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Abstract—We provide the first treatment of typo-tolerant
password authentication for arbitrary user-selected passwords.
Such a system, rather than simply rejecting a login attempt with
an incorrect password, tries to correct common typographical
errors on behalf of the user. Limited forms of typo-tolerance
have been used in some industry settings, but to date there has
been no analysis of the utility and security of such schemes.

We quantify the kinds and rates of typos made by users via
studies conducted on Amazon Mechanical Turk and via instru-
mentation of the production login infrastructure at Dropbox.
The instrumentation at Dropbox did not record user passwords
or otherwise change authentication policy, but recorded only the
frequency of observed typos. Our experiments reveal that almost
10% of login attempts fail due to a handful of simple, easily
correctable typos, such as capitalization errors. We show that
correcting just a few of these typos would reduce login delays
for a significant fraction of users as well as enable an additional
3% of users to achieve successful login.

We introduce a framework for reasoning about typo-tolerance,
and investigate the seemingly inherent tension here between
security and usability of passwords. We use our framework to
show that there exist typo-tolerant authentication schemes that
can get corrections for “free”: we prove they are as secure as
schemes that always reject mistyped passwords. Building off this
theory, we detail a variety of practical strategies for securely
implementing typo-tolerance.

I. INTRODUCTION

Despite repeated calls for their demise (cf. [11]), human-

chosen passwords remain the primary form of user authen-

tication on the Internet. A long line of investigation has

shown that passwords are easily predicted by attackers (cf. [9],

[21], [42]), that strength meters offer limited improvements

to security [41], that password expiration does not increase

security [45], and that users have a hard time remembering

complex passwords [12], [37], [38], [41].

A handful of works have pointed out that complex, user-

chosen passwords are not only more difficult to remember, but

also more difficult to type [26], [27], [38]. But these studies

are quite limited, investigating neither the prevalence nor form

of typos across a wide user base. Additional anecdotes arise

in industry, where a few web services seem to intentionally

allow a small set of typos [2], [3], [6], [32]. Facebook currently

accepts a password whether or not the user capitalizes the

first letter of their password (assuming it starts with a letter),

and whether or not they have the caps lock on. But no

information about why they do this has been published, and,

more importantly, whether this degrades security is unclear.

We provide the first detailed treatment of password typos.

We start by measuring empirically the rates and nature of

typos made by users. We perform preliminary experiments

with Amazon Mechanical Turk (MTurk) in which we task

human workers with transcribing passwords drawn from the

RockYou password leak.1 This does not perfectly model pass-

word entry (among other reasons, because the passwords were

not the workers’ own), but allows us to collect over 100,000

submissions in short order across thousands of workers. Our

experiment provides important, basic insights into common

typographical errors. We find that a large number are proximity

errors (hitting a key near the intended one). Several other

common ones are what we call “easily-correctable” typos:

they can all be corrected by simple functions applied to the

submitted, incorrect password. Examples of the latter include

accidentally hitting the caps lock, implementing incorrect first-

letter capitalization, adding a character to the front or end

of a password, and missing the shift key when entering a

symbol at the end of a password. These easily-correctable

typos account for 20% of the typos observed in our MTurk

study, an observation that serves as a key basis for our work.

Armed with correction functions for easily-correctable ty-

pos, we instrument Dropbox’s production, Internet-scale login

infrastructure. This permits measurement of typo prevalence at

scale without changing the way Dropbox currently performs

user authentication and with no increased risk of exposure of

passwords (i.e., we never store passwords or any information

that could help in guessing them). While we cannot reveal the

absolute number of requests seen during measurements for

reasons of confidentiality, we note that Dropbox has hundreds

of millions of customers and all user accounts were instru-

mented. We first perform a 24-hour measurement to identify

login attempts involving the easily-correctable, common typos

surfaced in the MTurk study. We find that over 9% of failed

login attempts result from just one of three easily-correctable

typos (caps lock, first letter case, and adding a character to

the end). We perform a subsequent 24-hour experiment to

analyze the impact of correcting just these top three typos.

This experiment reveals that 3% of all users failed to login,
but could have done so given correction of one of these
three easily-correctable typos. Many other users could have

avoided multiple login attempts, significantly decreasing the

time required to login. In summary, our measurements suggest

that easily-correctable password typos represent a significant

burden on users and businesses.

1We submitted our experiment design to our IRB, but received an exemption
for lack of collecting any PII.
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All of this suggests typo-tolerance could bring substantial

usability benefits. What remains is to determine if such typo-

tolerance necessarily degrades security. The intuition would

be that it does, because guesses might cover multiple possible

passwords. We show, however, that this intuition is flawed.

We provide a formal framework that enables principled

investigation. We define typo-tolerant password checkers, and

among these a special class that we call relaxed checkers.

Relaxed checkers are systems that start with an existing exact

system (e.g., comparing salted bcrypt hashes or using an en-

crypted password onion [18]). The system is “relaxed” through

a modification that additionally searches a small space of

corrections to the submitted password. This search allows easy

deployment of typo-tolerance, while ensuring that security in

the face of server compromise is as in the exact checking case

(since stored values remain unchanged). Thus we focus on

analyzing online guessing attacks that seek to maximize their

probability of success by exploiting the extra typo checks.

We prove a free corrections theorem. It states that there

exists an optimal, fully secure typo-tolerant checker for any

desired set of corrections. Consequently: (1) The optimal

remote attack up to some query budget q is no more successful

than the optimal attack against an exact checker and (2)

No other checking scheme can improve the utility of typo

corrections while maintaining no loss in security. The key

insight is that one can build a typo-tolerant checker that

forgoes corrections in the rare cases when doing so will allow

checking for multiple high-probability passwords.

Unfortunately, the optimal checker underlying the free cor-

rections theorem must be based on exact knowledge of the

password distribution—an assumption unlikely to be realizable

in practice. We therefore explore the security of a number

of practical typo-tolerant checkers, such as always correcting

the top three typos, checking corrections only when they

do not appear on a blacklist of common passwords, and a

version of the optimal checker that uses the RockYou password

leak [39] to estimate the password distribution. We then

perform a number of simulations to show that these typo-

tolerant checkers improve usability while remote guessing

attacks improve negligibly, even in the worst case of attackers

that somehow know the precise password distribution. For real

attackers that estimate the distribution, our simulations suggest

no improvement in online guessing attacks.

The contributions of this paper are the following:

• We are the first to investigate the rate and nature of pass-

word typos made by users via measurement studies using

Mechanical Turk and the production login infrastructure

at Dropbox. Our work surfaces a small set of easily-

correctable typos, such as capitalization errors, that alone

prevent 3% of users from logging in during the period

of study. Correcting these few typos could therefore non-

negligibly boost user access to the Dropbox service.

• We introduce a formal framework for typo-tolerant pass-

word checkers and prove a free corrections theorem that

establishes the existence, in theory, of an optimal typo-

tolerant password checker that has no loss in security over

exact checking.

• We introduce a number of practical typo-tolerant pass-

word checkers that are compatible with existing password

storage systems. Simulations show that these checkers

can achieve no degradation in security yet still signifi-

cantly improve login success rates.

Our focus is on web password ecosystems, but nothing about

our techniques is unique to this setting. Our typo-tolerant

checkers could easily be integrated in other settings such as

logging into a desktop or laptop computer, though measure-

ments are probably warranted to understand what are the best

typo corrections for these other settings. We leave this to future

work.

Immediate impact of our work. In the course of this

research, our results prompted Dropbox to deploy a caps lock

indicator on their website’s password login interface. This

indicator is like the one already available in Apple OS X,

but appears in all browsers. Preliminary results suggest that

it reduces caps lock errors by about 75%, and thus provides

significant benefit. Unfortunately, it does not eliminate caps-

lock errors nor assist with other sorts of common typos. So

while our results in this paper have already had a practical

impact, we hope that they will also fuel further advances in

the mitigation of password typos.

II. BACKGROUND AND RELATED WORK

Password checking and threats. Traditional password-based

authentication systems work as follows. A user chooses a

username and a password at registration time. For subsequent

logins, the user submits their username and password. Using

some stored representation of the password (e.g., a salted

hash), a password checking scheme determines whether the

submitted password matches the registered one. Login is

allowed only if the equality check passes. A more formal

treatment appears later in Section V.

In terms of security, two main threats arise in the context

of password checking systems. The first is online guessing

attacks in which the attacker can submit guesses to the

checking system via the standard interface. The attacker might

target a particular login (a vertical attack), or try popular

passwords against multiple accounts (a horizontal attack). Here

the system can employ various countermeasures to mitigate

online attacks, such as slowing down how quickly responses

are returned, locking accounts after a certain number of queries

per unit time, and using anomaly detection mechanisms to

flag requests as unauthentic based on contextual information.

The second main threat is leakage to attackers of password

hash databases due to compromise of authentication systems

or accidental data disclosure. These attackers can mount offline

brute-force attacks in an attempt to crack the passwords. Our

focus will be on online brute-force attacks as, looking ahead,

our checkers will be compatible with existing password storage
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schemes and thus no alter security with respect to offline

attacks. We discuss more in Section V.

Typos in user-selected passwords. A number of prior mea-

surement studies reveal the tendency of users to choose weak

passwords [12], [21], [31] with highly skewed, heavy-headed

distributions (i.e., a relatively small number of passwords are

chosen by a large number of people). The most-stated reason

is that ease-of-memorability guides users to simple, common

passwords. While memorability is clearly a critical aspect of

usability, users may also be reluctant to choose more complex

passwords because entering them is difficult, error-prone, and

slow. The problem may be exacerbated by various input device

form factors, e.g., mobile phone touch keyboards.

Few works have measured the difficulty of correctly entering

user-chosen passwords. Keith et al. [27] measured the usability

of user-selected passphrases in comparison to passwords for a

cohort of 56 undergraduate students. They showed that 2.2%

of entries of user-chosen passwords had a typo (defined by

thresholding via Levenshtein distance), and the rate of typos

roughly doubles for more complex passwords (at least length

7, one upper-case, one lower-case, one non-letter). A follow-up

study by the same authors also revealed a typo rate of roughly

2% with another small corpus of students [26]. Their studies,

being of small scale, may not generalize to other settings, and

the authors do not analyze the types of errors subjects made.

Mazurek et al. [29] hypothesize that users may pick weaker

passwords because they are simpler to type and that more

complex passwords are harder to type. Via large-scale mea-

surements of a university authentication system, they show that

login errors are correlated with stronger passwords. However,

they do not analyze the nature of errors, i.e., whether they

were in fact typos, typing in the entirely wrong password, or

some other problem.

Server-side hashing changes. In theory a secure sketch [17]

could be used to correct some typos in the server side. How-

ever, the proven bounds for existing constructions are too weak

to provide meaningful protection for our setting (in which

entropy is quite low). More details are given in Appendix A.

Mehler and Skiena [30] propose to allow controlled collisions

in password hashing so that, with high probability, passwords

with a transposition or substitution error hash to the same

value. Both such approaches to typo-tolerant techniques are

not backwards-compatible with existing password storage and

also will degrade offline attack security.

