
Comprehensive and biaised comparison of OpenBSD and FreeBSD

Antoine Jacoutot
ajacoutot@ OpenBSD. org

The OpenBSD project

Baptiste Daroussin
bapt@ FreeBSD. org

The FreeBSD project

Abstract
This paper will look at some of the differences between
the FreeBSD1 and OpenBSD2 operating systems. It is
not intended to be solely technical but will also show
the different ”visions” and design decisions that rule
the way things are implemented. It is expected to be a
subjective view from two BSD developers and does not
pretend to represent these projects in any way.

We don’t want it to be a troll talk but rather a casual
and friendly exchange while nicely making fun of
each other like we would do over a drink. Of course,
we shall try and hit where it hurts when that makes
sense. Obviously, we both have our personal subjective
preferences and we will explain why. Showing some of
the weaknesses may encourage people to contribute in
some areas.

Most of the topics discussed here could warrant their
own paper and talk and as such some may not get the
deep analysis they deserve.

This is a totally biased talk from two different perspec-
tives.

1 The History behind the story

AJACOUTOT: Before we begin, let us tell you a lit-
tle story about how we ended up here today...
Once upon a time in the countryside on a sunny
afternoon, in the mid-summer time, Bapt and I
were having some herbal tea with...
What was it already, sponge cake?

BAPT: Absolutely, we were talking about the inter-
action between ponies and unicorns. Which
one appeared first etc...
Just another one of our regular meetings argu-
ing on important philosophical concepts.

AJACOUTOT: Right, so while discussing the re-
productive appendix of these horses to know
which came first...
OK who am I kidding here. It was something
like midnight and...

BAPT: Actually I think it was more like 2am.
AJACOUTOT: Anyway, we were having our 10th

pint of Heineken in a Pub somewhere...
BAPT: Duvel, it was Duvel. Be careful what you

say here, its a beer land!
AJACOUTOT: Right right. So I started complaining

that the Duvel didnt taste anything, of course it
was our 10th pint so...

BAPT: No no no, I told you cant say things like this.
Or OK, maybe the last one was Heineken after
all.

AJACOUTOT: See! So, as I was saying, the beer did
not have any flavor anymore. And thats when
it hit me... Flavor... wait a minute... OMG this
is exactly like FreeBSD. You guys dont have
FLAVORed packages!
[Trolls must now leave the audience]

ACT I

2 Ports & packages

AJACOUTOT: FLAVOR3 is an awesome concept. I
am not aware of any other package manager in
UNIX land that implements the same function-
ality.
Basically, it allows providing packages com-
piled with a different set of options. Thats very
convenient from a dependency point of view
since according to the options you want, the fi-
nal binary will change as it might end up link-
ing to different libraries.
So you want to be able to control that but pro-
viding packages compiled with a good set of

ajacoutot@OpenBSD.org
bapt@FreeBSD.org

defaults can be next to impossible sometimes
(its hard compromise) and thats where FLA-
VORs kick in. For example you can install
Sendmail with or without support for SASL
and / or LDAP: there are different (conflict-
ing) packages for it (e.g. ”sendmail” versus
”sendmail–ldap-sasl”).
Its different from subpackages which are just
split packages. These are typically used when
you have a software that comes with a huge
amount of data (like audio and graphics for
games for example) which rarely change while
the main binary does each update.
Instead of having to update the complete set,
you just update one small subpackage. It can
also be used for things that ship modules or
add on components that have a whole lot of
different dependencies. PHP is a good exam-
ple. On OpenBSD we compile it with pretty
much all options, so the build requirements are
big but the port only needs to be built once and
since the package is split into multiple ones,
you only get to install what you need (e.g. php-
imap, php-mysql...).

BAPT: You really took the wrong example here.
For php we have fine grained split the pack-
ages so you want php with imap? Just pkg in-
stall php5-imap and done.

AJACOUTOT: But my point is actually that sub-
packages allow you to not have to deal with
fine grained packages. If I understand cor-
rectly how your ports tree works you still need
to build each PHP module separately one by
one, while we do it all at once.

BAPT: Correct, these are not really subpackages
and would be nicer with them. For FLAVORs
a good example could be the OpenLDAP client
compiled with or without SASL :)

AJACOUTOT: Right. So if I need SASL support in
OpenLDAP on FreeBSD, I assume I need to
build it myself right? Thats fine I guess, but
my fear is what will happen when I run ”pkg
update && pkg upgrade”?

BAPT: Bad things...
BAPT: So yes it is true that we do not yet have FLA-

VORs nor subpackages but there is some on-
going work to provides those features in the
ports tree. That work is pretty hard as it breaks
the design of some tools that are heavily used
by users like portmaster and portupgrade and
which are barely maintained; meaning we need
to find an upgrade path which will not break
those. We try to always have an upgrade path
for users and try to avoid hard breakage. Keep

in mind that we do not release a package set,
but the ports tree is a rolling release not tight
to a FreeBSD release. Which reminds me, you
guys do not support upgrading packages on a
given release!

AJACOUTOT: Actually we do support upgrading
packages on a given release.
What we do not provide are precompiled
binary packages. So its true that you need
some kind of a build box where you can
distribute packages updates from.
But theres work in progress in this area and
I am confident that within a year we will be
able to provide binary upgrades for packages
on supported releases.
So keeping your packages up-to-date will just
be a matter of running ”pkg add -u”.

Talking about pkg add(1)4, its important
to note that a lot of operations are done
as different unprivileged users (fetching,
extracting etc), we dont really want to go on
the Internet as root while you guys still do
not drop privileges when using libfetch(3)5 in
pkg(8)6. Care to comment about that?

BAPT: That is not true actually pkg(8) uses cap-
sicum to sandbox everywhere it is possible.
And pkg(8) also uses unprivileged user to fetch
packages for examples and everywhere it is
possible.
While sandboxing is supported for a long time,
unprivileged users mechanism were added re-
cently before OpenBSD did it ... by a few days
:)

AJACOUTOT: Maybe you and Marc (Espie; the
author of OpenBSD pkg add(1)) are sharing
brains!

Back to our topic, we also try very hard
to provide proper upgrade paths for our users,
but the difference is that we dont have to deal
with legacy / unmaintained wrappers against
the pkg tools (portmaster7, portupgrade8,
portinstall, portguruŵhatever...) . Our pkg
tools are designed to provide everything one
needs for package management without the
need for an external helper. Dont forget we
have a long tradition of providing proper bi-
nary packages over pushing people to compile
their own.

BAPT: This is also true for FreeBSD now, most of
the tools you are speaking about are mostly
to use the ports tree directly as a live system
rather than using binary packages (which is a

2

usage not supported by OpenBSD right?).
AJACOUTOT: Its perfectly supported by OpenBSD.

We just dont encourage it it because for
99.99% of the cases, it is not needed.

BAPT: But one thing about the FreeBSD ports tree
is that it works on all supported versions of
FreeBSD. Ah well... true you only support one
version of OpenBSD and only for 6 month.

3 Release model & engineering

AJACOUTOT: You are correct, for packages we
only support the current release which at this
time is is 6.0; the operating system itself is sup-
ported for two releases.
And aside from current/snapshots, our ports
tree is indeed tagged to a specific release.
Thats a design decision. We do not want our
users to be forced to upgrade to a new major
version of a software on a given release and
we do not want to maintain 4 different versions
of the same software to prevent that. Which
is why our ports tree does not follow a rolling
release model (except for -current obviously).
Considering the fact that we have regular re-
leases every 6 months, our packages dont have
time to get too old anyway.
That said, theres ongoing discussion about
supporting the previous release as well (as we
do for the base system).
Our support policy is pretty easy: * Base: n
and n -1 * Packages: n By support I mean that
we will fix and commit code to the correspond-
ing tag but we will not provide updated binary
sets nor packages. That sucks I agree, but if
all goes well, things are going to change pretty
soon with syspatch(8), a base system update
tool. Coupled with binary packages updates,
maintaining OpenBSD will become even eas-
ier than it is now.
Its true that this means you must upgrade at
least once a year if you want to run a sup-
ported release. I dont think thats a bad thing:
Id rather upgrade often in small steps than once
every 5 years having to handle multiple inva-
sive changes at once.
I do understand the need for LTS releases, I
just dont like it when I am the one responsible
for upgrading them...
That said while it can be good to have a some
long term support WTF is your policy?
Extended support versus normal support?
How come FreeBSD 10.1 was still supported
while 10.2 wasnt?

This is all very confusing, no support can be
good if you dont understand how it works.

BAPT: Common that is easy:
Normal Releases which are published from
a -STABLE branch were supported by the
Security Officer for a minimum of 12 months
after the release, and for sufficient additional
time (if needed) to ensure that there is a newer
release for at least 3 months before the older
Normal release expires.
Extended Selected releases (normally every
second release plus the last release from each
-STABLE branch) were supported by the
Security Officer for a minimum of 24 months
after the release, and for sufficient additional
time (if needed) to ensure that there is a newer
Extended release for at least 3 months before
the older Extended release expires.
Nah... I agree this is a mess, further more it
was causing lots of issue when maintaining
the ports, as we had to wait for at the very least
2 years before being able to use modern tools
available in newer base. Also issuing a new
release for important features that did not fit
en errata was having a huge impact: extending
the support for the branch for at least 2 years.

Actually I should have used a past tense,
because this has changed recently with
FreeBSD 11.0 the model has changed:
each major version stable branch is explicitly
supported for 5 years, while each individual
point release is only supported for three
months after the next point release. Given we
ensure binary compatibility on a given major
branch, this allows users to benefit stability
for 5 years, and at the same time benefit new
features.

AJACOUTOT: It looks like FreeBSD support model
keeps newer features out of the hands of users
because it can be years before they actually see
them in a release. It reduces real-world testing
and benefits no one. In my opinion, OpenBSD
model is easy to understand and keeps the code
stable but still pretty fresh. Whatever is in cur-
rent at a certain period in time will end up in
the next release (which would take at the very
worst, 6 months).

BAPT: You seems to have misunderstood the new
release model, new feature not breaking binary
compatibility are merged into the stable branch
pretty quickly and we will be able to issue new
release on those branch whenever we want to
have releases supporting those new features.

