 bytes
MTU = 1500 bytes

Figure 4-15: Distribution of back-to-back packet losses.

Flow-Adaptive Wireless Links ___ 89

One could argue in favor of pure end-to-end error recovery by requiring the wireless link’s
MTU to be set to small values. Transport protocols like TCP could then use the MSS option
(see Section 2.2.1) or path MTU discovery [RFC1191] to adapt the path’s MTU accordingly.
However, that does not work when the link’s end points (e.g., the PPP peers) are not “aware”
that the link includes a wireless segment as in GSM-CSD (see Figure 2-7). Also, the path’s
MTU cannot be re-negotiated during a connection in current transport protocols1 when the
wireless link’s error characteristics change.

Link layer error recovery does not have these problems. It is independent of MTU sizes and
also interworks well with IP header compression. Future systems favor link layer error recov-
ery even more. Weaker FEC schemes are being deployed2, which further decrease the through-
put optimal frame size on those wireless links. Also, IPv6 requires a minimum MTU of
1280 bytes and recommends an MTU of 1500 bytes or more on links such as GSM-CSD.

Another shortcoming of pure end-to-end error recovery is that each retransmission has to
traverse the entire path. This is depicted in Figure 4-16 for trace_C, showing the number of
retransmissions (as a fraction of the overall number of transmissions) that are required for a
range of different MTU sizes. The commonly used MTU size of 1500 and 576 bytes would
cause 18 and 12 percent retransmissions, respectively. Such flows impose an unfair load on a
best-effort network, such as the Internet, and also on shared wireless access links. Apart from

1. Implementing such a mechanism would also be a poor design choice as optimizing a link’s frame length is not an end-to-
end issue.

2. Weaker FEC schemes are used in the new GSM-CSD service [GSM04.21] and the GSM packet-switched data service
[GSM05.03].

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

MTU (Bytes)

N
um

be
r o

f R
et

ra
ns

m
is

si
on

s
 (P

er
ce

nt
)

trace_C

Figure 4-16: Number of end-to-end retransmissions.

90 __ CHAPTER 4

fairness, a higher fraction of retransmissions also decreases the end-to-end throughput if the
corresponding packets had already traversed the bottleneck link regardless of where it is
located in the path. This is a common situation when, e.g., data is downloaded from the Inter-
net and the last-hop is an unreliable wireless link. End-to-end error recovery complemented
with link layer error recovery running over the wireless link “typically” does not require a sin-
gle end-to-end retransmission as we have shown in Section 4.2.

4.4 Summary

In this chapter, we introduced the concept of flow-adaptive wireless links that provides service
differentiation by adapting link layer error control. The key advantages of our solution is its
independence from transport (or higher) layer protocol semantics, and the possibility of co-
existence with IPsec. Through measurements in GSM-CSD, we have validated the concept,
and show that for fully-reliable flows our solution eliminates all known inefficient cross-layer
interactions except for the problem of competing error recovery. In a first study of this prob-
lem, we find that even long transient delays on the end-to-end path, do not trigger spurious
timeouts in TCP. This made us suspicious that something was wrong with the retransmission
timer implemented in TCP-Lite. In Chapter 5, we therefore study in detail both the problem of
spurious retransmissions in TCP and TCP-Lite’s retransmission timer.

We showed that pure end-to-end error recovery, i.e., when the wireless link is not protected by
link layer error recovery, fails as a general solution for optimizing end-to-end throughput when
wireless links form parts of the path. Fundamental problems are that the path’s MTU is often
too large to yield efficient error recovery, and that network end-points are not capable of
dynamically adapting their MTU to changing local error characteristics on (possibly multiple)
wireless links. In many cases, this leads to decreased end-to-end throughput, an unfair load on
a best-effort network, such as the Internet, and a waste of valuable radio resources. In fact, we
show that highly persistent link layer error recovery over wireless links is essential for fully-
reliable flows to avoid these problems.

Our results also suggest that the GSM-CSD channel is over-protected with FEC, and that the
default error recovery persistency standardized for RLP is too low. We show that the through-
put of the GSM-CSD channel can be improved by up to 25 percent by increasing the (fixed)
RLP frame size to reduce the relative per packet overhead. These results highlight the impor-
tance of measurement-based analysis of protocol performance over wireless links.

___ 91

CHAPTER 5

TCP-Eifel

Competing error recovery is the remaining inefficient cross-layer interaction that our solution

of flow-adaptive wireless links does not solve. In the preceding chapter, we concluded that this

problem has to be solved by making the respective end-to-end protocol more robust. This is the

motivation for this chapter. We propose two new mechanisms for reliable end-to-end proto-

cols, the Eifel1 algorithm and the Eifel retransmission timer. We have implemented both mech-

anisms for TCP, and refer to that implementation as TCP-Eifel that we have made publicly

available [Lud99c].

In Section 5.1, we show that spurious fast retransmits and the go-back-N retransmission

behavior triggered by spurious timeouts have the same root: the retransmission ambiguity

[KP87]. That is, a TCP sender is unable to distinguish an ACK for the original transmission of

a segment from the ACK for its retransmission. In Section 5.2, we develop the Eifel algorithm

that uses extra information in the ACKs to resolve the retransmission ambiguity, and thereby

eliminates the problems caused by spurious retransmissions. This work is based on the meth-

odology described in Section 3.3 and has been published in [LK00].

Subsequently, we analyze two alternative retransmission timers for TCP. In Section 5.3, we

first analyze the Lite-Xmit-Timer (see Section 2.2.2), and reveal a number of problems related

to its definition and implementation. This explains why we had suspected in Section 4.2 that

this timer is too conservative. In Section 5.4, we then propose an alternative retransmission

timer which we call the Eifel retransmission timer (Eifel-Xmit-Timer). Although we only focus

on TCP, we believe that our conclusions also apply to other reliable end-to-end and link layer

protocols. This work is based on the methodology explained in Section 3.4 and has been

described in [LS99].

1. The Eifel is the name of a beautiful mountain range in Western Germany.

92 __ CHAPTER 5

5.1 Problems of TCP-Lite’s Error Recovery

In this section, we provide a detailed description of how spurious timeouts and spurious fast
retransmits affect TCP’s protocol operation.

5.1.1 Spurious Timeouts

A retransmission timer is a prediction of the upper limit of the round-trip time (RTT). In com-
mon TCP implementations, an adaptive retransmission timer accounts for RTT variations (see
Section 2.2). A spurious timeout occurs when the RTT suddenly increases, to the extent that it
exceeds the retransmission timer that had been determined a priori. Spurious timeouts can be
due to route changes, or rapidly increasing congestion at the bottleneck link. The latter can in
turn be caused by routing table updates [Pax97d] or a reliable link layer protocol running over
a wireless link on which the radio quality (temporarily) dropped (see Section 4.2.4). Spurious
timeouts affect TCP performance in two ways: (1) the TCP sender unnecessarily reduces its
load, and (2) the TCP sender is forced into a go-back-N retransmission mode.

The fundamental problem that leads to the go-back-N retransmissions is the retransmission
ambiguity [KP87], i.e., a TCP sender’s inability to distinguish an ACK for the original trans-

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

2 4 6 8 10 12 14 16 18 20
Time of Day (s)

S
eq

ue
nc

e
N

um
be

r

Snd_Data

Snd_Ack

Figure 5-1: Go-back-N after a spurious timeout (sender trace).

TCP-Eifel ___ 93

mission of a segment from the ACK for its retransmission. This is depicted in Figure 5-1, taken
from [Bau97], showing a trace plot of a spurious timeout caused by a reliable link layer proto-
col over a wireless link. Shortly after the timeout (14.5 s into the connection), the ACKs for the
original transmissions return to the TCP sender. On receipt of the first ACK after the timeout,
the sender must interpret this ACK as acknowledging the retransmission, and must assume that
all other outstanding segments have also been lost. Thus, the sender enters the slow start phase,
and sends (retransmits) the two segments next to the just acknowledged sequence number.
These are acknowledged by the second ACK received after the timeout, which really is the
ACK for their original transmissions. This continues until the entire window has been retrans-
mitted, i.e., the sender has performed the go-back-N retransmission. Although, we do not have
the receiver trace, we can tell that the ACKs returning after the timeout are really the ACKs for
the original transmissions: the time between the first retransmission and the first ACK received
after the timeout (about 400 ms) is smaller than the minimum possible RTT on the network on
which the trace was collected.

To verify this finding, we performed bulk data transfers on the experimental network described
in Section 3.3.2 and used hiccup to trigger a spurious timeout. This time we also traced the
TCP receiver. As explained in Section 3.2.1 both the sender and receiver trace are correlated in
time and shown in the same plot (see Figure 5-2).

