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Abstract. Writing code that manipulates bit streams is a painful and error-prone
programming task, often performed via bit twiddling techniques such as explicit
bit shifts and bit masks in programmer-allocated buffers. Still, this kind of pro-
gramming is necessary in many application areas ranging from decoding stream-
ing media files to implementing network protocols. In this paper we employ high-
level constructs from declarative programming, such as pattern matching at the
bit level and bit stream comprehensions, and show how a variety of bit stream
programming applications can be written in a succinct, less error-prone, and to-
tally memory-safe manner. We also describe how these constructs can be imple-
mented efficiently. The resulting performance is superior to that of other (purely)
functional languages and competitive to that of low-level languages such as C.

1 Introduction

Binary data is everywhere. Many applications such as processing network data, en-
coding and decoding streaming media files, file compression and decompression, cryp-
tography etc. need to process such data. Consequently, programmers often find them-
selves wanting to write programs that manipulate bit streams. In imperative languages
such as C, processing of bit streams typically happens using so called bit twiddling
techniques that involve combinations of shifts, bitwise operators and explicit masks on
programmer-allocated buffers. In general, bit twiddling obfuscates the intention of the
programmer, is often error-prone, and leads to code that is unnecessarily verbose, hard
to read and modify. Furthermore, bit twiddling code tends to lose the connection with
the specification of the data format which is to be processed.

Declarative languages can in principle avoid these shortcomings since they allow for
high-level manipulation of data. Unfortunately, the ability to do so comes with a catch.
For example, the pattern matching facilities offered by most functional languages are
tightly coupled to constructor-based datatypes. As a result, programmers who want to
manipulate bit streams have to choose between the lesser of the following two evils:
either pay a significant cost in time and space and convert binary data to a symbolic
representation, or resort to an imperative style of programming using bit twiddling
techniques on byte arrays. In typical applications which require bit stream manipula-
tion, performance considerations are paramount. As a result, in most practical uses,
the imperative style of programming wins although there is no fundamental reason for
declarative languages to lack constructs for efficient bit stream manipulation.



Since 2001, the functional language Erlang comes with a byte-oriented datatype
(called binary) and with constructs to do pattern matching on a binary [13]. We have
been heavily involved in this work and implemented a scheme for native code compila-
tion of binaries and designed efficient algorithms for constructing deterministic pattern
matching automata for byte-based binaries [7]. In last year’s Erlang workshop we put
forward a proposal [6] for lifting the restriction that Erlang binaries are sequences of
bytes rather than bits and described the semantics of bit-level pattern matching on a
bit-level binary (called bit stream). We have subsequently realized this proposal and
describe its applications and implementation in this paper.

More specifically, the contributions of this paper are as follows:

– We explain how declarative programming constructs such as pattern matching and
comprehensions brought down to the bit level can simplify bit stream programming
(Sect. 2) and show how these constructs allow us to obtain compact and elegant
solutions to important real-world applications (Sect. 3).

– We describe how these bit-level constructs can be implemented efficiently (Sect. 4).
– Finally, we compare the efficiency and ease of programming of using this approach

to writing bit stream applications, with that of using other languages, both func-
tional and imperative (Sect. 5).

2 Bit Stream Programming in Erlang

We show the features and expressive power of bit stream manipulation in Erlang through
a series of examples. A more detailed and formal treatment can be found in [6].

2.1 Constructing and matching a bit stream

This first example is very simple. It shows how to construct a bit stream and how such
a stream can be deconstructed using bit-level pattern matching.

case <<8:4, 63:6>> of

<<A:7, B/bitstr>> -> {A,B}
end

The expression <<8:4, 63:6>> evaluates to a ten-bit bit stream were its first four bits are
the four low bits of the integer 8 and its last six bits are the six low bits of the integer 63.
This creates the bit stream <<1000111111>>. For succinctness, we will denote such a
bit stream as <<143:8, 3:2>>, which means that the first eight bits of the bit stream
represented as an unsigned integer is 143 and the last two bits are the integer 3.

The case statement binds the variable A3 to an integer constructed from the first
seven bits in the bit stream, namely 39 (1000111). Because of the explicit type specifier
bitstr rather than integer which is the default, B gets bound to the remaining bit
stream <<7:3>>. As a result, the case expression evaluates to {39,<<7:3>>}.

Another useful feature of bit streams is the ability to have arithmetic expressions as
sizes of bit stream segments. This is shown in the next example.