3

AJACOUTOT: Well you did say that you ”had to
wait for at the very least 2 years before be-
ing able to use modern tools available in newer
base for ports”. We do things differently, we
are not afraid of breaking binary compatibility
in -current which will end up being the next
release (no merge / backports necessary nor
wanted). But as you put it, your process is a
mess so yes, I may have misunderstood.

4 Binary upgrades

BAPT: Given we do support binary upgrades it easy
to upgrade from a minor to another minor (by
the way binary upgrades works also nicely
across major releases) but hey, here I must be
losing you as you do not support binary up-
grades neither for security fixes, neither for up-
grade across releases, seriously how tedious it
should be to have OpenBSD boxes in produc-
tions?

AJACOUTOT: While I see where you’re going, the
way you put it is not entirely true. Binary
upgrades between releases are perfectly sup-
ported. What is not supported are in-place up-
grades of the base system from one release to
another. But is that really an issue? Supporting
in-place major upgrades would not prevent us
from having to reboot anyway.
The upgrade process of OpenBSD is one of the
easiest and fastest Ive ever encounter. Just re-
boot on the new release bsd.rd (ramdisk ker-
nel) and it will do the rest for you in like 5
minutes.
Also, thanks to our auto-install / auto-upgrade
functionality, you can give it the path to an ”an-
swer file” (via dhcp) and you wont even need
manual interaction.
So you can rely wipe and reinstall or up-
grade an unlimited number of machines in a
snap. And it can also upgrade your packages
to match the new release! Add this to the fact
that sysmerge(8) (or mergemaster equivalent)
is automatically run early at boot time after an
upgrade, you are really left with almost noth-
ing to do...

BAPT: Maybe but that only works from release to
release (or -current), not when you want to
keep your currently running release up-to-date
with security patches.

AJACOUTOT: Indeed that is true. I said earlier, up-
dates within a particular release are only pro-
vided in the form of CVS patches. Yes that
part sucks but we are working on it. I already

mentioned syspatch(8)9 which is a small util-
ity that will fetch, verify and install binary up-
dates (tarballs containing the updated binaries
/ libraries...). We intend to release it as a tech-
nology preview for the 6.1 release. It wont
be as clever nor technologically interesting as
freebsd-update(8)10 but thats how we like our
tools: simple, stupid and safe (in no particular
order); we do not want to fight with the oper-
ating system but get on to our task at hand.
For packages, we just need to agree on the
workflow, the team responsible for them and
get the required infrastructure. Once we have
that, we will start providing updated packages
for all of our supported releases which should
happen for 6.1 (6.2 at the worst).

BAPT: On the FreeBSD side we do support in
place binary upgrade via freebsd-update. The
basic design behind freebsd-update is to create
binary diffs and binary patch your system.
It is very convenient to receive security fixes.
freebsd-update also allows to upgrade
FreeBSD across releases ”in place” the proce-
dure is then the following:

• First install the new kernel

• Reboot on it

• Install the userland

• Merge configuration files

• Remove the files not in the release any-
more

It works very nicely but fetching all the binary
patches when upgrading can be very very long.
Another issue is that producing the patches is
really not trivial. That is why we are looking
forward to be able to provide a new mechanism
based on pkg(8).
To be honest there is also a drawback about
in place upgrades we need to maintain strong
backward compatibility on some kernel inter-
faces vs the related userland tools.
In particular ZFS11 is an interesting place.
Illumos12 consider the version in kernel goes
with a given version of the userland tools. So if
they modify a kernel interface they modify the
userland related tools to use that new interface
and this is done. On FreeBSD we have to add
a compatibility shim in the kernel because oth-
erwise rebooting on the new kernel one would
end up with userland tools that does not work
with the kernel until the userland itself as also
been upgraded.

4

AJACOUTOT: In-place upgrades can be interesting
when the upgrade process itself takes a while.
In theory you would prevent long down times.
But in reality, production should be resilient
and services should be redundant so its gen-
erally not such of a problem. Also the upgrade
process on OpenBSD is literally the fastest one
Ive ever used.
If in-place upgrades meant and updating and
reloading the entire userland and kernel with-
out rebooting, now that would have my vote!

BAPT: An interesting policy we have on FreeBSD
is POLA13 (Principle Of Least Astonishment)
this is a strong policy on FreeBSD saying we
should try very very hard to make upgrades as
seamless as possible and avoid breaking end
user boxes as much as possible.

AJACOUTOT: In general we are not afraid of break-
ing backward compatibility when we think it
makes sense and help push ideas forward. That
said I can understand the need for a POLA but
not when it goes against basic security. For
example, just to satisfy third party clients you
guys kept DSA encryption, AES-CBC cipher
and SSH1 support in your OpenSSH a long
time after upstream (aka OpenBSD) dropped
it. That is the kind of compromise we are not
willing to make.

BAPT: That is not entirely true. POLA does not
prevent from making such modifications, but
they should be driven as in the users should be
warned long enough before. This is in partic-
ular true on a given branch, big changes usu-
ally happen in new major branches. On newer
branch they were just removed.

AJACOUTOT: Well, according to FreeBSD SVN
revision 303716 (Wed Aug 3 16:08:21 2016
UTC):
”Remove DSA from default cipher list and
disable SSH1.

Upstream did this a long time ago, but
you kept DSA and SSH1 in FreeBSD for
reasons which boil down to POLA.

Now is a good time to catch up.”

5 Package building & delivery

AJACOUTOT: Speaking of upgrades delivery, it
would be interesting to know how you guys
build and ship packages. On OpenBSD we use
a tool called dpb(1)14, the Distributed Package
Builder. Its a perl daemon that orchestrates

a multi-node setup for building packages. It
allows us to provide -current binary packages
daily (in reality we only ship new packages ev-
ery 3 days unless theres a good reason).
As most OpenBSD daemons, it comes with
privilege separation: a different unprivileged
user is used for fetching, building and doing
specific builder tasks. While pkg add(1) still
runs as root, dpb(1) allows building each pack-
age in its own chroot(2)15 using the proot(1)16

tool; the end goal being to actually build each
package under its own sandbox on the fly. Also
its worth noting that on our official build setup,
the build user is prevented from reaching the
network; the only process that can go online
is the one that fetches the distfiles for building
from ports (and that process runs as a different
user).

BAPT: Historically, we were using a tool which a
bit like dpb was distributing the builds across
multiple machines. This has been changed
years ago when we switched to poudriere(8)
which is designed to work on a single box dis-
tributing the builds across multiple CPU cores.
Doing that we have benefit faster builds and
way simpler code. The packages are signed on
a box without internet access, the main differ-
ence is probably that we do not signed every
packages but the repository metadata which
contains hash of all the packages.

AJACOUTOT: Same here, all of our packages are
cryptographically signed using our signify(1)
tool on a dedicated machine that has no ac-
cess to the internet. The difference is indeed
that we do not want to rely on metadata so the
packages themselves are signed; it also makes
it easier for sharing packages.

BAPT: Since we switched to poudriere we are able
to provide updates of binary packages almost
everyday for the stable and head branches of
the ports tree.
While working on that we have leverage all
FreeBSD features:

• Jails: all build are done inside a jail with-
out network access

• ZFS: to fast populate the jails and ensure
we are always building in a clean room

• tmpfs(5)17: for fast I/O

• smp(4)18: yes we can use more than 24
cores :)

5

6 SMP & scheduling

BAPT: Speaking of using multiple cores, you are
still using the Giant lock almost everywhere?
That should be a big problem for you to scale
isnt it?

AJACOUTOT: For a regular ”Desktop” usage, our
”Big lock” SMP implementation model (KER-
NEL LOCK()) is good enough. The reason is
that most of the time on a workstation you only
have a handful amount of cores (between 2 and
8) and only one socket. Our actual scheduler
isn’t bad, it’s just that it is a bit old and was
written for real SMP machines. Meaning it
does not consider the cache distance between
cores and that’s the main reason why machines
with several sockets often have lower perfor-
mance than the ones with only one socket (less
ping-pong involved).
So we can also use 24 cores, but in the con-
text of bulk builds, we have much better per-
formance concatenating the work of 6*4 cores
machines. This will change someday, for bet-
ter or worth its just not been a priority.

BAPT: How such a change can be done in the
OpenBSD model? I mean on FreeBSD it took
a lot of time to get most of the architectural
work landing. it took us several years in-
cluding releases that got very bad reputation:
FreeBSD 5. Im not saying the road we took is
the one true way, but I cant see how this can be
achieved in an incremental way.

AJACOUTOT: A few things can be incremental be-
cause they are not directly related to the sched-
uler itself.
Several scheduling issues on OpenBSD come
in fact from spin locking in librthread (our
POSIX 1003.1c thread implementation) and
are actively being worked on. And contrary to
the myth, OpenBSD scales very nicely on big
userland workloads. Now, is raw performance
on par with FreeBSD? No, but our priorities
are different and we are OK with loosing a bit
in this area if it gains us more security. Actu-
ally Id go further and even say that wed rather
crash / panic if we detect an unsafe behavior.

BAPT: To be honest SMP is something that is al-
ways evolving, right now our next challenges
are better NUMA(4)19 support, and improved
the overall locking systems using lock less
mechanism where possible via for example
Concurrency Kit. What is the current status on
OpenBSD?

AJACOUTOT: Well our entire SCSI stack and ker-
nel profiling are already fully SMP for ex-
ample and recently theres been some huge
progress on making our network stack more
SMP friendly. The goal of the NET LOCK()
being able to use multiple threads to forward
traffic.
I dont think you will argue to the fact that mod-
ern scheduling is hard.
Most operating systems had to do it then re-do
it multiple times. We are learning from others
experience and as usual with OpenBSD we are
trying to implement something simple that will
match the project goals. As you said, it wasnt
an easy road for you.
That explains why sometimes we may seem
behind on certain aspects, we take our time to
do it well according to our standards, or we
don’t do it.

7 The base system, part I

BAPT: While you are here, you can maybe explain
something I do not understand: you seems
to be keeping writing your own tools when
there are already BSD licensed counterparts:
httpd(8)20, smptd(8)21, vmm22, etc. Arent you
suffering from the NIH23 syndrome?