24000

29000

34000

39000

44000

49000

54000

27 32 37 42 47 52 57 62
Time of Day (s)

S
eq

ue
nc

e
N

um
be

r

Snd_Data
Snd_Ack
Rcv_Data
Rcv_Ack
hiccup

(1)

(2)

Figure 5-2: Go-back-N after a spurious timeout (sender and receiver traces)

94 __ CHAPTER 5

At 29.8 s into the connection we called hiccup to intercept and queue outbound packets for
13 s. During this time, all outstanding segments are being acknowledged and each of those
ACKs clocks out a new segment (marked as + in Figure 5-2). However, those segments are not
logged by the BSD Packet Filter until hiccup has terminated in second 42.6, when those seg-
ments get placed into the outbound interface buffer all at once. At that time, the sender has
already performed one retransmission (marked as + in Figure 5-2). This was also queued by
hiccup and can therefore only be seen in the receiver trace (see arrow (2) in Figure 5-2). The
original transmission and the retransmission of that segment are the same point in the sender
trace (see arrow (1) in Figure 5-2). Then the go-back-N retransmission is triggered as
described before with respect to Figure 5-1. Returning to Figure 5-2, the go-back-N retrans-
mission triggers the next problem: the receiver generates a DUPACK for every segment
received more than once. The receiver has to do that because it must assume that its original
ACKs had been lost (why else would the sender send those segments again?). This triggers a
spurious fast retransmit, which we describe in the next subsection.

Yet another problem is that the go-back-N retransmissions are performed in slow-start, leading
to an aggressive sender behavior. That is, while the original transmissions are draining from
the queue, the retransmissions get sent at twice the line speed (assuming the receiver generates
one ACK for each segment). This aggravates the situation and can lead to real packet losses
due to congestion as shown in Figure 5-3. To show this effect we set the interface buffer size to

36000

41000

46000

51000

56000

61000

66000

40 45 50 55 60 65 70 75 80
Time of Day (s)

S
eq

ue
nc

e
N

um
be

r

Snd_Data
Snd_Ack
Rcv_Data
Rcv_Ack
hiccup

Figure 5-3: Go-back-N after a spurious timeout causing a real packet drop.

TCP-Eifel ___ 95

12 packets and repeated the measurement. During the go-back-N retransmission phase, pack-
ets enter the queue faster than they can drain. This eventually causes the interface buffer to
overflow four times causing three spurious retransmissions and one original transmission to be
dropped (see arrows in Figure 5-3).

5.1.2 Spurious Fast Retransmits

Packet re-orderings with a re-ordering length greater than or equal to the DUPACK-Threshold
interfere with TCP’s DUPACK-based error recovery, causing a spurious fast retransmits as
explained in Section 2.5.4. Spurious fast retransmits affect TCP performance in that the TCP
sender unnecessarily reduces its load while also performing a spurious retransmission.

To illustrate a spurious fast retransmit, we performed bulk data transfers on the experimental
network described in Section 3.3.2 and used hiccup to cause a packet re-ordering event with
a re-ordering length of six. This is depicted in Figure 5-4. The packet that was supposed to be
sent at second 37.7 (marked as + in Figure 5-4) is queued by hiccup while the succeeding six
packets are let through. Then hiccup sends the single queued packet (see arrow in
Figure 5-4) back-to-back with the next packet (the 7th packet sent after hiccup was called).
This leads to six DUPACKs generated by the receiver, which then trigger the spurious fast
retransmit in second 44.7. The error recovery procedure has finished in second 46.9 when the

31000

36000

41000

46000

51000

56000

35 40 45 50 55
Time of Day (s)

S
eq

ue
nc

e
N

um
be

r

Snd_Data
Snd_Ack
Rcv_Data
Rcv_Ack
hiccup

Figure 5-4: The effect of packet re-ordering.

96 __ CHAPTER 5

first ACK after the series of DUPACKs arrives at the sender1. At that point the sender halves
its load.

The retransmission ambiguity is again the core of the problem: on receipt of the first ACK
arriving after the series of DUPACKs, the sender must interpret this ACK as having been trig-
gered by the retransmission when in fact it was triggered by the (re-ordered) original transmis-
sion of that segment. Hence, the sender unnecessarily halves its load by entering the conges-
tion avoidance phase.

5.2 The Eifel Algorithm

Once we understand the problem explained in the preceding section, the solution is straightfor-
ward: first, resolve the retransmission ambiguity and then, restore the load and resume trans-
mission with the next unsent segment. We call this the Eifel algorithm. We have implemented
and tested it under FreeBSD, and have made it publicly available [Lud99c]. The current imple-
mentation is based on the use of the TCP timestamp option [RFC1323] and adds less than 20
new lines of code to the TCP sender. It does not require changes to the TCP receiver code nor
to the protocol itself. Given this backwards compatibility and the fact that it does not change
TCP’s congestion control semantics, the new algorithm can be incrementally deployed.

5.2.1 Resolving the Retransmission Ambiguity

Resolving the retransmission ambiguity requires extra information in the ACKs that the sender
can use to unambiguously distinguish an ACK for the original transmission of a segment from
that of a retransmission. This in turn requires that every segment and the corresponding ACK
carry the extra information to allow the sender to avoid the go-back-N retransmissions
described in Section 5.1.1. Waiting for the receiver to signal in DUPACKs that is has correctly
received duplicate segments, as proposed in [FMMPR99], would be too late (see Figure 5-2),
and is thus not an alternative.

The TCP timestamp option (see Section 2.2.2) provides exactly what we need. Resolving the
retransmission ambiguity is then implemented as follows. The sender always stores the times-
tamp of the first retransmission independent of whether that was triggered by an expiration of

1. The 3rd DUPACK sets the slow start threshold to one half of the congestion window (adjusted to a multiple of MSS). On
receipt of the first ACK arriving after the series of DUPACKs the sender sets its congestion window to the slow start thresh-
old (which still counts as slow start phase) and then adds one MSS for the new ACK. Thus, the first ACK arriving after the
series of DUPACKs always clocks out at least two new segments. In practice, we have noticed that this ACK can also clock
out a burst of segments. This happens when the sender has filled the window advertised by the receiver while it continues to
grow its congestion window by one MSS for each DUPACK. Figure 4-6 shows such an example.

TCP-Eifel ___ 97

the retransmission timer or by the receipt of three consecutive DUPACKs1. In our implementa-
tion, we call that timestamp ts_first_rexmit. Then, when the first ACK that acknowledges the
retransmission arrives, the sender compares the timestamp of that ACK with ts_first_rexmit. If
it is smaller than ts_first_rexmit, this indicates that the retransmission was spurious. The com-
parison operator “smaller than” leads to the right conclusion in most cases. However, in theory,
when the “timestamp clock” is slow or the network is fast, ts_first_rexmit could (at most) also
be equal to the timestamp of the first ACK that acknowledges the retransmission. Thus, with
using “smaller than”, we are conservative and assume that in those unlikely cases the retrans-
mission was not spurious.

Using the TCP timestamp option to resolve the retransmission ambiguity is one implementa-
tion alternative. Which mechanism is implemented for that purpose does not make a difference
to the Eifel algorithm. However, including the 12 bytes TCP timestamp option field in every
segment and the corresponding ACKs seems heavyweight2. Ideally, the Eifel algorithm was
based on a single bit in the TCP header (each way) to mark the original transmission of a seg-
ment differently from its retransmission(s). That would be similar to the subsequence field pro-
posed in the transport protocol TP 4 [ISO8073]. However, using 2 bits from the 4 remaining
reserved bits in the TCP header - as usual - raises deployment concerns. The advantage of
using the timestamp option is that this scheme is already a proposed standard and that it is
widely deployed. To reduce overhead it may then be an alternative to add timestamp compres-
sion to the existing TCP/IP header compression schemes [RFC1144], [RFC2507].

5.2.2 The Sender’s Response

Together with ts_first_rexmit the sender stores the current values of the slow start threshold
and the congestion window. When a spurious retransmission has been detected that had led to a
single retransmission of the oldest outstanding segment, the sender simply restores the slow
start threshold and the congestion window to the stored values. After a spurious fast retransmit,
this leads to an undesirable packet burst (see Figure 5-6). However, various reasons can cause
a TCP sender to send packet bursts as shown in Figure 4-6. That is an orthogonal problem. Ide-
ally, the Eifel algorithm should be complemented with some form of a “burst pacer”.

If, however, more than one retransmission of the oldest outstanding segment has occurred
(e.g., a second timeout, or a timeout that occurs after the fast retransmit) the slow start thresh-
old remains halved which was done anyway when the spurious retransmission occurred. If two
retransmissions have occurred, the congestion window is also halved (set to the slow start
threshold). If more than two retransmissions have occurred, it is set to one segment. Thus, the

1. Unlike in [WS95] the Eifel algorithm counts a fast retransmit as a “regular” retransmission (t_rxtshift++).

2. Another viable alternative has been proposed by Keith Sklower at UC Berkeley which is to use timestamps only for
retransmissions and their corresponding ACKs.

98 __ CHAPTER 5

more spurious retransmissions have occurred, the more conservative the sender gets. Either
way, the sender resumes transmission with the next unsent segment. In the case of the fast
retransmit algorithm this is done anyway, but in the case of a spurious timeout this prevents the
go-back-N retransmissions.

Figure 5-5 illustrates the operation of the Eifel algorithm in the event of a spurious timeout. At
43.3 s into the connection we called hiccup to intercept and queue outbound packets for 12 s
(marked as + in Figure 5-5). At second 55.2 hiccup has terminated and the queued packets
get placed into the outbound interface buffer all at once. At that time, the sender has already
performed one retransmission (marked as + in Figure 5-5) which was also queued by hiccup .
We have marked the retransmission with arrow (3) in the receiver trace and with arrow (1) in
the sender trace. In the sender trace the original transmission and the retransmission of that
segment are the same point. The retransmission was sent at second 54.7 and the Eifel algorithm
stores that timestamp as ts_first_rexmit. The first ACK that acknowledges the retransmission
(see arrow (2) in Figure 5-5) carries a timestamp of 43.3 s, which is when the original trans-
mission of the corresponding segment took place. By comparison with ts_first_rexmit, the
Eifel algorithm detects that the timeout was spurious, restores the slow start threshold and the
congestion window, and resumes transmission with the next unsent segment.

