

 Page 1 (31)

 Kornhamnstorg 61, 2 tr
 SE-111 27 Stockholm
 Sweden

 Telefon: +46 (0)8 791 92 00
 Telefon: +46 (0)8 791 95 00

 www.certezza.net

Johan Ivarsson, johan@certezza.net

Andreas Nilsson, andreas@certezza.net
Certezza AB

Stockholm 2010-12-31

A Review of Hardware Security Modules
Fall 2010

 Page 2 (31)

Table of Contents

Foreword .. 3
Abstract .. 4
1 Introduction ... 5

1.1 Background .. 5
1.2 Technical overview .. 5
1.3 Purpose ... 5
1.4 Scope .. 5

2 Review method .. 6
2.1 Selection criteria.. 6
2.2 HSM selection ... 6
2.3 Test setup ... 7
2.4 Test tools .. 7

3 Security Models ... 8
3.1 Common features ... 8
3.2 PKCS#11 ... 8
3.3 AEP Keyper ... 9
3.4 Safenet Luna ... 10
3.5 Thales nShield ... 11
3.6 Utimaco CryptoServer ... 12

4 Review results .. 13
4.1 Technical data (A) ... 13
4.2 Communication and system (B) ... 15
4.3 Security features (C) .. 16
4.4 Status and monitoring (E) .. 18
4.5 Usability (F) ... 19

5 Key Findings .. 20
5.1 Summary .. 20
5.2 Suggested future work ... 20

6 Acknowledgements ... 21
7 Abbreviations .. 21

7.1 General ... 21
7.2 Vendor specific ... 21

8 References ... 22
Appendix A - Performance test details .. 23
Appendix B - PKCS#11 mechanisms .. 24

AEP Keyper.. 24
Safenet Luna ... 25
Thales nShield ... 28
Utimaco CryptoServer ... 30

 Page 3 (31)

This report is protected by copyright and licensed under the Creative Commons license Attribution-Share Alike
2.5 Sweden. Sweden. The complete license text is available at;

http://creativecommons.org/licenses/by-sa/2.5/se/
However, the Certezza logo must be removed when creating derivative works of this document. It is protected
by law and is not covered by the Creative Commons license.

Foreword

This review was performed on commission from .SE (The Internet Infrastructure Foundation), whose

influence ends there and Certezza’s independence is thereby intact.

The primary goal of the review is to evaluate commercially available Hardware Security Modules

(HSMs) from a technical perspective. In addition an effort has been made to describe the respective
vendors’ solutions in commonly used, standardized terms. The primary focus has been on HSM

usage in larger DNSSEC deployments. However most of the findings are application agnostic and as

such the review can be applied to HSMs in general. Lastly, the review aims to encourage vendors to
continuously improve their products.

Certezza is an independent information and IT security company offering solutions for secure IT
infrastructures. Certezza has extensive experience in carrying out analyses, reviews and preliminary

studies, combining a structural approach with expertise in the sector of information and IT security.

http://creativecommons.org/licenses/by-sa/2.5/se/
http://creativecommons.org/licenses/by-sa/2.5/se/
http://creativecommons.org/licenses/by-sa/2.5/se/

 Page 4 (31)

Abstract

This report describes a technical review of four leading network based Hardware Security Modules
performed during the fall of 2010. When deriving the review point set the focus was primarily on

security features and functionality used for DNSSEC applications. However the more interesting

findings were in different areas such as usability and management procedures.

Generally all the modules work as expected and offer the necessary functionality one needs from a

secure crypto processor. Which HSM to choose depends on budget, the deployment scenario,
performance requirements and other application specific facts. From an application perspective the

PKCS#11 interface worked exemplary on all modules. Once set up we hardly experienced any

problems with the interface. The only issue worth mentioning is the fact that we needed to execute
several concurrent threads (for all modules) in order to achieve a decent HSM CPU load.

There was high level of diversity in how features such as role structure, authorization models and
key backup were implemented. A more standardized security and authorization model and

nomenclature would have been favourable. Instead each vendor has chosen to integrate with the

PKCS#11model in different fashions. An evolvement of the PKCS#11 standard to incorporate more
complex than smartcards would probably be advisable.

When performing this review it would have been very helpful to have had access to best practise
recommendations for setting up and configuring HSMs. Such a text could also document certain

application areas and general deployment scenarios. At the moment the user is referred primarily to

vendor specific whitepapers and presentations.

 Page 5 (31)

1 Introduction

1.1 Background

As a first time HSM user or buyer it is not straightforward to know where to begin. This study aims
to bridge the gap between product whitepapers and actually using the appliances in practise. We

look at how different vendors implement crucial features such as secure key storage, backup,

recovery and HA clustering. The aim is not to perform a proper product comparison but rather to
identify important HSM features and look at which different strategies have been used to

implement these features in practise.

1.2 Technical overview

A Hardware Security Module (HSM) is a secure crypto processor with the main purpose of

managing cryptographic keys and offer accelerated cryptographic operations using such keys. The
modules typically offer protection features like strong authentication and physical tamper

resistance. Main features of an HSM include on board key generation and storage, accelerated

symmetric and asymmetric encryption and backup of sensitive material in encrypted form.

HSM systems come in different flavours and form factors. Common HSM types are smartcards, PCI

plugin cards and full-fledged, physically shielded LAN-based appliances with features like
thermostats to detect tamper attempts. In this study we have chosen to look at the last type. The

two main advantages of the network attached HSM types (compared to PCI-based) are that they

are inherently platform independent and can be used simultaneously from several clients.
Smartcards are not appropriate for application areas with any type of higher performance

requirements.

Traditionally HSMs have been used in the banking sector to secure large amounts of bulk

transactions. Other common usage areas are to secure CA keys in PKI deployments and SSL

acceleration. In the last couple of years with the advent of DNSSEC (DNS Security Extensions) an
increased focus has been placed on storing DNSSEC keys, and encrypting zone records using an

HSM.

1.3 Purpose

The purpose of the review is to test the HSM from both the viewpoint of the application and the
system administrator in order to assists implementers and encourage product improvements. The

main focus when choosing the review points has been on lager DNSSEC deployments. A secondary

purpose has been to describe the respective vendors’ solutions in commonly used, standardized
terms. The HSM knowledge area, especially with regards to authorization structures and notions is

surprisingly diversified.

1.4 Scope

The primary scope of the study has been PKCS#11 usage of network attached Hardware Security

Modules. The following products and topics have been left out of the study.

 No pure PCI card HSMs integrated directly on a client platform have been used.

 No tests have been performed to verify the physical security measures implemented on the

modules. Instead we choose to rely on the respective FIPS 140-2 validations.

 No practical test of application interfaces except PKCS#11 have been performed.

 Even though some cursory testing has been done on symmetric algorithms the main focus

has been on asymmetric algorithms, and especially RSA.

 Some HSMs have dedicated PKI functionality. This has not been tested in practise.

 Page 6 (31)

2 Review method

The review of the products was performed in Certezza's office according to the test review points
listed in chapter 4. Each of the review points was evaluated separately according to the laid out test

plan. The claimed functionality for each of the tested products was verified and documented.

2.1 Selection criteria

The vendors were chosen based on two main criteria; high deployment rate at customer sites
and/or a good reputation as an HSM vendor.

The actual product selection was based on the following requirements:

- Network connected appliance

- FIPS 140-2 Level 3 validated as described in [FIPS140-2].
- Signing performance: preferably at least 1500 sign/sec for 1024-bit RSA keys.

- Automatic synchronization of keys between HSM systems.

- Ubuntu support for the PKCS#11 library.
- Support for separation of duties/division of command.

2.2 HSM selection

The products were chosen according to the selection criteria in section 2.1.

Vendor Model reviewed Form factor

AEP Keyper v2

Safenet Luna SA 4.4 (PED)

Thales nShield Connect 6000

Utimaco CryptoServer Se1000

Note1: Most of the vendors above have a range of different models in different price ranges. We

intended to include list prices in the review as well. However since most deployments are unique

with regards to redundancy and backup requirements and different vendors solve these issues
differently the list price for a single HSM is not always a good measure. PCI-based HSMs are

naturally cheaper than their LAN-based counterparts.

Note 2: Even though ARX PrivateServer HSM did indeed fulfil the requirements in section 2.1 we

did not receive any reply from the vendor regarding participation in the study.

Note 3: All FIPS-validated cryptographic modules can be found in a list published by NIST at

[FIPSVal].

 Page 7 (31)

2.3 Test setup

In order to minimize performance impact from network latency the lab setup was very simple
consisting of:

- A single Ubuntu 8.04 client running the test applications. When possible we used the Ubuntu
client for administration as well.

- The four network attached HSMs located on a dedicated LAN directly connected to the

application client.

Dedicated LAN

Application client

Four separate HSMs

Figure 1 – Schematic view of the network setup in the test lab.