AJACOUTOT: Thats actually very good question. I
am glad you asked because there are IMHO
objective reasons to do that. The first one
would be trust: we have a coding style, prac-
tice and process that make us confident in what
we develop. Another reason is also control: we
know someone will not decide to change the
software license one day to the next or start
adding knobs for each and every crazy cor-
ner case that is out there that only two people
would use. Looking at how many CVEs im-
pacted ntpd or OpenSSL in the last couple of
years should be a good hint as to why Open-
NTPD and was created and LibreSSL forked
from OpenSSL for example. If I am not mis-
taken, a lot of your security advisories have
been related to the NTP daemon included in
your base system (known as the ”reference im-
plementation”); is it really having NIH syn-
drome wanting to write a secure implementa-
tion?

BAPT: Right it makes some kind of sense for the
one you talked about, as there were no ”BSD
quality” alternatives, but what about bhyve? It
is working it can ”easily” fit your security re-
quirements about security and sandboxing.

6

So why yet another implementation?

AJACOUTOT: Theres been an initial porting trial a
few years ago but compiling a single file ended
up being a huge amount of work (let alone
work); when youre confronted to such code,
you need to ask yourself whether its not worth
just creating something from scratch instead of
porting. The situation may have changed since
(see xhyve: the lightweight virtualization so-
lution for OS X) but that was another reason
vmm(4) was created. I would add that it also
helps us providing a base system that in our
definition ”Just Works”. If you ever feel the
need to tune or harden something, then you
are clearly on the wrong operating system and
OpenBSD is not for you...

BAPT: Right but another example would be cap-
sicum, you decided to bake your own sandbox-
ing mechanism instead of porting it.

AJACOUTOT: Theres actually a very good reason
for that but lets talk about pledge versus cap-
sicum later since you brought the subject of
security, lets talk about it.

8 Security & sandboxing

BAPT: Lets start with our malloc24 implementation,
while it is not a direct security related tool it
helps a lot driving your development in a safe
way. On developer can fully tune it to find
out memory leaks via prof leak (very similar
to what you can get with gperftool, heap profil-
ing, and way more things, you can activate all
this via malloc.conf and/or MALLOC CONF
environment variable.

AJACOUTOT: Our memory allocator has a lot of
countermeasures as well.
Some are not enabled by default because they
are very costly in terms of performance but de-
velopers often run with them enabled because
it allows catching several issues beforehand.
The ”S” option in malloc.conf(5)25 is perfect
for this: ”Enable all options suitable for secu-
rity auditing.” ”Guard pages” can be enabled,
these provide overruns detection by creating
an unreadable, unwritable page ”fence” after
malloc(3)ed chunks (accessing that region will
trigger a segmentation fault).

BAPT: So it sounds like both malloc are quite in the
same shape regarding debugging and memory
related potential security issues. But in a dif-
ferent way.

AJACOUTOT: Most daemons run with privilege
separation: that is most of the code is run ch-
rooted and as a non-privileged user. OpenSSH
led the way on this topic. They also use priv-
ilege revocation (or dropping) to drop privi-
leged as soon as possible. A good and sim-
ple example to look at is ntpd(8): it is a
standard OpenBSD daemon so it is written
with principle of least privilege in mind and
so not only does”privsep”and ”privdrop” but
more than this: it has a completely privilege
separated tls speaker for the ”constraint” fea-
ture with no memory sharing nor fd passing
and with a limited amount of allowed system
calls thanks to pledge(2). The constraint fea-
ture makes ntpd(8) query the time from trusted
web servers over HTTPS reducing the risk of
a man-in-the-middle attack by comparing that
time with the one that the remote NTP server
gave us.

BAPT: For ntp you are right but at the price of hav-
ing a half baked implementation, one that can-
not authenticate the peer it is receiving the time
from (using the standardized mechanism), and
miss half of the features ntp is supposed to pro-
vide (yes I agree most people wont care). That
said I would love that we get rid of ntpd.

AJACOUTOT: You just described exactly OpenNT-
PDs strength; it actually does not need to au-
thenticate thanks to ”constraints” and it does
not need to implement the kitchen sink because
no one cares and if one does, then it can install
the reference implementation.
On a related topic, OpenBSD is well known for
it numerous exploit mitigation techniques. It’s
important to note that all of these have been
enabled by default for years and are very hard
or even impossible to disable. In no particular
order, we have (non-exhaustive list):

• Address space randomization (ASLR26):
randomly arranges the address space to
prevent buffer overflow attacks

• WX̂ (memory page can be either writable
XOR executable)

• in the kernel since years

• now in userland (”wxallowed” mount op-
tion on /usr/local for now)

• ProPolice (Stack-smashing protection
using bounds checking and canary)

• Position Independent Executables (PIE)
(also for static binaries): the executable
is loaded at a random address instead of

7

a fixed one address which stops return-to-
libc type attacks against functions in the
main program (another space randomiza-
tion technique)

• Strong random generator

The way we approach security is that we al-
ways assume to be running in a hostile envi-
ronment. Thats also what started our constant
source audit (which started in 1995, and still
ongoing) which allowed us to detect unsafe
patterns and / or bugs and fix them everywhere
in our tree. It looks like security mitigations
in FreeBSD are next to nonexistent, even your
(non-committed) ASLR is intentionally weak
(using non-aggressive settings). Is that true?

BAPT: We also have strong random generator
and Propolice. While we do not have ASLR
yet, I can’t argue about the HardennedBSD
implementation but I would be surprised if
it is true given they implemented the PaX27

recommendation as far as I know while PaX
seems to consider the OpenBSD implementa-
tion as an ”incomplete” implementation which
should be named ASR apparently. By the
way we have an implementation of ”ASR”
currently in review we should hit the tree:
https://reviews.freebsd.org/D5603.

On our side we do have the MAC framework
which is a very interesting: Mandatory Ac-
cess Control which allows you to restrict many
things. With MAC we can: * Restrict entirely
what a user can see in the system to noth-
ing but its own resources (including not see-
ing sockets open by other users for example)
* Have a firewall-like policy on file systems
* Restrict network interfaces access that plays
nicely with IDS * Limit the scope of the pro-
cess one can see compartmentalizing them into
partitions * Restrict the information flow in a
running system (very handing for example to
ensure things like nagios can only access what
an admin planned to make it acces and nothing
more.
Another very interesting security feature we
do have OpenBSM: a full feature audit system
which can monitor everything that has been
done on a system. It can also distribute the au-
dit log To a central server.

AJACOUTOT: All these technologies you mention
are interesting in theory, I agree. But in real
life, I almost never see them in action because
they are too complex to use and next to im-

possible to audit. Its not a FreeBSD specific
problem by the way, Linux has similar facili-
ties and most people disable them...
What about LibreSSL? Are you guys planning
on integrating it? I know its a long subject but I
am just asking because just from a regular user
point of view it has been a great success:

• usually only a handful of the CVEs im-
pacting OpenSSL impacts us

• provides new crypto algorithms like
CHACHA20-POLY1305 and X25519

We are seeing more and more people and
companies adopting it in their projects and
agreeing to work with the ”So and so from
OpenBSD”.

BAPT: LibreSSL is pretty well integrated into the
ports tree even if not the default. For the base
system, the problem is LibreSSL development
model does not fit with our ABI compatibil-
ity rules. The approach in the future would
be probably to drop OpenSSL in favour of ei-
ther LibreSSL or any more lightweight alter-
natives like mbedtls into a ”privatelib” aka not
exposed to the ports/packages so ports / pack-
ages can have the flexibility to use whatever tls
stack we need to have at the time which yes
can be libressl.

BAPT: Now on the sandbox part, Capsicum(4)28 is
a very nice sandboxing mechanism we have in
FreeBSD leveraging the concept of capability.
What is really nice about it is once you are in-
side a sandbox, there is no way to exit, even
child process inherits the capabilities.
It is really design for developers to secure their
own applications by strictly restricting the ca-
pability of the application to only what it needs
to be able to do. We have started converting
most of the base system to use it. But we are
not entirely there yet.
Because the capsicum design allow no com-
promise, it is not always easy to convert to ex-
isting software to capsicum.

AJACOUTOT: Thats where I wanted to go actually:
it seems that capsicum is too complicated and
thats why it doesn’t get much use by default.
The pledge(2)29 syscall is actually a very good
summary of what the OpenBSD project is
about: develop affordable security. By ”af-
fordable” I mean simple and easy to imple-
ment and hence enabled by default almost ev-
erywhere in the system (30% of the base sys-
tem was pledged after only two month; to-
day 85 to 90% of base and even some ports

8

https://reviews.freebsd.org/D5603

like chromium...). It was designed to be easy
for the programmer to add support for it in
his software, otherwise no one would use it.
pledge(2) itself is designed to serve two goals:
encourage refactoring towards safer models
and reduce code exposure to the kernel: it en-
courages the developer to audit and understand
the software initialisation and mainloop to add
pledge(2) calls where needed and move code
around if needed. One can assume that any-
thing making its way into the OpenBSD base
system will end up being pledged. People of-
ten compares it to seccomp-bpf on Linux al-
though pledge(2) is not a system calls firewall
but rather a facility to explicitly allow a group
of system calls in the form of promises (sort
of predeclared profiles, e.g. inet, chown, dns,
tty). It can also inspect arguments. A pledged
process is forced into a restricted-service oper-
ating mode where abilities can be reduced but
never regained and if a restricted operation is
attempted, then the process is killed with an
uncatchable SIGABRT. In theory capabilities-
based security may seem more advanced, and
it probably is. But what good is a feature if it
is too complex to be widely implemented?

BAPT: Another security feature we do have for
a while are jails, it allows to create a
prison/container, we have it in FreeBSD for
very very long, and it very simple and easy to
use. Almost everything can be disabled (and is
by default) or restricted inside a jail: network,
file system, CPU, memory, routing tables, etc.
Nowadays jails can even be nested, have they
own zfs datasets, have virtual network.

AJACOUTOT: Well in that regard I agree that we
suck. OpenBSD has no container-like tech-
nology. There has been an initial effort years
ago called sysjail but it was abandoned because
of an inherent design issue in systrace(1) on
which it was based that would allow evading a
jail by exploiting a race condition.
Anyway I think its time to move on to some-
thing else.