Typos in passphrase systems. Shay et al. [37] perform

a study of system-generated passwords that are chosen

uniformly for a user, chosen uniformly to be pronounce-

able, or chosen uniformly among CorrectHorseBatteryStaple-

type passphrases [33] of various word lengths. They mea-

sure typos and investigate the correlation between pass-

word/passphrase length and typing errors, and investigate

simple typo-tolerance strategies such as ignoring case com-

pletely and, for passphrases, combining words from a dictio-

nary whose strings have large pairwise Damerau-Levenshtein

distance [15], [28], which, in turn, enables correction by

comparison with the dictionary. This latter suggestion is orig-

inally due to Bard [7]. Later, Jakobsson and Akavipat [24]

suggest similar dictionary-checking-based error correction in

what they call fastwords. In contrast to the above works, we

focus on arbitrary user-chosen passwords, so these previous

measurements and mechanisms unfortunately do not apply to

our setting.

Typo-tolerant checking in industry. There have been sev-

eral examples of major websites accepting slightly incorrect

versions of user-chosen passwords. Facebook as early as 2011

accepted the correct password, the password with all letters’

cases flipped, or the password with the first letter’s case flipped

(if it is indeed a letter) [2], [32]. These two modifications

correspond to errors resulting from leaving the caps lock on (or

off) or the tendency of (particularly) mobile phone keyboards

to automatically capitalize the first entered character. Early

password authentication mechanisms at Amazon allegedly

ignored case and any characters beyond the eighth position due

to a bug [1]. Users of Vanguard (an investment management

company) reported that the answers to security questions could

have typographical errors and still be accepted [3].

These companies faced significant backlash in the media

and from some security professionals [1]–[3]. The assumption

underlying the criticism seems to be that accepting any variant

of a password will necessarily speed up online guessing

attacks.

Open questions. To summarize, before our work there was

no information available about the kinds of typos that burden

users typing user-selected passwords and whether typo-tolerant

password checking systems are achievable without degrading

security. We seek to answer these questions here.

III. UNDERSTANDING TYPOS EMPIRICALLY

We start with experiments using Amazon Mechanical Turk

(MTurk) [14] to measure the kinds of typos that people

make when typing passwords. The goal of this preliminary

measurement study is to discover the most frequent typos

across a population for typical user-chosen passwords. We

will follow on up these MTurk experiments with real user data

using instrumentation of the Dropbox operational environment

(discussed in Section IV).

Experiment design. MTurk allows custom-designed human-

intelligence tasks (HITs) to be submitted to workers over the

web. We created a password-typing HIT that asks a worker

to type k passwords within a given time limit. Inside a HIT,

every password needs to be typed within a conventional HTML

password-type input box, i.e., each typed character shows up

as a dot. Copy-paste functionality is disabled in the input

boxes using the html “onpaste=false oncopy=false”

option. This check can be circumvented by changing the

browser settings, but we recorded all key presses inside an

input box and used this to help filter out copy-paste attempts.

We did not find any circumvention in the collected data.
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Our MTurk experiment design mainly aims at gathering data

efficiently to identify common typos and trends. We note that

the typos found in transcribing passwords in MTurk may not

be truly representative of the typos users make when typing

their own passwords. Performing a longitudinal study using

MTurk where users retype their chosen password multiple

times would be interesting, but it would be logistically com-

plicated and would greatly slow the data collection rates while

still not providing real ecological validity [19]. The reasons for

experimenting in MTurk is that prospecting for common typos

in a real operational environment, such as Dropbox’s, would

seem to require storing information about plaintext passwords

in between logins, which could represent a significant security

problem. Thus we adopt the two-phase investigative approach.

First prospecting for common typos via MTurk and, given a

list of such typos, presenting a measurement of real-world

Dropbox user typos later in the paper.

In our MTurk experiments we ask workers to type the

passwords which are sourced from the RockYou password

leak [39]. This data set is the largest plaintext password leak

to date, with passwords from over 32 million users. It has been

used widely for password-related studies and the distribution

of passwords is similar to other leaks. The data set contains

a number of passwords that may be objectionable to some

people (e.g., many popular passwords are based on profanities

from a wide number of languages). Instead of removing these

passwords, which would bias the study, we used the MTurk

mechanism of indicating that there may be vulgar content

in the HITs. This restricts the HITs to be used only by

adult workers as well as providing a warning to them about

the potential for objectionable content. We also removed all

passwords of length greater than 25, as these are (by manual

inspection) not user-selected passwords.

Amazon allows the HIT creator to specify the required

qualification and location of the worker. We allowed workers

with more than 10% acceptance rate2 and that were located in

countries whose official language is English.

None of the data we recorded contains personally identi-

fying information. We nevertheless submitted our experiment

designs to our institutional review board and received an IRB

exemption.

A. Measured Typo Rates

We sampled 100,000 passwords randomly with replacement

according to the empirical probability distribution of RockYou

passwords of length 6 or more. (The length requirement

matches the Dropbox policy for passwords, as discussed in

the next section.) By sampling with replacement, this means

we match the expected distribution of submitted passwords a

web service might see across their entire user base (e.g., the

password “123456” appears frequently). We split the sample

into HITs, ensuring that none of the HITs contain more

than 180 characters in total. (This approximately normalizes

2Acceptance rate in MTurk paradigm means the percentage of HITs, that
the worker has submitted, have been accepted by the requester of the work.
This is an eligibility filter provided by MTurk.

the amount of typing effort of a single HIT.) Each MTurk

worker is given 300 seconds to type all the passwords in the

HIT. The number of passwords in a HIT ranges between 16

to 22. To ensure a broad pool of users, a worker is only

allowed to submit a maximum of 3 HITs. To impose this

restriction, we used a third-party JavaScript function provided

by a website called Unique Turker [5]. In addition to the

submitted passwords, we collected the user agent string of

the browser from which the worker submitted the job, and all

the key presses (and their timestamps) inside the input boxes

within the HIT.

A total of 4,362 workers participated in our study. Several

passwords were not typed at all (e.g., the worker accidentally

submitted the HIT before typing all the passwords), and some-

times the wrong password was entered (e.g., when prompted

“123456” the user entered “password”).

Sanitization. We sanitize the received data first, by removing

the submissions where either no password was typed or typed

passwords have a case-independent edit distance of five or

more from the prompted password. This excluded 226 of

the password samples. Here and throughout this section edit

distance includes insertions, deletions, and substitutions each

as unit cost.

Preliminary analysis of the remaining data revealed that a

large fraction of errors were caused by accidental pressing

of the caps-lock key. Looking at the data, it was clear that

in many cases workers had caps lock on for a large number

of contiguous entries. We therefore sanitized our data with a

heuristic to figure out improper propagation of caps-lock errors

across multiple entries. The details are given in Appendix B.

After sanitization, there were in total 4,364 incorrect sub-

missions across 97,632 valid submissions (4.5%). There were

81,595 unique passwords among the sanitized submissions,

and 5.5% of all unique passwords were mistyped at least once.

Because we instrumented all key presses, we could see when

users corrected entries before submission. An additional 8.2%

of submissions were first incorrectly typed by the workers, but

corrected before submission. In total, we found that 42% of the

workers made at least one typo across all their submissions,

while 1.6% submitted more than four mistyped passwords in

their submissions.

From now on our analyses are based on the submitted

passwords unless otherwise specified. We include duplicate

passwords in our analyses because they reflect the distribution

of passwords a provider would see.

The data resulting from the MTurk measurements suggest

that there is some correlation between typo likelihood and

password complexity under various measures such as length

and lexical diversity. As this is not our main focus we defer

discussion to Appendix C.

B. The Nature of Typos

We now analyze the nature of typos made by the MTurk

workers. First, we look at typos based on the edit distance

between the mistyped password and the correct password.
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For 86% of incorrectly typed passwords, if we normalize the

cases of alphabetic characters, the edit distance between the

submission and the correct password was one. This suggests

most password typos are relatively simple.

To obtain better clarity on the kinds of typos made, we

analyze typographical errors on a representation of strings that

accounts for the keys that must be pressed while entering it.

This allows us in particular to highlight the role of capitaliza-

tion errors due to shift and caps-lock mistakes during password

entry.

The key-press representation of a string is defined as fol-

lows. First, recall that our standard alphabet includes upper-

and lower-case letters, numbers, symbols, and the space char-

acter. We define a key-press alphabet that includes only the

keys on a standard US keyboard: lower-case letters, numbers,

symbols that can be entered without shift (such as the period),

the caps-lock key denoted by 〈c〉, and either shift key repre-

sented by 〈s〉. Then, we convert each password and submitted

string from the MTurk study to a key-press string by replacing

characters omitted from the key-press alphabet by appropriate

combinations of 〈s〉 or 〈c〉 tokens and tokens for keys in the

key-press alphabet. We heuristically assume any sequence of

3 or more capital letters was entered using caps lock and

singleton or doubles using a shift key. So for example, the

string “Password” would be converted to the string “〈s〉-p-a-

s-s-w-o-r-d” over our new alphabet, and likewise “ABC12!@”

would be converted to “〈c〉-a-b-c-〈c〉-1-2-3-〈s〉-1-〈s〉-2”. As

seen in this last example, in our conversion we insert a 〈s〉
token for each character modified by it (despite the fact that

the user may hold it down for the duration).

To gain insight into what kinds of typos the workers made,

we constructed a confusion matrix in which rows represent the

true keys that should have been pressed, and columns represent

the keys that were actually pressed. We filled this matrix

in the following way. For each pair of prompted password

and submitted string, we find an optimal alignment of the

corresponding key presses that minimizes the total cost of

the edit operations. We can extract an optimal alignment in

the process of computing the minimum edit distance using a

dynamic programming algorithm approach proposed in [40].

We then counted the frequency of c → c′ pairs, where c is the

key in the given password and c′ is the key which is typed.

We allowed c to take on a placeholder value [ins] signifying

when c′ was inserted into a password, and c′ to take on a

placeholder value [del] to denote that c was deleted from a

password. We omitted the case c = c′ from our tabulation, as

it represents no typographical error.

For example, consider if the prompted password was the

string “Password”, (or “〈s〉-p-a-s-s-w-o-r-d” in key-press rep-

resentation) and the study participant submitted the string

“passw0rd1” (or “p-a-s-s-w-0-r-d-1” in key-press representa-

tion). Our algorithm would increment the counts for 〈s〉 →
[del], o → 0, and [ins] → 1. The corresponding typos are:

forgetting 〈s〉 to capitalize the first letter, changing an ‘o’ to

‘0’, and adding a (spurious) ‘1’ at the end.

The histogram resulting from doing this for all submitted

Deletion of
characters

Transcription 
errors

Insertion errors

Insertion/ 
deletion
of caps lock 
and shift keys

Keyboard 
  proximity
    errors

Fig. 1: Heatmap showing the counts of edits that arose

in computing edit distance from the key-press sequence of

the submitted passwords to the key-press sequence of the

prompted passwords. The color in row c and column c′

indicates how often the edit c → c′ was observed across

all distance calculations. The darker the color the higher

the count. Labels [ins] and [del] denote insertion (character

mistakenly inserted) and deletion (failure to type a character).

Tokens , 〈s〉, and 〈c〉 respectively denote the and space-bar,

shift, and caps lock.

passwords is shown as a heatmap in Figure 1. Darker colors

signify higher counts. The keys are sorted according to a

standard US keyboard layout.

Several common typographical errors stand out:

• Insertion and deletion of shift and caps-lock keys: In the

right bottom corner appears a dark patch of 3×3 squares.

This reflects the frequency of erroneous use or lack of use

of shift and caps lock—equivalently, incorrect insertion

or deletion of the 〈s〉 and 〈c〉 tokens. These typos will

switch the case of the password if it contains English

letters as well as changing the shift status of digits and

symbols (e.g., 4 → $).