2.4 Test tools

We used the management software and PKCS#11 software libraries distributed with the HSMs.

For the performance testing we used the command line tool ods-hsmspeed. The tool is bundled
with the open source DNSSEC management system OpenDNSSEC [OpenDNSSEC].

For the test of the PKCS#11 interface (review point A.2) we used a specially developed test tool
called pkcs11-testing. If desired, please contact the authors to obtain the source code.

 Page 8 (31)

3 Security Models

This chapter is a complement to the security features discussed in section 4.3 and summarizes the
security and usage model for each HSM. Since there is no standardized nomenclature for HSM

concepts it is necessary to explain each vendor’s notions as a background to the text in the review

findings.

The security features and notions presented in section 3.1 are common between all the tested

HSMs.

3.1 Common features

There are a number of security architecture decisions that are shared between the four HSMs.

- As opposed to many other similar appliances, the modules expose no Web GUIs.
Administration is done primarily on the physical front panel.

- Remote administration is done via client software over some form of secured CLI shell.

- Smart card authentication is used to authorize security related operations. Division of

command in an m-of-n fashion can be applied if desired.

- PKCS#11 interface over a normal TCP/IP routable Ethernet connection. The keys generated

and used within the PKCS#11 contexts are normally called application keys. It is
conceptually important to separate these keys from keys used for HSM management as

described in the security models.

- No sensitive information such as cryptographic key material ever leaves the HSM

unencrypted.

- All evaluated HSMs are at least FIPS 140-2 Level 3 validated. As part of the validation

process it is mandatory to supply a security policy which details the security architecture

especially with regards to key management. The respective security policies are linked from
NISTs list of FIPS 140-2 evaluated cryptographic modules [FIPSVal].

- Except for the AEP Keyper, the actual HSM functionality is placed on an integrated PCI
card which can also be bought separately and installed directly on a client machine. The

FIPS 140-2 validations apply to the cryptographic functionality of the modules. Therefore it

is relevant to analyse network communication protocols and authentication mechanisms
even though the HSM is FIPS 140-2 validated.

3.2 PKCS#11

3.2.1 Overview

The standard PKCS#11 (Public-Key Cryptography Standard) defines a platform agnostic API to
cryptographic tokens [PKCS#11]. PKCS#11 was initially designed for accessing smartcards and

includes notions such as slots (smartcard readers) and tokens (smartcards) which imply smartcard

technology. Inherent in the design is the ability to use several tokens concurrently through the
same API.

PKCS#11 defines two roles, crypto officer and user, with separate PINs. The crypto officer PIN is
used to manage the user role. The user PIN is used to authorize token usage operations.

 Page 9 (31)

3.2.2 PKCS#11 and HSM technology

Even though HSMs have evolved to incorporate more complex devices with advanced

authentication and authorization models PKCS#11 is still the de facto standard for platform

agnostic applications. The cryptographic operations are the same over different HSM types but the
administration structure and authorization models vary.

Use of PKCS#11 notions for complex HSMs is sometimes a bit confusing. There is no logical
mapping of either a token (smartcard) or a slot (smartcard reader) to PCI-cards or a network

attached HSM appliance. The vendors have solved this inherent conflict by letting the HSM

administrator divide the HSM into logical tokens.

The PKCS#11 user role translates fairly well to the application calling the library. When the token is

set up the HSM administrator (PKCS#11 crypto officer) sets the user PIN on the token. This PIN is
used by the application when accessing HSM functionality. The PKCS#11 crypto officer role is

however not used in its pure form for complex HSMs. The authentication logic for the crypto officer

is not part of the virtual token as for smartcards but lies in the larger scope of HSM administration.
The crypto officer is typically authenticated using some form of strong authentication, normally a

smartcard which complicates the situation further.

In the security model for each HSM a short summary is given of how the HSM is divided into logical

tokens and which roles correspond to PKCS#11 crypto officers and users.

It should be noted that PKCS#11 does not automatically name keys in a fashion appropriate for

backup and recovery. It is the responsibility of the application to name the keys adequately upon

creation.

3.3 AEP Keyper

3.3.1 Overview

As mentioned in the previous section the AEP Keyper is the only appliance in this test which is not

based on an integrated PCI card. It is also the only HSM which is FIPS 140-2 Level 4 validated.
Its foremost design objectives are to be secure and reliable (which can be noted in fewer supported

network appliance functions and slower performance). On the other hand the security model is

very clear and easy to follow.

3.3.2 Key and role structure

A the core of the AEP Keyper is the Storage Master Key (SMK) which is used to encrypt all

application keys on board the HSM. All tampers with the modules result in positive destruction of
the working storage and the SMK.

The other important key is the Adaptor Authorization Key (AAK). The AAK is used to protect the
smartcards of the Security Officer and operator (the two administrative roles on the Keyper). In

order for two Keypers to be administrated by the same set of Security Officer smartcards the

modules must share AAK.

There must be at least two Security Officers in an m-of-n command structure. The Security Officer

role is authorized to perform all HSM and key management tasks.

The sole responsibility of the Operator is to set the Keyper online/offline, in other words activate its

network interface.

Other roles that are not directly tied to operational responsibilities are Key component holders

(holds a smartcard with a part of a SMK or AAK backup) and Application Key Holders (ditto for
application keys).

 Page 10 (31)

3.3.3 Key storage

All keys are stored in NVRAM on the module or on dedicated backup tokens.

3.3.4 PKCS#11

Tokens are created by the Security Officers which hence represent the PKCS#11 crypto officers. A
user PIN is set by the Security Officers on the PKCS#11 token for application use.

3.3.5 Communication

The AEP Keyper is designed for use on private, secured networks. It would be possible to front one
or more Keypers on a private network with an AEP load balancer that would act as a bridge

between the Keyper and a public network.

3.4 Safenet Luna

3.4.1 Overview

First of all it should be noted that the Safenet Luna can be ordered in two different modes;
password based authentication (FIPS 140-2 Level 2) and Trusted Path authentication (FIPS 140-2

Level 3). For this review we have focused entirely on option two, which is based on command

authorization with so called PED (PIN Entry Device) keys. The PED keys are essentially smartcards
which are used together with a supplied numerical keyboard called a PED.

The Luna HSM is separated into partitions. A partition is a dedicated part of the appliance’s NVRAM
with separate management. It is possible for a single partition user to own and manage several

partitions, see role 3 below. One or several clients must be assigned to a partition before it can be

used by applications.

3.4.2 Role structure

There are three main administrative roles involved in Luna HSM management.

1. The appliance administrator logins via SSH or serial terminal. The appliance administrator

can perform general, appliance-level administration. Additional authentication is required

to perform HSM administration tasks and partition management, see below.
2. The HSM administrator is authenticated using a blue PED key. The HSM administrator is

authorized to edit HSM-wide policies, backup and restore the HSM, create and remove

partitions.
3. The Partition user (Crypto Officer) is authenticated using a black PED key and is authorized

to set partition policies, assign partitions to specific clients etc.

If m-of-n is used for the HSM administrator or the partition user additional green PED keys are

required for authentication.

There are five types (colours) of PED keys:

1. Blue – HSM administrator PED key
2. Black – Partition user PED key.

3. Red – Key cloning PED key which is used to synchronize key material among multiple

modules in a common “domain”. The red key verifies that the hardware is under control
of the own organization. The main purpose is for clustering.

4. Green – Used to implement m-of-n division of command.

5. Orange – Used for remote administration via a so called Remote PED.

3.4.3 Key storage

All keys are stored in hardware on the module or on dedicated backup tokens.

 Page 11 (31)

3.4.4 PKCS#11

There is a one to one mapping between a Luna partition and a PKCS#11 token. By default the

partition user role represents a crypto officer, but the black PED key can also be extended to

include a second pure user PIN.

3.4.5 Communication

Once setup the Luna is designed to be used over public networks. Safenet implements an SSL-like

protocol called NTL (Network Trust Link) to encrypt the traffic. The session key is derived using
initially exchange server and client certificates.

3.5 Thales nShield

3.5.1 Overview

The basis of the Thales nShield security architecture is the Security World concept. A Security World
can comprise several HSMs but is administered using a single set of administrators.

Another important notion is the Remote File System (RFS). As the name indicates the RFS is not
stored on the HSM but on a client machine, not necessarily the same as is used to administer the

appliance or run the PKCS#11 library. The RFS contains keys, configuration data and optionally log

files synchronized from the HSM.

3.5.2 Role structure

The Security World is administered by an Administrator Card Set (ACS) consisting of n number of

smartcards of which m are required to authorize administrative tasks. The ACS is used to encrypt
Security World recovery data and authorize creation of Operator Card Sets (OCS).