9 Project governance

BAPT: Good idea, lets talk about project gover-
nance and funding for example.
The FreeBSD project is a community driven
project, the active developers elect every 2
years a new core team of 9 people responsi-
ble for deciding the project’s overall goals and
direction as well as validating new committers

proposals or the projects bylaws.
The FreeBSD foundation is a 501, US based,
non-profit organization dedicated to support-
ing and promoting the FreeBSD Project and
community worldwide.
Funding comes from individual and corporate
donations and is used to fund and manage
projects, fund conferences and developer sum-
mits, and provide travel grants to FreeBSD de-
velopers.
The Foundation purchases hardware to im-
prove and maintain FreeBSD infrastructure
and publishes FreeBSD white papers and mar-
keting material to promote, educate, and advo-
cate for the FreeBSD Project. The Foundation
also represents the FreeBSD Project in execut-
ing contracts, license agreements, and other le-
gal arrangements that require a recognized le-
gal entity

AJACOUTOT: To quote it website: ”The OpenBSD
Foundation is a Canadian not-for-profit cor-
poration which exists to support OpenBSD
and related projects such as OpenSSH, Open-
BGPD, OpenNTPD, OpenSMTPD, LibreSSL,
and mandoc”.
It is a fundraising entity only: it does not own
any copyright over the code even for spon-
sored people. Its responsible for funding the
day to day needs of the project, hackathons,
etc and works solely through donations (from
users and companies). It has no influence over
the project itself.
Speaking about the country of origin, while it
may not seem like an important detail at first
but it actually is when it concerns the operat-
ing system itself. OpenBSD being based in
Canada means that we are not subject to the US
crypto export regulations and all. As a conse-
quence, it was illegal to re-export OpenBSD
from the USA early on and no US citizens
were allowed to work on crypto in the project.
If you wonder why we ended up with our
own ACPI implementation instead of Intels,
that one of the explanation as well. At the
time it was unclear whether their implemen-
tation contained embargoed code or not be-
cause they triple-licensed their code and the In-
tel license explicitly stated that ”Licensee shall
not export, either directly or indirectly, any of
this software ¡...¿ to any country for which
the United States government or any agency
thereof requires an export license”. While that
chunk was obviously not part of the two other
possible licenses (BSD and GPLv2), export

9

regulation compliance is license agnostic, so
in doubt...

BAPT: Interesting. Regarding the governance
strictly speaking, The OpenBSD project seems
to suck: kind of dictatorship? One guy decides
for every volunteers? And what would happen
if he resigns?

AJACOUTOT: Well, thats a bit of an exaggeration
dont you think? Obviously, one guy does
not decide for everything, most of the deci-
sions are taken collegially. That said one guy,
namely Theo, does have a veto over the en-
tire project. From my point of view, this is
good, it speeds up the decision process, pre-
vents stalling and make sure we have a safe-
guard. We really cant afford losing ourselves
in over-administrative processes which might
lead to no decision. It is true that we like hack-
ing more than getting ourselves caught into
committee-induced compromises.
Regarding the future of the project, the only
thing I have to say about it is that we are
fully open source so I wouldnt worry about it.
Maybe something is planned, maybe not...
Look at the longest living Linux distribution
as of today: Slackware; its been run since the
very beginning by a benevolent dictator and is
still alive! I think its safer for anyone, be it
a regular user or a company to use OpenBSD
than any company-baked project; look at what
just happened to Oracle Solaris... So regarding
the future of the operating system, Id worry
much more about using products from such
companies than OpenBSD.

BAPT: Well in the end it all depends on devel-
opers for us, so not quite different than you,
core@ is elected by them every 2 years so core
have confidence from the developers to drive
the project, take final decision if there are no
technical agreement among developers on a
given subject, the team also have to deal with
disputes among developers and/or community
and for the project policies. All core decisions
are taken over votes inside the team.
Last thing core is responsible for voting on de-
velopers. On this in particular, core focuses on
source committers and delegate ports commit
bits to the portmgr team and docs commit bit
to the doceng team.

AJACOUTOT: Wait... What? You have different
types of commit bits? You guys really love
making things more complex than needed.

10 Project organisation

AJACOUTOT: OpenBSD has only one true commit
bit. Youre a developer (with commit access)
or youre not, period. Thats good because it
encourages people to contribute in all parts
of the tree, not just their area of expertise.
The project is comprised of 4 repositories: src
(base system), www (websites hosted by the
project), xenocara (Xorg with a BSD build sys-
tem) and ports (ports tree).
Since every commit requires at least one ex-
plicit OK from a fellow developer, were pretty
safe with regards to people committing in area
they usually dont. The policy is a bit more re-
laxed in the ports tree where we only require an
explicit OK when importing new ports, making
invasive changes or similar. Of course since
you own what you commit, if you made a mis-
take and did not have an OK from anyone, be
prepared to suffer the consequences...

BAPT: We have split the repository into 3 parts:
ports, base and docs when doing that we have
split the commit bits as well. But note that the
difference is only administrative because tech-
nically as soon as one has an access he can
commit to all the repositories. This separa-
tion is more to enforce a policy, if one has been
awarded a commit for docs it is because of the
good work he has done on this side, the com-
mitter. He is not supposed to commit in other
area without a format approval from a commit-
ter that has a bit in that area. And usually after
a bunch of good patches he is granted easily
with a commit bit in that area. The barrier is
very soft.

BAPT: While we are on administrative, I always
wondered what is the process of becoming an
OpenBSD committer?

AJACOUTOT: Theres no real defined process.
OpenBSD is a meritocracy so if you keep send-
ing good patches to the mailing lists for a
while, theres a good chance one developer will
contact you and ask you whether youd like to
join the gang. At that point, it usually means
that youll get invited to ICB (our internal chat)
where you will get introduced to other peo-
ple. The way it works then is that the devel-
oper who invited you becomes your de-facto
mentor and is responsible to teach you the few
things about our development workflow and
commit process etc. At that point, you get your
OpenBSD account pretty fast.
Thats pretty much it, there is not ”mentor-

10

ing period”, your mentor is only here to get
you started and take responsibility if you break
something just a couple of days after getting
your commit bit...

BAPT: On FreeBSD when a contributor has sent a
set of good patches, usually a committer gets
pissed of with committing those patches he
generally proposes the contributor to become a
committer. If the contributor is interested, the
committer sends a formal request to the core
team for base, portmgr for ports and doceng
for docs. The members of the team will anal-
yse its contributions, take a vote, and if granted
will ensure the now new committer gets men-
tor(s) to drive him into the project: policies,
knowing what resources he can access to, who
is responsible for what, ensure that he probes
the proper developers (the experts of the areas)
for reviews before committing. When the new
committer is confident enough he is released
from mentorship.
Speaking of commiters and contributors, can
you tell us a word about leading edge develop-
ment in OpenBSD? Do you use branches or ex-
ternal repositories which are then merged into
the main tree or?

AJACOUTOT: As a general rule, all OpenBSD
driven software projects development is done
directly in CVS (-current). Like OpenSSH,
OpenNTPD...
We do not use branches because, well, CVS.
Fun anecdote: I think we are one of the oldest
and biggest running project still using CVS. Im
not saying I am proud of it, I just wanted to
mention it :-) Anyway, when invasive changes
need to be done we usually make a patch avail-
able to other developers for review and the in-
tegration is done incrementally (by splitting
the patch into smaller chunks). Of course
sometimes it may end up being hard or next
to impossible to do that in which case we often
distribute snapshots including the uncommit-
ted bits for wider testing until we are confident
we can integrate that one big ”patch” into the
tree.
There’s been a few exceptions in the past
where a particular piece of OpenBSD software
was developed outside of our tree.
OpenSMTPD is such an example. But af-
ter a couple of years struggling with having
to manually merge changes one by one ”the
OpenBSD way”, development went back into
the tree which greatly helped general integra-
tion.

BAPT: All the FreeBSD development happens in
the head branch, on the subversion repository.
For big features people often create dedicated
svn branches. Lots of people are also us-
ing the git forks of the tree, works on their
branches there and pushed back the changes
into FreeBSD via small readable chunks via git
svn.
We also have a perforce repository but almost
noone uses it anymore and was mainly used
before the svn/git time due to CVS nightmare.
The only case where one can see very big
commits instead of smaller changes are branch
merges, merge from p4 (which hasnt happened
for a while) on importing new version of exter-
nally maintained softwares.
Once the code has hit the head branch if
needed or willed than it is merged into the sta-
ble branches.
Before each major BSD conferences, the
project organize dev summits usually 2 days.
It is a unique occasions for developers to meet
and to be able to discuss in live issues they
faced, discussing how to make a new feature
happening or project directions. Aside from
those devsummits, there are some other dev-
summits organised around the world sometime
very small sometime large. Those devsummits
often turns into some kind of hackathon, some
time are only in the hackathon form.

AJACOUTOT: It is my personal opinion that the
reason OpenBSD is successful despites its
few amount of developers is because of
hackathons. Considering our distributed
development model, it is a requirement.
The project is sort of a pioneer in that regard,
we had regular hackathons before they became
a ”thing”. You can see it as a gathering of
people coming from all over the world, with
their own different background but with one
common goal: improve OpenBSD in all area.
In reality I see it as a bunch of friends coming
together to have fun doing what they like to
do. Thats a very important aspect I think and
is what makes our developer community so
vibrant and passionate. Theres always some
yelling, shouting, laughing, crying, despair,
hope and desilution... its software after all.
But as we said in the past: ”its not torture if
you do it to yourself”.
Anyway, its extremely intense and motivating:
its just amazing how many things are achieved
during these events.

11

ACT II

11 ”BSDification”

BAPT: You guys claim a lot about license purity, but
you suck on that area, FreeBSD is very close
to provide a base system with only permissive
licenses (mostly BSD). The only few compo-
nents left (for tier 1), progress can be followed
here: https://wiki.freebsd.org/GPLinBase.

AJACOUTOT: Before we go further, could you ex-
plain to me what ”tier 1” mean exactly?

BAPT: Tier 1 are the main supported architecture
for now i386 and amd64, various arm are close
to pass in the Tier 1, It means we do ensure
binary packages, binary security fixes for those
arches. In term of support from source there is
not much difference.