• Keyboard proximity errors: The slightly darker cells near

the diagonal represent typos due to mistakenly pressing

a neighboring key to the left or right of the intended

key. We found more generally that there are a significant

number of typos for which a key is replaced by an

adjacent one (left, right, above, or below). We collectively

refer to these as proximity errors.

• Number-to-number errors: We see a square cluster of

moderately high-frequency errors in the top left that

represent digit-to-digit typos. Some of these are proximity
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errors, but many such errors confuse widely separated

numbers, e.g., 3 → 9.

• Insertions and deletions: There are throughout a large

number of insertion (third row from the bottom) and

deletion (third column from the right) errors. Deletions

are slightly more common.

• Transcription errors: The heatmap has sporadic dark

cells, including (l,1), (o,0), (0,o), (l,i). These represent

transcription errors due to a worker confusing similar-

looking characters. We presume that the prevalence of

reading errors are an artifact of the experiment design,

and will be less frequent for entry of memorized pass-

words. Nevertheless, such errors could arise for users that

write down their passwords to remember them.

Our analysis suggests that a large fraction of common typos

fall into a few classes. A subset of these are what we refer to

as “easily correctable,” as we discuss shortly.

C. Touchscreen Keyboards

We performed a smaller, but similar, study in which workers

were required to use touchscreen keyboards. The hypothesis

here is that the distribution of typos may differ due to

keyboard type. We submitted 24,000 passwords drawn from

RockYou across 1,987 HITs using the same methodology of

approximately normalizing effort by restricting total character

counts to be less than 110. Workers were given 300 seconds

to perform a HIT. We restricted workers to using touch-

screen keyboards by checking the user-agent string of the

worker’s browser.

Unlike the desktop user experiment earlier in this section,

we did not need to adjust for the caps lock propagation error on

touchscreen devices. This was because of the fact that in touch

screen devices the caps lock key is auto reset every time the

focus shifts from one input field to the other. We performed an

analysis that was otherwise similar to the analysis used above

for the general MTurk experiment. To calculate proximity

errors, we used the Android keyboard layout, which we believe

is a sufficiently good proxy for all touch screen keyboards.

The probability of a typo here was 9.0%, an increase over

the 4.5% for unrestricted workers. We compare the types of

typos across the two data sets quantitatively below.

D. Easily-Correctable Typo Classes and Correctors

Using all the data above we manually enumerate a set

of common typo types, or classes. The resulting classes are

detailed in Figure 2, and shown for both the first general

MTurk experiment and the touchscreen-restricted experiment.

The column labeled “Corrector” identifies the function that can

be used to correct the corresponding typos: swc-all switches

the case of all letters in a password, swc-first switches the

case of the first letter, rm-last removes the last character,

rm-first removes the first character, and n2s-last changes the

last character to its equivalent character under the shift-key

modifier (e.g., ‘1’ becomes ‘!’, ‘a’ becomes ‘A’, etc.). The

correctors mentioned above are mutually exclusive, that is,

Typo type Corrector % of typos
Any Mobile

Case of all letters flipped swc-all 10.9 8.3
Case of first letter flipped swc-first 4.5 4.7
Added extra character to end rm-last 4.6 0.9
Added extra character to front rm-first 1.3 0.5
Missed shift for symbol at end n2s-last 0.2 0.1
Proximity errors n/a 21.8 29.6
Transcription errors n/a 3.0 3.3
Other errors n/a 53.6 52.7

Fig. 2: The top categories of typos observed in our MTurk

experiments. The “Corrector” column identifies an (easily

applied) function that corrects the typo. The “Any” column

is percentage of typos by category for the initial MTurk

study in which workers could have used any browser. Of

97,632 passwords drawn from RockYou, 4,364 were mistyped.

The “Mobile” column is the same for the 23,098 submitted

passwords collected from devices with mobile browsers. Of

these, 2,075 had a typo.

any two correctors, when applied to an input password of

length larger than one, will produce two different passwords

(assuming at least one of the correctors is applicable).

As can be seen, the distribution of typos is non-uniform. A

few typo classes account for a large proportion of mistakes

made. Caps-lock errors alone represent 9.2% of all mistakes

made in our general MTurk experiments, and proximity errors

for another 21.8% of all mistakes. For mobile, we see a

proportionally larger number of keyboard proximity typos.

If a class of typo has a uniquely determined associated

corrector, we refer to it as easily correctable. The typo that

produces a flipped case in the first letter is an example: The

corresponding corrector just flips the case of the first letter.

Not all easily correctable typos have involutory correctors (the

typo and corrector are the same function): consider the case of

adding a character to the end of a password which is corrected

by removing a character.

In contrast to easily correctable typos, a proximity error is

hard to correct. Given a password with a proximity error, cor-

rection would require identification of the erroneous character

as well as identification of the nearby character that was the

original, true one. Thus the space of possible correctors for a

proximity error is generally large. As we shall see later, both

security and performance are adversely impacted by searching

large spaces of correctors.

Our exploration culminates in the following two key results:

(1) Some typos are significantly more common than others and

(2) Many common typos are easily correctable. In the next

section, we report on experiments at Dropbox that verify that

common, easily correctable typos arise frequently in practice.

IV. EXPERIMENTS AT DROPBOX

Our Mechanical Turk experiments in the last section show

that there exists a small set of frequently observed typos. Those

experiments, which asked users to type in passwords provided
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to them, may not simulate the kinds of typos users make when

using their own passwords. We therefore turn to investigating

typos in the production password authentication environment

used at Dropbox. We will also assess the impact of typos on

user experience. We emphasize that our experiments here did

not change the effective login checks at Dropbox, but only

recorded information about the frequency of typos.

The Dropbox authentication system. Dropbox is a file

hosting service for consumers and enterprises with hundreds

of millions of users. Each user must select a password during

registration. Dropbox uses zxcvbn [44], a password strength

estimator, to guide the user in choosing a strong password.

The system requires that users choose a password of at least

six characters, but it does not explicitly forbid users from

choosing passwords that are considered to be weak by zx-

cvbn. Passwords are submitted over a standard HTTPS POST

interface when logging in via the website or from within one

of the native Dropbox applications. We call the submission of

a password by a user a password submission. If the password

is accepted by the Dropbox server, we call it a successful

password submission, otherwise it is called a failed password

submission. On a failed password submission, the user may

resubmit his/her password. A login attempt is a sequence of

password submissions by a user that either culminates in a

successful login, in which case the login attempt is considered

successful, or accumulates login failures until the study ends.

If the user does not succeed in logging in during the scope of

our study, we consider her sequence of password submissions

to be a failed login attempt.

Dropbox, like most modern web companies, uses a number

of fraud detection mechanisms in order to filter out spurious

login attempts even before checking the password. An example

of such fraud detection mechanisms is to refuse login attempts

from IP addresses that appear on a blacklist for known bots.

While some spurious login submissions may make it through

these filtering mechanisms, we assume for simplicity below

that our instrumentation is only monitoring legitimate login

attempts. Note that this is a conservative assumption: if the

data we collected contains illegitimate login attempts, then

the true rate of correctable typos for legitimate users would

be even higher. Our security analyses (Section VI) will not

make such assumptions.

Instrumentation. We modified the Dropbox password check-

ing code to perform additional checks on all legitimate login

attempts on the web interface. This provided a vast amount of

data, and it eliminated biases that could arise from selecting

some small percentage of accounts. This also made visible

multiple password submissions from a single user, which was

necessary for timing re-tries.

During the period of measurement, every password sub-

mission was processed as follows. If the password check

passed, do nothing. Otherwise, if it failed, apply one or more

typo corrections from some predefined corrector function set

C = {f1, f2, . . . , fc} where corrector functions were defined in

the last section. We used slightly different sets of correctors in

different experiments, as discussed below. One or more of the

corrected version(s) of the password are checked. For failed

login attempts, a log entry was generated that contained a

time stamp, whether login would have been successful with a

correction of the password, the type of correction fi that was

successful (if applicable), and the user agent string.

We emphasize that in our experiments login is not allowed

based on the corrected passwords. We did not modify Drop-

box’s effective login checks; we only collected the data needed

to evaluate whether doing so would be beneficial.

Typos and login failure rates. In an initial experiment

we set out to measure the incidence rate of the top five

corrections seen in the MTurk study of Section III. Thus

for this experiment the set of corrector functions is Ctop5 =
{swc-all, swc-first, rm-last, rm-first, n2s-last}. For each in-

strumented failed password submission, one correction from

Ctop5 was chosen uniformly at random and applied to the

submitted password. The reason is that, in the current imple-

mentation, only sequential code is easily supported, and the

password hashing scheme used at Dropbox is (by design) slow

to compute. It was unclear a priori exactly what overhead the

additional checks would have on Dropbox infrastructure, and

so we conservatively only performed one additional check at

a time. The success of this initial experiment suggested the

performance impact was low, and later experiments applied

multiple corrections (see below). We collected information

over a 24-hour period.

We cannot report on the exact number of login attempts dur-

ing this period, as this is considered confidential information

by Dropbox. We will therefore report only rates of success and

failure. In the following, we let cf denote the number of times

a corrector f was applied to an incorrect password during an

experiment. We let rf be the number of times f successfully

corrected an incorrect password during the experiment. The

ratio rf/cf gives the percentage of login failures correctable

by f .

The left figure of Figure 3 reports the measured ratios rf/cf
for each corrector in Ctop5 in during the 24-hour period. This

reveals that 9.3% of failures are due to typos correctable

by Ctop5, suggesting that typos indeed account for a signif-

icant number of failed (legitimate) password submissions3.

By correction type, we see that the most common correction

(switching the case of the first character) accounts for 60% of

these, and the first three (switching the case of all characters,

just the first character, dropping the last character) account

for over 90% of these. Apparently capitalization errors are a

significant source of errors, which provides evidence for why

Facebook accepts these typos.

Some disparity with the MTurk results is apparent. While

the top three of these five correctors are the same, the ordering

is distinct, with caps-lock errors proportionally higher in

MTurk then here. We believe this is due to the MTurk exper-

3We can add the fractions of typos because our correctors are mutually
exclusive.
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Corrected by (f ) rf/cf (%)

swc-all 1.13
swc-first 5.56
rm-last 2.05
rm-first 0.35
n2s-last 0.21

Ctop5 9.30
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Fig. 3: (Left) The fraction of failed logins correctable by Ctop5 in a 24-hour study at Dropbox. (Middle) Performance of

Ctop5 on mobile versus desktop. For each corrector in Ctop5 we plot the fraction of failures for each platform correctable by

the corrector. (Right) CDF of time delay (in seconds) between the first failed login due to a typo and first successful login.

Included are only users that had a failed login attempt and later a successful one.

iment design, and that the Dropbox numbers more accurately

reflect rates in operational environments.

While collecting this data, we recorded the user agent for

all password submissions, so we were able to analyze the

performance of typo correction on mobile platforms versus

desktop platforms. We found that the estimated correction

rate for mobile was slightly higher at 10.5%, compared to

9.3% for desktop (calculated here with the denominator being

the number of rejected password submissions for mobile and

desktop, respectively). We show, in the middle figure of

Figure 3, the estimated correction rates for each user agent

broken down by corrector function. We see that n2s-last is a

significantly more effective correction on mobile, which may

be because mobile keyboards require switching to an alternate

keyboard to reveal symbols. We also see that swc-all is a more

effective correction on desktop, most likely because it’s easier

to leave caps lock enabled on conventional keyboards.4 This

dichotomy suggests the potential merit of applying different

correction policies on the server based on the user agent. We

leave the further analysis of this for future work.