A Security World contains a single ACS (possibly backed up), but can contain several Operator Card
Sets (OCS) with m-of-n structure. An OCS is used to create and encrypt application keys. Both ACS

and OCS consist of smartcards. It is also possible to use so called softcards to encrypt application

keys. Softcards are essentially soft certificates with a password protected private key.

With regards to form factor, there is an integrated smartcard reader on the front panel. For remote

administration possibilities see evaluation point C.4.

3.5.3 Key storage

The keys are stored in the RFS, encrypted using an ACS, OCS or a softcard.

3.5.4 PKCS#11

There is a direct one to one mapping between an OCS and a PKCS#11 token. The PKCS#11 token

label will automatically be set to the name of the OCS. The OCS card holders vaguely maps to the

PKCS#11 crypto officer role since the OCS is used to manage the tokens.

3.5.5 Special features

The nShield architectures provides a specialized cryptographic interface called CHIL (Cryptographic

Hardware Interface Library) described as “a simple programming interface for
accelerating modulo exponentiation and accessing the RSA/DSA keys that are used by some

application software.”

An extra feature is the ability to write “CodeSafe applications” in Java or C/C++ which can be

executed directly on the HSM using a so called Secure Execution Engine (SEE).

3.5.6 Communication

The communication between the client and the RFS is encrypted using keys exchanged when

setting up the RFS initially.

 Page 12 (31)

3.6 Utimaco CryptoServer

3.6.1 Overview

As opposed to the other modules the CryptoServer is delivered with a default admin account. The
credentials of the default administrator should be changed or the entire account replaced before

the HSM is used in a production environment.

3.6.2 Key structure

At the core of the CryptoServer is the Internal Master Key which is used to encrypt internal sensitive

material on the HSM. The other important key is the Master Backup Key (MBK) which is used to

protect back up data. The MBK is stored internally and/or split into two or more smartcards.

3.6.3 Permission structure

There are no predefined administrator roles and no traditional implementation of division of

command. Instead all users are considered equal in type but can contribute differently to the total
authentication state of the HSM.

The authentication state consists of eight values in the range [0,3] with 3 being the highest possible
authentication level. An example of authentication state could for instance be

[2,0,0,1,0,3,0,1]

Each user has a corresponding eight-value array. The above state could have been achieved by two

concurrently logged in users having permission arrays [2,0,0,0,0,0,0,0] and [0,0,0,1,0,3,0,1]. The
two first slots represent user management and CryptoServer administration and the default admin

account has permission array [2,0,0,0,0,0,0,0].

The permission model is very flexible but (in our opinion) probably unnecessarily complex for most

deployments. There is also a risk in leaving the decision to remove the default admin account up to

the customer/user.

3.6.4 Key storage

When using PKCS#11 all keys are stored in hardware on the module or on dedicated backup

tokens. For other interfaces (CXI, CAPI or CNG) it is configurable if keys are stored on board the
HSM or in software on the client.

3.6.5 PKCS#11

Tokens are created by any administrator with high enough privileges. By default a crypto officer PIN
and a user PIN must be set for the token. It is also possible to use Secure Messaging (see 3.6.5) for

PKCS#11 sessions. In that case, a special PKCS#11 session user is created which can use any

available authentication method listed in C.2.

3.6.6 Communication

The CryptoServer can be configured to be used on public networks. Administration commands and

PKCS#11 communication between the client and HSM can optionally be encrypted which is called
“Secure messaging”. The session key is established either using Diffie Hellman key agreement or

through user authentication.

 Page 13 (31)

4 Review results

This section lists the test reviews points and the corresponding vendor support. Note that we are
not recommending one vendor (or setup type for that matter) over another but simply trying to

evaluate how well certain functions are implemented. It should be noted that all the modules were

tested while running in FIPS mode. Some of the modules disable certain key lengths and
cryptographic functionality in FIPS mode.

4.1 Technical data (A)

A.1 Algorithm support – Support for algorithms and key lengths commonly used for DNSSEC and

PKI applications. Most of the modules support additional cryptographic features. For a complete list
of cryptographic PKCS#11 mechanisms per HSM see Appendix B.

Function AEP Keyper Safenet Luna Thales nShield Utimaco CryptoServer

AES* 128-256 128-256 128-256 128-256

AES modes ECB,CBC,MAC ECB,CBC,MAC ECB,CBC,MAC ECB,CBC,CTR,MAC

3DES modes ECB,CBC,MAC ECB,CBC,MAC ECB,CBC,MAC ECB,CBC,MAC

RSA 1024-4096 512-4096 1024-4096 512-8192

ECDSA - 112-571 - 112-521

DSA* 512-4096 512-1024 512-2048 512-4096

ECDH* - 112-571 - 112-521

SHA-1 SHA1 SHA1 SHA1 SHA1

SHA-2* SHA256-SHA512 SHA256-SHA512 SHA256-SHA512 SHA256-SHA512

HMAC SHA1 SHA1-SHA512, MD5 MD5 SHA1-SHA512, MD5

*Part of NSA Suite B [NSASuiteB]

A.2 PKCS#11 interface – The most commonly used platform agnostic interface is PKCS#11. We

created an automated script to test some main PKCS#11 functions to verify the library
implementation. The following functionality was tested:

1. Initialization – Initialize library and set up session
2. Digesting – MD5, SHA1, SHA256, SHA512

3. RSA – key generation and signing

4. DSA – key generation and signing
5. ECDSA – key generation and signing

6. AES – key generation and encryption

7. Key agreement (ECDH) – key derivation
8. Public key information in private key object – The private key object potentially contains

information about the public key as well, in which case only the private key needs to be

stored. This is not guaranteed but optional in PKCS#11.
9. Import of an 1024-bit RSA key pair

Test # AEP Keyper Safenet Luna Thales nShield Utimaco CryptoServer*

1    

2    

3    

4    

5 -  - 

6    

7 - Normal but not
cofactor derivation

- 

8    

9  Not in FIPS mode** Not in FIPS mode 

* For some reason it was impossible to load other PKCS#11 libraries at the same time as the CryptoServer’s.

** Support for importing (via wrapping) keys in both FIPS and non FIPS mode but not direct via PKCS#11 key

import.

 Page 14 (31)

A.3 Supported interfaces (in addition to PKCS#11)

Module Findings by the test team

AEP Keyper MS CAPI, JCE, OpenSSL

Safenet Luna MS CAPI and CNG, JCA/JCE, OpenSSL

Thales nShield CHIL, MS CAPI, JCA/JCE, Check Point VPN-1/FW-1

Utimaco CryptoServer MS CAPI and CNG, JCE, OpenSSL, CXI

A.4 Key storage capacity – If keys are stored on board the HSM the storage capacity is relevant.

Module Findings by the test team

AEP Keyper 8000 1024-bit RSA keys

Safenet Luna 1200 2048-bit RSA keys The next generation Luna SA 5 will be able to store up to
20 000 keys.

Thales nShield Very limited on board NVRAM storage, only recommended if legally required.

Unlimited software key storage in the Security World/Remote File System.

Utimaco CryptoServer 5000 1024-bit key pairs per HSM, 1500 key pairs per PKCS#11 token.

A.5 Performance - For test lab setup see the description in section 2.3. Performance

measurements are controversial and the results simply list the performance achieved in our test lab.
In general our results are slightly lower but in the same range as the vendor provided figures.

All reviewed HSMs support both symmetric and asymmetric encryption. Our tests were performed
for RSA signing as it is the most common HSM usage for DNSSEC and PKI applications. The testing

tool used was ods-hsmspeed which is distributed with the open source DNSSEC signing software

OpenDNSSEC [OpenDNSSEC].

In order to get decent performance from the HSMs, the test tool had to execute several

independent threads creating PKCS#11 sessions. The results are therefore separated into two
tables. The first table lists maximum performance when running multiple threads. The second table

lists performance when running single threaded. To make the tests fair we experimented

extensively to find the minimum number of required threads adapted to each separate HSM. The
tests were executed long enough to minimize the overhead impact from setting up the sessions.

The interested reader is referred to Appendix A for the number of threads and iterations per HSM.

Maximum performance (signatures/second)

Key size AEP Keyper Safenet Luna Thales nShield Utimaco CryptoServer*

1024 1020 7000 4375 2730

1536 580 1896 3560 1800

2048 410 1225 2760 1120

4096 23 45 410 260

* Running multithreaded tests did not improve performance for the CryptoServer. Instead the results in the

table above were achieved by calling the library simultaneously from several processes. Running separate
processes is not suitable for bulk signing applications such as DNSSEC. It was possible to do a temporary
workaround by creating virtual slots in the configuration but it did not scale very well. An updated release of
the PKCS#11 library with support for multithreading is scheduled for Q2 2011.