AJACOUTOT: On OpenBSD, if a platform is listed
as supported, it’s at the same level as amd64 /
i386 (for the base system at least; ports is usu-
ally harder even if we try very hard to fix and
support non mainstream architectures). There
is no concept of tier platforms for us, we sup-
port an architecture or we dont.

BAPT: The reason I talked about tier 1 is because
most of the tier 2 platform are not buildable
with LLVM/Clang meaning they have the old
gcc/libstdc++ which means they have more
GPL softwares.
Basically we are very pushing on having a full
BSD toolchain. Since FreeBSD 10.0 we are
using LLVM/clang as a main compiler, libc++
as C++ stack, libcxxrt for the C++ runtime.
We also develop and maintain the BSD license
elftoolchain which replaces most of the tools
provided by GNU binutils, and is built around
our BSD licensed libelf. With the main excep-
tion of the linked, which will be most certainly
replaced by LLD in FreeBSD 12.
Other left non BSD components where GNU
texinfo which we removed in FreeBSD 11.0
replacing the useful info pages with proper
manpages (the only ones were the binutils
one).
We removed GNU CVS in FreeBSD 10 and
GNU rcs will be removed from FreeBSD 12.0.
GDB is slowly being phased out replaced by
LLDB.
So for now really the left components are:

• GNU diff (not that sdiff has been re-
placed by a mix of the OpenBSD and
NetBSD one + patches for GNU diff
compatibility)

• GNU roff while mandoc is now used to
render manpages, some manpages still
requires a full roff toolchain, we are go-
ing to replace it with heirloom doctools

• GNU grep (BSD grep is still too buggy
but already imported)

Which is why we have hope that FreeBSD 12
will be the first release without any GNU com-
ponents which is good users as well as they
will benefit being able to simply use the mod-
ern version of those tools instead of the old
GPLv2 version.
If we speak about tiers 2:

• gcc/libstdc++ is still required

• dtc for embedded, beside the fact we have
a BSD licensed dtc which is not yet 100%
fully compliant but mostly usable.

AJACOUTOT: Besides a few exceptions, most of of
userland is BSD. We still have (some fork of)
GNU CVS, although our RCS has been rewrit-
ten a few years ago and is under a BSD license.
Mandoc takes care of all our man needs, I am
not aware of anything in base that would re-
quire a full roff(7) toolchain. I think we can
thank our documentation Gods for that: Jason
McIntyre and Ingo Schwarze.
Regarding the toolchain you are clearly ahead
in that regard but we finally did jump on the
bandwagon thanks to the arm64 architecture.
I will not go too much into details because
that effort is somewhat recent but what I can
say is that we are going pretty much the same
direction as you are (lld, libc++ etc). Of
course, we still have to maintain somewhat
”exotic” architectures that are not supported by
LLVM/Clang and as such our old (¡GPLv3)
GNU toolchain is not going to go away any-
time soon.
In the subject of how each of our base system
is evolving, whats the deal with that libxo(3)
thing?

12 Over engineering

BAPT: Well libxo is actually very useful. Have
you ever tried to parse the netstat output from
scripts? Having a programmatically parseable
output is very handy to write software on top
of FreeBSD quickly.

AJACOUTOT: That sounds like a vendor require-
ment... But anyway, even if Id agree with you,

12

does ls(1) really need to have a libxo(3) out-
put? That looks like over engineering at its
peak. All scripting languages provides API to
be able to deal with filesystems so I dont see
the relevance here.

BAPT: I agree that this one is arguable but it is actu-
ally somehow useful to deal with BSD exten-
sions like chflags, where most of the scripting
languages are not aware of.

AJACOUTOT: I am kind of torn about this. Its not
because one can implement something that one
should. Oh and about about this one:

ls [-ABCFGHILPRSTUWZabcdfghiklmnopqrstuwxy1,] [-D format] [file ...]

BAPT: Well. For this one I have no arguments :)
The fun thing is I discovered the options when
looking at a slide in last year EuroBSDCon and
we all thought it was a typo :)

AJACOUTOT: See from my perspective, this all
looks very over engineered.
I mean even just for the jail administration,
there are probably 10+ third party tools to man-
age them. Why? Why can’t you include one
good one, instead of ten written by random
people and of different quality? There’s sim-
ilarly a huge list of tools for controlling dif-
ferent aspects of ZFS, some in base and some
not. Oh and sorry for mentioning this again
but: three firewalls... It can be very confusing
to know which tool to use, and whether you
can mix them or not especially when none of
them are enabled by default. From an outsider,
IPFW should be the native firewall (it was writ-
ten by FreeBSD for FreeBSD) so why keep IP-
Filter and PF (which as far as I know has not
been synced with the upstream code in years).

BAPT: For jail the default provided tools base are
good enough to manage them, they are flexible
and nice enough. All external tools are mostly
providing extra features like provisioning etc
which I dont think belong to base, because first
they can evolve faster if developped available
from ports (remember a branch will live for
around 5 years). Concerning ZFS, the only one
I can have in mind is beadm, this one will prob-
ably end up in base after a huge rewrite.
Concerning the firewalls, true ipfw has been
developed by and for freebsd, but others are
willing to maintain ipfilter and they do. Con-
cerning pf while it hasnt been synced that is
true, it is still actively maintained and have
many features not available on OpenBSD:
SMP, VNET for example.

Remember it is all about flexibility, and yes
flexibility have a price, it can confuse users.

AJACOUTOT: In OpenBSD we like simplicity. I
agree that we may miss a few feature here and
there sometimes but we are ready to accept if it
keeps us clean, simple and self-contained. It is
simply unsustainable to keep accommodating
”choice”
and in general, complexity is the worst enemy
of security which is one of our primary goals.

BAPT: Flexibility does not necessary mean com-
plexity :) we also like simplicity.

13 Storage & file systems

BAPT: FreeBSD supports multiple filesystems. The
native one being the original UFS but one that
have evolved to fits modern time: supporting
journaling, soft updates, trim etc.
We also of course do support very modern
filesystem as ZFS as a first class citizen.
Other filesystems we do support are msdos,
ext2,3,4 (without journal), nandfs.

AJACOUTOT: On OpenBSD we are stuck with the
traditional BSD file system: UFS/FFS. That
said, it has been extremely stable for us. Af-
ter 15+ years of OpenBSD in production in all
kind of different setups, I have never lost one
file.
We obviously also support NFS but only ver-
sion 2 and 3 since version 4 is a complete
rewrite requiring pieces we really do not want
to support in base (like Kerberos). Our auto-
mounter is still amd(8) from 4.4BSD! Its not
very efficient but it gets the job done. I for one
would welcome a more modern implementa-
tion... Regarding Internet SCSI, we have a na-
tive iSCSI initiator implementation: iscsid(8).
I would not argue that file system is not really
where we shine, we have not journaling, we do
have sot updates but we still have some bugs
in that code path... Ive experienced a few very
hard to diagnose and reproduce (hence hard to
fix) panics so I usually do not activate them on
my servers. Note that a standard OpenBSD in-
stallation does not enable softdep on any file
system.

BAPT: Wow you still have bugs with softdep???
AJACOUTOT: Yeah but thats not fair, you guys have

Kirk (McKusick)! Its hard to compete! ;-)
BAPT: Under the hood we have the GEOM frame-

work which is very powerful giving us support
for multipath (gmultipath, encryption (geli,
gbde), mirroring (gmirror), network transport

13

(ggate) or even faking the hardware with gnop.
We have a very good support for iSCSI targets
(via ctld including HA) and initiator (iscsid)
On network file system we have very good sup-
port for NFS (all versions) server and client.
We provide native tools to deal with storage
devices: SES, SAS cards etc.
As a client of storage we also have the tra-
ditional amd(8) and since recently we have a
shiny new autofs support (automountd).
And that is only speaking of user facing fea-
tures and utility.

AJACOUTOT: But ZFS is not just a filesystem, it’s
much more. Is it a good thing? Is it bad
thing? I honestly dont have a strong opinion
on the matter so I dont know. That said, it
is a very nice piece of technology and comes
with some very nice features but there are a
few things that worry me about it: the kitchen
sink approach and the fact that it strongly
recommends using ECC memory. Software
RAID support is generally in a good shape on
OpenBSD except for the RAID5 discipline on
which we cannot boot from... I would agree
that it’s a bit embarrassing.

BAPT: About encryption we have multiple choices
around the GEOM layer:

• geli

• gbde

Because they are on the geom layer, then we
can put any filesystem on top of it.
For geli since recently (FreeBSD 11.0) we can
support full disk encryption decrypted by the
boot loader using a passphrase.
We also support (not in base by developed for
FreeBSD) filesystem level encryption via pefs
which allows to encrypt only some directories
whatever the filesystem is under the hood.

AJACOUTOT: The way we do disk encryption in
OpenBSD is similar to how we manage RAID
devices (software or hardware) by using the
bioctl(8) management interface utility over a
softraid(4) encrypting discipline virtual de-
vice. So it is already familiar to people and
the process is very simple (one command re-
ally). We have support for full disk encryption,
decrypted by the boot loader either by using a
passphrase (interactive) or a ”keydisk” (ideal
for non-interactive use, using a USB dongle or
similar).

BAPT: Btw swap encryption on FreeBSD is also
very simple just use geli or gbde.

AJACOUTOT: Our swap is encrypted by default
since many years without the need to do any-
thing. It’s my opinion that swap should al-
ways be encrypted. Your SSH or PGP private
key could actually end up there at some point...
There is a sysctl(8) to disable swap encryption
if really needed. I am mentioning it because
that is an exception to the general OpenBSD
rule where security enhancements are enabled
by default and cannot be disabled.

14 The base system, part II

AJACOUTOT: Speaking of ”default” settings, that
is really something I love about this operat-
ing system: they make sense and are very well
thought out. We regularly have lengthy argu-
ments about what feature should be available
by default and in which in way it should work
out of the box. Thats how we came up with so
many simple daemons.
The network related ones are a very good ex-
ample because they solve hard problems in
simple ways: * vxlan, relayd, bgpd, rtables,
ospfd, carp, ipsec, spamd, httpd, dvmrpd, iked,
dhcpd...
Ive seen people understand how networking
works by just reading the configuration and
man page of OpenBGPD and similar.