3 All variables in Erlang start with a capital letter.
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+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|Version| IHL |Type of Service| Total Length |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Identification |Flags| Fragment Offset |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time to Live | Protocol | Header Checksum |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Source Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Destination Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Options | Padding |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

parse IP packet(
<<Version:4, IHL:4, ToS:8, TotalLength:16,
Identification:16, Flags:3, FragOffset:13

TimeToLive:8, Protocol:8, Checksum:16
SourceAddress:32,

DestinationAddress:32,
OptionsAndPadding:((IHL-5)*32)/bitstr,

Data/bitstr>>) when Version =:= 4 ->
...

Fig. 1. Internet Protocol datagram header (from RFC 791) and parsing of an IPv4 packet in Erlang

2.2 Parsing IP packets

In RFC 791 [14] the IP header is exemplified with the diagram shown in the left part
of Figure 1. Note the close resemblance between this representation and the bit stream
pattern shown in the right part of the figure which parses an IPv4 packet header.

For the most part, this is similar to the previous example except that this pattern
is used in a function head rather than a case statement. Note also that the pattern ex-
presses the meaning of the IHL field, which contains the IP header length in 32-bit
words. Since the non-optional part of the IP header consists of five 32-bit words, the
options and padding will take up (IHL-5)*32 bits. This is expressed by using an arith-
metic expression as the size of a segment. Because this arithmetic expression can refer
to variables bound earlier in the binary pattern, as in this example, the matching has to
respect the corresponding left-to-right ordering constraints between segments.4

2.3 Iterating and filtering a bit stream

Consider a variation of the drop third program introduced in [17] that requires in-
specting bits besides counting them. The task is to drop from a bit stream of size exactly
divisible by three all 3-bit chunks that begin with a zero. Using pattern matching on bit
streams this task can be performed with the program in Figure 2. The solution is both
natural and straightforward. The first clause describes what should happen if the first

drop 0XX(<<1:1, X:2, Rest/bitstr>>) ->

<<1:1, X:2, drop 0XX(Rest)>>;

drop 0XX(<<0:1, :2, Rest/bitstr>>) ->

drop 0XX(Rest);

drop 0XX(<<>>) ->

<<>>.

Fig. 2. drop 0XX using bit stream pattern matching

bit in a 3-bit chunk is one: we keep
that chunk and add it to the resulting
stream. The second clause handles
the case where the first bit is a zero:
we discard that 3-bit chunk. Fi-
nally the last clause handles the case
where there are no more chunks: we
return the empty bit stream.

Contrast this with a program written in a language that does not support manipula-
tion of bit streams at the bit level very well such as C or Java. The programmer would

4 Arithmetic expressions as sizes of segments are not allowed in Erlang/OTP R11B-1 (or prior).
Instead, size expressions can only be variables or constants.



have to keep track of which bits to extract from the current byte of the incoming bit
stream, use bit masks and shifts to extract each triple, and calculate how much padding
is needed in the output stream. Being able to express pattern matching at the bit level,
Erlang programmers are allowed to write declarative specifications of their intentions
without having to worry about low-level details such as padding.

2.4 Inverting a bit stream using a comprehension

Another way to write code which iterates over a bit stream is to use a bit stream com-
prehension [6]. This is a construct analogous to a list comprehension [18], which in turn
is an expression that is syntactic sugar for the combination of map, filter and concat
on lists. For a simple example use of a bit stream comprehension consider the task of
inverting all bits in a bit stream. The bsnot function below performs this task.

bsnot(BitStr) ->

<< bnot(X):1 || <<X:1>> <= BitStr >>.

The meaning of this comprehension is: iterate through each bit in the bit stream, invert
it using the built-in bnot operator, and put it into the resulting bit stream.

2.5 Iterating and filtering a bit stream using comprehensions

For a slightly more involved example consider the drop 0XX function of Section 2.3.
Using bit stream comprehensions, drop 0XX would be written more succinctly as:

drop 0XX(BitStr) ->

<< <<1:1,X:2>> || <<1:1,X:2>> <= BitStr >>.

This comprehension works as follows. If the first three bits of the bit stream match the
pattern <<1:1,X:2>> then place those bits in the resulting stream; otherwise drop these
bits. Repeat until no bits remain in the bit stream. That is the pattern works as both a fil-
ter and a generator. To make this more explicit we can write a drop 0XX function which
is equivalent with the previous one using an explicit filter in the following manner:5

drop 0XX(BitStr) ->

<< X:3 || <<X:3>> <= BitStr, 2#100 =< X >>.