Utility of the top three corrections. We perform a second

study that restricts attention to just the overall top three

correctors Ctop3 = {swc-all, swc-first, rm-last} observed in

the previous study (and, in turn, the MTurk experiments).

For this experiment, the instrumentation applied all three

correctors to any password that failed to exactly match the

registered password. So, now cf is the number of failed login

attempts for every f ∈ Ctop3. As before, we recorded data for

24 hours.

We additionally recorded the time duration for a login

attempt to succeed. That is the time lag between the first failed

submission and the first successful submission by each user in

this 24-hour period. (Because Dropbox uses session cookies

most users typically need to successfully login only once per

24-hour period.) This allowed us to quantify the time delay

4On Android devices, enabling caps lock requires pressing and holding the
shift button, and on iPhone devices one has to double press the shift button
to enable caps lock.

between failures and successes, a measure of how much utility

is lost due to usability issues such as typos.

As we would expect, the success rate of corrections closely

matched the results of the previous 24-hour experiment.

Specifically, typos correctable by Ctop3 accounted for 9% of

failed password submissions. This also attests the stability of

these percentages over time.

We show in right figure of Figure 3 a CDF of the delay in

logging in over all users who eventually succeeded at logging

in (within the 24-hour period). Note that some small fraction

of users did not log in for a very long time, suggesting they

gave up and came back hours later. Even so, almost 20%

of users that experienced a failed login would have been

logged in a minute earlier should typo-tolerant checking have

been enabled. Aggregated across all failed login attempts,

typo-tolerance here would have increased logged in time by
several person-months just for this 24-hour experiment. This

represents a significant impact on user experience and a clear

pain point for companies keen on making it easy for their

users to log in.

In aggregate, of all users who attempted to log into Dropbox

within the 24-hour measurement period, we discovered that

3% were turned away even though at least one of their

submitted passwords was correctable by one of the correctors

in Ctop3. This also represents a significant impact on user

experience, with users being prevented from using the service.

V. TYPO-TOLERANT CHECKING SCHEMES

In previous sections, we saw that typos account for a

large fraction of login failures and that a simple set of typo

corrector functions could significantly improve user experi-

ence. A natural follow-on question is whether we can achieve

typo-tolerance in password authentication systems without a

significant security loss. We address that question here.

We will show, by introducing what we call the “free

corrections theorem,” that for all natural settings there exist

typo-tolerant checking schemes that correct typos with no
security loss relative to exact checking for optimal attackers
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that (unrealistically) have exact knowledge of the distribution

of passwords. We will also specify the optimality of the

scheme underlying this theorem, i.e., showing that it achieves

the maximum utility possible with no security loss.

We will define the notion of a “natural” setting formally

below. Intuitively, it corresponds to the highly non-uniform,

sparse (in the space of all strings) passwords chosen in

practice. The schemes we analyze formally are not readily

applied as is in practice because, among other things, they

require exact knowledge of password and typo distributions.

Nevertheless, combing our measurement studies with a the-

oretical perspective guides us towards the design of several

concrete typo-tolerant checking schemes for which we give

empirical security estimates in Section VI.

A. Password and Typo Settings

Let S be a set of all possible strings that could be chosen as

passwords, e.g., ASCII strings up to some maximum length.

We associate to S a distribution p that models the probability

of user selection of passwords; thus p(w) is the probability

that some user selects a given string w ∈ S as a password.

We let PW ⊆ S be the set of possible passwords, which is

formally just the support of p. We write p(P ) to denote the

aggregate probability on a set P ⊆ S of strings. Following

prior work (c.f., [11]), this model assumes for simplicity

that the distribution of passwords is independent of the user

selecting them, and that passwords are independently drawn

from p.

A key feature of our formalization approach is that we do

not appeal to a specific lexicographic notion of distance (e.g.,

Levenshtein distance) to model typos. Instead, we directly

model typos as probabilistic changes to strings. Specifically,

let τw(w̃) denote the probability that upon authenticating, a

user with password w types the string w̃. Thus τ is a family

of distributions over S , one distribution for each w ∈ PW .

If w̃ �= w then w̃ is a typo; τw(w) is the probability that the

user makes no typo. Note that w̃ may or may not itself be

a password possibly chosen by a user, i.e., it may not be in

PW . We say that w̃ is a neighbor of w if τw(w̃) > 0.

For all w ∈ PW , then, τw(·) defines a probability space

over S . That is, τw(w̃) ∈ [0, 1] for any w̃ and
∑

w̃∈S τw(w̃) =
1. In practice, generally τw(w) > 0, i.e., users will sometimes

enter passwords correctly. Also, it will most often be the case

that τw(w̃) �= τw̃(w) for w �= w̃. For example, a user may

mistype her password w = “unlockme1” as w̃ =“unlockme”

as a result of accidentally dropping the last 1, while a user

whose password is w̃ =“unlockme” is less likely to type a 1

at the end of his password.

In our model we assume that typos depend only on a user’s

password w and not, for example, on the user that typed them,

the time of day, or other factors. As we will see, this assump-

tion simplifies operationalization of typo tolerance models. As

one example, modeling individual users’ typo habits would

require a server to record the user’s typo history. While higher-

accuracy correction for the user might then be possible, this

feature would, of course, result in a more complex system. It

could also leak password information: recording the fact that a

user fails to capitalize the first character in her password leaks

the fact that character is a letter. From now on, a password

and typo setting, or simply setting, is a pair (p, τ).

B. Password checkers

A password checker scheme consists of two algorithms:

• Reg is a randomized password registration algorithm. It

takes as input a password w and outputs a string s that

may, for example, be the output of a password hashing

scheme like scrypt. These are randomized since one must

choose a random salt value for each registration.

• Chk is a (possibly randomized) password verification

algorithm. It takes as input a string w̃ and a stored

string s, and outputs a Boolean value, either true or false.

In a modern, real-world service such as Dropbox, Chk is

one input in a complex authentication system that combines

multiple contextual, potentially probabilistic signals to make

an authentication decision. A typo-tolerant checker could

return a probabilistic estimate and/or combine with other con-

textual signals, but we focus our analysis only on deterministic

checkers. Our techniques extend in natural ways to confidence

values (e.g., by returning an estimate of τw(w̃)). In such a

scenario, the security impact of a typo-tolerant Chk will be

even lower. We also consider only complete checkers, meaning

that for all w, Chk(w,Reg(w)) ⇒ true.

An exact checker is one which never outputs true if w̃ �= w.

In practice of course, exact checkers actually have a non-zero,

but cryptographically small probability of false acceptance (for

typical hash-function-based checkers, this small probability is

equal to the probability of having found a collision in the

hash function). We will throughout ignore this false acceptance

probability. We will use ExChk to denote some secure exact

checker, and assume the existence of one compatible with all

password settings of interest.

Typo-tolerant checkers. We will focus our attention on

building typo-tolerant checkers that relax the checks made

by an existing exact checker construction. Let Reg,ExChk
be the algorithms of an exact checker. Then an associated

relaxed checker has the same registration algorithm, but a

different checking algorithm Chk �= ExChk. Specifically, our

approach will be to design relaxed checkers that enumerate

some number of strings as candidates for the password and

checks each with an exact checker.5 The ball of a submitted

string w̃ is the set B(w̃) ⊆ S of checked strings.

If balls are well constructed, the hope is that it often happens

that when the user makes a typo, the true password w lies in

the ball around the user submitted string w̃, and thus the typo

can be corrected.

Relaxing an exact checker is a desirable approach to typo-

tolerance for two main reasons. The first is legacy com-
patibility. Modifying a system to become typo-tolerant just

requires deploying a new checking algorithm that works with

5We note that this can be viewed simply as the standard brute-force
construction of an error correction code from an error detection code.
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previously registered passwords. For example, registration may

use a password hashing scheme like scrypt [36] or argon2 [8],

or a password onion construction that combines password

hashing with an off-system crypto service [18].

Second, relaxed checking offers no security loss against
offline, brute-force attacks when the exact checker has, under-

lying it, a secure hash function. A compromise of the system

or leak of the password hash database gives an attacker the

registered string s, just as in the case of the exact checking

system. When s is computed by applying a secure password

hashing algorithm (e.g., [8], [25], [36]), an offline attacker’s

goal is to perform brute-force attacks to recover a password.

Here one may worry that the attacker’s goal is easier as it

requires simply inverting s to a point that is in the ball of the

target password, but for secure hash functions nothing will

be revealed about the target password by s until the target

password is found exactly. Thus, for a given user account,

either an adversary: (1) Cracks a password hash and submits

the correct password, in which case she obtains no advantage

in an online attack from typo-tolerance or (2) Fails to crack

a password hash, in which case she gains no benefit from

her offline attack in mounting an online attack. Of course,

should the typo-tolerant Chk algorithm be very complex

to implement, it might increase the likelihood of software

implementation vulnerabilities. For this reason, we consider

simple-to-implement relaxed checkers.

Security degradation in a relaxed checker may still arise in

online attacks. A poorly conceived relaxed checking system

could diminish system security against remote brute-force

guessing attacks. We will investigate this issue in detail below.

Before doing so, we note that relaxing an exact checker does

circumscribe the space of possible checker designs. In partic-

ular, the size of a feasibly searchable ball B(w̃) is necessarily

somewhat small: ExChk is designed to be computationally

expensive to thwart offline brute-force guessing attacks, and

relaxed checking involves running it for each string in B(w̃).
Our measurement results in the prior sections show that even

for balls of size three or four, however, significant utility

improvements are possible.

Acceptance utility. We measure utility of a relaxed checker

by the probability that the checker outputs true for entered

passwords even when the submitted string is a typo of the

true password. Formally, the acceptance utility is defined to be

Util(Chk) = Pr[ACC(Chk) ⇒ true], where the event captures

the probability that the experiment of Figure 4 outputs true.

There ←p means sampling from the set according to p, and

←w means sampling from the set according to τw. The game

is (implicitly) parameterized by the registration algorithms and

the distribution pair (p, τ), and models a user’s choice of

password and first attempt to enter it.

The acceptance utility of an exact checker is Util(ExChk) =
E [ τw(w) ] where the expectation is over w←p PW . For

any non-trivial distribution τ , i.e., assuming a non-zero typo

probability for some password, Util(ExChk) < 1.

ACC(Chk)
w ←p PW ;
w̃ ←w S
s←$ Reg(w)
b←$ Chk(w̃, s)
Return b

GUESS(Chk,A, q)

i ← 0;w ←p PW
win ← false
s←$ Reg(w)
ACheck

Return win

Check(w̃, s)

i ← i+ 1
b ← Chk(w̃, s)
If (b = true) and

(i ≤ q) then

win ← true
Ret b

Fig. 4: (Left) Experiment for defining acceptance utility for

a checking scheme Reg,Chk. (Right) Security game for

online guessing attacks against a checking scheme Reg,Chk
in which A may make q calls to its oracle Check. Both

experiments are implicitly parameterized by a password and

typo setting (p, τ).

C. Security definitions

As discussed above, since we focus on relaxed checkers,

attacks due to compromise of an authentication server are not

affected by a shift to typo-tolerance. The critical question is

the effect of typo-tolerance on online guessing attacks.

Let us precisely define the notion of an online attack. In

Figure 4 we give a simple guessing game played between an

adversary A and a checker. The game GUESS is implicitly

parameterized by p and the checker Reg,Chk. The success

rate of the adversary A in guessing the password is measured

as Adv(Chk,A, q) = Pr[GUESS(Chk,A, q) ⇒ true]. This

security game models a vertical attack, where the attacker tries

to compromise a randomly chosen user account; changing this

security game to model horizontal attacks is straightforward

and our results extend to this setting as well.