BAPT: While it is true that OpenBSD is full fea-
tured in the network side FreeBSD is also very
very full featured: vxlan, carp, FIB, vimage,
netmap, ipsec, netgraph

BAPT: Back to the base system,
that makes the base system huge maybe some
of those tools could be just installed via ports
why having them in base?

AJACOUTOT: We consider OpenBSD a general
purpose OS that provides a useful number of
services out-of-the-box. Its an important de-
sign decision because it means that all these
tools are developed together. A change in
the kernel or a library will immediately trig-
ger some modification to these daemons when
need be. Also, anything that is part of base is
audited, pledged and follows our standards; the
situation is totally different in ports.
Also it encourages code synchronisation and
sharing amongst the base system. That would
be a totally different thing is these were part
of the ports tree: runtime breakage may be-
come unnoticed for some time... If you look at
Linux, its the exact opposite: kernel and each

14

and every userland tools are developed sepa-
rately.
I for one am very happy to have so many fea-
tures in the base system; just look at the ACME
client for example: not only it is fantastic to
have it working out of the box, but also it im-
proved so much since it got integrated (as op-
posed to being a regular external package).
Oh and the funny thing is that OpenBSD base
system is still smaller than of FreeBSD.
So it is quite surprising that you speak about
a huge base... On one end you strip down
your base system (removing texinfo, perl, etc)
but on the other end you have three firewalls,
three!
We on the other end like to concentrate on hav-
ing one way to do things.

BAPT: The base system for us is a coherent out of
box general purpose system. For us a full fea-
ture version of given server can be installed
from packages and there is no reason why we
should bloat the base system with those tools.
Having a full featured MTA in base is almost
impossible: how one would add the feature
required via tons of external libraries which
are not available in base (ldap connection, an-
tivirus scan, etc). Why would I bother having
an http server installed on my storage server?
Of course if a FreeBSD developers maintains
that code, then there is no need to remove it,
that is how we ended up with 3 firewalls. With
exception of course of servers closely tied with
the kernel like iSCSI target (ctld), nfsd, etc.
But in that case we do provide KNOBS so one
can build a stripped down version of FreeBSD
if they need it.

AJACOUTOT: I think that is a major difference be-
tween our operating systems: we do not want
to provide knobs for everything, we want to
provide what ”we” consider sane defaults and
best practices to enforce ”our” way of seeing
IT. Is it the job of the operating system to pro-
vide embeded and/or stripped ”editions”?
An OpenBSD base installation is a basically
complete fork kit in itself, i.e.
you have everything you need to continue de-
veloping the operating system (utilities, com-
pilers, distribution tools, CVS, source code,
etc). Similarly to FreeBSD, the non-BSD/ISC
licensed parts are isolated in the source tree
so you can easily and safely make commer-
cial products and appliances from OpenBSD
without putting the responsibility of providing
build knobs on us. Talking about knobs, doesnt

that make FreeBSD more a toolkit to build an
operating system than a proper one?

BAPT: No FreeBSD by default is a full featured OS
and on the binary form we do only support
the plain full FreeBSD as served by the ISOs.
but keep in mind that FreeBSD is also widely
used in embedded environments or inside ap-
pliances, both needs lots of flexibility (either
stripping down the size for embedded, or be-
ing able to replace one feature we do provide
by their own implementations). Also we do
encourage a lot vendors to work closely with
their upstream meaning us.

AJACOUTOT: Yes FreeBSD encourages vendors to
contribute and commit: it wants to be a ”uni-
versal” operating system like Linux and satisfy
the maximum amount of people. If you look at
it from a different perspective, you could also
say that FreeBSD does what your employer
wants while OpenBSD does what its develop-
ers want.
Anyway, I like the fact that I can have ”func-
tional problem solving box” in no time with-
out the need to install any third-party packages
while staying very small in size. For instance
I dont need to install proper shell which I can
work with... and I am not even talking about a
super featured shell ala zsh, but ”/bin/csh” as
the default root shell you guys... really?

BAPT: If someone is willing to push a new feature
and/or a new KNOB to improve flexibility as
long as it does not break FreeBSD directions
and usability we will accept it. That gives us
lot of flexibility in the base system and is very
nice to make freebsd usable for very niche us-
age. For example making a very thin storage
only server on ramdisks (like we do in Gandi)
Which makes me think I see that OpenBSD
does not support kernel modules, I find those
very handy for flexibility as I can load or un-
load features on demand if I need it without
having to rebuild the kernel we also have sysctl
and tunables to be able to interact with the ker-
nel configuration. Isnt it painful to tune your
kernel?

AJACOUTOT: While its true that we removed sup-
port for loadable kernel modules, we still have
dynamicity thanks to our config(8) utility. Its
used to modify a kernel without recompilation
or rebooting. Device parameters that are usu-
ally hard-coded in the kernel can be changed,
added, removed... It does not allow you to in-
ject new code into the kernel but it gives you
the choice to enable or disable existing code.

15

To give you a ”Joe User” example, its often
used to disable ulpt(4) (USB printer) support
to make ones printer seen as a regular ugen(4)
usable by libusb.

15 Virtualisation & running alien software

BAPT: On FreeBSD we do support running linux
binaries natively via the linuxulator or linux
emulation. Right now we do support both
linux i386 and amd64, there are patches to sup-
port linux on arm.
Also we do support running old FreeBSD bi-
naries on newer FreeBSD meaning one can run
FreeBSD 4 userland and binaries on FreeBSD
11, inside a jail if they need to for whatever
reason.
On the virtualisation front we are very well
featured, we do support native virtualization
via bhyve It has many nice features like netmap
iface support, vnc server and can run almost
any OS as guest as long as it supports virtio.
But we also support external virtualization
mechanism: xen dom0 and domU (natively),
virtualbox (via ports).

AJACOUTOT: Well, having Citrix people working
as developers does help having Xen Dom0
support. I think it boils down to the fact that
you guys made the decision a long time ago
to not fuck with the hardware as much as pos-
sible but let hardware manufacturers do it and
instead concentrate on something else.
On OpenBSD, we prefer to try and convince
the vendors to open their specifications to let
us write our own drivers. Your approach is
probably more ”pragmatic” but as you prob-
ably know by now, we like to be in control of
our operating system. Not everything is black
and white of course so this is to be taken with a
grain of salt since there is cross-pollination be-
tween our projects and we do use some parts
of your vendor-written drivers (ix(4) for exam-
ple).

BAPT: Being open to vendors is in my opinion a
pragmatic point of view and does not make us
lose control of our sources actually we have
really good relationship with plenty of them,
their committers running through our usual
process to recruit new developers (mentorship
etc). We review the code they commit, and
even extend it sometime. It is not unusual to
see vendors committers continuing to work on
FreeBSD after they stopped working for the
said vendor.

But back on virtualization what is the current
situation on OpenBSD?

AJACOUTOT: Lets start with vmm(4) since its
been mentioned a couple of times already.
Its somewhat currently in its infancy: it can
only reliably run OpenBSD guests (and with
some hacks, NetBSD). That said, it works
really nicely and have a very friendly user
interface with vmctl(8). Since it is chrooted
and pledged, breaking out of the VM monitor
means ending up in a chroot with a very
limited list of allowed syscalls... not much one
can do.
Theres also some ongoing work to be able
to have qemu(1) working on top of vmm(4)
mostly to take advantage of existing VM
management tools; but theres nothing concrete
yet.
The other virtualisation technology that
OpenBSD supports is sun4v logical domains
(LDOM). Its hardware virtualisation (i.e.
the resources are partitioned directly at the
hardware level), is supported on SPARC V9
processors and is very secure by design since
theres no software ”hypervisor” involved:
the processor itself runs in hyper-privileged
execution mode. It can natively run any
sparc64 operating systems (Linux included).

16 Out of the BSDs

BAPT: Right ok, so we speak about our project in-
ternals, but what about the relationship with
external projects.
In general for us most upstream are happy to
receive FreeBSD related patches and integrate
them even big ones.
For example dealing and upstreaming patches
with LibreOffice is very easy they are very
welcomed and even tried to setup a CI based
on it.
On the GNOME/GLib front while I dont deal
with them much we have very good relation-
ship with the GLib maintainer who came to us
to ensure GLib is BSD friendly he even has set
up the GNOME CI on FreeBSD to ensure ev-
erything builds as fine as possible.

AJACOUTOT: We share a same experience I guess.
While some upstreams are more opened than
others to non Linux contributions, in general
they are happy to integrate our patches (and
actually sometimes learn a thing or two about
portability).
Its true that a few identified people within the

16

FOSS community takes some pleasure in bash-
ing anything that is not GNU or Linux but they
are far from being the norm, fortunately for the
ecosystem!
Sometimes, upstream can be very close... To
give you a few examples, OpenBSD devel-
oper Jonathan Matthew is also the developer of
GNOMEs Rhythmbox; Jasper and myself have
commit access to GNOME, Landry Breuil is a
Mozilla and XFCE developer and Robert Nagy
has commit access to LibreOffice.
That said, some applications can be very com-
plex to port so its important to be able to in-
teract nicely with upstream. And when things
start crashing, well, thats when our debugging
tools come into action!
I will not go into the details of such tools which
are probably similar to yours, Ill just mention
that we are building the entire base system with
debug symbols (”-g”). We are thinking about
doing the same for ports and provide different
sets of packages (regular and debug ones).

BAPT: FreeBSD is pretty well stuffed for debug-
ging. By default in base we have ktrace and
truss to be able to track what an application
is doing. In particular when debugging a cap-
sicumized application ktrace is able to tell the
developer what capability his application is
missing if any.
More importantly we now also have dtrace in
base, which is a very powerful tool to be able
to debug. When building the FreeBSD kernel
for example all debug flags are converted to the
CTF format, so are dtraceable.
To help debugging we also build by default the
base system with debug flags (-g) but because
we do care about embedded systems we extract
into a separate file. Lldb and gdb are config-
ured to know where to look for them.
Concerning the ports tree, now lots of appli-
cation are dtrace aware, but the ports tree it-
self is not built with debug flags yet, but there
are work in progress to be able to extract them
from the binaries just like in base and provide
-debug packages.