35000

40000

45000

50000

55000

41 46 51 56 61 66
Time of Day (s)

S
eq

ue
nc

e
N

um
be

r

Snd_Data
Snd_Ack
Rcv_Data
Rcv_Ack
hiccup

(3)

(1)

(2)

Figure 5-5: Response after spurious timeout.

TCP-Eifel ___ 99

Figure 5-6 illustrates the operation of the Eifel algorithm in the event of a spurious timeout. At
40.5 s into the connection we called hiccup to cause a packet re-ordering event with a re-
ordering length of six (marked as + in Figure 5-6). Then hiccup sends the single queued
packet (see arrow (1) in Figure 5-6) back-to-back with the next packet. This leads to six
DUPACKs generated by the receiver which then trigger the spurious fast retransmit in second
46.3. The Eifel algorithm stores that timestamp as ts_first_rexmit. The first ACK that acknowl-
edges the retransmission (see arrow (2) in Figure 5-6) carries a timestamp of 40.5 s which is
when the original transmission of the re-ordered segment took place. By comparison with
ts_first_rexmit the Eifel algorithm detects that the fast retransmit was spurious, and restores
the slow start threshold and the congestion window. This causes the packet burst mentioned at
the beginning of this subsection.

5.2.3 Performance Evaluation

The Eifel algorithm aims to increase TCP's throughput in the face of spurious retransmissions.
In this section we argue why it is impossible to perform a definitive performance evaluation for
the throughput improvement it can achieve.

33000

38000

43000

48000

53000

58000

38 40 42 44 46 48 50 52 54 56
Time of Day (s)

S
eq

ue
nc

e
N

um
be

r

Snd_Data
Snd_Ack
Rcv_Data
Rcv_Ack
hiccup

(1)

(2)

Figure 5-6: Response after a spurious fast retransmit.

100 ___ CHAPTER 5

First of all, the Eifel algorithm is an improvement for corner cases. If those corner cases never
occur during a connection, the Eifel algorithm never gets triggered, and trivially does not affect
the connection’s throughput. If they occur, the throughput improvement that the Eifel algo-
rithm achieves can be approximated as the avoided performance loss that spurious timeouts
and/or spurious fast retransmits would have caused for “standard” TCP. Yet, it is impossible to
quantify in general terms the mentioned performance loss. It depends on too many factors,
such as traffic type (bulk data or interactive) and the frequency and distribution with which
spurious retransmissions occur over the entire lifetime of a connection. Further, assuming bulk
data transfers, the performance improvement depends on the ratio of the sender’s load to the
pipe capacity right before the first spurious retransmission. We explain this using the two
graphs shown in Figure 5-7.

A network-limited TCP connection in steady state goes through periodic congestion avoidance
cycles as explained in Section 2.3.2. We denote as W the load at the end of each cycle in terms
of number of segments. We assume a non-shared bottleneck link with a fixed bandwidth and a
fixed bottleneck buffer size. This is a common case when the access link becomes the bottle-

Load

Time of Day in multiples of (W/2 x RTT)

cycle
after a

spur ious
fast retransmit

"normal"
congest ion
avoidance

cycle

cycle
after a

spur ious
t imeout

Pipe Capaci ty

W

W/2

1 2 3 4 5 6 7 8

Load

Time of Day in multiples of (W/2 x RTT)

cycle
after a

spur ious
fast retransmit

"normal"
congest ion
avoidance

cycle

cycle
after a

spur ious
t imeout

W

W/2

1 2 3 4 5 6 7 8

Pipe Capaci ty

Figure 5-7: Approximating the performance loss.

TCP-Eifel __ 101

neck link (e.g., low bandwidth dial-up or wide-area wireless), and only a single application
creates traffic. In fact, this scenario is emulated by the setup described in Section 3.3.2. In such
a situation, W and the pipe capacity are constant. Increasing the load increases the connection’s
throughput as long the load stays below the pipe capacity. We have indicated that with the
lightly shaded area. The cycle length in terms of multiples of the RTT is W/2 (e.g., see
[MSMO97]). The pipe capacity is assumed to be equal to W/2 in the upper graph of Figure 5-7,
and equal to W in the lower graph. For both cases, we then approximate the performance loss
that a spurious timeout and a spurious fast retransmit cause. As a simplification we assume that
the load increase during the slow start phase is linear (in fact it is exponential). On the other
hand, we also ignore the performance loss due to spurious retransmissions, i.e., we only evalu-
ate the performance loss caused by the load decrease. We further make the worst-case assump-
tion that the spurious retransmission is triggered at the end of a cycle when the load has already
been halved, and that no additional spurious retransmission is triggered before the load as
reached W again.

Given these assumptions, the performance loss that a spurious fast retransmit causes can be
approximated as 9 percent for the upper graph and 13 percent for the lower. We arrive at these
numbers by “counting squares” indicated by the dotted lines in Figure 5-7. In the upper graph
the spurious fast retransmit creates a cycle of length 1.5 (from 2.0 to 3.5). During that time the
sender could have sent “6 squares” when it really only transmitted “5.5 squares”. This trans-
lates into a performance loss of 9 percent. Likewise, we approximate the performance loss that
a spurious timeout causes as 33 percent for the upper graph and 50 percent for the lower.

The general conclusion drawn from this simple analysis is that the lower the ratio of the
sender’s load to the pipe capacity right before the first spurious retransmission, the higher the
performance loss. This is intuitive, but the simple analysis also shows that it is impossible to
quantify the loss. It could be anything from nothing to several tens of percent. For example, in
our measurements the loss due to the load decrease, i.e., not accounting for the spurious
retransmissions itself, is minimal (see Figure 5-2 and Figure 5-4). This can be seen from the
receiver trace as there are almost no idle times during which no data is received. The reason is
that the bottleneck link in our measurements was massively overbuffered, i.e., the ratio of the
sender’s load to the pipe capacity was always extremely high.

5.3 Problems of TCP-Lite’s Retransmission Timer

In this section, we explain four major problems of the Lite-Xmit-Timer. The first two are fun-
damental flaws in the definition of RTOL while the latter two concern the implementation of
REXMTL. While the first, third, and fourth problems make the Lite-Xmit-Timer more conser-

102 ___ CHAPTER 5

vative, the second problem makes it more aggressive. However, the latter is usually out-
weighed by the other three factors.

5.3.1 Prediction Flaw when the RTT Drops

RTTVARL is calculated using the absolute value of DELTAL. Although this is the mathemati-
cally correct definition of the mean deviation, it is not motivated in [Jac88] whether using the
mean deviation in this strict manner is an appropriate design choice. The undesirable behavior
this causes is that the predictor “goes up” when the signal “goes down”. More precisely, it
causes the RTO to initially increase after the connection’s RTT has dropped to the extent that it
falls below SRTT, i.e., when DELTA becomes negative.

In those cases, the effect on RTO is the same as if RTT had increased by the same amount. This
leads to an RTO that largely over-predicts the RTT, and it takes some time until the RTO has
decayed to a reasonable level. We illustrate this in Figure 5-8 generated from the model
described in Section 3.4.2. The model was configured to a maximum of 10 for the flow’s load
and a timer granularity of 1 ms. As in all following figures we use the notation RTT(i) to
denote the i-th RTTSample for which the corresponding RTO, RTO(i-1), was determined from
the previous, the (i-1)-th, RTTSample.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

100 110 120 130 140 150 160 170
TimeOfDay (s)

Time (ms)

RTO-Lite (i-1)

RTT (i)

SRTT-Lite (i)

Figure 5-8: Prediction Flaw in RTOL.

TCP-Eifel __ 103

5.3.2 Failure of the “Magic Numbers”

The Lite-Xmit-Timer has been defined under the assumption that only one segment per flight
was timed. The estimator gains (1/8 and 1/4) and the variation weight (4) have been tuned to

0

100

200

300

400

500

600

700

800

900

1000

10000 12000 14000 16000 18000 20000

TimeOfDay (x 500 ms)

Time (x 500 ms)

RTO-Lite (i-1)

RTT (i)

400

420

440

460

480

500

520

16000 16500 17000 17500 18000

TimeOfDay (x 500 ms)

Time (x 500 ms)

RTO-Lite (i-1)

RTT (i)

Figure 5-9: A Collapsed RTOL (model).

104 ___ CHAPTER 5

that case. However, if the RTT sampling rate is higher and the flow’s load is large, the fixed
estimator gains and the fixed variation weight (the “magic numbers”) fail. The problem in that
case is that the Lite-Xmit-Timer’s variation weight is too low to raise the RTO to a sufficient
level, while its estimator gains are too high. This causes SRTTL and RTTVARL to decay too
quickly. Thus, RTOL collapses into the RTT, i.e., RTOL becomes too aggressive. We illustrate
this in Figure 5-9 where the lower graph is a “zoom” of the upper one. The graphs are based on
the model configured to a maximum of 40 for the flow’s load and a timer granularity of
500 ms. In theory, the aggressive RTOL should lead to many spurious retransmissions. In prac-
tice, this is not the case as we explain in Section 5.3.3 and Section 5.3.4.