Single threaded performance (signatures/second)

Key size AEP Keyper Safenet Luna Thales nShield Utimaco CryptoServer

1024 310 800 950 1160

1536 140 570 740 920

2048 110 420 570 710

4096 13 35 150 230

 Page 15 (31)

It should be noted that in order to maximize performance it would be advisable to use a pure PCI
card HSM instead of a LAN based to avoid the network overhead.

4.2 Communication and system (B)

B.1 Supported host operating systems

We used Ubuntu 8.0.4 on our common administration and application client.

Module Findings by the test team

AEP Keyper Most administration tasks are done directly on the front panel. There are tools for
audit log extraction (Java-based) and firmware downloads (Windows
2003/2000/XP). The PKCS#11 library is available on Windows and *nix platforms.

Safenet Luna Windows 2008/2003/2000
Solaris 9, 10
Linux RedHat Enterprise 4,5*
AIX 5.3, HP-UX 11i

*We had to do some manual package imports to make it work on Ubuntu 8.04.

Thales nShield Windows 2008/2003/Vista/XP

Linux, Solaris, HP-UX, AIX
Utimaco CryptoServer Windows 2008/2003/ Vista/2000/XP)

Linux, Solaris, AIX 5L

B.2 Backup functionality

Module Findings by the test team

AEP Keyper All key types as described in the security model can be backed up to dedicated
smartcards.

Safenet Luna Backup of HSM (excluding partition content) or individual partitions to specialized

PCMCIA backup tokens. A release of a USB based HSMs called G5 is scheduled
for Q1 2011, these modules can be used to back up the entire HSM.

Thales nShield Backup is automatically handled through the use of a Remote File System (RFS) as
described in the security model.

Utimaco CryptoServer Cryptographic keys and the user database can be backed up, encrypted by the
Master Backup Key (MBK). The MBK is created on the CryptoServer and can be

stored onto two or several smartcards.

B.3 Synchronization and clustering – Possibility to share keys between HSMs in different
operating locations to enable load sharing and hardware fault tolerance.

Module Findings by the test team

AEP Keyper Fault tolerance and load sharing via AEP load balancing software run on the
client.

Safenet Luna Possibility to create HA clusters consisting of several Luna modules the for load
sharing and fault tolerance. A software client is used to virtualize the cluster into
a single token for the application perspective.

Thales nShield Load sharing is supported through the use sharing of keys between HSMs but it is
up to the application to perform the actual load balancing.

Utimaco CryptoServer Only possible if using the CXI interface, not for PKCS#11. Failover and load
sharing can currently be implemented using PKCS#11 virtual slots, but not
transparently for the application. This is scheduled for Q2 2011.

 Page 16 (31)

B.4 Network communication protocol between HSM and client

Module Findings by the test team

AEP Keyper All of the communication is sent over TCP/IP (routable) but unprotected. If the
Keyper need to be used on public networks an AEP load balancer can be used as
a proxy.

Safenet Luna All of the communication is sent over TCP/IP (routable) and encrypted using the
NTL (Network Trust Link) described in the security model.

Thales nShield All of the communication is sent encrypted over TCP/IP (routable) using the

Security World/RFS setup.

Utimaco CryptoServer All of the communication is sent over TCP/IP (routable). Commands are optionally
encrypted and signed using AES and AES MAC.

B.5 Multiple Ethernet interfaces

Module Findings by the test team

AEP Keyper No

Safenet Luna Yes, two separate Ethernet ports.

Thales nShield Yes, two separate Ethernet ports.

Utimaco CryptoServer Yes, two separate Ethernet ports.

4.3 Security features (C)

For definition of vendor specific concepts and abbreviations, see corresponding security model in
chapter 3.

C.1 Certification levels - The validations only covers the actual cryptographic chip, not the
complete HSM including administration, backup etc. It is also worth to note that the certifications

are firmware specific and the modules need to be re-certified for each new firmware version.

Module Findings by the test team

AEP Keyper FIPS 140-2 Level 4,

FCC part 15 Class B, BSEN60950 Safety, BSEN61000 Susceptibility Performance B,
BSEN55022 Level B Emissions

Safenet Luna FIPS 140-2 Level 3 when using Trusted Path Authentication with PED keys (see
security model) and Level 2 if using password authentication. CC EAL 4+

Thales nShield FIPS 140-2 Level 3, CC EAL4+.

Utimaco CryptoServer The model we tested, CryptoServer Se-Series LAN, is in the process of being FIPS
140-2 Level 3 validated. The CryptoServer CS-Series LAN is FIPS 140-2 Level 3 and
ZKA (German Credit Association) validated”.

C.2 Supported authentication methods – All of the modules use password protection on the

PKCS#11 token for application usage.

Module Findings by the test team

AEP Keyper Smartcards for Security Officers and Operators. A minimum of two separate cards

are required for security related operations.

Safenet Luna Password or client certificates for appliance administrators.
Password or PED keys for HSM admin and partition owners.

A PED key is essentially an integrated smartcard used to authorize operations
using the PED (Pin Entry Device).

Thales nShield The Administrator and Operator Card Sets consists of smartcards.
In addition softcards can be used for key wrapping.

Utimaco CryptoServer All administrators/users can be authenticated using the following methods:
Password (plain, SHA-1, HMAC)

Client certificates stored on smartcard or in a key file.
Direct smartcard logon onto the CryptoServer

 Page 17 (31)

C.3 Support for division of command (m-of-n or similar) – The concept m-of-n implies that m

out of n designated administrators must be present to authorize a certain operation.

Module Findings by the test team

AEP Keyper Obligatory m-of-n with at least m = 2 for all roles.

Safenet Luna Support for m-of-n for the HSM admin and partition owner roles. Extra PED keys

(of green colour) are used in addition to the blue HSM admin or black partition
PED keys.

Thales nShield Support for m-of-n both for Administrator Card Sets (Security World
Management) and for Operator Card Sets (PKCS#11 token handling).

Utimaco CryptoServer The permission structure described in the security model allows independent m-
of-n for all available commands.

C.4 Remote administration - Often times the HSM is located in remote or shielded locations. It

might be inconvenient to gain physical access to these locations to perform administration tasks.

Module Findings by the test team

AEP Keyper Remote authentication is not possible. Unauthenticated operations such as audit
log extraction are possible.

Safenet Luna There are three options for remote administration:
1. Remote PED connected to client computer.
2. Use of a Remote Administration appliance to administer another HSM

remotely. This option is only available when using Trusted Path
Authentication (PED keys).

3. The password based solution (non-FIPS) is remote admin only since all
authentication I performed via the SSH client.

Thales nShield Remote administration is possible through the creation of a special Remote
Operator Card Set.

Utimaco CryptoServer The module can be administered remotely if using password or client certificate
authentication methods.

C.5 Setup procedure

Note: Before beginning the actual setup it is important to make decisions about m-of-n

administration, use of FIPS mode, backup functionality and other deployment regulating factors.

Module Findings by the test team

AEP Keyper 1. Issue Security Officer smartcards
2. Set the HSM state to operational

3. Setup clock and network configuration
4. Issue Operator smartcards

5. Select FIPS mode
6. Set the HSM to online state
7. Create PKCS#11 token(s)

Safenet Luna 1. Set up network connections and configuration (time, NTP)
2. Initialize the HSM, create HSM admin PED key(s), configure m-of-n.

3. Edit HSM configuration/policies
4. Create partition(s) including partition owner(s) and PED keys.

5. Exchange certificates between HSM and client to set up Network Trust
Link (NTL).

6. Setup client application to use the partition as a PKCS#11 token

Thales nShield 1. Create a Security World and set FIPS mode
2. Create an Administrator Card Set for the Security World
3. Create Operator Card Set(s)
4. Verify that the Security World was set up correctly.
5. Setup client application to use an OCS as PKCS#11 token

Utimaco CryptoServer 1. Set up network configuration
2. Design the permission structure
3. Replace the default admin account
4. Create new users and set privileges
5. Create PKCS#11 token(s).

 Page 18 (31)

C.6 Multiple security domains

Module Findings by the test team

AEP Keyper It is possible to have multiple PKCS#11 tokens but there is no way of dividing the
HSM into separately administered partitions or similar.

Safenet Luna The HSM can be divided into up to 20 partitions with separate administrators.

Thales nShield Operator Card Sets represent independent security domains with no
cryptographic interconnection. There is a direct equivalence between an OCS and
a PKCS#11 token.

Utimaco CryptoServer There is no way of splitting the HSM into separately administrable partitions. But
each PKCS#11 token can have dedicated user(s) assigned to it, so the
administration of PKCS#11 tokens can be separated.

C.7 Time synchronization – A requirement for auditing and non-repudiation is that logged
messages include a time and date from a protected source.

Module Findings by the test team

AEP Keyper Authenticated change of time and date. No NTP support.

Safenet Luna Authenticated change of time and date. Support for Secure NTP.

