
50    A P R I L 20 1 5  VO L . 4 0, N O. 2 	 www.usenix.org

COLUMNS

Do not become the slave of your model.
—Vincent Van Gogh

Précis: Security metricians must steal all the techniques we can—we
don’t have the time to invent everything we need from scratch. This
column does just that, motivated by the question of whether patching

matters, a question that just will not go away.

A common problem in wildlife biology is simply this: “How many X are there in Y?” as in
“How many frogs are there in the pond?” The most common method is “capture-recapture.”
The technique is simple and has been long applied not just to biology but also to things as
disparate as how to adjust the US Census for undercount [1] to how many streetwalkers there
are in Glasgow [2]. As with any statistical technique, there are assumptions, which we come
to in a moment. First, this is the core process for estimating N, the number of frogs in the
pond:

1.	 Take a sample of size n1 and mark them.

2.	 Release the sample back into the wild.

3.	 Wait a short time, a week perhaps.

4.	 Take another sample of size n2, counting the m2 of the second sample that are found to be
marked.

5.	 As m2
n2

 should be the same as
n1

N

, conclude N = n1n2
m2

That formulation is called the “Lincoln Index.” As an example: catch 41 frogs and band them,
then, a week later, catch 62 frogs and find that six are banded; we therefore estimate that
there are

frogs in the pond. (Note: it is better to actually calculate ((n1 + 1)(n2 + 1)/(m2 + 1)) − 1
which yields an estimate of 377 frogs in the pond.)

The assumptions behind capture-recapture studies are that catching and marking the frogs
does not change their behavior, that marked frogs completely mix into the pond’s population,
that any one frog, marked or not, is equally likely to be caught, that sampling is quick (prefer-
ably all at once), and that the population did not change between captures.

A second method, called “removal-capture,” follows this process:

1.	 Catch n1 frogs during a fixed-duration hunt and remove them.

2.	 Wait a short time, a week perhaps.

3.	 Catch n2 frogs during a second fixed-duration hunt.

For Good Measure
The Undiscovered

D A N G E E R

Dan Geer is the CISO for
In-Q-Tel and a security
researcher with a quantitative
bent. He has a long history
with the USENIX Association,

including officer positions, program
committees, etc. dan@geer.org

www.usenix.org	   A P R I L 20 1 5  VO L . 4 0, N O. 2  51

COLUMNS
For Good Measure: The Undiscovered

4.	 Calling N0 the number of frogs on day 0, if

As an example: the first catch finds 78 frogs and the second 57;
we therefore estimate that there were

frogs in the pond on day 0.

The assumptions behind removal-capture studies are that the
population is reasonably static, large enough for a significant
catch in each subsequent sample yet small enough that a reduc-
tion in catch will be noticed, and that within a constant time
interval a constant fraction of the frogs will be caught.

So why am I mentioning all this? In a May 2014 article in The
Atlantic [3], Bruce Schneier asked a cogent, first-principles ques-
tion: “Are vulnerabilities in software dense or sparse?” If they
are sparse, then every vulnerability you find and fix meaning-
fully lowers the number of vulnerabilities that are extant. If
they are dense, then finding and fixing one more is essentially
irrelevant to security and a waste of the resources spent finding
it. Six-take-away-one is a 15% improvement. Six-thousand-take-
away-one has no detectable value. Eric Rescorla asked a similar
question in 2004: “Is finding security holes a good idea?” [4]
Rescorla established that it is a non-trivial question, as perhaps
confirmed by our still not having The Answer.

In other words, we want to know how many frogs (vulnerabili-
ties) there are in some pond (a software product). One might
then ask whether either or both of the capture-recapture and
removal-capture techniques might help us answer Schneier’s
and Rescorla’s challenge, the challenge of picking a policy direc-
tion based on whether vulnerabilities are sparse or dense. Do we
want a policy that skips patching in favor of rolling software fast
enough to make it a moving target? [5] If we decide to keep patch-
ing, are we better off disclosing or keeping the repairs secret?