Measuring security by this definition is quite conservative

because it ignores the many countermeasures used in practice

to thwart online guessing attacks. Most companies implement

anomaly detection mechanisms that would, for example, block

attackers that query too quickly, that use a known cracking tool

or password leak to generate guesses, or that mount attacks

from suspicious-looking IP addresses (those in the wrong

country or on a botnet blacklist). Thus our evaluations here and

in the remainder of the paper should be considered pessimistic

upper bounds on true success rates.

Optimal and greedy attacks. Let w1, w2, . . . be a non-

increasing order on passwords by probability, i.e., p(w1) ≥
p(w2) ≥ p(w3) ≥ . . .. If a checker ExChk is exact, then

Adv(ExChk,A, q) ≤ λq for any A making at most q queries

and where λq =
∑q

i=1 p(wi). Often λq is called the q-success

rate. It was first defined as a measure of the unpredictability

of a password distribution by Boztas [13].

Now consider a relaxed, deterministic checker. Let B(w̃)
be the ball of a string w̃ for a checker Chk, which is the set

of all passwords for which Chk will accept w̃. In submitting a

guess w̃, an attacker induces checking on all of the strings in

B(w̃). The adversary knows the design of the checker and so

too can determine what ball will be associated with any given

string submitted to the checking oracle.

Define λfuzzy
q to be the maximum guessing success proba-
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bility of any adversary, namely

λfuzzy
q = max

A
Adv(Chk,A, q) .

The dependence of λfuzzy
q on Chk is left implicit in our

notation but will be clear from context later. For q = 1,

λfuzzy
1 = argmaxw̃∈PW p(B(w̃)). An optimal attacker simply

guesses the password w̃ whose ball has the highest aggre-

gate probability. This guessing strategy is analogous, in an

exact-checking setting, simply to guessing the most probable

password w1. We observe that λfuzzy
1 as defined here coincides

conceptually with the fuzzy min-entropy notion of Fuller et

al. [22], hence the fuzzy superscript in λfuzzy
q .

It turns out that implementing an optimal attack is, in

general, NP-hard: finding the optimal set of queries is an

instance of the weighted max cover problem. The formal

reduction is shown in Appendix E. This is good news for

security: it means that attackers cannot in general compute the

optimal queries to make. That said, there exists a conceptually

simple greedy algorithm that we now give.

Consider the following greedy adversary A∗. At each step,

it guesses the password w̃ whose residual ball B(w̃) has

the highest aggregate probability. This ball is the one that

maximizes p(B(w̃) ∩ P ), where P is the set of residual

passwords, those not yet checked by Chk as a result of

previous adversarial queries.

More precisely, A∗ does the following. Initialize a set

P = PW of possible passwords. Then repeat the following

q times. Guess a string w̃ that maximizes p(B(w̃) ∩ P ).
If the query succeeds, then the game is won; otherwise set

P ← P \B(w̃) and repeat. Let λgreedy
q = Adv(Chk,A∗, q). As

by the reduction of this problem to max cover we can claim

using the classic result [23], that λgreedy
q ≥ (1 − 1/e)λfuzzy

q .

Furthermore, Feige [20] has shown that this performance

is indeed optimal, and no polynomial time approximation

algorithm outperforms the performance of greedy.

All this gives us a way to measure security of a relaxed

checker given an estimate of the password distribution p:

simply compute λgreedy
q for the threshold q on online queries

relevant to ones’ system. This gives one, in all likelihood, the

best attacker one will face in practice. One can also obtain a

worst-case bound of λfuzzy
q by the formula above.

Computing even λgreedy
q in the most obvious way—a naive

execution of A∗—has time complexity on the order of |S|
times the average ball size, and so will generally itself be

intractable. We propose an alternative approach to restrict the

search space and allow one to compute λgreedy
q for relevant q

efficiently. The details appear in Appendix E.

Security loss. The above gives us a way to bound absolute

security, but our concern will primarily be the gap between

the security of today’s current practice of exact checkers and

the security of relaxed versions of them. This clearly depends

on the password distribution and typo setting. We measure

loss relative to the greedy attacker by Δgreedy
q = λgreedy

q − λq

and worst-case loss by the difference Δq = λfuzzy
q − λq . As

λfuzzy
q ≤ e

e−1·λgreedy
q , we can bound Δq ≤ e

e−1·Δgreedy
q +

λq

e−1 ≈

1.582Δgreedy
q + 0.582λq .

By definition, λfuzzy
q ≥ λq , meaning that Δq ∈ [0, 1).

Moreover it holds that λfuzzy
q ≤ cλq for any tolerant checker

that checks at most c strings for any input string w̃, i.e.,

|B(w̃)| ≤ c for all w̃. This inequality is in fact an equality for

some settings. Consider when p is uniform over S and that

Chk is such that |B(w̃)| = c for all w̃. Then moving to the

typo-tolerant checker will increase the probability of success

of the optimal online brute-force attacker by a factor of c.
Formally, λfuzzy

q = cλq whenever q ≤ |S|/c.
This example seems to underlie the intuition for why typo-

tolerance has been criticized as a security issue [2], [3]. Indeed,

it is tempting to conclude that typo tolerance will always result

in a factor c decrease in security. But this conclusion is too

hasty: p is not uniform in reality and, in particular, passwords

with high mass are sparse in the universe S . Sparsity matters

since a high λfuzzy
q depends intimately on finding strings whose

balls include many passwords with high mass under p. In fact,

we show next that for most natural settings one can actually

obtain no security loss relative to an exact checker.

D. Free corrections theorem

We would ideally like to have typo-tolerant checkers that

enjoy free corrections. This means that its security is equiva-

lent to the security of an exact checker and so Δq = 0 for any

reasonable q. It is easy to come up with artificial distributions

which admit free corrections of all typos. Specifically, a

distribution for which no password’s neighbor is in the ball

of another password.

Unfortunately, just as the uniform setting, the dense setting

discussed above is artificial, this completely sparse setting is

also not realistic. For example, in the RockYou password leak

and taking Ctop5 as the set of corrections to apply, one has

significant overlap even among the top 50 passwords. We

therefore ask: for the password distributions seen in practice,

can one achieve checkers with free corrections? The answer

is yes.

An optimal relaxed checker. We first give a construction of

a relaxed checker that achieves free corrections for any given

set of corrector functions C = {f0, f1, . . . , fc} one wants to

consider, where f0(w̃) = w̃ is the identity function. It achieves

best-possible acceptance utility and no security loss relative

to the best possible attack, assuming the checker has exact

knowledge of the distribution pair (p,τ ).

Fix some query budget q and recall that p(wq) is the

probability mass of the qth most probable password. Then let

OpChk be the typo-tolerant checker that works as follows.

Upon input w̃, generate a list of candidate typo corrections

B̂(w̃) = {w′ |w′ ← fi(w̃), fi ∈ C, and p(w′) · τw′(w̃) > 0}.

After this OpChk solves the following optimization problem

to compute the set B,

maximize
B⊆B̂(w̃)

∑
w′∈B

p(w′) · τw′(w̃) /* Utility */

subject to p(w̃) > 0 ⇒ w̃ ∈ B, /* Completeness */

p(B) ≤ p(wq) or |B| = 1, /* Security */
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and checks all the passwords in B using ExChk. We let B(w̃)
denote the solution of the optimization problem induced by the

checker OpChk on input string w̃.

Observe that in addition to completeness, the constraints

in the optimization problem enforce the condition that

p(B(w̃)) > p(wq) only if |B(w̃)| = 1. Thus, OpChk ensures

that the only balls with aggregate probability exceeding p(wq)
are singletons (containing one high-probability password). The

intuition here is that if we never allow a query to cover

more probability mass than that of the qth most popular

password, then adversary A∗ must select as its q queries

the passwords {w1, w2, . . . , wq}. As these passwords define

singleton balls, it follows that A∗ will achieve exactly the

same success probability as it would for an exact checker, and

thus λfuzzy
q = λq .

We now give theorem statements showing that OpChk
is indeed optimal in the sense that: (1) It achieves free

corrections, meaning Δq = 0 and, equivalently, λfuzzy
q = λq ,

for suitable q, and (2) Over all checkers with Δq = 0, it

achieves optimal utility, i.e., the highest possible probability

of correcting a typo. The proofs of the following theorems

appear in Appendix F.

Theorem 1 (Free Corrections Theorem). Fix some password
distribution p with support PW , a typo distribution τ , 0 <
q < |PW| and an exact checker ExChk. Then for OpChk
with any set of correctors C, it holds that λfuzzy

q = λq .

Theorem 2 (Optimality of OpChk). Fix q > 0, a distribution
pair (p, τ), and a corrector set C. Define OpChk to work
over C and let Chk work for a set of correctors C′ ⊆ C. If
Δq(Chk) = 0, then Util(Chk) ≤ Util(OpChk).

The free correction theorem applies with respect to an

optimal attacker. We caution that it does not imply that for

any attacker there is no security loss. Rather it is easy to

give examples of password settings for which there exists

some attack that achieves a speed-up due to tolerance. This

attack, whatever it may be, cannot perform better than the

optimal one. Finding good analogs to OpChk and the free

correction theorem for non-optimal attackers is an interesting,

open research problem. We empirically investigate in the next

section the relative performance of some non-optimal attacks,

showing that these achieve no meaningful speed-up due to

typo tolerance.

VI. PRACTICAL TYPO-TOLERANT CHECKERS

AND THEIR SECURITY

In the previous section, we presented an optimal checker

OpChk that achieves the maximum acceptance utility that

is achievable with no loss in security (relative to optimal

attacker). Unfortunately, OpChk is hard in general to imple-

ment, as it requires exact knowledge of the distribution pair

(p, τ), which is not practically obtainable in most settings.

Here, we explore checkers that do not rely on exact distri-

bution knowledge and are simple to implement. The first tries

all corrections in some checker set. The latter two incorporate

heuristics to try to avoid balls with high aggregate mass;

these are directly inspired by the results regarding OpChk.

As we show experimentally, our checkers can achieve high

acceptance utility with minimal security degradation, and the

heuristics help reduce security loss even against adversaries

with exact knowledge of the probability distribution p. We

also investigate the security of these checkers against more

realistic adversaries that must themselves estimate the distri-

bution p. For these adversaries our results here suggest that

typo tolerance does not really help adversaries at all because

of the difficulty of getting estimates right.

The tolerant checkers. For the following, let w̃ denote the

input to the checker and B̂(w̃) the ball of potential passwords

to check as defined by the set of correctors C for the checker.

Presented in increasing order of sophistication (and similarity

to OpChk), the checkers are:

• Check-always construction (Chk-All): This checker

checks all passwords in B̂(w̃). Among the three check-

ers presented here, it achieves the greatest acceptance

utility—and, conversely, the largest potential security

degradation.

• Blacklist construction (Chk-wBL). This checker uses a

blacklist L of (ostensibly high-probability) passwords. It

checks w̃ and every other password w ∈ B̂(w̃) such that

w �∈ L. Blacklisting in Chk-wBL aims to prune or elim-

inate non-singleton balls with high aggregate probability

(as OpChk does). In our experiments, we use for the

blacklist the 1,000 most popular passwords in RockYou,

although one could use other blacklists as well, such as

Twitter’s banned password list [4].6

• Approximately optimal construction (Chk-AOp). This

checker heuristically approximates OpChk. It estimates

the distribution p of passwords using the empirical dis-

tribution of the RockYou password leak, and the distri-

bution τ of typos using the empirical distribution learned

from our MTurk study (see Figure 2). We denote these

empirically derived distributions respectively by p̃ and τ̃ .