Thales nShield Change of time and date on front panel. No NTP support.

Utimaco CryptoServer Authenticated change of time and date. Support for NTP

4.4 Status and monitoring (E)

E.1 Which event types are logged?

Module Findings by the test team

AEP Keyper Logging for HSM administration, usage and application operations.

Safenet Luna All daemons running on the HSM logs to syslog.

Thales nShield Logging for HSM administration, usage and application operations.

Utimaco CryptoServer Logging is configured per application running on the HSM, such as the network
daemon, the NTP daemon etc.

E.2 How are logs stored and retrieved?

Module Findings by the test team

AEP Keyper An audit log is stored on the HSM and can be retrieved unauthenticated from any

client on the same network if the HSM is in online state. Interpretation of audit
log codes is provided in the user documentation.

Safenet Luna Logs are stored in the syslog on the HSM and can be retrieved using an SCP-like
command line tool.

Thales nShield Log files are stored on board the HSM and can be viewed via the front panel

and/or synchronized with the RFS.

Utimaco CryptoServer The logs are stored in an on board file which can be downloaded to the
administration client.

E.3 SNMP support

Module Findings by the test team

AEP No support for SNMP.

Safenet Luna Partial or full support for most of the MIBs defined in RFCs 3410-3418.

Thales nShield Yes, a MIB is shipped as part of the software package.

Utimaco CryptoServer Yes, a MIB is shipped as part of the software package.

 Page 19 (31)

4.5 Usability (F)

F.1 Setup and ease of use

Module Findings by the test team

AEP Keyper Setup and initialization is impressively simple. The security model is transparent
and easy to understand. Lack of remote administration features might make the
Keyper unsuitable for certain operation environments.

Safenet Luna Setup and initialization of the HSM is relatively straightforward and the security
model understandable. The use of PED keys of different colours was slightly
confusing. However the PED does a good job in abstracting the use of a
smartcard reader while still enabling remote command authorization.

Thales nShield Setup and initialization of the HSM for a first time user is slightly complicated
since it requires understanding the Security World and Remote File System model.
The actual steps are straightforward though. It is convenient to have an
automated software backup of the HSM through the RFS.

Utimaco CryptoServer It was fairly easy to get the HSM into running state. However the CLI syntax for
issuing commands is complicated and takes time getting used to. For smartcard
authentication it is necessary to specify card type, reader type and actual
USB/serial port being used. The permission model is unnecessarily complex for

most applications, which might encourage administrators to use an insecure
default configuration instead.

F.2 Physical administration interface

Module Findings by the test team

AEP Keyper Efficient front panel administration. The form factor of the unit differs quite

drastically from standard rack appliances.

Safenet Luna No administration directly on the HSM front panel.

Thales nShield Front panel administration with modern display and convenient navigation
features.

Utimaco CryptoServer Front panel administration with modern display and convenient navigation
features.

F.3 Software administration interfaces

Module Findings by the test team

AEP Keyper As mentioned in B.2 most administration tasks are done directly on the unit.

Safenet Luna Command line administration over SSH or direct serial connection. It is possible to
use either a command shell or a few bundled CLI tools.

Thales nShield Windows/Linux Java GUI and CLI. The Windows GUI needs a small work over to

be fully compliant with Windows 7/Windows 2008 Server.

Utimaco CryptoServer Windows/Linux Java GUI and CLI.

F.4 Documentation

Module Findings by the test team

AEP Keyper Very clear and security oriented documentation. The visual format could have
been more appealing but the text is informative and to the point.

Safenet Luna Web based documentation only. The quick start and installation guides are easy
to follow. More advanced features are documented but somewhat hard to find. A

better structured documentation layout with introductory text to new concepts
would have been advisable.

Thales nShield Informative user guide. Whitepapers describing the rationale behind the Security

World/RFS architecture and PKCS#11 integration would have facilitated initial
deployment.

Utimaco CryptoServer The documentation is comprehensive but split into several documents and the
structure if somewhat unintuitive. For instance it took time to realize that the
“quick start guide” was located in one of the last chapters in the admin guide.

 Page 20 (31)

5 Key Findings

5.1 Summary

Generally all the modules work as expected and offer the necessary functionality one needs from a
secure crypto processor. No stability issues or crashes were encountered during testing. Which HSM

to choose depends on budget, the deployment scenario, performance requirements and

application specific facts.

We were surprised to find an unexpected level of diversity in how the respective vendors had

chosen to implement features such as role structure, authorization models and key backup. This
fact made it fairly difficult to get started with each new HSM. The documentation was not always

very helpful but seemed rather to be written as a reference for someone already having product

specific knowledge.

We have to conclude that in order to achieve an effective HSM deployment it is probably necessary

to involve vendor product experts. It is hard to find or define a best practise over such a diverse
flora of appliances and usage models.

From an application perspective however the PKCS#11 interface worked exemplary on all modules.
Once set up we hardly experienced any problems with the interface. The only issue worth

mentioning is the fact that we needed to execute several concurrent threads (for all modules) in

order to achieve a decent HSM CPU load.

5.2 Suggested future work

The test team would have appreciated a more standardized security and authorization model and

nomenclature. As it is now each vendors has chosen to integrate with the PKCS#11 model in

different fashions. An evolvement of the PKCS#11 standard to incorporate more complex modules
than smartcards would probably be advisable.

When performing this review it would have been very helpful to have had access to best practise
recommendations for setting up and configuring HSMs. Such a text could also document specific

application areas and general deployment scenarios. At the moment the user is referred primarily to

vendor specific whitepapers and presentations.

It would be interesting to do a more formal HSM penetration test and security analysis of a

complete solution including parts not validated in the FIPS 140-2 process. One of the goals of such
a test could be to derive appropriate recommendations for configuring a HSM system for certain

deployment scenarios.

 Page 21 (31)

6 Acknowledgements

Rickard Bellgrim from the OpenDNSSEC development team has provided valuable feedback and
practical PKCS#11 testing tools. Karl Castor assisted practically during the testing phase.

7 Abbreviations

7.1 General

AES – Advanced Encryption Standard
CAPI – (Microsoft) Cryptographic API

CLI – Command Line Interface

CPU – Central Processing Unit
DSA – Digital Signature Algorithm

DNSSEC – DNS Security Extensions

FIPS – Federal Information Processing Standard
GUI – User Interface

HSM – Hardware Security Module

HA – High Availability
JCA/JCE – Java Cryptography Architecture/Extension

LAN – Local Area Network

MIB – Management Information Base
NTP – Network Time Protocol

NVRAM – Non-volatile Random Access Memory

PCI – Peripheral Component Interconnect
PCMCIA – Personal Computer Memory Card International Association

PED – PIN Entry Device

PIN – Personal Identification Number
PKCS – Public Key Cryptography Standards

PKI – Public Key Infrastructure

RSA – Rivest Shamir Adelman
SCP – Secure Copy

SHA – Secure Hash Algorithm

SNMP – Secure Network Monitoring Protocol
SSH – Secure Shell

SSL – Secure Sockets Layer

7.2 Vendor specific

7.2.1 AEP

AAK – Adaptor Authorization Key
SMK – Storage Master Key

7.2.2 Safenet

NTL – Network Trust Link

7.2.3 Thales

ACS – Administrator Card Set

CHIL – Cryptographic Hardware Interface Library
OCS – Operator Card Set

RFS – Remote File System

SEE – Secure Execution Engine

7.2.4 Utimaco

CXI – Cryptographic eXtended services Interface

MBK – Master Backup Key

 Page 22 (31)

8 References

[FIPS140-2] NIST, Security Requirements for Cryptographic Modules,

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf 2002

[FIPSVal] NIST, http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm

[NSASuiteB] NIST, http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml

[OpenDNSSEC] OpenDNSSEC, www.opendnssec.org

[PKCS#11] RSA Laboratories, PKCS#11 V.220 Core Specification, ftp://ftp.rsa.com/pub/pkcs/pkcs-11/v2-

20/pkcs-11v2-20.pdf 2004

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
http://www.opendnssec.org/
ftp://ftp.rsa.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf
ftp://ftp.rsa.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf

 Page 23 (31)

Appendix A - Performance test details

Below we list the minimum number of threads and iterations required to achieve a stable,
maximum performance for each HSM.

For the single threaded tests we used 10 000 iterations for all the modules.

For the multithreaded testing the details are provided in the table below. It should be noted that

the performance was relatively stable for lower values of both thread count and iterations.

Type AEP Keyper Safenet Luna Thales nShield Utimaco CryptoServer

Threads 20 50 50 10 processes*

Iterations 10 000 10 000 10 000 10 000

*As described in review point A.5 we experienced no improved performance by running multiple threads for
the CryptoServer.