To see how RTOL performed when only a single RTT sample was collected per RTT, we
repeated the measurement described in Section 3.4.3 while disabling the timestamp option.
The result is shown in Figure 5-10. Although the spikes in the graph of RTOL still occur for the
reason described in Section 5.3.1, at least the estimators gains and the variation weight work.
Thus, the problem described in Section 5.3.2 only occurs when the RTT sampling rate is one or
close to one.

5.3.3 The “REXMT-Restart Bug”

The problem with the implementation of REXMTL is that it is re-initialized with RTOL when an
ACK arrives acknowledging the oldest outstanding segment, and more segments are still out-
standing. This does not account for the age of the (new) oldest outstanding segment. Thus,

0

200

400

600

800

1000

1200

1400

22000 24000 26000 28000 30000 32000 34000 36000 38000 40000

TimeOfDay (x 500 ms)

Time (x 500 ms)

RTT (i)

RTO-Lite (i-1)

Figure 5-10: RTOL when timing one segment per RTT.

TCP-Eifel __ 105

before the first timeout occurs, REXMTL is the sum of RTOL and the age of the oldest outstand-
ing segment which during bulk data transfer roughly corresponds to the RTT (denoted as “off-
set” in Figure 5-11). This makes REXMTL significantly conservative. We have described this
problem in [Lud99b].

5.3.4 Timer Granularity

Given that the RTO is a prediction of the upper bound of RTT, the higher the timer granularity,
the more imprecise and consequently the more conservative the RTO. Thus, a low timer granu-
larity is desirable. As a rule of thumb we claim without proof that the timer granularity should
at least be an order less then the RTT. For example, given that worst-case RTTs commonly
found in the wide-area Internet today are on the order of a few 100 ms, the timer granularity
should at least be 10 ms or a few multiples of that. Hence, the timer granularity of 500 ms, cho-
sen for TCP-Lite is inadequate. This is one reason why the Lite-Xmit-Timer is so conservative.
This issue has been raised many times in the research community. It motivates why other oper-
ating systems have been implemented with a timer granularity of 10 ms or less. In addition, a
timer granularity of 500 ms obviously defeats the purpose of putting much effort into the for-
mula that determines the RTO when the RTT never grows beyond a few 100 ms.

The problem with the REXMTL is that it is based on a heartbeat timer (see Section 2.2.2) that
expires every 500 ms. Simply increasing the frequency of the heartbeat timer would result in a
waste of valuable processing power to handle all the “useless” interrupts. That can become a
great problem for busy Web servers that might have to handle thousands of TCP connections
simultaneously.

52000

53000

54000

55000

56000

57000

58000

59000

60000

61000

62000

50 55 60 65 70 75 80 85

Datagrams

ACKs

RTO = 7 s RTO = 14 s

Sequence Number

Time of Day (s)

Offset

1st REXMT 2nd REXMT

Figure 5-11: The “REXMT-Restart Bug”.

106 ___ CHAPTER 5

5.3.5 Validating the Model

As a validation of the model we decided to reproduce the plots shown in Figure 5-9 which
were generated from the model. Thus, we chose the parameter settings for our measurement

0

200

400

600

800

1000

1200

1400

1600

23000 25000 27000 29000 31000 33000 35000 37000

TimeOfDay (x 500ms)

Time (x 500ms)

RTO-Lite (i-1)

RTT (i)

400

420

440

460

480

500

520

540

560

580

600

33000 33200 33400 33600 33800 34000 34200 34400 34600 34800 35000

TimeOfDay (x 500ms)

Time (x 500ms)

RTO-Lite (i-1)

RTT (i)

Figure 5-12: A Collapsed RTOL (measured).

TCP-Eifel __ 107

setup as described in Section 3.4.3. Figure 5-12 shows the measurement result. Although we
do not get an exact match, it is obvious that the trend of the graphs are identical. This assured
us that our model is correct. Hence, we validated in practice what we had already predicted
with our model in Section 5.3.2.

5.4 The Eifel Retransmission Timer

Our motivation for developing the Eifel-Xmit-Timer is to eliminate the problems of the Lite-
Xmit-Timer explained in Section 5.3. In the following, we use the indices E (Eifel) as qualifier
for a metric when referring to its definition or implementation. We omit those qualifiers when
discussing a particular metric in general. The RTOE is defined by the following equations
which we explain in the following sub-sections.

5.4.1 Predicting a Decreasing RTT

To avoid the problem described in Section 5.4.1, we define RTTVARE to remain constant when
DELTAE is smaller than zero. In that case RTOE decreases only as fast as SRTTE decreases.
This is illustrated in Figure 5-13 using the same parameters chosen for the model discussed
with respect to Figure 5-8.

DELTAE RTTSample SRTTE–=

FLIGHTE MAX SSTHRESH
CWND

2
------------------, 

  1+=

GAINE

1
FLIGHTE

------------------------- if RTT Sampling Rate 1=,

2
FLIGHTE
------------------------- if RTT Sampling Rate

1
2
---=,

1
3
--- if 1 RTT Sample per RTT,










=

GAINE

GAINE if DELTAE RTTVARE–() 0≥,

GAINE
2

if DELTAE RTTVARE–() 0<,



=

SRTTE SRTTE GAINE DELTAE×+=

RTTVARE
RTTVARE GAINE DELTAE RTTVARE–()×+ if DELTAE 0≥,

RTTVARE if DELTAE 0<,



=

RTOE MAX SRTTE
1

GAINE
------------------ RTTVARE×+ 

  RTTSample 2 ticks×()+, 
 =

108 ___ CHAPTER 5

With this subtle change in the definition of RTTVAR, RTOE does not exhibit the spikes seen
with RTOL when the RTT drops (see Figure 5-8). Also, note that the graph of REXMTL (not
shown in Figure 5-13 to not overload the plot) lies roughly one RTT “above” the graph of
RTOL because of the problem described in Section 5.3.3. The graph of REXMTE, on the other
hand, is identical to the graph of RTOE for the reason described in Section 5.4.5.

5.4.2 Scaling the Estimator Gains and the Variation Weight

To avoid the problem described in Section 5.3.2, we remove the constant estimator gains. We
replace them with a single gain for both SRTTE and RTTVARE that scales with the flow’s load
and which also depends on the RTT sampling rate. If more than one segment is timed per RTT,
the idea is to distribute the entire weight of 1 equally over the number of RTT samples per
flight, i.e., to limit the memory of both estimators to one RTT. With an RTT sampling rate of 1
this leads to an estimator gain which is the reciprocal of the flow’s load, and it leads to twice
that gain when delayed ACKs are used. If only one RTT sample is obtained per RTT, we define
our own “magic number” of 1/3 as the estimator gain. We have verified with the model and a
broad range of parameter settings (especially with a small maximum for the flow’s load) that
this constant leads to an RTOE that is sufficiently safe against spurious timeouts.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

100 110 120 130 140 150 160 170
TimeOfDay (s)

Time (ms)

RTO-Lite (i-1)

RTO-Eifel (i-1)

RTT (i)

SRTT-Eifel (i)

Figure 5-13: Fixing the Prediction Flaw with RTTVARE.

TCP-Eifel __ 109

Likewise, we define the variation weight as the reciprocal of the estimator gain and thereby
also make it scale with the flow’s load. In a situation where the RTT has remained constant for
a “long time” (i.e., when RTTVARE has become zero and SRTTE has converged to the RTT)

and the RTT suddenly increases, this ensures that RTOE is the sum of SRTTE and DELTAE
1.

Various alternatives exist to define FLIGHTE. It is only important that it corresponds to the
flow’s load. In fact, one could define FLIGHTE as the actual flow’s load at any point in time as
that can be derived from the sender-side TCP state. However, we found that that can be too

noisy, leading to many RTOE spikes. We have therefore chosen to approximate a lower bound
for the flow’s load. The slow start threshold [Jac88] (SSTRESH) is an appropriate candidate for
that. In the common case the slow start threshold equals half the congestion window [Jac88]

(CWND) but not necessarily, e.g., when the available bandwidth increases. In that case we use
half the congestion window to determine the approximation of the lower bound of the flow’s
load. We add the constant 1 in the definition of FLIGHTE because a flow’s load at the begin-

ning of a congestion avoidance cycle equals (SSTRESH + 1) or (CWND/2 + 1). In that case
both terms are equal. With those changes we arrive at an RTO where the fraction RTO/RTT
remains fairly constant (see Figure 5-14).

1. In those situations the minimum defined for RTOE would become effective. Thus, to be more conservative, one might also
define the variation weight as m/GAINE with m = 2, 3, 4,....

0

100

200

300

400

500

600

700

800

900

1000

16000 18000 20000 22000 24000 26000 28000

TimeOfDay (x 500 ms)

Time (x 500 ms)

RTT (i)

RTO-Lite (i-1)

RTO-Eifel (i-1)

Figure 5-14: RTOE scales with the flow’s load (model).

110 ___ CHAPTER 5

To see how RTOE performed when only a single RTT sample was collected per RTT, we
repeated the measurement described in Section 3.4.3 while disabling the timestamp option.
The result is shown in Figure 5-15. The graph of RTOE does not look much different from that
of RTOL in Figure 5-10, except that it does not have those spikes at the end of a congestion
avoidance cycle.