In bit stream comprehensions, sometimes more complicated, perhaps user-defined,
filtering is needed. In the following example, we are given a string represented as a bit
stream and want to extract all non-digit characters from this string and store each of the
digits in four bits:6

compact_digits(String) ->

<< (X-$0):4 || <<X:8>> <= String, is_digit(X) >>.

is_digit(X) when $0 =< X, X =< $9 -> true;

is_digit(_) -> false.

5 In Erlang, 2#100 represents the number four in base two.
6 In Erlang,’$’ is an operator which given a character returns the ASCII value of that character.



3 Applications

3.1 UU-encoding

UU-encoding is an old binary-to-text encoding scheme where groups of three binary
bytes are encoded in four characters. This is done by dividing the three binary bytes
into four groups of six bits. Then 32 is added to each six bit group which turns them
into characters. The cores of these encoding and decoding scheme essentially become
one-liners using Erlang’s bit stream programming facilities.

uuencode(BitStr) ->

<< (X+32):8 || <<X:6>> <= BitStr >>.

uudecode(Text) ->

<< (X-32):6 || <<X:8>> <= Text >>.

3.2 yEnc

The yEnc format is a newer encoding of binary files than UU-encoding where bytes
which cannot be safely transmitted in text mode are escaped. Each byte in the original
stream is encoded by adding 42 to it using 8-bit arithmetic. If the result is a critical
character (i.e., NULL, TAB [ASCII 9], LF [ASCII 10], CR [ASCII 13] which are hard
to transmit over some networks or ’=’ [ASCII 61] which is used as an escape character),
the character is encoded using two bytes: the first byte is ’=’ [ASCII 61] and the second
byte is the critical value plus 64. To encode a binary file in the yEnc format [8], we can
use the bit stream comprehension in the following program:

yenc(Bin) ->

<< yenc_byte(Byte) || <<Byte:8>> <= Bin >>.

yenc_byte(Byte) ->

Enc = (Byte+42 rem 256),

case is critical(Enc) of

true -> <<61:8, (Enc+64):8>>;

false -> <<Enc:8>>

end.

3.3 µ-law

Audio files are nowadays transmitted over the network using a variety of formats. One
such format, designed to be space efficient, is µ-law compressed files [10]. Such files
are compressed to half the size of the original audio as each 16-bit sample is translated
into an 8-bit representation.

µ-law encoding The encoding method is non-trivial but still quite simple. First the
Sound sample is transformed from 2’s complement form to a Biased sign magnitude
form where the magnitude is an integer in the range [132..32767]. This can be done
easily with the bit stream comprehension:



<< to_sign_magn(Sample) || <<Sample:16/integer-signed>> <= Sound >>

which simply takes each 16-bit sample in 2’s complement form. This is achieved by
using the signed specifier in the pattern. The to sign magn function is then applied
to this value. This function is defined as follows:

to_sign_magn(Sample) ->

<<sign(Sample):1, (min(abs(Sample), 32635)+132):15>>.

i.e., it transforms the sample from 2’s complement form into sign magnitude form and
increases the magnitude with 132.

In the next step, this representation is translated to an 8-bit representation where the
first bit represents the sign, the next three bits represent the position of the first 1 in
the magnitude, and the last four bits represent the values of the four bits following the
leading 1. This can also be done with a comprehension of the form:

<< to_byte(S,M) || <<S:1,M:15/bitstr>> <= Biased >>

In this case, S contains the sign bit and M is a bit stream consisting of 15 bits representing
the magnitude of the sample. These are used as arguments to the to byte function
which is defined as follows:

to_byte(Sign, Magn) -> to_byte(Sign, Magn, 7).

to_byte(Sign, <<1:1, Mantissa:4, _/bitstr>>, N) ->

<<Sign:1, N:3, Mantissa:4>>;

to_byte(Sign, <<0:1, Rest/bitstr>>, N) ->

to_byte(Sign, Rest, N-1).

This function searches for the position of the first 1 in the Magn bit stream. Since the
range of the magnitude is 132–32676 there will be at least one 1 in the first 8 bits and
recursion will stop. The position of the first 1 is therefore coded in the following way:

7 6 5 4 3 2 1 0

Thus, if the third bit contains the first 1, its position is 5. The following four bits are
called the mantissa. In the byte created by the to byte function the first bit contains
the sign, the following three bits contain the position, and the last four bits contain the
mantissa.