 Page 24 (31)

Appendix B - PKCS#11 mechanisms

Supported PKCS#11 mechanisms per HSM are listed below. The information was extracted through each
module’s PKCS#11 interface, Hexadecimal mechanism names indicates proprietary, non-standard

mechanisms. The first column lists the mechanism descriptor, the optional second column supported key

sizes and the third column available operations. The test team has not verified that all of the listed
mechanisms are indeed implemented.

AEP Keyper

CKM_RSA_PKCS 512 - 4096 HW encrypt decrypt sign verify wrap unwrap
CKM_RSA_9796 512 - 4096 HW sign verify

CKM_RSA_X_509 512 - 4096 HW encrypt decrypt sign verify

CKM_DSA 512 - 2048 HW sign verify
CKM_DSA_SHA1 512 - 2048 HW sign verify

CKM_DES_CBC HW encrypt decrypt

CKM_DES_ECB HW encrypt decrypt wrap unwrap
CKM_DES_MAC HW sign verify

CKM_DES_CBC_PAD HW encrypt decrypt wrap unwrap

CKM_DES3_CBC HW encrypt decrypt
CKM_DES3_ECB HW encrypt decrypt wrap unwrap

CKM_DES3_MAC HW sign verify

CKM_DES3_CBC_PAD HW encrypt decrypt wrap unwrap
CKM_KEY_WRAP_SET_OAEP HW wrap unwrap

CKM_SHA_1_HMAC HW sign verify

CKM_SHA_1_HMAC_GENERAL HW sign verify
CKM_AES_CBC HW encrypt decrypt

CKM_AES_ECB HW encrypt decrypt wrap unwrap

CKM_AES_MAC HW sign verify
CKM_AES_CBC_PAD HW encrypt decrypt wrap unwrap

CKM_RSA_X9_31 512 - 4096 HW encrypt decrypt sign verify

CKM_RSA_PKCS_PSS 512 - 4096 HW encrypt decrypt sign verify
CKM_SHA_1 No-HW digest

CKM_MD5 No-HW digest

CKM_SHA256 No-HW digest
CKM_SHA384 No-HW digest

CKM_SHA512 No-HW digest

CKM_SHA224 No-HW digest
CKM_RSA_PKCS_KEY_PAIR_GEN 512 - 4096 HW generate-key-pair

CKM_DSA_KEY_PAIR_GEN 512 - 2048 HW generate-key-pair

CKM_DH_PKCS_KEY_PAIR_GEN 512 - 2048 HW generate-key-pair
CKM_DH_PKCS_DERIVE HW derive

0x80000003 HW derive

0x80000002 HW derive
CKM_DES_KEY_GEN HW generate

CKM_DES2_KEY_GEN HW generate

CKM_DES3_KEY_GEN HW generate
CKM_PBE_SHA1_DES2_EDE_CBC HW generate

CKM_PBE_SHA1_DES3_EDE_CBC HW generate

CKM_AES_KEY_GEN HW generate

CKM_XOR_BASE_AND_DATA HW derive

 Page 25 (31)

Safenet Luna

CKM_RSA_PKCS 256 - 4096 HW encrypt decrypt sign verify wrap unwrap
CKM_RSA_X_509 256 - 4096 HW encrypt decrypt

CKM_RSA_PKCS_KEY_PAIR_GEN 256 - 4096 HW generate-key-pair

CKM_SHA1_RSA_PKCS 256 - 4096 HW sign verify
CKM_SHA224_RSA_PKCS 256 - 4096 HW sign verify

CKM_SHA256_RSA_PKCS 256 - 4096 HW sign verify

CKM_SHA384_RSA_PKCS 256 - 4096 HW sign verify
CKM_SHA512_RSA_PKCS 256 - 4096 HW sign verify

CKM_RSA_PKCS_OAEP 256 - 4096 HW encrypt decrypt wrap unwrap

CKM_RSA_X9_31_KEY_PAIR_GEN 1024 - 4096 HW generate-key-pair
CKM_SHA1_RSA_X9_31 1024 - 4096 HW sign verify

CKM_RSA_PKCS_PSS 256 - 4096 HW sign verify

CKM_SHA1_RSA_PKCS_PSS 256 - 4096 HW sign verify
CKM_SHA224_RSA_PKCS_PSS 512 - 4096 HW sign verify

CKM_SHA256_RSA_PKCS_PSS 512 - 4096 HW sign verify

CKM_SHA384_RSA_PKCS_PSS 512 - 4096 HW sign verify
CKM_SHA512_RSA_PKCS_PSS 1024 - 4096 HW sign verify

CKM_DSA_KEY_PAIR_GEN 512 - 1024 HW generate-key-pair

CKM_DSA 512 - 1024 HW sign verify
CKM_DSA_SHA1 512 - 1024 HW sign verify

CKM_DES3_MAC 128 - 192 HW sign verify

CKM_DES3_MAC_GENERAL 128 - 192 HW sign verify
CKM_DES2_KEY_GEN 128 HW generate

CKM_DES3_KEY_GEN 192 HW generate

CKM_AES_CBC 16 - 32 HW encrypt decrypt wrap unwrap
CKM_AES_CBC_PAD 16 - 32 HW encrypt decrypt wrap unwrap

CKM_AES_ECB 16 - 32 HW encrypt decrypt wrap unwrap

CKM_AES_ECB_ENCRYPT_DATA 16 - 32 HW derive
CKM_AES_CBC_ENCRYPT_DATA 16 - 32 HW derive

CKM_AES_MAC 16 - 32 HW sign verify

CKM_AES_MAC_GENERAL 16 - 32 HW sign verify
CKM_AES_KEY_GEN 16 - 32 HW generate

CKM_SHA_1 HW digest

CKM_SHA_1_HMAC 8 - 4096 HW sign verify
CKM_SHA_1_HMAC_GENERAL 8 - 4096 HW sign verify

CKM_SHA224 HW digest

CKM_SHA224_HMAC 8 - 4096 HW sign verify
CKM_SHA224_HMAC_GENERAL 8 - 4096 HW sign verify

CKM_SHA256 HW digest

CKM_SHA256_HMAC 8 - 4096 HW sign verify
CKM_SHA256_HMAC_GENERAL 8 - 4096 HW sign verify

CKM_SHA384 HW digest

CKM_SHA384_HMAC 8 - 4096 HW sign verify
CKM_SHA384_HMAC_GENERAL 8 - 4096 HW sign verify

CKM_SHA512 HW digest

CKM_SHA512_HMAC 8 - 4096 HW sign verify
CKM_SHA512_HMAC_GENERAL 8 - 4096 HW sign verify

CKM_MD5_RSA_PKCS 256 - 4096 HW sign verify

CKM_DH_PKCS_KEY_PAIR_GEN 512 - 2048 HW generate-key-pair
CKM_DH_PKCS_DERIVE 512 - 2048 HW derive

CKM_DES_CBC 40 - 64 HW encrypt decrypt wrap unwrap

CKM_DES_CBC_PAD 40 - 64 HW encrypt decrypt wrap unwrap

CKM_DES_ECB 40 - 64 HW encrypt decrypt wrap unwrap

 Page 26 (31)

CKM_DES_ECB_ENCRYPT_DATA 40 - 64 HW derive
CKM_DES_CBC_ENCRYPT_DATA 40 - 64 HW derive

CKM_DES_MAC 40 - 64 HW sign verify

CKM_DES_MAC_GENERAL 40 - 64 HW sign verify
CKM_DES_KEY_GEN 40 - 64 HW generate

CKM_RC2_CBC 1 - 1024 HW encrypt decrypt wrap unwrap

CKM_RC2_CBC_PAD 1 - 1024 HW encrypt decrypt wrap unwrap
CKM_RC2_ECB 1 - 1024 HW encrypt decrypt wrap unwrap

CKM_RC2_MAC 1 - 1024 HW sign verify

CKM_RC2_MAC_GENERAL 1 - 1024 HW sign verify
CKM_RC2_KEY_GEN 1 - 1024 HW generate

CKM_RC4 8 - 2048 HW encrypt decrypt

CKM_RC4_KEY_GEN 8 - 2048 HW generate
CKM_RC5_CBC HW encrypt decrypt

CKM_RC5_CBC_PAD HW encrypt decrypt

CKM_RC5_ECB HW encrypt decrypt
CKM_RC5_MAC HW sign verify

CKM_RC5_MAC_GENERAL HW sign verify

CKM_RC5_KEY_GEN HW generate
CKM_CAST_CBC 40 - 64 HW encrypt decrypt wrap unwrap

CKM_CAST_CBC_PAD 40 - 64 HW encrypt decrypt wrap unwrap

CKM_CAST_ECB 40 - 64 HW encrypt decrypt wrap unwrap
CKM_CAST_MAC 40 - 64 HW sign verify