Another phenomenon can be seen when comparing Figure 5-10 and Figure 5-15. Although the
maximum RTT is about 250 s in both cases, the minimum RTT is quite different. This is due to
the TCP sender’s “choice” about which segments get timed to collect an RTT sample. If a seg-
ment gets timed just before the end of a congestion avoidance cycle, the RTT is high, and it
will take the duration of that RTT until the next segment is timed. However, during this phase
of the connection the queue at the bottleneck has drained and already begun to build up again.
Thus, during that time the RTT had dropped and slowly increased again. This had gone unno-
ticed by the TCP sender that was still waiting to collect the (high) RTT sample. On the other
hand, if the timing of a segment ends shortly after the end of a congestion avoidance cycle, the
following low RTTs get sampled, too.

5.4.3 Shock Absorbers

In our initial definition of RTOE we were seeing the same effect that can, e.g., be seen in
Figure 5-13 with respect to RTOL. There the RTOL increases when RTT increases. However,

0

100

200

300

400

500

600

700

19000 21000 23000 25000 27000 29000 31000 33000 35000

TimeOfDay (x 500 ms)

Time (x 500 ms)

RTT (i)

RTO-Eifel (i-1)

Figure 5-15: RTOE when timing one segment per RTT.

TCP-Eifel __ 111

the increase phase of RTOL ends half way through each flight. Then the RTOL decreases rap-
idly during the second half of each flight. This can become problematic when the flow’s maxi-
mum load is small. At the end of a each flight, the RTOL might get too close to the RTT. To
avoid that, we defined the gain for RTTVARE to be the square of GAINE whenever RTTVARE is
decreasing. We call this the “shock absorber effect”: the variation goes up quickly but comes
down slowly. As with the estimator gains, no constant would have worked to slow the decrease
of RTTVARE. We therefore, again, chose to make that inverse proportional to the flow’s load by
multiplying GAINE with 1/FLIGHTE. This has the effect that RTOE stays roughly at the same
level during the second half of each flight (see the graph of RTOE in Figure 5-13).

5.4.4 The RTO Minimum

The RTO minimum should be seen as necessary to protect against spurious timeouts in situa-
tions where the RTT is close to or even below the timer granularity. In all other cases, the min-
imum should have no effect. If it does, then this clearly shows that the RTO has failed as a pre-
dictor of an appropriate upper bound for the RTT. When using a heartbeat timer, the RTO min-
imum must at least be 2 ticks as discussed in Section 5.3.4. In addition, it seems reasonable to
have the RTO not drop below the latest RTT sample. This had already been implemented in the
FreeBSD operating system. This motivates our definition of the minimum for RTOE.

5.4.5 Implementing REXMT Precisely

Eliminating the problem described in Section 5.3.3 is straightforward. In our implementation
of the Eifel-Xmit-Timer, we simply store the timestamp of when each segment is sent in a
dynamic data structure. That way we always know the age of the oldest outstanding segment
and can implement REXMTE according to the following definition.

In situations where a connection does not have enough segments in flight to trigger the fast
retransmit/recovery algorithm [Jac90a], i.e., when error recovery has to rely on the retransmis-
sion timer, REXMTE can greatly improve the end-to-end performance compared to REXMTL.

To demonstrate that we configured our experimental network described in Section 3.3.2 to a
link speed of 9.6 Kbit/s and set the interface buffer to a size of one packet. This meant that no
more than three segments were in flight at any point in time, effectively disabling the fast
retransmit algorithm. In Figure 5-16, we compare REXMTL with REXMTE using RTOL in both
cases to isolate the improvement that is achieved by restarting REXMT precisely. In this case,
REXMTE improves the end-to-end throughput by almost 30 percent due to the quicker recov-
ery of the periodically dropped segments. Figure 5-17 shows a detailed view of sections of the

REXMTE RTOE 'Age of oldest outstanding segment'–=

112 ___ CHAPTER 5

two graphs shown in Figure 5-16. For REXMTE one can see that the timeout occurs before a
third duplicate ACK would have been received by the sender, had the receiver sent that ACK.
To avoid the resulting competition between timeout-based error recovery and the fast recovery
algorithm, the Eifel algorithm suppresses the fast retransmit, and restores the slow start thresh-
old and the congestion window as if the timeout had not occurred.

0

50000

100000

150000

200000

250000

300000

350000

400000

0 100 200 300 400 500 600
Time of Day (s)

S
eq

ue
nc

e
N

um
be

r

Rexmt-Lite

Rexmt-Eifel

Figure 5-16: Restarting REXMTE precisely.

TCP-Eifel __ 113

5.4.6 Adapting to Spurious Timeouts

The Eifel algorithm allows a more optimistic retransmission timer because it ensures that the

penalty for underestimating the RTT is minimal. In the common case, the only penalty is a sin-

83000

88000

93000

98000

103000

108000

113000

118000

125 135 145 155 165 175 185
Time of Day (s)

S
eq

ue
nc

e
N

um
be

r

Snd_Data

Snd_Ack

Rexmt-Lite

83000

88000

93000

98000

103000

108000

113000

118000

100 105 110 115 120 125 130 135 140 145
Time of Day (s)

S
eq

ue
nc

e
N

um
be

r

Snd_Data

Snd_Ack

Rexmt-Eifel

Figure 5-17: Zoom of the graphs shown in Figure 5-16.

114 ___ CHAPTER 5

gle spurious retransmission. With that in mind and given that in steady state RTOE/RTT is a
fairly constant fraction, we present an alternative to the given definition of RTOE that makes it
become increasingly aggressive. For that purpose, we multiply RTOE with a factor smaller
than one, we call AGG (Aggressive), and let AGG decay over time. In preparation for this
work, we have included in the Eifel algorithm a feature we have not explained in Section 5.2. It
avoids competition between timeout-based and DUPACK-based error recovery in case the
third DUPACK for a segment arrives after a timeout has already occurred. In that case, the fast
retransmit is suppressed, and the slow start threshold and the congestion window are restored
as if the timeout had not occurred, i.e., the TCP sender goes into congestion avoidance.

We define AGG so that it adapts to the number of spurious retransmissions that occur during
the lifetime of a connection. This lets the RTO become increasingly aggressive, i.e., let it con-
verge to RTT, until a spurious timeout occurs, and then back it off to a more conservative level
before it becomes more aggressive again. We propose an alternative definition provided above
for the RTO which we call RTOAGG.

CYCLE
3
8
--- MAXCWND

2×=

AGG

AGG 1
k

CYCLE
-------------------– 

 × for each valid RTTSample,

MIN AGG
1
2
--- 1 AGG–()×+ 1, 

  for each spurious timeout ,








=

RTOAGG AGG RTOE×=

0

50

100

150

200

250

300

350

400

450

5 10 15 20 25 30 35
TimeOfDay (s)

Time (ms)

RTT (i)

RTO-AGG (i-1)

Figure 5-18: A self-trained RTO.

TCP-Eifel __ 115

CYCLE is the formula (e.g., see [MSMO97]) that determines the number of segments sent
within the last congestion avoidance cycle which ended with a congestion window of
MAXCWND (in multiples of the segment size). The factor k (0 < k < 1) determines how
quickly RTOAGG converges to RTT. For example, k = 0.1 reduces AGG (0 < AGG < 1) by
roughly 10 percent per congestion avoidance cycle. We illustrate this in Figure 5-18, based on
the model configured to a maximum of 26 (=MAXCWND) for the flow’s load, a timer granu-
larity of 1 ms, and a factor k of 0.05. Clearly, more research is required to determine a reason-
able value for k.

5.4.7 Validating the Implementation of RTO-Eifel

As a validation of our implementation of RTOE we decided to reproduce the graph of RTOE
shown in Figure 5-14 that was generated from the model. Again, we chose the parameter set-
tings for our measurement setup as described in Section 3.4.3. Figure 5-19 shows the measure-
ment result. A comparison yields a close match. Given that we know from Section 5.3.5 that
the model is correct, we now have also validated that the implementation of RTOE is correct in
the sense that it conforms to the definition of RTOE provided at the beginning of Section 5.2.

We have deliberately plotted the graph of RTOE without connecting lines to highlight the gap
after each congestion avoidance cycle. During that time the TCP sender received a series of
duplicate ACKs that tiggered the fast retransmit and fast recovery algorithm. No valid RTT

0

100

200

300

400

500

600

700

800

900

30000 32000 34000 36000 38000 40000 42000

TimeOfDay (x 500 ms)

Time (x 500 ms)

RTT (i)

RTO-Eifel (i-1)

Figure 5-19: RTOE scales with the flow’s load (measured).

116 ___ CHAPTER 5

samples are derived from those duplicate ACKs which causes the gaps in the graph. This is dif-
ferent in our model for which we have modeled explicit congestion notification.

5.5 Summary

We proposed an enhancement to TCP’s error recovery scheme, which we call the Eifel algo-
rithm. It uses extra information in the TCP header to eliminate the problems caused by compet-
ing error recovery. Our current implementation is based on the TCP timestamp option, and
only requires changes to the TCP sender implementation. It does not require changes to the
TCP receiver code nor to the protocol itself. Thus, given this backwards compatibility and the
fact that it does not change TCP’s congestion control semantics, the new algorithm can be
incrementally deployed.