Finally, we take the 1’s complement of this value using the bsnot operator of Sec-
tion 2.4. The complete code for µ-law encoding is shown in the appendix.

µ-law decoding To decode these values we start by taking their 1’s complement. We
then translate the bytes to sign magnitude form again with this comprehension:

Biased = << to_short(Sign, Exp, Mantissa) ||

<<Sign:1,Exp:3,Mantissa:4>> <= Encoded >>



where the to short function is defined in the following way:

to_short(Sign, Exp, Mantissa) ->

<<Sign:1, 1:(8-Exp), Mantissa:4, 1:1, 0:(2+Exp)>>.

That is, put the Sign bit first, then put the leading one in the correct place followed by
the mantissa and an additional 1 and fill the remaining bits with zeroes.

Finally, we must translate the sign magnitude representation into 2’s complement
representation and remove the bias. This is done with the comprehension:

<< unbias(Sign,Magn) || <<Sign:1,Magn:15>> <= Biased >>

where the function unbias is defined as follows:

unbias(0, Magn) -> <<(Magn - 132):16>>;

unbias(1, Magn) -> <<(132 - Magn):16>>.

3.4 PNG
The Portable Network Graphics (PNG) file format [16, 11] is a rather recent format for
picture files intended to replace the widely-used but patent-based GIF format. The struc-
ture of the PNG format is quite simple. It consists of an initial signature and then a series
of chunks. Each of the chunks consists of a length field, a type field, the chunk data,
and a checksum. A certain type of chunk contains the raw compressed data whereas the
rest of the chunks contains meta data. Assuming that the PNG variable is bound to a bit
stream where we have removed the signature from the original file, we can recreate the
raw data in order to decompress it using the following bit stream comprehension.

<< RawData || <<Length:32, 73:8,68:8,65:8,84:8,

RawData:(Length*8)/bitstr, _Crc:32>> <= PNG >>

The sequence of numbers 73,68,65,84 is the content of the type field for the chunk
containing raw data. This means that only the chunks that contain raw data match the
generator pattern and only the data from those chunks makes up the resulting bit stream.
We can then decompress this data and use the uncompressed data and the chunks con-
taining meta data to generate the picture.

3.5 Huffman
Huffman encoding is a variable length encoding of characters. The mapping between
the variable length codes and the static codes is described by a Huffman tree. This tree
is a binary tree where the leaves are static codes. The mapping from the dynamic length
codes to the static codes is encoded in the path from the root to a leaf. For example, if
a leaf contains the static code 32 and is reached from the root by taking the left branch,
then the right branch and finally the left branch, this means that 010 maps to 32.

To decode a Huffman encoded bit stream we can use Program 1. The main decoding
function has four clauses. The first is taken if we have reached a leaf in the Huffman
tree. If this is the case we add the value in that leaf to the output and recurse. The second
clause is taken if we are at a branch and the value of the next bit is zero. In that case
we take the left branch. The third clause is taken if the next bit was one and in that case
we choose the right branch. The fourth and final clause is taken when there are no more
bits left to decode which means that we are done.



Program 1 Function for decoding a Huffman encoded bit stream
huffman_decode(BitStr, Tree) ->

huffman_decode(BitStr, Tree, Tree).

huffman_decode(Rest, Char, Tree) when is_char(Char) ->

[Char | huffman_decode(Rest, Tree, Tree)];

huffman_decode(<<0:1,Rest/bitstr>>, {Left,_}, Tree) ->

huffman_decode(Rest, Left, Tree);

huffman_decode(<<1:1,Rest/bitstr>>, {_,Right}, Tree) ->

huffman_decode(Rest, Right, Tree);

huffman_decode(<<>>, _, _) ->

[].

4 Implementation

Having seen constructs and typical applications of bit stream manipulation, let us now
see how we efficiently implement these constructs.

4.1 Internal representation of bit streams

We have chosen an internal representation of bit streams which has the property that the
space overhead of storing each stream is constant, independent of the size of the stream.
The representation uses two different structures: a base stream and a sub-stream. The
base stream contains a header, a size field expressing the size of the bit stream in bits,
and an array of data which contains the actual bit sequence. For a bit stream with bit
size n, the bit sequence starts with the first bit in the data array and ends at the n-th
bit in the array. The sub-stream structure contains a header field, a size field, an offset
field, and a pointer to a base stream. Let us denote the content of the size field by n, the
content of the offset field by o and the base stream that the sub-stream is pointing to by
BS. Then the bit sequence that the sub-stream represents starts with o-th bit of the data
array of the base stream BS and ends with the (o+n-1)-th bit of the data array of BS.