Chk-AOp computes B(w̃) using the constraints used by

OpChk (see the last section), but under the empirical

distribution pair (p̃, τ̃), rather than the (generally un-

known) true distribution pair (p, τ). We set q = 103

for our experiments with Chk-AOp. We note that for

the correction set sizes we consider, c ≤ 5, solving the

optimization problem is fast, as only 2c possibilities for

B(w̃) must be considered.

We will investigate these checkers for typo correction sets

Ctop2 = {swc-all, swc-first}, Ctop3 = Ctop2 ∪ {rm-last} and

Ctop5 = Ctop3 ∪ {rm-first, n2s-last}. In terms of utility, we

know from the second Dropbox study (Section IV) the im-

provements obtained when using Chk-All with Ctop3. The other

two constructions will obtain slightly less utility due to the fact

that some corrections will not be checked.

6We emphasize that the blacklist is only used for typo corrections: we do
not assume users are restricted from registering blacklisted passwords.
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Our preliminary analysis, however, suggests that this utility

reduction will be slight: both strategies, by design, prevent

corrections only to popular passwords, which are rarely in-

duced by typos in the first place (see Section III). For example,

we can simulate acceptance utility for a given checker as

defined in Section V by letting p be defined to be the RockYou

empirical distribution and τ to be the empirical frequencies

of typo types observed. Then for Ctop3 we have that the

blacklist and approximately optimal strategies only reduce

utility by 0.03 percentage points and 0.08 percentage points,

respectively.7

Implementation considerations. The checkers above are

all easy to implement, but care must be taken to optimize

performance and ensure timing attacks do not arise. Generally,

each checker should first run ExChk(w̃) since this must

always be computed. If that fails, then a constant-time check

of the remainder of the ball should be performed. This involves

running ExChk for the maximum number of checks that could

occur for any w̃, i.e., |C|. If implemented in this manner, timing

and other side-channels will only potentially leak that a user

made a typo, but nothing else about their password. Users

that correctly input their passwords experience no performance

degradation compared to existing systems.

If one instead does not use a constant time implementation,

for example just running a check for each string in B(w̃), then

timing side channels will arise that leak partial information

about a user’s password. For example, checking a singleton

ball (which is induced by some inputs and not other inputs

for Chk-wBL and Chk-AOp) would be faster than checking

a ball with multiple passwords. Thus the side-channel would

reveal whether the user entered a high-probability password.

Security evaluation. In the remainder of this section we

evaluate the security of our schemes against two types of

attacker:

(A) Exact-knowledge attackers: We start by evaluating

security of the constructions in the face of attackers that

(unrealistically) know the precise distribution from which

passwords are drawn. We will use a range of simulated

password distributions and adversarial query budgets.

(B) Estimating attackers: We will then turn to more re-

alistic attackers that do not have exact knowledge of

the password distribution. Our evaluations will show that

in this context an attacker attempting to take advantage

of tolerant checking, even when they know the precise

checker, can be quite error-prone: attackers can even do

worse than naive approaches that just guess the most

probable passwords in order.

Our approach for these analyses will be to utilize differ-

ent password leaks to simulate true password selection. We

will use the RockYou, phpBB, and Myspace leaks for these

7The absolute acceptance utilities for Ctop3 in these simulations are 0.9628,
0.9625, and 0.9620. But the low overall rate of typos in the MTurk experiments
means that exact checking here obtains 0.9564 acceptance utility already,
which is significantly less than what is implied by our Dropbox measurements.

purposes. These leaks contain respectively the passwords of

more than 32 million, 255,421, and 41,545 users of three

different websites. Below when we say the RockYou, phpBB,

or Myspace distribution we mean sampling according to the

empirical distribution given by the indicated leak. Note that

this means for some analyses we will use RockYou both within

the designs of Chk-wBL and Chk-AOp as well as to test those

designs’ security, optimistically modeling that a “best-case”

estimate of the distribution is known to the checker. While

we could use a holdout set (sampled from RockYou without

replacement, for example) to be more realistic, we instead

simply perform analyses using the independent Myspace and

phpBB data sets and report all of them for completeness.

A. Security against exact-knowledge attackers

We now evaluate the security of our constructions against

attackers that have exact knowledge of the password distribu-

tion. Thus in this section we assume that the adversary knows

not only the exact functioning of the checker being used (i.e.,

what typos it corrects for any submitted password), but also the

precise distribution of passwords. The latter is a conservative

assumption. Attackers in practice will lack such knowledge

and we are therefore measuring worst-case security from this

point of view.

We will focus on the greedy success rate increase λgreedy
q −λq

for various values of the query budget q. We will also report

on λq to put loss in context. To compute these values, we use

the RockYou, Myspace, and phpBB distributions as a stand-

ins to simulate a challenge distribution p. Since the optimal

attacker is assumed to know the distributions exactly, in the

exact checking setting she will simply guess the most probable

q passwords. Here λq is straightforwardly computable (just

sum the probabilities of the top q passwords in the challenge

distribution). In the typo-tolerant settings, the attacker will

construct a sequence of queries that achieves λgreedy
q using the

algorithm given in Appendix E.

We start by comparing security for attackers given q =
1, 000 queries across the various distributions, schemes, and

corrector sets. We are here being conservative: a query budget

of 1,000 is very generous to an attacker, as many websites will

lock an account after tens of failed requests. Figure 5 reports

the optimal success probability λq against an exact checker

for each setting, as well as the improvements λgreedy
q − λq for

each typo tolerant checker, correction set pair. All numbers

are reported as percentages. The worst degradation occurs for

correcting all top five errors in the Myspace setting, where

the attacker’s success probability increases by 3% (from 9.5%

to 12.5%). To put this worst-case in perspective, consider the

naive (and incorrect) assumption that seems to underlie the

criticism of typo tolerance [2]: it suggests instead a fivefold

increase in attacker success when correcting five errors and

thus an increase to 47.5% in the Myspace setting.

Elsewhere the increase is much smaller. For example, with

Rockyou, one can always correct all top five errors with

increase only 1.6%: an attacker’s probability of success goes

from 11.2% to 12.8%, a small improvement. This means
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Challenge q = 10 q = 100 q = 1000
Dist. Set All wBL AOp Ex All wBL AOp Ex All wBL AOp Ex

RockYou
Ctop2 0.03 0.00 0.00

1.95
0.15 0.05 0.00

4.50
0.51 0.32 0.00

11.23Ctop3 0.22 0.03 0.00 0.56 0.14 0.00 1.41 0.86 0.00
Ctop5 0.25 0.06 0.00 0.63 0.18 0.00 1.57 0.87 0.00

phpBB
Ctop2 0.03 0.00 0.00

2.75
0.12 0.02 0.00

5.50
0.38 0.19 0.15

12.71Ctop3 0.19 0.02 0.00 0.28 0.04 0.01 1.01 0.60 0.42
Ctop5 0.20 0.03 0.01 0.31 0.05 0.02 1.13 0.72 0.47

Myspace
Ctop2 0.03 0.01 0.00

0.79
0.15 0.12 0.03

2.86
0.49 0.45 0.35

9.54Ctop3 0.17 0.06 0.02 0.62 0.46 0.32 2.46 2.21 1.59
Ctop5 0.27 0.15 0.04 0.87 0.68 0.52 3.00 2.66 1.94

Fig. 5: Percentage improvements in an exact-knowledge adversary’s success (λgreedy
q − λq) for each setting (corrector strategy

and correction set) and each of the challenge distributions, for q ∈ {10, 100, 1000}.

that the adversary’s first 1,000 guesses against a typo-tolerant

checker do not benefit much from high-probability balls.

Moving from Ctop2 to Ctop3 can result in a relatively big

jump in security loss. The reason is that the rm-last typo

corrector admits many higher-mass balls than only correcting

the considered capitalization errors. For example, adding a

character to many popular passwords results in another pop-

ular password: password and password1, abc123 and

abc1234. Fewer such pairs exist for capitalization errors

since fewer users choose passwords with capital letters. Indeed

in the worst case for Ctop2 we see a just a 0.5% improvement

in adversarial success compared to the 2.42% worst-case jump

for Ctop3. It is no coincidence, perhaps, that Facebook’s policy

seems to align with Chk-All for Ctop2. Our measurements are

the first reported validation of this policy.

Even though security loss is low for Chk-All, one may

want to do better. The blacklist and approximately optimal

checkers help. When the challenge distribution is RockYou

the approximately optimal checker Chk-AOp is, in this case,

actually optimally secure by construction, hence it suffers no

security loss at all. Also note that Chk-wBL may benefit

unduly by knowing exactly the top 1,000 passwords from

RockYou. Thus the more important analyses are when tested

on independent distributions. Here we see some loss as one

would expect given that the attacker in these cases has, after

all, more information about the challenge distribution than the

checker. But now the loss is small, and Chk-AOp reduces the

security loss compared to Chk-All by 0.53% on average over

the Myspace and phpBB settings. Chk-wBL also reduces loss

compared to Chk-All by 0.27% on average over Myspace and

phpBB, but never improves security more than Chk-AOp.

We now turn to what happens as q varies. In Figure 5 shows

the attack success increases for the q = 10 and q = 100 cases.

We note that the most realistic in practice is q = 10, since

companies often will raise alarms after 10 consecutive failed

login attempts. Here we see that attackers benefit little from

typo-tolerance, and our Chk-AOp reduces loss to 0.04% or

less. Often it is zero.

It is concievable that in some settings an attacker might

be able to make more than q = 1, 000 queries, which

implies that our checker assumed too low of a bound on
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Fig. 6: The security loss as a function of q for challenge

distribution RockYou and Ctop2.

q. We focus for simplicity on Ctop2, a choice we expect

many deployments to utilize, and show in Figure 6 the se-

curity loss using RockYou as the distribution for a range of

q ∈ {1, 100, 200, 300, . . . , 10,000}. We have drawn a vertical

dotted line at q = 1, 000, which was used by Chk-AOp as the

expected query budget. As before, Chk-AOp has no loss below

q = 1, 000, and only after the attacker gets more than 1,000

queries does the attacker obtain an improvement over the exact

checking case. Figure 7 shows the same type of chart but now

for phpBB. This distribution leads to security loss seeing big

discrete jumps for larger q, suggesting that at certain points

the attacker can take advantage of new balls that just come in

to play as higher mass than individual passwords. A chart for

Myspace would exhibit similar trends as the one for phpBB,

we omit it for the sake of brevity.

Observe that as q gets larger, the improvement λgreedy
q − λq

flattens out in both charts. The attacker in the typo-tolerant

cases runs out of heavily-weighted balls to take advantage of

and ends up just querying passwords that cover only one (high-

probability) guess. For RockYou, we see that the improvement

is never more than 1% and, for phpBB, never more than 0.8%.

This all suggests that even as q grows to values unlikely ever to

arise in practice, typo-tolerance nevertheless does not improve

the attacker’s rate of success by much. We note that our

blacklisting and approximately optimal checkers can be made

even more conservative should one desire, by blacklisting
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Fig. 7: Difference in exact-knowledge adversary success

against typo-tolerant schemes and exact checking, as a func-

tion of q for challenge distribution phpBB and Ctop2.

more passwords or setting q larger, respectively.