In Chapter 4, we showed that the end-to-end performance of fully-reliable flows, such as those
based on TCP, can only be optimized by running highly persistent link layer error recovery.
The one missing piece, however, was a solution for situations where the wireless connectivity
is intermittent, i.e., situations where spurious timeouts are likely to occur. Frequent disconnec-
tions - on the order of seconds - without losing data are common in packet-radio networks. In
such environments, the algorithm can improve the end-to-end throughput by several tens of
percent, although we show that an exact quantification is highly dependent on the path charac-
teristics. Thus, with the Eifel algorithm implemented in TCP and the implementation of a flow-
adaptive wireless link, the long standing problem of “TCP over lossy links” is eliminated.

In addition, we have proposed a new retransmission timer for TCP, which we call the Eifel
retransmission timer, that can also be incrementally deployed. It eliminates four major prob-
lems of TCP-Lite’s retransmission timer which have revealed in our work. We demonstrated
that the Eifel retransmission timer is a more precise predictor of an upper bound for the path’s
RTT while reacting quicker to packet losses. We showed that this can increase the end-to-end
throughput by more than 30 percent. As another alternative, we proposed an advanced version
that becomes increasingly optimistic while adapting to the measured fraction of spurious time-
outs. This requires the Eifel algorithm that opened the door to the development of a more opti-
mistic retransmission timer because the Eifel algorithm ensures that the penalty for underesti-
mating the RTT is minimal. In the common case, the only penalty is a single spurious retrans-
mission. Although we studied retransmission timers in the context of TCP, we believe that the
design principles we proposed are applicable to other reliable end-to-end, and link layer proto-
cols.

TCP-Eifel __ 117

The strength of our work related to end-to-end retransmission timers lies in its hybrid analysis
methodology explained in Section 3.4. We developed models of each retransmission timer for
the class of network-limited TCP bulk data transfers in steady state. With that model we were
able to predict the problems of TCP-Lite’s definition of the RTO. We also used that model to
develop a new RTO for the Eifel retransmission timer. We then validated the correctness our
model-based analysis through measurements in a real network that yielded the same results.

118 ___ CHAPTER 5

__ 119

CHAPTER 6

Conclusion

A commonly used link layer design philosophy says “leave the link layer dumb but simple”.
The term “dumb” in this context stands for independence from any kind of higher layer infor-
mation about a flow’s nature1. This approach has been explicitly applied to the design of many
wireless networks that have been deployed in recent years, e.g., IS-95 [Kar93] and WLAN
[IEEE802.11]. The “end-to-end argument” [SRC84] is usually quoted to advocate this design
philosophy. In a nutshell, the reasoning is that appropriate error control can only be imple-
mented on an end-to-end basis, since only the network end-points have sufficient information
to perform this task. Despite its attractiveness, we showed that the simplicity of such link lay-
ers comes at a cost: reduced end-to-end performance due to inefficient cross-layer interactions
and a waste of radio resources. Earlier work addressing these problems either fails to eliminate
all inefficiencies, or resorts to Performance Enhancing Proxies (PEPs) that are dependent on
transport (or higher) layer protocol semantics and cannot interoperate with network layer
encryption as long as they are untrusted.

The concept of flow-adaptive wireless links is a new link layer design philosophy we have pro-
posed. It eliminates all known inefficient cross-layer interactions, with the exception of the
problem of competing error recovery which we solved with the Eifel algorithm. We argued
why carrying a network end-point’s QoS requirements as part of the flow’s packet headers and
accordingly adapting link layer error control, is orthogonal to the “end-to-end argument”.
Moreover, our solution has the key advantage that it avoids PEPs and their drawbacks. We
showed the feasibility of our solution by applying it for the class of fully-reliable flows. We
demonstrated that highly persistent link layer error recovery is required to optimize the end-to-
end performance provided by such flows while efficiently utilizing radio resources.

1. TCP/IP header compression is the exception.

120 ___ CHAPTER 6

Our measurement results revealed that the GSM-CSD wireless link is over-protected with for-
ward error correction, and that the default value standardized for the link layer error recovery
persistency is too low. We also demonstrated that the throughput of the GSM-CSD wireless
link can be improved by up to 25 percent by increasing the (fixed) link layer frame size to
reduce the relative per packet overhead. These results highlight the importance of measure-
ment-based analysis in wireless networking. It would have been difficult to obtain those results
through simulations. The reason is that such an analysis is highly dependent on the error char-
acteristics of the wireless link that are difficult to model with sufficient accuracy. We therefore
believe that for wireless systems it is particularly important that prototypes are developed early
in the design process so that measurement-based performance studies can be carried out.

We proposed two new mechanisms, the Eifel algorithm and the Eifel retransmission timer, that
improve the performance of end-to-end error recovery protocols independent of whether they
are run over wireless links. Both mechanisms have been implemented and evaluated on the
basis of TCP. The implementation, TCP-Eifel, is publicly available [Lud99c], as well as the
spreadsheet-based model we developed for the timer analysis [Lud99a].

The Eifel algorithm uses extra information in the TCP header to eliminate the problems caused
by competing error recovery. It only requires changes to the TCP sender implementation, and
can be incrementally deployed. In situations where competing error recovery is likely to occur,
e.g., in packet-radio networks where the wireless connectivity is often intermittent, the algo-
rithm can improve the end-to-end throughput up to several tens of percent. Another key nov-
elty is that the Eifel algorithm provides for the implementation of optimistic retransmission
timers, because it reduces the penalty of underestimating the round-trip time to a single spuri-
ous retransmission (in the common case).

The Eifel retransmission timer takes advantage of this feature by becoming increasingly opti-
mistic while adapting to the measured fraction of spurious timeouts. In addition, it eliminates
four major problems of the current de facto implementation of TCP’s retransmission timer
which we have revealed in our work. We demonstrated that the Eifel retransmission timer is a
more precise predictor of an upper bound for a path’s round-trip time while reacting quicker to
packet losses. For network-limited bulk data transfers that do not have enough packets in flight
to trigger TCP’s fast retransmit algorithm, the Eifel retransmission timer increased the end-to-
end throughput by 30 percent in our measurement setup. We validated the correctness of our
analysis by showing that the measurements based on the timer implementations yielded the
same results that we had predicted based on our timer models.

Optimizing the end-to-end performance of loss responsive real-time flows over paths that
include wireless links remains an open research problem. Although, we argued that the concept
of flow-adaptive wireless links provides an appropriate framework that accommodates such

Conclusion ___ 121

flows, we have not further studied this problem. We are also not aware of related work that
addresses it. Below, we outline two issues that need to be resolved in this context.

The performance of loss responsive real-time flows can suffer from the same, and potentially
more, inefficient cross-layer interactions that we described in our work. Thus, it needs to be
studied how to appropriately adapt link layer error control schemes to minimize such ineffi-
ciencies. For example, “how much delay may link layer error control introduce before end-to-
end delay bounds are exceeded?”, or “which error loss rates can the network end-point tolerate
before it starts underestimating the available bandwidth?”.

Another fundamental problem is the lack of support for bit-error-resilient audio/video codecs.
While these are state-of-the-art in traditional circuit-switched wireless networks like GSM,
they cannot be used in today’s Internet. The problem is that both transport and link layer proto-
cols implemented in the Internet perform error detection, i.e., packets received by an Internet
application is always bit-error-free. This effectively disables the key feature of a bit-error-resil-
ient codec, and can greatly reduce user-perceived (audio/video) quality. Solving this problem
requires that a transparent service is provided both end-to-end and at the link layer. Yet, trans-
port protocols that use weak checksums, e.g., UDP, rely on strong link layer error detection.
Thus, network end-points need to be able to request or disable such a transparent service.

We believe these problems merit further exploration because finding feasible solutions is cru-
cial for true “IP over wireless” to become a reality.

122 ___ CHAPTER 6

__ 123

APPENDIX A

Glossar

A

ACK Positive ACKnowledgement ... 10
ARQ Automatic Repeat reQuest... 7

B

BER Bit Error Rates... 24
BLER BLock Erasure Rate... 46
BPF BSD Packet Filter .. 52
BSC Base Station Controller.. 24
BSD Berkeley Software Distribution... 10
BTS Base Transceiver Station ... 24

C

CE Congestion Experienced.. 21
CSD Circuit-Switched Data ... 3
CWND congestion window.. 18

D

DS Field Differentiated Service Field .. 68
DUPACK DUPlicate ACKnowledgement ... 10

E

ECN Explicit Congestion Notification... 21
ECT ECN-Capable Transport .. 21
ELN Explicit Loss Notification.. 38

124 __ APPENDIX A

F

FEC Forward Error Correction...28

G

GSM Global System for Mobile communications ..3

I

ICMP Internet Control Message Protocol...38
IETF Internet Engineering Task Force..43
IP Internet Protocol...1
IPsec Secure IP ..43
IPv4 IP-Version 4 ...5
IPv6 IP-Version 6 ...5
ISP Internet Service Provider..25
IWF Interworking Function..24

L

L2R Layer 2 Relay ...25

M

MS Mobile Station ..24
MSC Mobile Switching Centre ...24
MSL Maximum Segment Lifetime ...10
MSS Maximum Segment Size ..10
MTU Maximum Transmission Unit ..8

P

PEP Performance Enhancing Proxy...2
PPP Point-to-Point Protocol...8
PSTN Public Switched Telephone Network...24

R

REXMT Retransmission Timer State ...12
RLP Radio Link Protocol ...25
RTO Retransmission Timeout Value ..12
RTP Real-Time Transport Protocol..9
RTT Round Trip Time..6

Glossar __ 125

RTTVAR Smoothed RTT Deviation Estimator ... 13

S

SACK Selective Acknowledgements.. 37
SRTT Smoothed RTT Estimator.. 13
SSTHRESH Slow Start Threshold ... 18
SYN TCP’s connect request... 52

T

TAF Terminal Adaptation Function .. 24
TCP Transmission Control Protocol.. 2

U

UDP User Datagram Protocol .. 9

W

WLAN Wireless Local Area Network ... 39
WWW World Wide Web... 2

126 __ APPENDIX A

__ 127

APPENDIX B

References

B.1 Research Papers and Books

[AP99] M. Allman, V. Paxson, On Estimating End-to-End Network Path Properties, In
Proceedings of ACM SIGCOMM 99.