AJACOUTOT: That is yet another area that has seen
a lot of development lately. Our ddb(4) (the
kernel debugger) just got basic support for
CTF. No that has nothing to do with Capture
The Flag...
Once being included into the binaries, CTF (or
Compact/Compressed Type Format) will pro-
vide a subset of the information from DWARF
debugging sections like definitions of data type

and functions used by debugging tools.
We also have a ctfdump(1) and ctfconvert(1)
implementation and we can dynamically acti-
vate kernel profiling using DTrace-like probes.
So we have the bedrock for DTrace on
OpenBSD. Fun fact is that OpenBSD is also
its own upstream for several software like
OpenSSH, PF, OpenSMTPD, LibreSSL, man-
doc... which are of course used by other oper-
ating systems.

BAPT: It looks like you guys are getting there
which is great. So both projects offer nice de-
bug capabilities, now what we both need are
more contributors! The tooling is here!
Anyway, since we mentioned GNOME and
GLib, lets talk about how we shine (or not) on
the Desktop and multimedia side.

17 BSD as a Desktop

AJACOUTOT: Sure, Ill start with audio if you dont
mind... On OpenBSD, system audio and MIDI
support is handled by the sndio(7) program-
ming interface.
Just like FreeBSD OSS, it supports device
sharing, conversions, resampling, per-program
volume knob and most features that modern
systems have. However, while OSS is a large
pure kernel implementation, sndio(7) is built
around a small user-space daemon (of the size
of getty(8)): no code does signal processing
with kernel privileges but instead it is done us-
ing the unprivileged ” sndio” user. It is com-
prised of 17 functions (sio xxx) that do one
thing and while being relatively small, it gives
you network transparency, per application au-
dio mixing and virtualization (audio devices
and MIDI ports are available on the network
transparently which allows virtual machines to
use the host soundcard for example), record-
what-you-hear device, MIDI ports virtualiza-
tion... In a word, it tried very hard to stay
within the Unix KISS philosophy.
If I am to be honest, there’s one thing that is
still missing in sndio(7), mixer support: we
still need to use the old SunOS API for that.
Also when it was first implemented, it did re-
quire some porting effort in ports compared to
OSS (pre-2002 default Linux API that a lot of
programs already supported) but one says: ”no
pain, no gain” and as far as I know, OSS still
has no way to obtain a device block size not to
recovers from underrun and overruns.

17

BAPT: FreeBSD has a full-featured sound subsys-
tem, giving low-latency in-kernel mixing al-
lowing multiple applications to play sound
(with independent volume controls enabled by
default) with no configuration.
It has an OSS compatible API from userland
perspective. Which makes (made) porting
code to it very easy.
It has multi channel audio support enabled by
default (It can go up to 18 channels but is cur-
rently set to 8 - which correspond to 7.1 sur-
round sound), software equalizer.
About the device block size, there are mech-
anism in OSS for that it was even in
the old linux implementation, via SND-
CTL DSP BLKSIZE (which we do support on
freebsd) along with our old AIOGSIZE. In
case an application does not take that into ac-
count (by getting first the block size) a user
can workaround the issue by using a sysctl:
hw.snd.latency.
The only thing we lack here is network
transparency where because sndio works on
FreeBSD as well, we can use your stuff to have
this feature. So we can have all our native fea-
tures and also benefit all your features for the
price of simply installing the sndio package.

AJACOUTOT: We do have some limitations when it
comes to the Desktop and as far as I know, you
guys have similar ones. The first one would be
wireless support. While there are lots of differ-
ences in supported features and hardware (dif-
ferent 11n rate scaling implementation...), Id
agree that FreeBSD is now a bit ahead of us in
that regard; mostly due to the fact that you have
more people working on it. A few years ago,
when Damien Bergamini was frantically work-
ing on WiFi, it was a different story and I be-
lieve you guys did base some of your WLAN
drivers on ours. Anyway we are slowly closing
the gap though but we are still missing support
for bwn(4) and mwl(4) as well as Tx aggre-
gation and 40 MHz channels. But even with
or without it, I think both projects do lag a bit
behind in general when it comes to supporting
recent WiFi hardware.

BAPT: Well the wireless situation on FreeBSD
is not really better on FreeBSD than on
OpenBSD Im not even sure we have more peo-
ple on it than you do :). Often our drivers
are first imported from OpenBSD and then
adapted and extended.
Another issue is graphic drivers, we are al-
ways lagging behind with very few people

actively working on the kernel part. Mean-
ing in FreeBSD vanilla kernel we can only
support up do haswell GPU which is... We
have an external repository where some people
are actively working on bringing newer drm
drivers to FreeBSD with that project one can
run FreeBSD on nearly all intel chips but this
is far from being mergeable.
So I would say that for this we both us sucks.

AJACOUTOT: Yes indeed, graphics support can also
be problematic for us; its again mostly due to
only having a handful of people working on
it. Im actually impressed by the work theyve
been doing. But while we make a good job on
having X.org and the userland stack up-to-date
(version 1.18.4 at this date), we cannot always
track the most recent changes or features re-
quiring kernel assistance. I think on that topic
we are pretty much in the same boat.

BAPT: On the userland part we are not that bad
now. We are on xorg 1.18.4 as well aka al-
most the latest, we have finally made our duty
and provided a patch to the xorg configura-
tion mechanism so it can directly detect inputs
drivers and hotplugging via devd instead of re-
lying on HAL (something you did long ago).
We also now have evdev support in kernel (will
be in FreeBSD 11.1) which makes it even eas-
ier to deal with input drivers.
Recently we have gain wayland support, it has
been partially committed it, it is usable as a
library and via the scfb driver on EFI with
vanilla kernel. For fully accelerated one, it re-
quires features only available for now on the
external project I talked to you about. What
is your situation regarding wayland? And btw
can you explain me how you deal with xorg?
I heard of xenocara, is it a fork of Xorg? Is it
part of the base system?

AJACOUTOT: Xenocara is not a fork of Xorg no.
In essence its a BSD build infrastructure used
to natively compile and provide Xorg (and a
couple of other graphical projects like fvwm
or cwm) on OpenBSD. It was created by
OpenBSD developer Matthieu Herrb who is
also an Xorg developer and member of the
X.org Foundation. Xenocara was born at the
time Xorg was split into multiple different
modules and I think it was the easiest way
to maintain it on OpenBSD while keeping
upstream hierarchy and hence ease ”up and
down” merging of code. Remember that our
X(7) server has been running with privilege
revocation and separation (using a dedicated

18

x11 user) for ages.
Anyway, Xenocara is not part of the base sys-
tem per se but is part of the default OpenBSD
installation. Its available in the same way as
our base system sets, that is there are no X
packages. You can see it as in-between ports
and base.
The important thing is that it is assumed to
be found on a standard OpenBSD installation
which is an important fact for packages(7) for
example.

BAPT: I see. By the way, since we are talking about
the Desktop and by extension, the user experi-
ence, how is your localisation support?

AJACOUTOT: Regarding character encoding sup-
port, the OpenBSD base system deliberately
supports US-ASCII and UTF-8 only. It allows
for much better error handling and much more
stable operation than a system supporting
arbitrary character encodings. where a single
damaged byte in a text file often results in
all the rest of the file to be unreadable. It is
required that the system is UTF-8 only, or
you don’t get the benefit. I believe that on
FreeBSD, if there is a single invalid byte,
cut(1) loses the complete rest of the input file
even when you use LC CTYPE=en US.UTF-
8. Because ASCII is compatible with UTF-8,
we can enable UTF-8 by default in most
programs while making the terminal safer
and more resilient against control character
attacks. A visual example of the differences
is pod2man(1), which is UTF-8 enabled by
default on OpenBSD, which FreeBSD cannot
do because they support arbitrary locales.
Consequently, non-ASCII characters work
in Perl manuals on OpenBSD, but not in
FreeBSD; compare ”man perlunicook” on
both systems.
Of course, it’s OpenBSD so there’s also the
question of security. If terminals are allowed
to use arbitrary encodings, no text in any
encoding can be safely displayed, because
depending on the encoding, anything might be
a control character. With UTF-8 only, ASCII
is always safe for display.
To summarize, FreeBSD attempts gen-
eral locale(1) LC * support. OpenBSD
deliberately does not, completely ignor-
ing LC COLLATE, LC MESSAGES,
LC MONETARY, LC TIME, NLSPATH,
and in particular LC NUMERIC. I hope
that you guys are not going to implement
the insane non-standard GNU extensions

(LC ADDRESS, LC MEASUREMENT...).
Speaking of which, I am sure you have a nice
story about implementing LC COLLATE in
FreeBSD libc...

BAPT: Well on FreeBSD most LC * were mostly
abandoned for a while, I recently decided to
update those and because it is a nightmare to
deal with all the individual encodings I decided
to revive a very old project we have which
basically means take from CLDR all the re-
sources we will never be able to adapt ourself
and generates those files from there. Along
with adding unicode collation support to our
libc which is a nice story of collaboration be-
tween FreeBSD, Dragonfly and Illumos but
that is another story.
It is really great to have unicode collation in
particular for database indexes and more.
A fun side effect is that apparently no one ex-
pect what unicode collation means and that
ASCII is not the only characters available. So
sorting in a locale aware unicode world results
in a behaviour which can be different from
what people may expect. In particular for basic
unix tools like tr and friends, where [a-z] does
not mean the same as in ASCII.
All our base tools are locale aware but given
we did not have unicode collation then no
one noticed that, since we have unicode col-
lation people tends to get surprised. On the
GNU world they ”fixed” that making those
tools not locale aware. I prefer to make peo-
ple learn about classes which were made for
that: [:lower:] for example.

AJACOUTOT: Lets go back to our current topic: the
Desktop. Regarding the GNOME Desktop en-
vironment, a huge amount of work has been
done to port it by Jasper and myself because
we had a need to deploy and maintain a few
thousands OpenBSD-based desktops. I think
weve been ahead in that regard for a few years
until you guys catched up thanks to Koop Mast
and the FreeBSD GNOME team. We actually
collaborated quite a lot and I am still wander-
ing on the freebsd-gnome IRC channel! I re-
ally appreciate when we are able to work to-
gether for the greater good of the BSDs in gen-
eral.
Besides that its surprising but OpenBSD actu-
ally supports most ”fashion desktop comput-
ing” softwares like DBus, ConsoleKit, PolKit,
chromium, Firefox, LibreOffice, KDE, XFCE,
CUPS...