Header
Size = 31

0 0 1 0 1 1 1 1
0 0 1 0 1 1 1 1

0 1 1 0 0 1 1 1

0 0 0 0 0 0 0 1

Header

S = 5

O = 17

 

Header

S = 16

O = 8

 

A

B

C

Fig. 3. Internal representation of bit
streams

Figure 3 shows the representation of a base
stream and two sub-streams. In our implemen-
tation, the header, size and offset fields are
all word-sized even though they look smaller
in the figure. The header field stores the size
in words of the structure and a runtime tag
which identifies the object as a base stream (or
sub-stream). In the figure, A, B, and C are all
variables bound to binaries. A is bound to the
base stream <<47:8,47:8,101:8,1:7>>, B
is bound to the sub-stream <<25:5>> marked
with a black border in the figure and C is bound
to the sub-stream <<47:8,101:8>> which is
marked with a grey background in the figure.



4.2 Implementation of bit stream construction

Bit stream construction is aided by two low-level auxiliary functions:

put integer() which given a pointer, an offset in bits, a size in bits, and an integer (a
fixnum or a bignum) and writes size bits of the integer starting at offset bits from
the pointer, and

put bitstr() which given a pointer, an offset in bits, a size in bits, and a bit stream
writes the first size bits of the bit stream starting at offset bits from the pointer.

A bit stream construction expression of the form <<ve1:se1/t1,...,ven:sen/tn>>

is translated using these functions as follows. We start by evaluating all the value and
size expressions and end up with an expression of the form <<v1:s1/t1,...,vn:sn/tn>>

where all the vi:s are values and all the si:s are non-negative integers. If any si is a neg-
ative value, a run-time exception is raised.

Then, we perform the following operations:

1. Calculate the resulting size of the bit stream as
∑n

i=1
si.

2. Allocate a base stream with a large enough data array to hold all the bits of the bit
stream, initialize data ptr to a pointer to the beginning of the data array and set
offset to 0.

3. For each segment, do the following:
(a) If ti is integer we call put integer(data ptr, offset, si, vi)
(b) If ti is bitstr we call put bitstr(data ptr, offset, si, vi)
(c) Set offset to offset+si

4. After all segments are processed, return the base stream.

4.3 Implementation of bit stream pattern matching

We only describe the case of matching a bit stream against a single binary pattern. For
a thorough treatment of how to efficiently match a (byte-aligned) binary against many
patterns simultaneously refer to our prior work [7] which describes effective algorithms
for constructing deterministic binary pattern matching automata.

The matching is aided by two low-level auxiliary functions:

get integer() which returns an integer given a pointer to some data, an offset in bits
into that data, and the number of bits that should be used to create the integer, and

get bitstr() which creates a sub-stream from an offset, a size and a pointer to a base-
binary.

To match <<X1:e1/t1,...,Xn:en/tn>> against a bit stream BitStr we perform
the matching in the manner described below.

1. Create a matching state from BitStr. The state contains the following information:
data ptr a pointer to the data
offset the present offset into the data
end the offset of the last bit in the stream
orig ptr a pointer to the base stream which contains the data



2. For each segment, perform the following tasks:
(a) Evaluate ei, the size expression of the first segment to the integer si.
(b) Check whether offset+si ≤ end, or else the matching fails.
(c) If ti is integer then Xi = get integer(data ptr, offset, si)
(d) If ti is bitstr then Xi = get bitstr(offset, si, orig ptr)
(e) Set offset to offset+si

3. Check whether offset == end. If so, the matching succeeds, otherwise it fails.

A tail segment (i.e., a last segment of the form Xn/bitstr) is handled specially: we
bind Xn to get bitstr(offset, end, orig ptr) and set the value of offset to end.

Also, note that we described the case where all segments are of the form Xi:ei/ti

where Xi is a variable. If some Xi is not a variable but has a value vi we simply add an
equality test that checks that vi is equal to the value returned from either get integer or
get bitstr. If not equal, the matching fails. Otherwise the matching continues with the
next segment.