[BB95] A. Bakre, B. R. Badrinath, I-TCP: Indirect TCP for Mobile Hosts, In Proceed-
ings of ICDCS 95, pp. 136-143, May 1995.

[BSK95] H. Balakrishnan, S. Seshan, R. H. Katz, Improving reliable transport and hand-
off performance in cellular wireless networks, ACM/Baltzer Wireless Networks
Journal, Vol. 1, No. 4, pp. 469-481, December 1995.

[BPSK96] H. Balakrishnan, V. Padmanabhan, S. Seshan, R. H. Katz, A Comparison of
Mechanisms for Improving TCP Performance over Wireless Links, In Proceed-
ings of ACM SIGCOMM 96.

[BK98] H. Balakrishnan, R. H. Katz, Explicit Loss Notification and Wireless Web
Performance, In Proceedings of IEEE GLOBECOM 98.

[Bau97] S. Baucke, Leistungsbewertung und Optimierung von TCP für den Einsatz im
Mobilfunknetz GSM, Diploma Thesis, CS-Dept. 4, Aachen University of Tech-
nology, Germany, April 1997.

[BPS99] J.C.R. Bennett, C. Partridge and N. Shectman, Packet Reordering is Not Patho-
logical Network Behavior, In IEEE/ACM Transactions on Networking, Decem-
ber 1999.

[BBKT97] P. Bhagwat, P. Bhattacharya, A. Krishna, S. K. Tripathi, Using channel state
dependent packet scheduling to improve TCP throughput over wireless LANs,
ACM/Baltzer Wireless Networks Journal, Vol. 3, No. 1, January 1997.

[BDSZ94] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, MACAW: A media access
protocol for wireless LANs, In Proceedings of ACM SIGCOMM 94.

128 __ APPENDIX B

[BV99] S. Biaz, N. H. Vaidya, Is the Round-trip Time Correlated with the Number of
Packets in Flight?, Computer Science Dept., Texas A&M University, Technical
Report 99-006, March 1999.

[BP95a] L. S. Brakmo, L. L. Peterson, TCP Vegas: End to End Congestion Avoidance on
a Global Internet. IEEE Journal of Selected Areas in Communication, Vol. 13,
No. 8, pp. 1465-1480, October 1995.

[BP95b] L. S. Brakmo, L. L. Peterson, Performance Problems in BSD4.4 TCP, ACM
Computer Communication Review, Vol. 25, No. 5, October 1995.

[BS97] K. Brown, S. Singh, M-TCP: TCP for Mobile Cellular Networks, ACM Com-
puter Communication Review, Vol. 27, No. 5, October 1997.

[CI95] R. Cáceres, L. Iftode, Imroving the Performance of Reliable Transport Proto-
cols in Mobile Computing Environments, IEEE Journal of Selected Areas in
Communication, Vol. 13, No. 5, pp. 850-857, June 1995.

[CJ89] D.-M. Chiu, R. Jain, Analysis of Increase and Decrease Algorithms for Conges-
tion Avoidance in Computer Nerwork, Computer Networks and ISDN Systems,
Vol. 17, 1989.

[CLZ87] D. D. Clark, M. L. Lambert, L. Zhang, NETBLT: A bulk data transfer protocol,
In Proceedings of ACM SIGCOMM 87.

[DCY93] A. DeSimone, M. C. Chuah, O.-C. Yue, Throughput Performance of Transport-
Layer Protocols over Wireless LANs, In Proceedings of IEEE GLOBECOM 93.

[DMT96] R. C. Durst, G. J. Miller, E. J. Travis, TCP Extensions for Space Communica-
tions, In Proceedings of ACM MOBICOM 96.

[ES98] D. A. Eckhardt, P. Steenkiste, Improving Wireless LAN Performance via Adap-
tive Local Error Control, In Proceedings of IEEE ICNP 98.

[FJ94] S. Floyd and V. Jacobson, The Synchronization of Periodic Routing Messages,
IEEE/ACM Transactions on Networking, Vol. 2, No. 2, April 1994.

[FJ95] S. Floyd, V. Jacobson, Link-sharing and Resource Management Models for
Packet Networks, IEEE/ACM Transactions on Networking, Vol. 3, No. 4,
August 1995.

[FJLMZ97] S. Floyd, V. Jacobson, C. Liu, S. McCanne, L. Zhang, A Reliable Multicast
Framework for Light-weight Sessions and Application Level Framing, IEEE/
ACM Transactions on Networking, Vol. 5, No. 6, December 1997.

[FMMPR99] S. Floyd, J. Mahdavi, M. Mathis, M. Podolsky, A. Romanow, An Extension to
the Selective Acknowledgement (SACK) Option for TCP, work in progress,
August 1999.

[HK99] T. R. Henderson, R. H. Katz, Transport Protocols for Internet-Compatible
Satellite Networks, IEEE Journal of Selected Areas in Communication, Vol. 17,
No. 2, pp. 326-344, February 1999.

[Jac88] V. Jacobson, Congestion Avoidance and Control, In Proceedings of ACM
SIGCOMM 88.

References __ 129

[Jac90a] V. Jacobson, Modified TCP Congestion Avoidance Algorithm, end2end mailing
list (ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail), April 30, 1990.

[JK92] V. Jacobson, M. J. Karels, Congestion Avoidance and Control, Revised version
of [Jac88], 1992.

[Jai89] R. Jain, A Delay-Based Approach for Congestion Avoidance in Interconnected
Heterogeneous Computer Networks, ACM Computer Communication Review,
Vol. 19, No. 5, October 1989.

[KM87] C. A. Kent, J. C. Mogul, Fragmentation Considered Harmful, In Proceedings of
ACM SIGCOMM 87.

[KP87] P. Karn, C. Partridge, Improving Round-Trip Time Estimates in Reliable Trans-
port Protocols, In Proceedings of ACM SIGCOMM 87.

[Kar93] P. Karn, The Qualcomm CDMA Digital Cellular System, In Proceedings of the
USENIX Mobile and Location-Independent Computing Symposium, pp. 35-39,
USENIX Association, August 1993.

[KRLKA97] M. Kojo, K. Raatikainen, M. Liljeberg, J. Kiiskinen, T. Alanko, An Efficient
Transport Service for Slow Wireless Telephone Links, IEEE Journal of Selected
Areas in Communication, Vol. 15, No. 7, pp. 1337-1348, September1997.

[LS98] P. Lettieri, M. B. Srivastava, Adaptive Frame Length Control for Improving
Wireless Link Throughput, Range, and Energy Efficiency, pp. 564-571, In Pro-
ceedings of IEEE INFOCOM 98.

[LNQ97] R. Ludwig, N. Niebert, R. Quinet, Radio Webs - Support Architecture for Mobile
Web Access, pp. 262-271, European Workshop on Interactive Distributed Multi-
media Systems and Telecommunication Services, IDMS 97.

[LT97] R. Ludwig, D. Turina, Link Layer Analysis of the General Packet Radio Service
for GSM, pp. 525-530, In Proceedings of IEEE ICUPC 97.

[LR99] R. Ludwig, B. Rathonyi, Link Layer Enhancements for TCP/IP over GSM,
pp. 415-422, In Proceedings of IEEE INFOCOM 99.

[LRKOJ99] R. Ludwig, B. Rathonyi, A. Konrad, K. Oden, A. Joseph, Multi-Layer Tracing
of TCP over a Reliable Wireless Link, pp. 144-154, In Proceedings of ACM
SIGMETRICS 99.

[Lud99b] R. Ludwig, A Case for Flow-Adaptive Wireless Links, Technical Report UCB//
CSD-99-1053, University of California at Berkeley, May 1999.

[LKJ99] R. Ludwig, A. Konrad, A. D. Joseph, Optimizing the End-to-End Performance
of Reliable Flows over Wireless Links, pp. 113-119, In Proceedings of ACM/
IEEE MOBICOM 99.

[LKJK00] R. Ludwig, A. Konrad, A. D. Joseph, R. H. Katz, Optimizing the End-to-End
Performance of Reliable Flows over Wireless Links, To appear in ACM/Baltzer
Wireless Networks Journal (Special issue: Selected papers from ACM/IEEE
MOBICOM 99), revised version of [LKJ99].

130 __ APPENDIX B

[LK00] R. Ludwig, R. H. Katz, The Eifel Algorithm: Making TCP Robust Against Spuri-
ous Retransmissions, ACM Computer Communication Review, Vol. 30, No. 1,
January 2000.