CKM_CAST_MAC_GENERAL 40 - 64 HW sign verify

CKM_CAST_KEY_GEN 40 - 64 HW generate
CKM_CAST3_CBC_PAD 40 - 64 HW encrypt decrypt wrap unwrap

CKM_CAST3_CBC 40 - 64 HW encrypt decrypt wrap unwrap

CKM_CAST3_ECB 40 - 64 HW encrypt decrypt wrap unwrap
CKM_CAST3_MAC 40 - 64 HW sign verify

CKM_CAST3_MAC_GENERAL 40 - 64 HW sign verify

CKM_CAST3_KEY_GEN 40 - 64 HW generate
CKM_CAST128_CBC 40 - 128 HW encrypt decrypt wrap unwrap

CKM_CAST128_CBC_PAD 40 - 128 HW encrypt decrypt wrap unwrap

CKM_CAST128_ECB 40 - 128 HW encrypt decrypt wrap unwrap
CKM_CAST128_MAC 40 - 128 HW sign verify

CKM_CAST128_MAC_GENERAL 40 - 128 HW sign verify

CKM_CAST128_KEY_GEN 40 - 128 HW generate
CKM_MD2 HW digest

CKM_MD2_KEY_DERIVATION 8 - 128 HW derive

CKM_PBE_MD2_DES_CBC 64 HW generate
CKM_MD5 HW digest

CKM_SSL3_MD5_MAC 128 HW sign verify

CKM_MD5_HMAC 8 - 4096 HW sign verify
CKM_MD5_HMAC_GENERAL 8 - 4096 HW sign verify

CKM_MD5_KEY_DERIVATION 8 - 128 HW derive

CKM_PBE_MD5_DES_CBC 64 HW generate
CKM_PBE_MD5_CAST_CBC 64 HW generate

CKM_PBE_MD5_CAST3_CBC 64 HW generate

CKM_PBE_SHA1_CAST128_CBC 40 - 128 HW generate
CKM_SSL3_MASTER_KEY_DERIVE 384 HW derive

CKM_SSL3_KEY_AND_MAC_DERIVE 384 HW derive

CKM_SSL3_PRE_MASTER_KEY_GEN 384 HW generate
CKM_SSL3_SHA1_MAC 160 HW sign verify

CKM_CONCATENATE_BASE_AND_KEY 8 - 4096 HW derive

0x0000800D 8 - 4096 HW derive

CKM_CONCATENATE_BASE_AND_DATA 8 - 4096 HW derive

 Page 27 (31)

CKM_CONCATENATE_DATA_AND_BASE 8 - 4096 HW derive
CKM_XOR_BASE_AND_DATA 8 - 4096 HW derive

0x8000001B 8 - 4096 HW derive

CKM_EXTRACT_KEY_FROM_KEY 8 - 4096 HW derive
CKM_GENERIC_SECRET_KEY_GEN 8 - 4096 HW generate

CKM_SHA1_KEY_DERIVATION 8 - 160 HW derive

CKM_SHA224_KEY_DERIVATION 8 - 160 HW derive
CKM_SHA256_KEY_DERIVATION 8 - 160 HW derive

CKM_SHA384_KEY_DERIVATION 8 - 160 HW derive

CKM_SHA512_KEY_DERIVATION 8 - 160 HW derive
CKM_PBE_SHA1_RC4_128 128 HW generate

CKM_PBE_SHA1_RC4_40 40 HW generate

CKM_PBE_SHA1_DES3_EDE_CBC 192 HW generate
CKM_PBE_SHA1_DES2_EDE_CBC 128 HW generate

CKM_PBE_SHA1_RC2_128_CBC 128 HW generate

CKM_PBE_SHA1_RC2_40_CBC 40 HW generate
CKM_PKCS5_PBKD2 1 - 512 HW generate

CKM_ARIA_CBC 16 - 32 HW encrypt decrypt wrap unwrap

CKM_ARIA_CBC_PAD 16 - 32 HW encrypt decrypt wrap unwrap
CKM_ARIA_ECB 16 - 32 HW encrypt decrypt wrap unwrap

CKM_ARIA_ECB_ENCRYPT_DATA 16 - 32 HW derive

CKM_ARIA_CBC_ENCRYPT_DATA 16 - 32 HW derive
CKM_ARIA_MAC 16 - 32 HW sign verify

CKM_ARIA_MAC_GENERAL 16 - 32 HW sign verify

CKM_ARIA_KEY_GEN 16 - 32 HW generate
0x80000105 128 HW encrypt decrypt wrap unwrap

0x80000106 128 HW encrypt decrypt wrap unwrap

0x80000104 128 HW encrypt decrypt wrap unwrap
0x80000107 128 HW sign verify

0x80000103 128 HW generate

0x80000100 HW digest
0x80000101 1024 - 2048 HW generate-key-pair

0x80000102 1024 - 2048 HW sign verify

0x80000109 1024 - 2048 HW sign verify
CKM_ECDH1_DERIVE 112 - 571 HW derive

CKM_DES3_CBC 128 - 192 HW encrypt decrypt wrap unwrap

CKM_DES3_CBC_PAD 128 - 192 HW encrypt decrypt wrap unwrap
CKM_DES3_ECB 128 - 192 HW encrypt decrypt wrap unwrap

CKM_DES3_ECB_ENCRYPT_DATA 128 - 192 HW derive

CKM_DES3_CBC_ENCRYPT_DATA 128 - 192 HW derive
CKM_EC_KEY_PAIR_GEN 112 - 571 HW generate-key-pair

CKM_ECDSA 112 - 571 HW sign verify

CKM_ECDSA_SHA1 112 - 571 HW sign verify

 Page 28 (31)

Thales nShield

CKM_RSA_PKCS_KEY_PAIR_GEN 16 - 4096 HW generate-key-pair
CKM_RSA_X9_31_KEY_PAIR_GEN 16 - 4096 HW generate-key-pair

CKM_RSA_PKCS 16 - 4096 HW encrypt decrypt sign verify wrap unwrap

CKM_RSA_9796 16 - 4096 HW sign verify
CKM_RSA_X_509 16 - 4096 HW encrypt decrypt sign verify

CKM_RSA_PKCS_OAEP 16 - 4096 HW encrypt decrypt wrap unwrap

CKM_RSA_PKCS_PSS 16 - 4096 HW sign verify
CKM_SHA1_RSA_PKCS_PSS 16 - 4096 HW sign verify

CKM_SHA224_RSA_PKCS_PSS 16 - 4096 HW sign verify

CKM_SHA256_RSA_PKCS_PSS 16 - 4096 HW sign verify
CKM_SHA384_RSA_PKCS_PSS 16 - 4096 HW sign verify

CKM_SHA512_RSA_PKCS_PSS 16 - 4096 HW sign verify

CKM_MD5_RSA_PKCS 27 - 4096 HW sign verify
CKM_SHA1_RSA_PKCS 31 - 4096 HW sign verify

CKM_SHA256_RSA_PKCS 31 - 4096 HW sign verify

CKM_SHA384_RSA_PKCS 31 - 4096 HW sign verify
CKM_SHA512_RSA_PKCS 31 - 4096 HW sign verify

CKM_DSA_KEY_PAIR_GEN 512 - 2048 HW generate-key-pair

CKM_DSA 512 - 2048 HW sign verify
CKM_DSA_SHA1 512 - 2048 HW sign verify

CKM_DSA_PARAMETER_GEN 1024 - 2048 HW generate

0xDE43698A 1024 - 2048 HW sign verify
CKM_DH_PKCS_KEY_PAIR_GEN 16 - 4096 HW generate-key-pair

CKM_DH_PKCS_DERIVE 16 - 4096 HW derive

CKM_DES_KEY_GEN 8 HW generate
CKM_DES_ECB HW encrypt decrypt wrap unwrap derive

CKM_DES_ECB_ENCRYPT_DATA HW derive

CKM_DES_CBC HW encrypt decrypt wrap unwrap
CKM_DES_CBC_PAD HW encrypt decrypt wrap unwrap

CKM_DES_MAC HW sign verify

CKM_DES_MAC_GENERAL HW sign verify
CKM_DES2_KEY_GEN 16 HW generate

CKM_DES3_KEY_GEN 24 HW generate

CKM_DES3_ECB HW encrypt decrypt wrap unwrap derive
CKM_DES3_ECB_ENCRYPT_DATA HW derive

CKM_DES3_CBC_ENCRYPT_DATA HW derive

CKM_DES3_CBC HW encrypt decrypt wrap unwrap
CKM_DES3_CBC_PAD HW encrypt decrypt wrap unwrap

CKM_DES3_MAC HW sign verify

CKM_DES3_MAC_GENERAL HW sign verify
CKM_AES_KEY_GEN 16 - 32 HW generate

CKM_AES_ECB HW encrypt decrypt wrap unwrap derive

CKM_AES_CBC HW encrypt decrypt wrap unwrap
CKM_AES_CBC_PAD HW encrypt decrypt wrap unwrap