4.4 Efficient abstractions and alternatives

With the contiguous internal representation of Sect. 4.1 bit stream pattern matching is
fast but building bit streams piece by piece is expensive. Still, on top of our representa-
tion we can build two efficient abstractions, segmented bit streams and buffers.

Segmented bit streams A segmented bit stream consists of a list of (possibly segmented)
streams and represents the stream that is formed if the streams in the list are concate-
nated. Thus, a segmented bit stream is a (deep) list of bit streams. This abstraction
makes it easy and cheap to concatenate a new bit stream to an existing segmented bit
stream: all we need to do is to put it first in the list. Then, to efficiently turn a seg-
mented bit stream into a regular contiguous bit stream we introduce a built-in called
list to bitstr which simply transforms a (deep) list of bit streams into a single, con-
tiguous one. This way, constructing a bit stream of size n piecemeal from some other
streams can be done in O(n) as opposed to O(n2) if segmented bit streams are not used.
However, note that in the worst case (when each element in the list is a one-bit stream),
the segmented bit streams abstraction has a significant space overhead.

Buffers The idea of the buffer abstraction is taken from the Lua programming lan-
guage [9]. A buffer is basically a list of bit streams with the following invariant: each
bit stream in the list is strictly smaller than the next bit stream in the list. Note that,
since the representation is a list of bit streams, the list to bitstr built-in can then be
used to turn a buffer into a contiguous bit stream. However, since we need to maintain
the invariant that bit streams in the list are increasing in size, sometimes we need to
concatenate bit streams directly when adding streams to the buffer. This makes con-
struction of a buffer more expensive than constructing a segmented bit stream, but the
invariant keeps the space overhead lower for a buffer than for a segmented bit stream,
since the maximal length of the list is O(

√
n) if the total number of bits is n.

Currently, neither buffers nor segmented bit streams have any support on the lan-
guage level. This means that e.g. to use bit stream pattern matching on a buffer, the
buffer must first be explicitly converted to a contiguous representation using list to bitstr.



4.5 Implementation of bit stream comprehensions

The implementation of bit stream comprehensions requires considering the implica-
tions of the chosen underlying representation. If we choose to implement bit stream
comprehension naı̈vely, constructing a new bit stream in each iteration the cost of the
comprehension would be quadratic in the number of iterations.

Naturally we can do better than this. One possible choice is to use segmented bit
streams, i.e. build a list of bit streams and then use the list to bitstr built-in to convert
the list into a bit stream. Another possibility is to collect all of the bit streams in a list
accumulator and at the same time calculate the sum of the sizes of the streams in the
list. In this way we find out the size of the resulting bit streams and create a list whose
elements are the streams in reverse order. We can then allocate a large enough base
stream and copy the bit streams in the list into the data array of that base stream.

Though both these solutions have linear complexity, we can decrease the constant
factors significantly whenever it is possible to compute an upper bound on the size of
the resulting bit stream. In these cases we allocate a base stream in advance and write
the results to the base stream as the bit stream comprehension is evaluated.

When is it possible to compute an upper bound on the resulting bit stream? Let us
consider the case when we only have one generator, which is by far the most common
situation. In such a case, the bit stream comprehension looks as follows:

<< e:se/t || <<e1:se1/t1, . . . , en:sen/tn>> <= BitStr,ef >>

If all of the size expressions (se, se1, . . . , sen) can be evaluated before the bit stream
comprehension starts being evaluated, then we can calculate how many bits of the input
bit stream are consumed in each iteration (

∑n

i=1
sei) and how many bits might be

produced in each iteration (se). That is, if BitStr has size m the maximal number of
bits in the resulting binary is: (m × se)/

∑n

i=1
sei.

On the other hand, in some cases it is impossible to calculate a tight upper bound
on the size of the resulting binary. One example is this comprehension:

<< 42:N || <<S:8,N:(S*S)>> <= BitStr >>

Luckily, such comprehensions are rather rare in practice. Thus, in our implementation
we chose to stick to a simple implementation of bit stream comprehensions, namely that
which uses segmented binaries flattened by a call to list to bitstr for such uncommon
cases. For cases when a tight upper bound can be calculated we use the method which
preallocates a base stream of suitable size.