Starting at what may be the beginning, in a 1993 paper Vander
Wiel & Votta [6] gave capture-recapture for software engineer-
ing a good airing. Their body of study was on latent errors of
design in software projects and whether multiple, parallel design
reviews might be structured so as not only to find design flaws
but to also estimate how many further design flaws were as yet
undiscovered. In other words, their frog is a design flaw and
their pond is the design of a software project. The context of
their work was an attempt to improve on what had been a quota
system for design reviews at Bell Labs—a design reviewer had to
find between a fixed minimum and a fixed maximum number of
faults per page of the design document.

The Vander Wiel & Votta paper is worth a read if you want early
statistical details. Their basic result was to assess how violat-
ing the assumptions (that are appropriate for wildlife biology)
affected using the capture-recapture technique to estimate the
number of design flaws in a software project. Quoting from their
paper:

Our approach treats the faults found by reviewers
preparing for a design review as data from a capture-
recapture sampling scheme. We use a Monte Carlo
simulation to investigate the inaccuracies of the
capture-recapture estimators due to assumption
violations when faults have varying detection
probabilities and reviewers have different capture
probabilities. Although we would like to use data from
real world design reviews to perform this study, it is
impossible. We can not control the fault detection and
reviewer capture probabilities in design reviews, nor
could we ever hope to obtain the number of reviews
required to perform a statistically significant study.

The problem at hand for security metricians is parallel—we
cannot do controlled experiments, our vulnerability finders have
broad ranges of skills (plus the most skilled ones are not talk-
ing), and vulnerabilities range from trivial to find to the kind of
impossible that wins the “Underhanded C” [7] contest.

Their simulations enabled Vander Wiel & Votta to make some
general recommendations for mitigating violations of the
statistical assumptions. One is for when faults are not equally
easy to find—we have that problem with respect to vulnerabili-
ties, and they tell us that if we can group faults such that those
within a group are equally easy to find, then we can do capture-
recapture for individual groups of faults so long as the groups are
large enough “that some faults in each group are discovered by
more than 1 reviewer.” Another is for when fault finders are not
equally skilled. We have that problem, too, and they tell us that
grouping fault finders by skill level might be worthy of study.
(They did not pursue that option, but perhaps “we” should.)

The two decades since 1993 have seen a lot of experimentation
with capture-recapture in the software engineering litera-
ture. Petersson et al. [8] reviewed that history, classifying the
assumptions (and their violation) as:

M0 the probability of a fault being found is the same for
all faults as is the ability of each inspector to find each
fault

Mh the probability of a fault being found is the same for
all faults, but detection ability can vary from inspector
to inspector

Mt the probability of faults being found varies, but
inspectors all have the same ability to find each fault

52    A P R I L 20 1 5  VO L . 4 0, N O. 2 	 www.usenix.org

COLUMNS
For Good Measure: The Undiscovered

Mth the probability of faults being found can vary and
so can the ability to find a fault can vary from inspector
to inspector

and, yes, each of these four needs a different modeling regime.

In any case, I am not aware of anyone approaching the issue of
latent zero-day vulnerabilities, per se, with these techniques,
techniques that software engineering has adapted from the biol-
ogy world. Certainly, papers as early as Ozment & Schechter’s
“Milk or Wine: Does Software Security Improve with Age?” [9]
looked at the declining rate of flaw finding within a software
project under consistent management (OpenBSD), but that is
subtly different and, in any case, should probably be evaluated
as an example of removal-capture rather than an example of
capture-recapture.

It seems to me that the most straightforward way to make a first
quantitative effort here is to employ three or more independent
penetration tests against the same target. Or have your software
looked over by three or more firms offering static analysis. Scott
& Wohlin’s case study [10] with the KDE Open Source project
and UIQ Technology might be worth copying.