As noted in the previous section, the greedy algorithm is

known to provide a good approximation for the weighted max

coverage problem. Given that the password probabilities range

over a very dense space, and our correction sets are quite small,

we expect λgreedy
q ≈ λfuzzy. We do not have any theoretical

proof for this claim, and leave analysis as an important

question for future work. We can of course always bound the

actual value of Δq via Δq ≤ 1.582Δgreedy
q +0.582λq . So, for

example with the RockYou challenge distribution, q = 10, and

the Ctop5 corrector set we have that Δq ≤ 0.0153 as compared

to λgreedy
q −λq = 0.0063. We expect this three-fold decrease in

relative security to be quite pessimistic: the better the greedy

algorithm approximates the problem the worse the adjustment

to compute Δq becomes.

B. Estimating attackers

We have so far considered attackers that have exact knowl-

edge of the password distribution (even when the system

designer may not). In practice such attackers do not exist,

and instead adversaries must try to estimate the distribution

of passwords. We refer to these as estimating attackers.

As before, we assume adversaries know the exact checking

algorithm in use.

We started by considering an adversary that estimates

the password distribution using the Weir et al. probabilistic

context-free grammar (PCFG) [43], a trained model of pass-

word distributions used to build effective crackers. However,

our experiments with this showed that it provides poor efficacy

in online guessing attacks, doing significantly worse than the

approaches we describe below and, importantly, it did equally

poorly against the typo-tolerant checkers in all settings.

We therefore turn to a different adversarial strategy for

estimating the password distribution. We measure the success

rate of an attacker that uses one of the password leaks as its

estimate of the distribution. This is a typical strategy in prac-

tice. We test these attacks against the other two distributions

and for each of the exact checking, Chk-All, Chk-wBL, and

Chk-AOp. The latter three use Ctop2. The security loss for all

combinations are tabulated in Figure 8. (Note that the left-to-

Attacker Challenge distribution
distribution RockYou phpBB Myspace

ExChk
RockYou 11.23 3.21 9.34
phpBB 8.10 12.71 1.81
Myspace 3.57 3.32 9.54

Chk-All
RockYou +0.51 +0.28 +0.25
phpBB +0.25 +0.38 +0.11
Myspace -0.15 -0.02 +0.49

Chk-wBL
RockYou +0.32 +0.11 +0.20
phpBB +0.06 +0.19 +0.05
Myspace -0.26 -0.20 +0.46

Chk-AOp
RockYou 0.00 0.00 0.00
phpBB -0.11 +0.15 -0.04
Myspace -0.27 -0.14 +0.35

Fig. 8: The top table shows the success rate of an attack against

the exact checking scheme for the attacker-estimated distri-

bution (row) used against the challenge distribution (column).

The remaining tables show the difference between success rate

of an attacker against the tolerant scheme and the exact check-

ing scheme, for the indicated attacker-estimated and actual

challenge distribution pairs. All values are in percentages.

right diagonals reflect some of the results already shown for

the exact-knowledge attacker in Figure 5.)

The improvement the attacker obtains when one switches to

a tolerant checking system is never greater than 0.28%. More

interestingly, in some cases the difference is negative, which

means that the attacker did worse against the typo-tolerant

scheme. This may be counterintuitive, but here the estimates

the attacker makes about the distribution can often be wrong.

This can lead her to choose a set of guesses that maximizes

the total success probability according to her estimate but not

according to the challenge distribution. We give an example

for the curious reader in Appendix G.

In summary, our simulations here suggest that a carefully

designed typo-tolerant checker will result in little to no secu-

rity loss against realistic adversaries.

VII. CONCLUSION

We presented the first treatment of typo-tolerant password

authentication. We demonstrated, with large-scale, real-world

experiments, that password typos are a real and common

source of user errors in authentication systems. We found

that a few types of typo-corrections account for an over-

whelming number of password typos. We provided a formal

framework for exploring typo-tolerant password checkers, and

focused on a class of them called relaxed checkers that

are backwards-compatible with existing password hashing

schemes. We showed, via what we call the free corrections

theorem, that there exist relaxed checkers against which the

best attack performs no better than the best attack against an

exact checker. Unfortunately the construction requires exact

knowledge of the password distribution. We therefore gave

a number of practical typo-tolerant checkers inspired by it,

and analyzed their security empirically, showing that one can

easily obtain significant utility improvement with minimal or

no security degradation.
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In future work, we plan to investigate whether typo-

tolerance will actually serve to improve overall security. Be-

cause allowing for password typos increases login success

rates in benign scenarios, it may help to make adversarial

login attempts stick out. This would strengthen the signals

used to detect online password attacks as used in Internet-

scale authentication systems.
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APPENDIX

A. Secure Sketches

Secure sketches and fuzzy extractors, explored by Dodis

et al. [16], [17], are designed to generate consistent, cryp-

tographically strong keys from noisy secrets, such as bio-

metric data. They may also be applied to passwords, as

typographical errors in passwords can be modeled as noise.

Dodis et al. proposed two ways to construct secure sketches

for the edit-distance metric space; see Section 7 of [17]. They

show how to use a low-distortion embedding for the edit-

distance metric given by Ostrovsky and Rabani [35], and

also describe a relaxed embedding for the edit-distance metric

using c-shingles. The security losses for these constructions,

as given in Proposition 7.2 and Theorem 7.5 of [17], are

t(logF )2
O
(√

log(n logF ) log log(n logF )
)

and �n
c � log(n − c +

1)− (2c− 1)t�log(F c + 1)� respectively. Here, n is the size

of the password, F is the alphabet size, t is the number

of errors/edits tolerated, and c is a construction parameter

denoting the size of the shingles. In our setting, typical values

would be n = 8, t = 1, and F = 96. The value of c, according

to Theorem 7.4, should be 1 in our setting (and the loss

is an increasing function in c). Given these parameters, the

entropy loss of the two secure sketches would be ≈ 91 bits

and ≈ 31 bits respectively. The min-entropy of real world

password distributions is only about ≤ 8 bits [10]. Thus known

constructions provide no security guarantees in our context,

and providing proven constructions that do would seem to

require new techniques.

B. Sanitizing Caps-Lock Errors

As mentioned in the paper body, preliminary analysis of

the data revealed that a large fraction of errors was caused by

accidental pressing of the caps-lock key. Measuring the rate of

caps-lock errors is more challenging than for other typos, for

two reasons. First, caps-lock key presses are not recordable via

keystroke logging, and thus not directly detectable remotely.

Second, if the user engages the caps-lock key while typing one

password, there’s a chance that it will remain on (erroneously)

while the next one is entered. In MTurk, if an individual

worker is to be permitted to enter more than one password—

even across multiple HITs—propagation of caps-lock typos

across passwords is therefore methodologically unavoidable.

This second issue accounts for the (artificially) high rate of

caps-lock typos observed in our experiments. We found that

76 HITs contributed to 1120 caps-lock errors.

To adjust for the effect of such propagation errors in

determining the rate of caps-lock typos, we do the following.

We define a caps-lock error as an incorrect password which,

when the cases of all the letters are inverted, becomes correct.

In sequentially processing the passwords in a HIT, we use a

variable CL-ERR ∈ {0, 1} to denote a heuristic determination

as to whether the caps lock is in an error state when the user

entered a password in a HIT. (An error state could either be

that caps lock is on and the user should have typed lower-

case letters, or caps lock is off and the user should have typed

upper case letters.) We initially let CL-ERR = 0. When we

detect a caps-lock error in a password, we record it and set

CL-ERR = 1. If it is already the case that CL-ERR = 1 when

we reach a password in a HIT, we discard the password. That

is, in such cases, we do not count it in our computation of

error rates for any typo. Additionally, for every password in

a HIT, we determine (heuristically) whether the caps lock has

been turned off during entry of the password. If the password

contains at least one letter and the password was submitted

correctly, then we set CL-ERR = 0.
In general, the intuition here is that we keep track heuris-

tically of whether the caps-lock key appears to be engaged

erroneously. If the entry of a password in a HIT has been

affected by the state of the erroneously engaged caps-lock

key, we treat it as “tainted,” and thus discard it from our

experiment. (We assume heuristically that caps-lock errors are

independent of other typos. The global effect of discarding

“tainted” passwords and not recording typos they contain in

addition to caps-lock errors is small in any case.)

C. Complexity and Typo Likelihood
Our MTurk experiments revealed a significant initial finding

regarding the frequency of typos. Typo rates in our study

increased under the following three distinct metrics relating

to password complexity.

Lexical diversity in passwords: One might suspect that more

lexically diverse passwords—ones that include symbols, letters

with different cases, numbers or some combination thereof—

would be more prone to typos. We define four character

classes: upper case letters, lower case letters, digits, and

symbols. Now, based on how many of the four classes of

characters are present within a password we can partition

passwords into four buckets. For example, passwords con-

taining characters from only one of the four classes are

binned as bucket 1, passwords containing exactly two different

classes of characters are bucket 2, etc. In our first sample

of 100,000 passwords, there were very few lexically diverse

passwords. RockYou has < 0.2% passwords with characters

from all of the four character classes. So we sample with

replacement 5,000 passwords for each bucket from the em-

pirical distribution of passwords in RockYou restricted to the

passwords corresponding to the bucket. We performed the

same typing experiment as described before but with new HITs

created from these newly sampled passwords. In the left graph

of Figure 9, we present the percentage of passwords in each

bucket that were mistyped.
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Fig. 9: Three experiments showing typo frequency relative to various partitions of passwords into buckets. Bucket size is

indicated on the left of each figure, and corresponding typo rates on the right. (Left) Passwords are partitioned into four

buckets based on diversity of character types. For each bucket we report the percentage of samples (blue bars) that fall in

that bucket and what fraction of those samples are mistyped (red line). (Middle) Passwords are categorized into buckets by

increasing order of length. (Right) Passwords are assigned to buckets by decreasing frequency (increasing unpopularity) in

RockYou. Bucket frequency ranges are selected so that each bucket has roughly an equal number of samples.

Password length: We divide passwords into five groups based

on their lengths, namely ≤ 5, 6–7, 8–9, 10–11, and ≥ 12. For

each class, we compute the percentage of samples that lie in

that class, along with the percentage of passwords in those

samples that were mistyped. In the middle graph of Figure 9

we show these numbers for each of the length groups. As one

might expect, typo likelihood grows with password length.

Password popularity: We sort the list of sampled passwords

for our MTurk experiment based on their frequency counts

in the RockYou leak. (Ties were broken alphabetically.) We

then split the passwords into four buckets, adjusting their

corresponding frequency ranges to ensure that buckets are of

roughly equal size. (Some unevenness was unavoidable, as

many passwords occur only once in the Rockyou leak.) For

each bucket, we present the number of mistyped passwords in

the right graph of Figure 9. We can see the clear trend that

passwords that are popular among RockYou users are more

likely to be typed correctly. For example, passwords used by

more than 211 users are 1.5 times more likely to mistyped

than those used by only one user.

Discussion: password typing complexity. As noted above,

lexical diversity, length, and popularity are related metrics.

Inspection of the passwords within the various buckets used

in the charts of Figure 9 reveals that there is significant overlap

between them. As one example, 18% of the passwords with

lexical-diversity bucket 4 both have length ≥ 12 and are

unpopular (f = 1).