5 Performance

From Section 3 it should be clear that bit-level binaries and comprehensions allow for
flexible manipulation of bit streams. Still, these constructs are to be used in applica-
tions where speed of processing is a prime consideration. Thus, it is imperative that the
performance of the underlying implementation is competitive with both imperative lan-
guages using bit shifts and bit masks on byte arrays and with other high-performance
functional languages using bit or byte arrays for representing bit streams.



drop 0XX This is the program from Section 2.3. It takes a bit stream and removes all 3-bit
chunks that start with a 0. In the benchmark, the size of the input stream is about 28.5 million
bits; the size of the resulting bit stream is about 8 million bits. We perform 10 iterations.

five11 Implements the IS-683 PRL protocol. Reads a file whose first 16 bits represent an integer
that describes how many PRL packets the file contains. Each packet starts with a 5-bit integer
describing how many channels the packet contains and is followed by that number of 11-bit
channel descriptors. The output is a list of channel descriptors for each packet. The input
data consists of 496 different packets (16 of each possible size) and is decoded 10,000 times.

huffman The input is a file containing the huffman tree and a message encoded using this tree.
The benchmark recreates the original message. The size of the encoded file is 747,647 bytes
and the decoded file consists of 3,568,560 bytes. The file is decoded 10 times.

uudecode This benchmark decodes a file that has been uuencoded. The size of the encoded
input file is 747,647 bytes and the size of the decoded output file is 542,623 bytes. The file
is decoded 100 times.

uuencode This benchmark uuencodes a file. The input file consists of 542,623 bytes and the
encoded output consist of 747,647 bytes. The file is encoded 100 times.

Fig. 4. Description of the benchmarks

Notice however that bit streams in Erlang are immutable data structures. The lan-
guage provides no support for destructive updates. Also, notice that memory manage-
ment for bit streams is automatic and a responsibility of the underlying runtime system,
not of the programmer. Thus comparing the performance of functional vs. imperative
languages in applications which manipulate bit streams has a bit of an “apples and or-
anges” flavor, especially since different styles of programming are often employed.

Still, this performance comparison is interesting. We will base it on the programs
described in Figure 4 which spend the bulk of their work in bit stream manipulation.

We have implemented these benchmarks in three different functional languages,
namely Erlang with all the extensions described in this paper, Haskell and O’Caml. In
addition, we wrote C and Java versions of the first three benchmarks and found publicly
available uudecode and uuencode C programs on the net which we converted to ap-
propriate benchmarks and translated to Java. Our intention was to eliminate any traces
of possible favoritism for some language and any inefficiencies due to our program-
ming skills. So, we requested the help of Haskell and O’Caml experts to perform any
efficiency improvements they saw fit, provided that the programs remain functional:
i.e., use no mutation in the part of the program for which measurements are taken. On
the other hand, the imperative languages are free to—and indeed do—use destructive
assignments on all benchmarks.

The compilers that we used are the Glasgow Haskell Compiler version 6.4.1, the
O’Caml 3.09.1 native code compiler, and GCC 3.4.2 for C and Java (gcj). For Erlang
we used the HiPE native code compiler in the pre-release of Erlang/OTP R11B-2. The
machine we used is a 2.4 GHz Pentium 4 with 1 GB of memory running Fedora Core 3.

5.1 Runtime performance

Figure 5 shows performance results. We can see that Erlang enhanced with the con-
structs described in this paper is competitive in speed with other state-of-the-art func-



Runtimes (in secs) Lines of code
Functional Imperative

Benchmark Erlang Haskell O’Caml C Java
drop 0XX 2.09 5.85 2.25 0.96 1.99
five11 4.97 8.65 7.69 9.79 18.41
huffman 2.29 7.38 10.81 0.97 1.75
uudecode 3.21 6.04 2.65 0.86 0.97
uuencode 2.85 7.77 2.82 1.04 0.98

Functional Imperative
Erlang Haskell O’Caml C Java

2 47 45 26 47
9 38 23 64 78

14 30 54 67 81
20 91 65 43 57
25 70 70 54 64

Fig. 5. Time performance and succinctness of programming in different languages

tional languages in programs that manipulate bit streams. This is not due to Erlang’s
overall performance compared with Haskell and O’Caml. Instead, it is due to having
these constructs in the language and having the compiler generate reasonably efficient
code for them. Also, at least for these programs, the performance of the functional way
of manipulating low-level representations is not so far away from that obtained using C
with destructive assignment and programmer-controlled memory management.