Perhaps we can take a large body of code and look at the patches
that have been issued against it over time. If you take a patch as a
marker for a previously undiscovered flaw, then the rate at which
patches issue is a removal-capture process. Were that process
to maintain a relatively constant hum, then it might imply that
software flaws are indeed dense—too dense to diminish with
removals. Of course, patches for a commercial software system
are not necessarily unitary—one apparent patch may actually fix
several flaws. Rescorla concluded that fixing without disclosure
is better than fixing with disclosure (and thus was “an advantage
for closed source over open source”), but such a policy certainly
doesn’t help us do quantitative research with real data.

There is something here to work with for those who test or who
can closely observe those who do. Be in touch; I’d like to work
with you.

References
[1] Multiple articles in Statistical Science, vol. 9 no. 4, 1994.

[2] N. McKeganey et al., “Female Streetworking Prostitution
and HIV Infection in Glasgow,” British Medical Journal (1992),
vol. 305, pp. 801–804.

[3] “Should U.S. Hackers Fix Cybersecurity Holes or Exploit
Them?”: www.theatlantic.com/technology/archive/2014/05/
should-hackers-fix-cybersecurity-holes-or-exploit-them
/371197.

[4] E. Rescorla, “Is Finding Security Holes a Good Idea?”
Workshop on the Economics of Information Security, 2004.

[5] S. Clark, S. Collis, M. Blaze, and J. M. Smith, “Moving
Target: Security and Rapid-Release in Firefox,” in Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Commu-
nications Security (ACM, 2014) pp. 1256–1266: dl.acm.org
/citation.cfm?id=2660320.

[6] S. A. Vander Wiel and L. G. Votta, “Assessing Software
Designs Using Capture-Recapture Methods,” IEEE Trans-
actions on Software Engineering (1993), vol. 19, no. 11, pp.
1045–1054.

[7] http://www.underhanded-c.org/: “The goal of the contest is
to write code that is as readable, clear, innocent and straight-
forward as possible, and yet it must fail to perform its apparent
function. To be more specific, it should do something subtly
evil.”

[8] H. Petersson, T. Thelin, P. Runeson, and C. Wohlin,
“Capture-Recapture in Software Inspections after 10 Years
of Research,” Journal of Systems and Software (July 2004),
vol. 72, no. 2, pp. 249–264.

[9] A. Ozment and S. E. Schechter, “Milk or Wine: Does Soft-
ware Security Improve with Age?” in Proceedings of the 15th
Conference on USENIX Security Symposium (2006), pp. 93–104.

[10] H. Scott and C. Wohlin, “Capture-Recapture in Software
Unit Testing—A Case Study,” Blekinge Institute of Technology,
2004: www.wohlin.eu/esem08-1.pdf.

Become a USENIX Supporter and
Reach Your Target Audience

The USENIX Association welcomes industrial sponsorship and offers custom packages
to help you promote your organization, programs, and products to our membership
and con ference attendees.

Whether you are interested in sales, recruiting top talent, or branding to a highly
 targeted audience, we offer key outreach for our sponsors. To learn more about
 becoming a USENIX Supporter, as well as our multiple conference sponsorship
 packages, please contact sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excel-
lence and innovation in neutral forums. Sponsorship of USENIX keeps our conferences
affordable for all and supports scholarships for students, equal representation of women
and minorities in the computing research community, and the development of open
source technology.

Learn more at:
www.usenix.org/supporter

Become a USENIX Supporter and
Reach Your Target Audience

The USENIX Association welcomes industrial sponsorship and offers custom packages
to help you promote your organization, programs, and products to our membership
and con ference attendees.

Whether you are interested in sales, recruiting top talent, or branding to a highly
 targeted audience, we offer key outreach for our sponsors. To learn more about
 becoming a USENIX Supporter, as well as our multiple conference sponsorship
 packages, please contact sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excel-
lence and innovation in neutral forums. Sponsorship of USENIX keeps our conferences
affordable for all and supports scholarships for students, equal representation of women
and minorities in the computing research community, and the development of open
source technology.

Learn more at:
www.usenix.org/supporter