[LS99] R. Ludwig, K. Sklower, The Eifel Retransmission Timer, Work in progress,
available at http://iceberg.cs.berkeley.edu, November 1999.

[MSMO97] M. Mathis, J. Semke, J. Mahdavi, T. Ott, The Macroscopic Behavior of the TCP
Congestion Avoidance Algorithm, ACM Computer Communication Review,
Vol. 27, No. 3, July 1997.

[MJ93] S. McCanne, V. Jacobson, The BSD Packet Filter: A New Architecture for User-
Level Packet Capture, In Proceedings of the 1993 Winter USENIX Conference.

[Mey99] M. Meyer, TCP Performance over GPRS, In Proceedings of IEEE WCNC 99.

[Mog92] J. Mogul, Observing TCP Dynamics in Real Networks, In Proceedings of ACM
SIGCOMM 92.

[MP92] M. Mouly, M.-B. Pautet, The GSM System for Mobile Communications, Cell &
Sys, France 1992.

[NSNK97] B. D. Noble, M. Satyanarayanan, G. T. Nguyen, R. H. Katz, Trace-Based
Mobile Network Emulation, In Proceedings of ACM SIGCOMM 97.

[Pax97a] V. Paxson, Measurements and Analysis of End-to-End Internet Dynamics,
Ph. D. dissertation, University of California, Berkeley, April 1997.

[Pax97b] V. Paxson, Automated Packet Trace Analysis of TCP Implementations, In
Proceedings of ACM SIGCOMM 97.

[Pax97c] V. Paxson, End-to-End Internet Packet Dynamics, In Proceedings of ACM
SIGCOMM 97.

[Pax97d] V. Paxson, End-to-End Routing Behavior in the Internet, IEEE/ACM Transac-
tions on Networking, Vol. 5, No. 5, October 1997.

[PILC] The Mailing List of the PILC Working Group (Performance Implications of
Link Characteristics) of the Internet Engineering Task Force, http://
pilc.grc.nasa.gov/pilc/list/archive/

[SRC84] J. H. Saltzer, D. P. Reed, D. D. Clark, End-To-End Arguments in System Design,
ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

[SF98] N. K. G. Samaraweera, G. Fairhurst, Reinforcement of TCP Error Recovery for
Wireless Communication, ACM Computer Communication Review, Vol. 28,
No. 2, April 1998.

[She95] S. Shenker, Fundamental Design Issues for the Future Internet, IEEE Journal of
Selected Areas in Communication, Vol. 13, No. 7, pp. 1176-1188, Sep.1995.

[SFHKK95] O. Spaniol, A. Fasbender, S. Hoff, J. Kaltwasser, J. Kassubek, Impacts of Mobil-
ity on Telecommunication and Data Communication Networks, IEEE Personal
Communications, Vol. 2, No. 5, pp. 20-33, Oktober 1995.

References __ 131

[SFHKK96] O. Spaniol, A. Fasbender, S. Hoff, J. Kaltwasser, J. Kassubek, Wireless
Networks and OSI: New Challenges for Protocol Stack Design, Applied Micro-
wave & Wireless, Spring 1996.

[Ste94] W. R. Stevens, TCP/IP Illustrated, Volume 1 (The Protocols), Addison Wesley,
November 1994.

[Tan89] A. Tanenbaum, Computer Networks, 2nd Edition, Prentice Hall, 1989.

[TMW97] K. Thompson, G. J. Miller, R. Wilder, Wide-Area Internet Traffic Patterns and
Characteristics, IEEE Network , Vol. 11, No. 6, November/December 1997.

[WS95] G. R. Wright, W. R. Stevens, TCP/IP Illustrated, Volume 2 (The Implementa-
tion), Addison Wesley, January 1995.

[ZSC91] L. Zhang, S. Shenker, D. Clark, Observations on the Dynamics of a Congestion
Control Algorithm: The Effects of Two-Way Traffic, In Proceedings of ACM
SIGCOMM 91.

B.2 Standards, Recommendations, and Drafts

[GSM04.22a] ETSI, Radio Link Protocol for data and telematic services on the Mobile Station
- Base Station System (MS-BSS) interface and the Base Station System - Mobile
Switching Center (BSS-MSC) interface, GSM Specification 04.22,
Version 5.0.0, December 1995.

[GSM04.22b] ETSI, Digital cellular communications system (Phase 2+); Radio Link Protocol
for data and telematic services on the Mobile Station - Base Station System
(MS-BSS) interface and the Base Station System - Mobile Switching Center
(BSS-MSC) interface, GSM Specification 04.22, Version 6.1.0, November 1998.

[GSM04.21] ETSI, Digital cellular communications system (Phase 2+); Rate adaption on the
Mobile Station - Base Station System (MS - BSS) Interface, GSM Specification
04.21, Version 7.0.0, October 1998.

[GSM04.60] ETSI, Digital cellular communications system (Phase 2+); General Packet
Radio Service (GPRS); Mobile Station (MS) Base Station System (BSS) inter-
face; Radio Link Control / Medium Access Control (RLC/MAC) protocol, GSM
Specification 04.60, Version 6.1.0, August 1998.

[GSM05.03] ETSI, Digital cellular communications system (GSM Radio Access Phase 3);
Channel coding, GSM Specification 05.03, Version 6.0.0, January 1998.

[IEEE802.11] IEEE Local and Metropolitan Area Network Standards Committee, Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,
IEEE Std 802.11-1997, The Institute of Electrical and Electronics Engineers,
New York, 1997.

132 __ APPENDIX B

[ISO8073] ISO/IEC, Information processing systems - Open Systems Interconnection -
Connection oriented transport protocol specification, International Standard
ISO/IEC 8073, December 1988.

[RFC768] J. Postel, User Datagram Protocol, RFC 768, August 1980.

[RFC791] J. Postel, Internet Protocol, RFC 791, September 1981.

[RFC792] J. Postel, Internet Control Message Protocol, RFC 792, September 1981.

[RFC793] J. Postel, Transmission Control Protocol, RFC 793, September 1981.

[RFC896] J. Nagle, Congestion Control in IP/TCP Internet-works, RFC 896, January
1984.

[RFC1094] Sun Microsystems Inc., NFS: Network File System Protocol Specification,
RFC 1094, March 1989.

[RFC1122] R. Braden, Requirements for Internet Hosts - Communication Layers,
RFC 1122, October 1989.

[RFC1144] V. Jacobson, Compressing TCP/IP Headers for Low-Speed Serial Links,
RFC 1144, February 1990.

[RFC1191] J. Mogul, S. Deering, Path MTU Discovery, RFC 1191, November 1990.

[RFC1323] V. Jacobson, R. Braden, D. Borman, TCP Extensions for High Performance,
RFC 1323, May 1992.

[RFC1349] P. Almquist, Type of Service in the Internet Protocol Suite, RFC1349, July 1992.

[RFC1661] W. Simpson, The Point-to-Point Protocol, RFC 1661, July 1994.

[RFC1663] D. Rand, PPP Reliable Transmission, RFC 1663, July 1994.

[RFC1831] R. Srinivasan, RPC: Remote Procedure Call Protocol Specification Version 2,
RFC 1831, August 1995.

[RFC1889] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobsen, RTP: A Transport Proto-
col for Real-Time Applications, RFC 1889, January 1996.

[RFC2002] C. Perkins, IP Mobility Support, RFC 2002, October 1996.

[RFC2018] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, TCP Selective Acknowledge-
ment Options, RFC 2018, October 1996.

[RFC2309] B. Braden, et al., Recommendations on Queue Management and Congestion
Avoidance in the Internet, RFC 2309, April 1998.

[RFC2401] S. Kent, R. Atkinson, Security Architecture for the Internet Protocol, RFC 2401,
November 1998.

[RFC2460] S. Deering, R. Hinden, Internet Protocol, Version 6 (IPv6) Specification,
RFC 2460, December 1998.

[RFC2474] K. Nichols, S. Blake, F. Baker, D. Black, Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers, RFC 2474, December
1998.

References __ 133

[RFC2475] S. Blake, et al., An Architecture for Differentiated Services, RFC 2475, Decem-
ber 1998.

[RFC2481] K. K. Ramakrishnan, S. Floyd, A Proposal to add Explicit Congestion Notifica-
tion (ECN) to IP, RFC 2481, January 1999.

[RFC2507] M. Degermark, B. Nordgren, S. Pink, IP Header Compression, RFC 2507, Feb-
ruary 1999.

[RFC2581] M. Allman, V. Paxson, W. Stevens, TCP Congestion Control, RFC 2581, April
1999.

B.3 Software

[JLM] V. Jacobson, C. Leres, S. McCanne, tcpdump , available at http://ee.lbl.gov/.

[Lud99a] R. Ludwig, Model of the TCP Sender Connection State in Equilibrium, available
at http://iceberg.cs.berkeley.edu, January 1999.

[Lud99c] R. Ludwig, TCP-Eifel, Patches for FreeBSD, available at http://iceberg.cs.ber-
keley.edu, October 1999.

[Pad98] Padmanabhan V., tcpstats , Appendix A of Ph. D. dissertation, University of
California, Berkeley, September 1998.

[Xg] Xgraph, available at http://jean-luc.ncsa.uiuc.edu/Codes/xgraph/index.html.

134 __ APPENDIX B