Some runtime numbers stick out and require explanation. The bad performance of
O’Caml on huffman is due to extensive garbage collection; the program spends more
than half of its time doing GC. Also, the bad performance of imperative languages on
five11 is partly due to the nature of the task, which is not tailored to accessing bits in
a multiple-of-eight fashion, and partly due to calling individual malloc:s and free:s
(in C) for each channel description rather than allocating a big memory area once and
partitioning it to each channel using programmer-controlled pointer bumping.

5.2 Succinctness and ease of programming

Performance is only part of the story. Ease of programming is equally important. It
is very difficult to quantify this dimension, but the lines of code required to perform
these tasks in different languages provide some rough estimate. As seen in Figure 5,
the Erlang solutions are 2–20 times more compact than solutions in other functional
languages. Once again, this is not due to the functional core part of Erlang; it is due to
the ability to manipulate bit streams declaratively.

We have used the following rules when counting line numbers:

– We only counted lines directly involved in performing the tasks required by the
benchmarks, not lines needed for I/O or for measuring execution times.

– We did not count blank lines, comments, type specifications of functions, strictness
annotations, or lines containing only one keyword.

– No line was allowed to be wider than 80 characters.

We have made all these benchmark programs publicly available and annotated their
source code with line numbers to see exactly which lines we count in the different
benchmarks. Their annotated source code is at http://user.it.uu.se/∼pergu/bitbench.
Input data for running these programs, further information, as well as a pre-release of
the Erlang/OTP system we have used are also accessible from the same site.



6 Related Work

Currently, very few general purpose languages provide constructs for direct manipula-
tion of binary data down at the bit level, let alone efficient ones. Bit streams are typically
represented as character arrays and their bit-level manipulation is performed by the
programmer using explicit bit shifts and bit masks. Doing so is both exacting and error-
prone. But since this kind of programming is commonplace in domains such as cryptog-
raphy, data communication and multimedia programming, a plethora of domain-specific
languages targeting these areas come with some ability to manipulate bit streams.

Cryptol [12] and SLED [15] are domain specific languages in the field of cryptol-
ogy and machine language manipulation, respectively. They both allow bit-level pattern
matching, but the size of the fields in the patterns are fixed at compile time.

Solar-Lezama et al. have proposed BitStream, a language for manipulating binaries
in the coding and cryptography area [17]. The dataflow programming model used in
BitStream is radically different from ours, as is the methodology to achieve both correct
and efficient programs which requires the programmer to first write a simple reference
implementation and then sketch a more efficient implementation which is rejected by
the compiler if it is not equivalent to the reference implementation. For some applica-
tions, BitStream achieves good performance, on par with hand-optimized C programs.

In the area of data communication Chandra and McCann [2] have proposed a type
system which can be used to describe how network packets are structured at the bit
level. Back has proposed the DataScript [1] language which is both a constraint-based
specification language for specifying binary data formats and a scripting language for
manipulating such formats. DataScript is based on Java and does not support pattern
matching. The PADS [4] language, proposed by Fisher and Gruber, allows description
of any ad hoc data format and comes with the ability to automatically generate tools that
manipulate such formats. In the context of the PADS project, Fisher, Walker, and Man-
delbaum have recently developed a calculus of dependent types [5] which is suitable to
use as a semantic foundation for the whole family of data description languages.

The previous examples of related work are all in one way or another domain-
specific. Diatchki, Jones and Leslie [3], proposed a language extension for general
purpose languages that allows pattern matching on fixed-width bit data types. Their
proposal would make it easier to use a high-level functional language similar to Haskell
to perform low-level tasks like writing device drivers or implementing operating sys-
tems. What distinguishes their work from ours is that 1) they only consider bit data
whose representation fits in the registers of a machine while we do not have any such
constraint, and 2) that their implementation comes in the form of an interpreter rather
than being fully integrated in a general purpose programming language.

7 Concluding Remarks

The treatment of bit-level data is a neglected area in general-purpose programming lan-
guages and most declarative languages are no exceptions. This is unfortunate since there
are many applications out there craving for language constructs which remove the need
for tedious and error-prone bit-twiddling, while still achieving decent performance.



Armed with bit stream comprehensions and the ability to perform pattern matching
at the bit level without being hampered by artificial restrictions (e.g., always having to
create bit streams whose length is a multiple of eight) we have shown how a variety of
important “real-world” bit stream applications can be programmed both succinctly and
efficiently. We see very little reason for bit streams not to co-exist with other complex
terms such as lists or tuples, or for Erlang to be an exception in providing such support.
Perhaps this paper paves the way in this direction.
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