The three metrics together highlight different aspects of

the underlying and intuitive trend: some passwords are more

difficult to type than others. It appears, moreover, that typos

are more likely to surface in harder-to-guess passwords. Con-

sequently, typo correction could help encourage users to adopt

stronger passwords by easing the use of such passwords. We

leave rigorous study of this hypothesis to future work, but note

that it offers further potential motivation for our work.

D. Typist Speed and Typo Rate

As an enhancement of our experimental results in Sec-

tion III, we report on two experiments that provide further

illumination of password features that lead to typos. These

experiments further emphasize our observation that typo rates

appear to increase with password complexity.

Typist and typo likelihood. In our MTurk experiments,

we timestamped each character as it was typed during the

experiments. We sorted the workers based on their average

typing speed (characters-per-minute) and binned workers into

four quartiles. For each quartile, we consider the subset of

passwords that were typed by the typists whose speed falls in

that quartile, and we compute the fraction of passwords that

were mistyped in that subset. The data is reported in Figure 10.

We found that slow typists make more mistakes than faster

typists. It could be that faster typists are also more skilled and

so less likely to make mistakes.

Password entry time. We binned the passwords into four

quartiles based on the time required to type those passwords.

The fraction of typos in each of that quartile is reported in the

middle chart of Figure 11. Passwords that required more time

on average to type are more likely to be mistyped.

E. Computing λgreedy
q

We start by showing that computing the optimal q guesses

to make against a relaxed checker is NP-hard in general. Later,

we present an efficient approximate algorithm for the problem.

Definition 1. Best-q-guess. Given a function B : S → PW∗,
a password distribution p over PW ⊆ S , and a query budget
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Fig. 10: The workers are divided into four quartiles based

on their typing speed, and for each quartile we report the

percentage of passwords that were mistyped.

1.18 2.01 3.07 6.89
0

10

20

30

40

50

Avg. time required to type (sec)

%
o
f

ty
p
o
s

in
ea

ch
co

h
o
rt

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
P

ro
b
ab

il
it

y
o
f

ty
p
o

Fig. 11: Passwords are divided into four quartiles based on

the amount of time spent by workers to type them, and then

compute the fraction of passwords mistyped in each quartile.

q, find a q-size subset P ⊆ S , such that
∑

w∈C′ p(w) is
maximized, where C ′ =

⋃
w̃∈P B(w̃).

Definition 2. Maximum coverage problem. Given a ground
set E = {e1, e2, . . . en}, a collection of m subsets of E, S =
{S1, S2, . . . , Sm}, and a weight function γ : E → R

+ that
assigns weights to each element e ∈ E, find a subset C ⊆
S of size k, such that the following quantity is maximized,∑

e∈C′ γ(e), where C ′ =
⋃

Si∈C Si.

The maximum coverage problem is known to be NP-

hard [20]. We can thus prove the following theorem.

Theorem 3. If there is a polynomial time algorithm for best-q-
guess, there exists a polynomial time algorithm for maximum
coverage problem.

Proof: We shall show a polynomial time reduction from the

maximum coverage problem to the best-q-guess problem. To

start with, we are given an instance of maximum coverage

problem with (E,S, γ, k), and we want to construct an in-

stance of best-q-guess problem. To do so, we set PW = E
and probability p as proportional to γ. (We might have to

normalize γ to make it a probability distribution.) The function

B : S → PW∗ is defined as follows. First add to S a set

W ∗ = {w̃∗
i }mi=1, with p(w̃∗

i ) = 0, and for each Si ∈ S,

nextPw()

Returns the passwords in PW in decreasing order of

their probability p.

FindGuesses(q)

/* B(w̃) = ball around w̃, and b = maxS |B(w̃)| */

/* N(w) = {w̃ |w ∈ B(w̃)} */

P ← PW
A ← MaxHeap() /* val(w̃) = p(B(w̃) ∩ P ) */

g ← φ;

do {
w ← nextPw()
w̃m ← A.popmax()
while p(B(w̃m) ∩ P ) ≥ b · p(w) {

g ← g ∪ {w̃m}
P ← P \B(w̃m)
foreach w̃ ∈ {w̃ ∈ A |B(w̃)∩B(w̃m)∩P �= φ}

A.updateweight (w̃)
w̃m ← A.popmax()

}
A.heappush(w̃m)
foreach w̃ ∈ (N(w) \A)

A.heappush(w̃)
} while (|g| < q)

return g

Fig. 12: Figure presents a greedy algorithm to compute the

best q guesses and thereby compute λgreedy
q , for an attacker

who estimates the the password distribution with p.

set B(w̃∗
i ) = Si

⋃ {w̃∗
i }. For all other w̃ ∈ S \ W ∗, let

B(w̃) = {w̃}. This is a valid instance of the best-q-guess

problem, and if we can find an polynomial time computable

solution to this, we can solve the maximum weighted set cover

problem in polynomial time.

Nevertheless, a greedy algorithm can achieve (1− 1
e ) times

the optimal λfuzzy value and, as shown by Feige [20], [34],

yields an optimal approximation for the maximum coverage

problem. Naı̈ve implementation of this greedy algorithm for

best-q-guess, however, requires searching over exponentially

many strings in S . We can exploit the fact that in our setting,

a small number of correctors are used, and these correctors

are efficiently invertible. Additionally, password weights are

highly non-uniform. Thus it is efficient to enumerate all balls

above a certain threshold weight, yielding the efficient imple-

mentation of Feige’s greedy approximation algorithm specified

in Figure 12. The algorithm intuition is this: as an invariant,

in any iteration of the external while loop, all new balls (balls

of w̃) pushed onto the heap have max-weight password w,

and hence total weight ≤ b · p(w). This observation enables a

global selection of balls in weighted order.

F. Proofs

We restate and then prove the free correction theorem

from Section V-D.

Theorem 1 (Free Corrections Theorem). Fix some password
distribution p with support PW , a typo distribution τ , 0 <
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q < |PW| and an exact checker ExChk. Then for OpChk
with any set of correctors C, it holds that λfuzzy

q = λq .

Proof: Let Ŝ be the optimal set of q strings which maximizes

the total acceptance rate for the given checker OpChk. (Note

that the order in which the queries are made does not change

the success probability.) Let B(S) = ∪w̃∈S B(w̃) for some

set S of strings in S . Recall that λq =
∑q

i=1 p(wi) is the sum

of the probabilities of q most probable passwords in PW . On

the other hand, λfuzzy
q = p

(
B(Ŝ)

)
. The above holds because

B(w̃) is the set of passwords checked by OpChk for a given

string w̃.

The checker OpChk ensures that the cumulative probability

mass of any ball is less than or equal to p(wq) whenever the

size of the ball is more than 1, but, if the size is one, the

cumulative probability can be more than p(wq). So, we split Ŝ
into two distinct groups Ŝ1 and Ŝ>1, where Ŝ1 is the set of all

strings in S whose ball sizes are exactly one, and Ŝ>1 = Ŝ\Ŝ1.

We can claim following two inequalities.

p
(
B(Ŝ1)

)
≤

|Ŝ1|∑
i=1

p(wi) (1)

p
(
B(Ŝ>1)

)
≤ |Ŝ<1|p(wq) ≤

q∑

i=|Ŝ1|+1

p(wi) (2)

Equation (1) is true because the |B(Ŝ1)| = |Ŝ1|, and the right

hand side is the highest cumulative probability that any set

of that size can achieve under p. Equation (2) is true because

of the facts that p(B(w̃)) ≤ p(wq) for all w̃ ∈ Ŝ>1, and

p(wi) ≥ p(wq) for all i ≥ q. So, by a union bound over

B(Ŝ>1), we can achieve that inequality. We can add the two

inequalities to obtain our desired result.

p
(
B(Ŝ)

)
= p

(
B(Ŝ1)

)
+ p

(
B(Ŝ>1)

)
≤

q∑
i=1

p(wi)

To show strict equality, simply observe that an attacker

against OpChk can always choose the q most probable

passwords to guess and achieve a success rate of λq . Thus

λfuzzy
q = λq .

Theorem 2. Fix q > 0, a distribution pair (p, τ), and a
corrector set C. Define OpChk to work over C and let Chk
work for a set of correctors C′ ⊆ C. If Δq(Chk) = 0, then
Util(Chk) ≤ Util(OpChk).

Proof: First recollect utility of any checker Chk is defined as

Util(Chk) = Pr[ACC(Chk) ⇒ true]

=
∑
w̃∈S

∑
w∈B(w̃)

p(w) · τw̃(w),

where B(w̃) is the ball of w̃ under Chk.

Let assume for contradiction that there exists a checker Chk
which uses only the correctors in C, achieves a Δq(Chk) =
0 and still beats the OpChk in utility, that is, Util(Chk) >

Util(OpChk). Let denote a ball of OpChk by B(·) and a ball

of Chk by B̃(·). So, if Util(Chk) > Util(OpChk), then there

exists at least one w̃ ∈ S such that
∑

w∈B̃(w̃)

p(w) · τw(w̃) >
∑

w∈B(w̃)

p(w) · τw(w̃). (3)

Now, by construction, the optimal checker OpChk selects the

B(w̃) that maximizes the utility under the constraint that no

ball of size 1 has higher cumulative mass than p(wq). Here

by utility we mean the sum
∑

w∈B(w) p(w) · τw(w̃). (See

Eqn. V-D.) The checker Chk can achieve higher utility only

if it violates one of the two constraints in (V-D). The first

constraint, required for completeness, is inviolable. The second

constraint determines security; if p(B̃(w̃)) > p(wq) when

|B̃(w̃)| > 1, then the security loss Δq(Chk) > 0 according to

Lemma 1. Thus there cannot exist any w̃ ∈ S fulfilling Eqn. 3.

Thus the assumption Util(Chk) > Util(OpChk) is false.

Lemma 1. For any password and typo distribution pair (p,
τ ), checker Chk, and parameter 0 < q < |PW|, if there exists
a string w̃ ∈ S , s.t. |B(w̃)| > 1 and p(B(w̃)) > p(wq), then
Δq > 0.

Proof: Security loss Δq > 0 implies that λfuzzy
q > λq . Let

PWq = {w1, . . . , wq} and recall that λq = p(PWq). Recall

too that:

λfuzzy
q = max

S⊆S
p(B(S)), where |S| = q.

First set S ← (PWq\B(w̃))∪{w̃}. Clearly λfuzzy
q ≥ p(B(S)).

If we look at the union of balls of the strings in the set S,

B(S) ⊇ PWq ∪B(w̃)

⇒ p(B(S)) ≥ p(PWq) + p(B(w̃) \ PWq)

Now, if B(w̃) \ PWq �= φ, then clearly λfuzzy
q ≥ p(B(S)) >

p(PWq), and so Δq > 0.

If B(w̃) \PWq = φ, then |S| < q, as |B(w̃)| > 1. Thus as

long as there exists a password w′ ∈ PW\S such that p(w′) >
0, we can add w′ to S, resulting in p(B(S)) > p(PWq). This

concludes the proof.

G. Toy Example of Poor Ball Estimation

Consider the following toy example of the attacker’s esti-

mated distribution p̂ and the actual challenge distribution p:

Attacker’s estimate
w p̂(w)
123456 1/3
password 1/4
Password 1/4
qwerty 1/6

Actual distribution
w p(w)
123456 1/2
password 1/5
Password 1/5
asdffghj 1/10

The best guess of the attacker against ExChk is 123456,

which yields success rate 1/2. If the attacker wants to optimize

her guess in the presence of a typo tolerant checker, e.g.,

Chk-All with correctors Ctop2, the she select as her first guess is

password (in whose ball Password lies), yielding success

probability only 2/5.
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