CKM_AES_MAC HW sign verify

CKM_AES_MAC_GENERAL HW sign verify
0xDE4379F9 HW sign verify

CKM_MD5 No-HW digest

0xDE436978 1 - 2000 HW generate
CKM_MD5_HMAC 1 - 2000 HW sign verify

CKM_MD5_HMAC_GENERAL 1 - 2000 HW sign verify

CKM_SHA_1 No-HW digest

CKM_SHA224 No-HW digest

 Page 29 (31)

CKM_SHA256 No-HW digest
CKM_SHA384 No-HW digest

CKM_SHA512 No-HW digest

CKM_RIPEMD160 No-HW digest
0xDE436975 1 - 2000 HW generate

CKM_SHA_1_HMAC 1 - 2000 HW sign verify

CKM_SHA_1_HMAC_GENERAL 1 - 2000 HW sign verify
CKM_GENERIC_SECRET_KEY_GEN 1 - 2000 HW generate

CKM_XOR_BASE_AND_DATA HW derive

CKM_CONCATENATE_BASE_AND_KEY HW derive
0xDE438A72 HW derive

CKM_PBE_MD5_DES_CBC HW generate

0xDE436973 HW wrap

0xDE436974 HW generate

 Page 30 (31)

Utimaco CryptoServer

CKM_DES_ECB 8 - 24 HW encrypt decrypt wrap unwrap
CKM_DES3_ECB 8 - 24 HW encrypt decrypt wrap unwrap

CKM_DES_CBC 8 - 24 HW encrypt decrypt wrap unwrap

CKM_DES3_CBC 8 - 24 HW encrypt decrypt wrap unwrap
CKM_DES_CBC_PAD 8 - 24 HW encrypt decrypt wrap unwrap

CKM_DES3_CBC_PAD 8 - 24 HW encrypt decrypt wrap unwrap

CKM_AES_ECB 16 - 32 HW encrypt decrypt wrap unwrap
CKM_AES_CBC 16 - 32 HW encrypt decrypt wrap unwrap

CKM_AES_CBC_PAD 16 - 32 HW encrypt decrypt wrap unwrap

CKM_AES_CTR 16 - 32 HW encrypt decrypt
CKM_MD5 HW digest

CKM_SHA_1 HW digest

CKM_SHA224 HW digest
CKM_SHA256 HW digest

CKM_SHA384 HW digest

CKM_SHA512 HW digest
CKM_RIPEMD160 HW digest

CKM_DES_MAC 8 - 24 HW sign verify

CKM_DES_MAC_GENERAL 8 - 24 HW sign verify
CKM_DES3_MAC 8 - 24 HW sign verify

CKM_DES3_MAC_GENERAL 8 - 24 HW sign verify

0x80000135 8 - 24 HW sign verify
CKM_AES_MAC 16 - 32 HW sign verify

CKM_AES_MAC_GENERAL 16 - 32 HW sign verify

CKM_SHA_1_HMAC 1 - 1024 HW sign verify
CKM_SHA_1_HMAC_GENERAL 1 - 1024 HW sign verify

CKM_MD5_HMAC 1 - 1024 HW sign verify

CKM_MD5_HMAC_GENERAL 1 - 1024 HW sign verify
CKM_RIPEMD160_HMAC 1 - 1024 HW sign verify

CKM_RIPEMD160_HMAC_GENERAL 1 - 1024 HW sign verify

CKM_SHA256_HMAC 1 - 1024 HW sign verify
CKM_SHA256_HMAC_GENERAL 1 - 1024 HW sign verify

CKM_SHA384_HMAC 1 - 1024 HW sign verify

CKM_SHA384_HMAC_GENERAL 1 - 1024 HW sign verify
CKM_SHA512_HMAC 1 - 1024 HW sign verify

CKM_SHA512_HMAC_GENERAL 1 - 1024 HW sign verify

CKM_SHA224_HMAC 1 - 1024 HW sign verify
CKM_SHA224_HMAC_GENERAL 1 - 1024 HW sign verify

CKM_RSA_PKCS 512 - 8192 HW encrypt decrypt sign verify wrap unwrap

CKM_RSA_X_509 512 - 8192 HW encrypt decrypt sign verify
CKM_RSA_X9_31 512 - 8192 HW sign verify

CKM_RSA_PKCS_OAEP 512 - 8192 HW encrypt decrypt wrap unwrap

CKM_RSA_PKCS_PSS 512 - 8192 HW sign verify
CKM_SHA1_RSA_PKCS 512 - 8192 HW sign verify

CKM_SHA1_RSA_PKCS_PSS 512 - 8192 HW sign verify

CKM_SHA1_RSA_X9_31 512 - 8192 HW sign verify
CKM_SHA224_RSA_PKCS 512 - 8192 HW sign verify

CKM_SHA224_RSA_PKCS_PSS 512 - 8192 HW sign verify

CKM_SHA256_RSA_PKCS 512 - 8192 HW sign verify
CKM_SHA256_RSA_PKCS_PSS 512 - 8192 HW sign verify

CKM_SHA384_RSA_PKCS 512 - 8192 HW sign verify

CKM_SHA384_RSA_PKCS_PSS 512 - 8192 HW sign verify

CKM_SHA512_RSA_PKCS 512 - 8192 HW sign verify

 Page 31 (31)

CKM_SHA512_RSA_PKCS_PSS 512 - 8192 HW sign verify
CKM_RIPEMD160_RSA_PKCS 512 - 8192 HW sign verify

CKM_MD5_RSA_PKCS 512 - 8192 HW sign verify

CKM_ECDSA 112 - 521 HW sign verify
CKM_ECDSA_SHA1 112 - 521 HW sign verify

0x80001042 112 - 521 HW sign verify

0x80001043 112 - 521 HW sign verify
0x80001044 112 - 521 HW sign verify

0x80001045 112 - 521 HW sign verify

0x8000104A 112 - 521 HW sign verify
CKM_DSA 512 - 4096 HW sign verify

CKM_DSA_SHA1 512 - 4096 HW sign verify

0x80002042 512 - 4096 HW sign verify
0x80002043 512 - 4096 HW sign verify

0x80002044 512 - 4096 HW sign verify

0x80002045 512 - 4096 HW sign verify
0x8000204A 512 - 4096 HW sign verify

CKM_DES_KEY_GEN 8 HW generate

CKM_DES2_KEY_GEN 16 HW generate
CKM_DES3_KEY_GEN 24 HW generate

CKM_AES_KEY_GEN 16 - 32 HW generate

CKM_GENERIC_SECRET_KEY_GEN 8 - 8192 HW generate
CKM_RSA_PKCS_KEY_PAIR_GEN 512 - 8192 HW generate-key-pair

CKM_RSA_X9_31_KEY_PAIR_GEN 512 - 8192 HW generate-key-pair

CKM_EC_KEY_PAIR_GEN 112 - 521 HW generate-key-pair
CKM_DSA_KEY_PAIR_GEN 512 - 4096 HW generate-key-pair

CKM_DH_PKCS_KEY_PAIR_GEN 512 - 4096 HW generate-key-pair

CKM_X9_42_DH_KEY_PAIR_GEN 512 - 4096 HW generate-key-pair
CKM_DSA_PARAMETER_GEN 512 - 4096 HW generate

CKM_X9_42_DH_PARAMETER_GEN 512 - 4096 HW generate

CKM_DES_ECB_ENCRYPT_DATA HW derive
CKM_DES3_ECB_ENCRYPT_DATA HW derive

CKM_DES_CBC_ENCRYPT_DATA HW derive

CKM_DES3_CBC_ENCRYPT_DATA HW derive
CKM_AES_ECB_ENCRYPT_DATA HW derive

CKM_AES_CBC_ENCRYPT_DATA HW derive

CKM_SHA1_KEY_DERIVATION HW derive
CKM_SHA224_KEY_DERIVATION HW derive

CKM_SHA256_KEY_DERIVATION HW derive

CKM_SHA384_KEY_DERIVATION HW derive
CKM_SHA512_KEY_DERIVATION HW derive

CKM_MD5_KEY_DERIVATION HW derive

CKM_ECDH1_DERIVE 112 - 521 HW derive
CKM_ECDH1_COFACTOR_DERIVE 112 - 521 HW derive

CKM_DH_PKCS_DERIVE 512 - 4096 HW derive

CKM_X9_42_DH_DERIVE 512 - 4096 HW derive
CKM_CONCATENATE_BASE_AND_DATA HW derive

CKM_CONCATENATE_DATA_AND_BASE HW derive

CKM_CONCATENATE_BASE_AND_KEY HW derive
CKM_EXTRACT_KEY_FROM_KEY HW derive

CKM_XOR_BASE_AND_DATA HW derive