BAPT: About desktops we are pretty much up to

19

date on GNOME (mainly maintained by Koop
Mast whom collaborate with you for upstream-
ing), KDE, xfce, mate are available in their
latest version as far as I know. Firefox is
well maintained (probably more contributors
would help) the nice thing about Firefox is
the collaboration between the FreeBSD and the
OpenBSD folks. LibreOffice is also in pretty
good shape very few patches necessary. The
main issue I can see in ports now is proba-
bly Google chrome, while it works and I have
to express a very big Kudos to the maintain-
ers, upstream is really unfriendly is part of the
very few upstreams that actually completely
ignore the BSD related patches most of the
time. To have it in ports we do have to main
484 patches.... Large part of them are very easy
to upstream...

18 Authentication, authorisation

BAPT: For the authentication we do use PAM, ac-
tually the OpenPAM implementation (devel-
oped and maintained by a FreeBSD developer)
which is compatible with the PAM specifica-
tion. It gives us access to lots of various ex-
ternal modules even if for most of them we do
prefer relying on our own implementation. The
nice thing is it makes it simple to port common
softwares as they all support pam.

AJACOUTOT: BSD Auth originally came from
BSD/OS (BSDi) and was later adopted by
OpenBSD. One of the differences between
BSD Auth and PAM is that PAM ”modules”
are libraries which must be loaded into the
application. BSD Auth ”modules” are effec-
tively separate applications or scripts located
under /usr/libexec/auth/ that are run as a sepa-
rate process from the one authenticating allow-
ing them to communicate over a simple IPC
interface. That means we never expose the
credentials store to possibly buggy software.
It matches the traditional privilege separation
model we are used to on OpenBSD while still
being able to provide different way to authenti-
cate (LDAP, Kerberos, YubiKey, RADIUS...).
While PAM may be a bit more flexible and way
more commonly found (so there are a lot of
different authentication modules readily avail-
able), it usually requires elevated privileges to
authenticate.
Applications using BSD Auth only need to
be in the ” auth” group to be able to run the
/usr/libexec/auth/ helpers. Just look at your

OpenSSH security advisories, most of them
are related to PAM.

BAPT: In the case of OpenSSH security advisories,
I think it is also probably related to the fact that
upstream is paying less attention (for the obvi-
ous reasons you stated above) but that is true
that pam API is not simple to use and so eas-
ily error prone. In the OpenPAM implemen-
tation, while it is compatible with the official
API there is also plenty of helpers to simplify
adding support for pam in applications so that
it is less error prone.
For name services we do use NSS which pro-
vides us lots of flexibility through its modular
nature. Note that our NSS api are not 100%
compatible with the GNU libc one.
We also provide a nscd daemon which can
cache name service response (per user), but is
not limited to that, It can also performs the re-
quests which means the modules are no longer
loaded into the libc but through that dedicated
daemon.

AJACOUTOT: Regarding authorisation and virtual
system users, we only have support for tradi-
tional YP/NIS. OpenBSD does not use NSS
(nsswitch.conf(5)) for basically the same rea-
sons it does not use PAM, we do not want dy-
namically loaded modules play games in our
libc and resolved. We do have support for
getting users from an LDAP server thanks to
ypldap(8). Its a daemon providing YP maps
using LDAP as a backend. It is a replace-
ment for the traditional ypserv(8) daemon and
is compatible with any ypbind(8) implementa-
tion . Actually I see that you guys imported it
some time ago and I am interested why, was
nss-ldap not enough or is it again for satisfy
”flexibility”?

BAPT: I still wonder myself. It does not hurt but...
hey. I know at least one university that was
happy to see it so they could have simpler steps
to migrate to full LDAP according to one of its
administrator.

19 conclusion

AJACOUTOT: So, all things considered, I think its
pretty obvious that my BSD sucks less than
yours!

BAPT: I agree to disagree on that one, its clear my
BSD sucks less than yours!
That said, I think there are areas where we suck
equally, like wireless or display drivers...

20

AJACOUTOT: That is very true, we do suck on these
aspects!

BAPT: But as much as we like to make fun of each
other, we are not only sharing bad things.

AJACOUTOT: Indeed, I think cross-pollination be-
tween our two operating systems works quite
well. The ix(4) driver comes to mind, or
mandoc(1)... we actually do exchange lots of
things and it would not make sense to list ev-
erything here.

BAPT: OpenBSD has imho an important role, in
the Open Source land and more, You guys are
tackling very important project which would
probably never have happened otherwise. The
most famous one that comes to my mind is
OpenSSH, I really like how open you are
to portability for those softwares given the
amount of extra work it requires to do that:
OpenSMTPD, tmux, mandoc, sndio are very
good example of that. Often teaching up-
streams about good (and secure) coding prac-
tices.

AJACOUTOT: I think FreeBSD is important in the
global ecosystem. Its a real ”enterprise” oper-
ating system and I think it is slowly filling the
spot left by Solaris. It bundles some amazing
pieces of technology and in some area is still
on the edge of innovation. Some very large en-
tities use it (WhatsApp, Netflix...) and thanks
to FreeBSD, a lot of people have been made
aware of the BSD community in general.
For me it is a good weapon to make people
aware that ”fringe” operating systems are cer-
tainly not lagging behind Linux.

BAPT: For me in the FreeBSD is a wonderful Op-
erating Systems very flexible making attractive
for almost all use cases. The project is very
open, and everyone from vendors to individual
have their place, while there are lots of vendors
that contributes to FreeBSD, the project re-
mains completely community driven and indi-
vidual can easily find their path in the project.
As an example in less than 2 years I have been
able to bring very important modifications in
the project and drive lots of the directions the
project has taken.

AJACOUTOT: Were a small project but I am proud
when I see that in some areas twenty or so
hackers can compete with a huge project like
FreeBSD and sometimes deliver things ahead.
We do serious things without taking ourselves
too seriously.
You guys say our performance sucks, we say
your security sucks.

I suppose there is some truth in both stereo-
types.
I see OpenBSD as some kind of incubator and
bedrock for new technologies that is not afraid
to break things; sort of a destroy to build ap-
proach. I love its simplicity and the fact that I
can get on to my task at hand instead of having
to fight the operating system.
I would encourage people to it try out as a
power user or developer. Not just install it but
really try using it. In my experience, besides
the obvious benefits OpenBSD is known for
(proactive security and all), it has been one of
the easiest and best documented operating sys-
tems I have ever used, especially considering
the amount of features it offers you on a de-
fault installation.

BAPT: To conclude, we just wanted to mention that
most topics we covered here could have had
their own paper.

AJACOUTOT: Indeed and thats the reason some
were not covered very deeply or at all.

Notes
1http://www.FreeBSD.org
2http://www.OpenBSD.org
3https://www.openbsd.org/faq/faq15.html#

PortsFlavors
4http://man.openbsd.org/pkg_add.1
5https://man.freebsd.org/fetch(3)
6https://man.freebsd.org/pkg(8)
7https://man.freebsd.org/portmaster(8)
8https://man.freebsd.org/portupgrade(1)
9http://man.openbsd.org/syspatch.8

10https://man.freebsd.org/freebsd-update(8)
11http://open-zfs.org/
12https://illumos.org
13https://www.freebsd.org/doc/handbook/

freebsd-glossary.html#pola-glossary
14http://man.openbsd.org/dpb.1
15http://man.openbsd.org/chroot.2
16http://man.openbsd.org/proot.1
17https://man.freebsd.org/tmpfs(5)
18https://man.freebsd.org/smp(4)
19https://man.freebsd.org/numa(4)
20http://man.openbsd.org/httpd.8
21http://man.openbsd.org/smtpd.8
22http://man.openbsd.org/vmm.4
23https://en.wikipedia.org/wiki/Not_invented_here
24http://man.freebsd.org/jemalloc(3)
25http://man.openbsd.org/malloc.conf.5
26https://en.wikipedia.org/wiki/Address_space_

layout_randomization
27https://pax.grsecurity.net/docs/aslr.txt
28https://man.freebsd.org/capsicum(4)
29http://man.openbsd.org/pledge.2

21

http://www.FreeBSD.org
http://www.OpenBSD.org
https://www.openbsd.org/faq/faq15.html#PortsFlavors
https://www.openbsd.org/faq/faq15.html#PortsFlavors
http://man.openbsd.org/pkg_add.1
https://man.freebsd.org/fetch(3)
https://man.freebsd.org/pkg(8)
https://man.freebsd.org/portmaster(8)
https://man.freebsd.org/portupgrade(1)
http://man.openbsd.org/syspatch.8
https://man.freebsd.org/freebsd-update(8)
http://open-zfs.org/
https://illumos.org
https://www.freebsd.org/doc/handbook/freebsd-glossary.html#pola-glossary
https://www.freebsd.org/doc/handbook/freebsd-glossary.html#pola-glossary
http://man.openbsd.org/dpb.1
http://man.openbsd.org/chroot.2
http://man.openbsd.org/proot.1
https://man.freebsd.org/tmpfs(5)
https://man.freebsd.org/smp(4)
https://man.freebsd.org/numa(4)
http://man.openbsd.org/httpd.8
http://man.openbsd.org/smtpd.8
http://man.openbsd.org/vmm.4
https://en.wikipedia.org/wiki/Not_invented_here
http://man.freebsd.org/jemalloc(3)
http://man.openbsd.org/malloc.conf.5
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://pax.grsecurity.net/docs/aslr.txt
https://man.freebsd.org/capsicum(4)
http://man.openbsd.org/pledge.2

	The History behind the story
	Ports & packages
	Release model & engineering
	Binary upgrades
	Package building & delivery
	SMP & scheduling
	The base system, part I
	Security & sandboxing
	Project governance
	Project organisation
	"BSDification"
	Over engineering
	Storage & file systems
	The base system, part II
	Virtualisation & running alien software
	Out of the BSDs
	BSD as a Desktop
	Authentication, authorisation
	conclusion

